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Abstract

This paper considers the problem of a fashion trend-setter confronting
an imitator who can produce the same product at lower cost. A one-
dimensional product space is considered, which is an abstraction of the
key attribute of some consumer good.

Three broad strategies can be optimal for the fashion-leader: (1) Never
innovate, which milks profits from the initially advantageous position but
ultimately concede the market without a fight. (2) Innovate once but
only once, which just temporarily defers conceding the market. (3) Cycle
infinitely around product space, never letting the imitator catch up and
capture the market. Sometimes the cycles start immediately; sometimes
the innovator should wait for a time before beginning the cycles.

The optimal solution exhibits strong state-dependency, with so-called
Skiba curves separating regions in state space where various of these
strategies are optimal. There are even instances of intersecting Skiba
curves. In most cases, analytical expressions can be stated that charac-

terize these Skiba curves.

1 Introduction

This paper suggests a novel explanation for the existence of fashion cycles,namely
movement, around a ’product space’ that is strategic on the part of a fashion

trend-setter and imitative by low-cost competitor(s). The trend-setter defines

*The authors like to thank an anonymous referee and the editor, Cars Hommes, for their
remarks.



what is fashionable, and off-label brands imitate them. The product design
space is actually of very high dimension, leaving lots of room for complex tra-
jectories that never settle down to a single steady state. We show, however,
that such complexity is not essential to this story. Even in a one-dimensional
abstraction of that space, the optimal solution may involve continual adaptation
and imitation. One example of a one-dimensional product space is the width of
neckties, which we all have observed to vary over time. Other examples include
the extent to which accessories are flashy or understated, the width of labels on
sport coats, or the length of skirts. An important benefit of sticking with a one-
dimensional product space is that we can write explicit expressions describing
the thresholds between initial conditions where different strategies are optimal.

The structure of the optimal solution depends on how much it costs to
develop new designs and on the initial positions of both firms in the product
space. For low design costs it is optimal for the firms to cycle around the product
space indefinitely, with a Skiba curve separating the two possible directions for
changing the design initially.

For intermediate design costs, two other Skiba curves circumscribe an area
in the middle of the product space where it is optimal for the fashion setter not
to innovate, at least initially. In that case either the imitator simply catches up
and conquers the whole market or the fashion setter changes its design later.

If the cost of marketing new designs is still larger, two other Skiba curves
arise, which separate a policy of "never changing the fashion” from one in which

the fashion leader makes an initial major design change but no subsequent



changes.

The paper is organized as follows. Section 2 reviews some relevant literature.
The model is presented in Section 3. A short overview of the solution structure
is provided in Section 4. Section 5 analyzes the solution structure when the costs
of making new designs are so low that periodically changing designs forever is
optimal. In Section 6 these costs are large enough that it is not optimal to change
the design more than once . Section 7 considers parameter constellations where,
depending on the initial situation, either periodic design changes or making no

new designs at all can be optimal.

2 Literature Review

Firms engage in at least two kinds of product design innovation: technological
innovation and stylistic or fashion innovation (Schweizer, 2003). The former
improves the product. E.g., computers today are faster than they were ten
years ago. Fashion innovation differentiates what’s new from current models
without improving functionality. For women’s clothes, red may be ”in” this
year and blue may be "out”, but that does not mean red is intrinsically better
than blue. Certainly the color red is not a new invention per se. Furthermore,
it is likely that in a few years blue will be in and red will be out, and a few years
after that, red will be in again. The same happens for the width of men’s ties,
the length of skirts, and the popularity of one material relative to another.

In short, we observe that consumers are willing to pay more for one good



(the ”in” good) than another, functionally equivalent product (the one that is
”out”). Economists have long been fascinated by this behavior, dubbed ” Veblen
effects” in honor of Thornstein Veblen’s seminal inquiries into conspicuous con-
sumption (Bagwell and Bernheim, 1996). Typical explanations involve ”status”
or "prestige” goods conferring utility on their consumers by allowing implicit
association with other high-status consumers of that good. If a good is so ex-
pensive that only the rich can afford it, then onlookers can infer that anyone
they see consuming it must be rich. Allowing others to make that inference
may bring various benefits, and a variety of models have been developed under
which it is optimal for consumers to behave in this way (e.g., Bikhchandani et
al., 1992; Coelho and McClure, 1993; Bagwell & Bernheim, 1996; Frijters, 1998;
Corneo and Jeanne, 1999; Bianchi, 2002).

Here we take this consumer behavior as given, rather than trying to ” explain”
it within a rational actor framework. We ask instead how firms might manage
fashion innovation in order to exploit this behavior in order to maximize profits.
There is a large management science/operations research literature providing
practical guidance to fashion goods producers, but it does not treat the rate
of fashion innovation as a decision variable of interest. Rather, these papers
address manufacturing (Degraeve and Vandebroek, 1998; Jain and Paul, 2001),
supply chain management (Donohue, 2000; Mantrala & Rao, 2001; Milner &
Kouvelis, 2002), inventory policy (Fisher et al., 2001 ), pricing (Zhao and Zheng,
2000 ), and other management issues that arise in the context of a given fashion

innovation’s product life cycle.



Likewise there is a literature advising firms how quickly to make technolog-
ical innovations (e.g., Paulson Gjerde et al., 2002), but little has been written
about how to manage the rate of fashion innovation.

A partial exception is Swann’s (2001) case study of the evolution of two
prestige cars, the Rolls Royce and the Ferrari. However, that is an interesting
descriptive analysis of a particular case more than an effort to derive prescriptive
insights from a general model.

The closest analog to the current investigation is Pesendorfer’s (1995) in-
novative paper. As in our model, Pesendorfer’s fashion producer dynamically
optimizes the timing of fashion innovations and, finds, as do we, that the opti-
mal solution could involve introduction of new fashions at fixed, regular intervals
whose period varies inversely with the cost of innovation. There are three sig-
nificant differences, however. First, Pesendorfer explicitly models the behavior
of two discrete types of individuals and the producer’s decision about how to
vary the price of a given fashion over time. In that sense, Pesendorfer’s focus is
on creating a rational-actor model of fashion that includes the incentives of pro-
ducers not just consumers, whereas, again, we take consumer’s taste for fashion
(meaning products differentiated from low-cost alternatives) as a given.

Second, Pesendorfer thinks of innovations as discrete. At some fixed unit
cost, the innovator can create a new design that is completely differentiated
from the current design, and renders the current design instantly and com-
pletely obsolete. However, it seems more realistic to think of a product design

space. Innovation implies moving one’s product within that space, and one could



move a little (minor innovation) or a long way (major innovation). One or the
other might turn out to be optimal, depending on the particular circumstances,
but the model should recognize that the producer has that choice, rather than
assuming arbitrarily that all innovation must necessarily be draconian.

Likewise, we view allowing even a one-dimensional continuum to be an ad-
vance. Related to this, we view the cost of innovation as increasing in the
“amount of innovation”. Consider test marketing, for example. Understand-
ing how consumers will react to modest variations might be relatively easy, but
accurately predicting their response to a radical change might require more mar-
ket research. Likewise, it might take more advertising to persuade people that
what initially seems like a very extreme departure from current trends will in
fact become de rigeur. Indeed, Barnett and Freeman (2001) found that firm
mortality rates increase with the simultaneous introduction of multiple signifi-
cant innovations.

The third and most important difference between our model and Pesendor-
fer’s pertains to the existence and behavior of other producers. Pesendorfer
focuses on the monopolistic case, and, even in his competition case, Pesendorfer
(1995, 773) did not ” allow imitation of successful designs. Imitation would give
designers an additional incentive to create mew fashions periodically. Clearly
imitation is an important force behind the creation of new designs. However,
through the creation of brand names, designers can at least partially insulate
themselves from competition with potential imitators. In this paper I consider

the case in which the designer has well-defined property rights over his innova-



tions.”

Pesendorfer’s no-imitation case is of interest, but so is allowing imitation
because "knocking off” expensive designers is pervasive. Protecting intellectual
property rights concerning fashion goods can be difficult, at least in the US.
(Some European countries may have stronger protections.) Fashion innovations
are ineligible for patent protection because they do not advance prior art in a
non-obvious way. Something like reintroducing the color mauve in 2003, when
it was popular in the 1980s but fell out of favor in the 1990s clearly does not
meet that test. Likewise copyright protection cannot be afforded in the US to
7useful articles”, so it can only protect design elements that can be identified
separately from and can exist independently of the utilitarian aspects of the
article. Practically, that means that fashion designs in apparel (as opposed to
accessories) are hard to copyright. Finally, although defending a fashion trade-
mark against counterfeiting is relatively straightforward, defending trade dress
against imitation is more difficult. (The Lanham Act differentiates between
”trademarks”, which are words, emblems, logos, or symbols used to identify
goods and distinguish them from those sold by others and ”trade dress”, which
refers to the product’s overall image or appearance including shape, size, color,
packaging, and marketing.)

To give a concrete example, Abercrombie & Fitch sued American Eagle Out-
fitters in 1998 for ”intentional and systematic copying of its brand, images and
business practices, including its merchandise, marketing and catalog” (Seiling,

1998). However, both the lower court and the Pennsylvania Sixth Circuit Court



of Appeals sided with American Eagle Outfitters because the clothing designs
for which Abercrombie & Fitch sought protection were functional as a matter
of law and therefore not protectable under trade dress (Catalog Age, 2002).
Abercrombie & Fitch then filed suit seeking just to prevent American Fagle
Outfitters from using the number 22’ on its clothing, arguing that it had a
common law trademark on that number (Associated Press, 2003). That suit
has yet to be resolved, but even if Abercrombie & Fitch wins, it would only
affect a minor aspect of American Eagle Outfitters’ alleged imitation.

Our model assumes there is a single innovative ”fashion czar” that defines
what is fashionable within the product space. This is an outcome Pesendorfer
found to be among the plausible competitive equilibria. Essentially if all con-
sumers believe that only the fashion czar is capable of creating fashion, then
this will be the equilibrium outcome. The fashion czar’s product is imitated by
low-cost producers who are not strategic about their fashion innovation. The
fashion czar might invest in costly activities that support innovation such as
”cool hunting” (gathering intelligence about trend-setting consumers’ prefer-
ences, see, e.g., Gladwell, 1997), "depth test” marketing preliminary designs
with bellwether groups (e.g., Fisher and Rajaram, 2000), or advertising heav-
ily to mold expectations about what will be ”in” (Pastine & Pastine, 2002).
The imitators follow the simpler, low-cost strategy of adapting their designs to
conform to those of the fashion czar, whatever those designs are.

Note two differences with some articles in the literature. First, some models

of fashion cycles are based on innovation and imitation by consumers who are



conformists or non-conformists with regard to purchasing decisions (e.g., Mat-
suyama, 1992). Here it is producers who innovate or imitate. Second, portions
of the literature assume that unit production costs are identical for ”in” and
7out” products since they are functionally identical; in our model it is allow-
able and perhaps more reasonable to think of the fashion czar as having higher
production costs.

Thus we imagine a market populated by heterogeneous firms. One firm
optimizes, at some nontrivial information processing cost; others follow heuristic
strategies that are cheaper to implement. This structure is akin to that of
Conlisk (1980), Sethi & Franke (1995), and Brock and Hommes (1997). The
key point of these models is that information processing costs may trigger cycles
(or even chaos) due to optimal (or boundedly rational) switching behavior. See
also the discussion in Hommes (2006, section 7). Our model differs in that
it is continuous time and the producers’ decisions pertain to product design,

specifically where they position their products in some product space.

3 The Model

State variable X represents the fashion leader/decision maker’s position in some
consumer product space, and Y represents the position of a competitor in that
same space.

The competitor’s corporate strategy is simply to imitate the market leader

(X), so Y always chases X. Pesendorfer (1995) suggests that one can think of Y’

10



not just as a single follower, but rather as a group of followers, which motivates
the absence of strategic behavior on their part. Not only do they lack market
research capability and other prerequisites to strategic behavior, but they may
also each be small, making it hard to amortize the fixed costs of such strategic
infrastructure. Hence, we model an optimal control problem, not a dynamic
game.

The system dynamics for this model would be simply:

Y=X-Y, (2)

where w is the control variable. The product space is constrained by zero and

one (neckties of infinite width make no sense), so that

0<X<1. (3)

Since Y just follows X, expression (3) implies that Y is also effectively con-
strained to be between zero and one without needing to make this explicit.
The fashion leader’s objective function balances the cost of fashion innova-
tion against the benefits of being well-differentiated in product space from the
low-cost imitator’s product. For simplicity we assume that profits grow as the
square of the distance between the innovator’s and imitator’s products. Note

profits in this model do not depend on the absolute location of either firm in
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product space since fashion is not useful per se. Extensions in which consumers
care not only about differentiation but also about the absolute position in prod-
uct space could be an interesting topic for further research. The greater the rate
of innovation, the more costly that innovation is. In particular, it is assumed
here that the cost of innovation is linear in the rate of innovation. Hence, the
fashion-setter’s objective is:

max / et B (Y — X)? = clu|| dt. (4)
0

and the decision maker seeks to optimize (4), subject to the system dynamics
(1)-(2) and the state constraint (3).

In (2) the difference between X and Y could have been premultiplied by
some constant k£ > 0 measuring the speed of convergence. However, by an
appropriate time transformation it can be shown that increasing k has the same
effect as jointly increasing the switching cost ¢ and decreasing the discount rate
r. Hence, nothing is lost by normalizing k equal to 1, which has the advantage

of reducing the number of parameters.

4 Properties of Optimal Solutions

Before beginning detailed analysis, it is useful to make some observations about
the nature of optimal solutions to this problem. Most are self-evident or require
only a brief explanation, but collectively they delineate the space within which

one must search for optimal solutions.
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Proposition 1 If it is optimal to exercise control, it is optimal to jump all the

way to a boundary (X =0 or X =1).

This follows from the cost of moving being linear in the distance moved,
while the benefit is convex. An immediate implication is that once the fashion
leader has reached a boundary, the leader will subsequently always be at one

boundary or the other.

Proposition 2 Once the fashion leader has reached a boundary, and hence will
always be at a boundary, by symmetry the problem becomes a one-dimensional
dynamic program whose state is D the distance the imitator is away from that

boundary, with value function V*which satisfies

V*(D) = max{D?%dt + e~ ""V*(De™ "), —c 4+ e7"V*(1 — D)}.

Proposition 3 Assume the fashion leader is at a boundary (X =0 or 1). Let
Do be some distance such that when the imitator is that distance away, the
fashion setter prefers jumping to the opposite boundary over staying in place.
Then for all D < Dy, the fashion setter would also rather jump to the opposite

boundary than stay in place.

Proof. This is because the cost of moving is the same while the revenue is higher
when D < Dy, i.e., V(D, jump) > V(Dg,jump). On the other hand, clearly,

V(D, stay) < V(Da, stay), while by definition V' (Dy, stay) < V(Dg, jump). m

Corollary 4 If it is ever optimal to jump away from a boundary, it is optimal

to continue to jump forever.
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This follows because all jumps leave the fashion leader at the boundary, and

eventually the shadow approaches that boundary arbitrarily close.

Corollary 5 If it is optimal to jump more than once, it is optimal to jump

forever.

This follows from Proposition 1 (all jumps are to a boundary) and Corollary

Corollary 6 When the fashion leader is at a boundary, the optimal strategy is
fully characterized by a single distance parameter Dq. If the imitator’s distance
from the boundary D < Dy, then the fashion leader should jump immediately.

Otherwise, the fashion leader should wait until D decreases to Do and then jump.

Corollary 7 Only seven strategies are candidates for optimality:

1) Never moving

2) Jumping once to X =0

3) Jumping once to X =1

4) Jumping forever, with the first jump to X =0

5) Jumping forever, with the first jump to X =1

6) Waiting for some time and then jumping forever, with the first jump to X =0

7) Waiting for some time and then jumping forever, with the first jump to X = 1.

In the next sections we show that all seven strategies actually occur for some

parameter values.

Proposition 8 Strategy pair #2/#3 and quadruple #4/#5/#6/#7 are incom-

patible in the following sense. For any given set of parameters, if there exist
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initial conditions such that any of strategies #4, #5, #6 or #7 is optimal, then

there do not exist initial conditions such that strategies #2 or #3 are optimal.

To see this, note that if either Strategy #4, #5, #6 or #7 are optimal for
some set of initial conditions, then there must exist a Dg such that V(Dg, jump) >
V (Do, stay). Since if the fashion leader were to jump only once, eventually D
would become less than Dy, making it no longer optimal to stay.

As will be illustrated below, all other combinations of strategies can co-exist
in the sense that there exist parameter values such that any one of those strate-
gies can be optimal depending on the initial conditions. Analytic expression
can be written fully characterizing most of the boundaries separating the re-
gions where each of the alternative strategies is optimal. These boundaries are
found by equating the value functions computed under each candidate optimal

strategy. The discussion turns next to the computation of those value functions.

5 Solution structure for low unit cost

To begin suppose the market leader’s product is initially at one of the boundaries
of product space and, without losing generality, suppose it is at the lower end,
X =0,and Y < 1/2. (If initially X = 0 and Y > 1/2 then any innovation
would be both costly and revenue-reducing, so clearly the fashion-setter should
do nothing at least until Y < 1/2.) If the cost of making new designs is low,
then when the imitator gets close enough to 0, the decision maker will move X

from zero to one. Later, when the imitator comes sufficiently close to one, the
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trend-setter will jump from one back to zero. Since the control variable appears
linearly in the optimization problem and is unbounded, these movements take
the form of discrete jumps, yielding the solution structure depicted in Figure 1.

The next subsections investigate the properties of the cycle in Figure 1 and
obtains an upper bound on the unit cost for which this solution structure is
in fact optimal. The second subsection finds all points (X,Y) at which the
decision maker is indifferent between jumping to zero and jumping to one. It
turns out that all these points are situated on a curve, which in the optimal
control literature is called a Skiba-curve. Skiba (1978), in a one state optimal
control model, detected a threshold (the Skiba point) at which the decision maker
is indifferent between converging to a positive steady state or converging to zero.
Haunschmied et al. (2003) extended this analysis to a two state optimal control
model so, as in the present paper, due to the extra dimension, the Skiba point
becomes a Skiba curve. For other recent research concerning Skiba surfaces the

reader is directed to Wagener (2005a, b) and Deissenberg et al. (2004).

5.1 Properties of the Cycle

On the cycle X = 1 or X = 0 (see Figure 1). Let Yy be the position of the
imitator in the product space at which the decision maker is indifferent between
staying at zero or jumping from zero to one, and, analogously, Y7 is the imitator’s
position for which the market leader is indifferent between staying at one or
jumping from one to zero. Defining T} to be the length of the time interval

at which X = 1, and Tj is the time interval length at which X = 0, it can be
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obtained from expression (2) that

e
I

LY=1-(1-Yy)e " for 0<t<T,

X = 0, Y=Yie"t for Ty<t<T +Tp.

Only the relative positions in the product space matter, which implies that
Ty =To =T and Y7 = 1 — Y. Since Y has the same value at the end of the
interval where X = 1, and at the beginning of the interval where X = 0, it
holds that:

e =Y, (1+ e*T) . (5)

Next, we determine Yy by choosing that value of Y that maximizes the objective.

XY
A
X X
1
Y1
Y
Yo X
T 21

Figure 1: The optimal periodic solution structure.

Due to the one-to-one correspondence implied by (5), this also gives the cycle

length 2T. Evaluating the objective on the initial interval [0, 7] (starting with
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Y (0) =Yy and X (0) = 1) gives:

1— e—T(T+2)

T
1
—rt [ = _ 2 dt — —rT ., _ _ 2 _ =T .
/Oe (2(1 Y)) t—e " e=(1-Y) S e

For reasons of symmetry, excluding discounting, the objective has the same value
on the second interval [T, 2T (starting with Y (T) =1 —Yp and X (T) = 0) as
on the first interval. Equality modulo discounting also holds for all consecutive

intervals of time length T. Therefore, the objective value becomes:

5 1— e—T(r+2)

Vo= > et ((1 RO T —e_rTc>

n=0
- 1 (1 _ Yb)r—i—Q _ YOT+2 B YOT . (6)
C2(r+2) (1-Yo) -Yg (1-Yo)" — Yy~
The first order condition eventually leads to
o1 p -y I Gt Vi 6Yg + 4V
Crr+2) \(1-v) ! VA 2 '
(7)

This equation implicitly determines Yy as a function of parameters r and ¢, as
depicted in Figure 2. This figure shows that the market leader will not change
the design very often (Yp is low) if the cost of changing the design, ¢, is large.
The same holds for the relation between Yy and the discount rate, because a
large discount rate implies that the decision maker is more influenced by the
immediate costs of design change. Furthermore, the figure shows that for large

discount rates, Yy depends heavily on the rate, while for smaller discount rates
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Yy is insensitive to changes in the discount rate. In fact, in this figure the curve

for = 0.001 could not be distinguished from that for » = 0.01.

05 ;Yo
Figure 2: Optimal Switching Threshold Y as a function of ¢ and 7.

Clearly it holds that Yy < 1/2 for all ¢ > 0. For very small values of ¢ the

following result is established.

Proposition 9 i) When changing the design is costless, i.e. ¢ =0, the threshold
Yy equals 1/2. i) However, for very low values of ¢, Yy approaches 1/2 only for

r <0.5, ie.,

hI%YE](C) = 05 for r<0.5,

hI%YE](C) < 05 for r>0.5.

Proof. From (7) it can be obtained that Yy = 1/2 for ¢ = 0. Due to this same

expression it can also be shown that for Y5 = 1/2 it holds that dd}% =0, j;% =
(0]

0, and :%,0% =16 (r — %) . Thus, if r > 0.5 the c-curve in Figure 2 lies below the
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Yo-axis for values of Yy less than but close to 1/2. Since ¢ =1/2(r 4+ 2) > 0 for
Yy = 0, this proves that lim._q Yoy (¢) < 0.5 for > 0.5. ]

Result i) is intuitively plausible since — if changing the design is costless —
the market leader’s strategy is simply always to maximize the distance between
X and Y, which leads to chattering around 1/2. Tt is clear that Yy = 0.5 implies
that the cycle length equals zero. Hence, the proposition implies that

limT(¢) = 0 for r<0.5

c—0

lin%]T(c) > 0 for r>0.5.

Figure 2 illustrates result ii) for » = 0.7, where lim._o Yy (¢) = 0.053. Appar-
ently, for very large discount rates, immediate switching is not optimal even
when the cost of design change is almost zero.

The following result gives an upper bound on the design change cost above

which it is not optimal to have a solution structure as depicted in Figure 1.

Proposition 10 Exactly for

1
—_— 8
c> 3 ) 8)
Yo does not exist and for ¢ = 2(T—1+2) it holds that Yy = 0.
Proof. By letting Yy — 0 in (7), we obtain that ¢ = m and that a non-

negative value for Yy does not exist for ¢ > m
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For ¢ > m changing the design is so expensive that the same design is
kept forever when the decision maker finds itself at one of the boundaries of the
product space (X = 0 or X = 1). One simply stays there while the imitator’s
product becomes more and more similar.

In the example with » = 0.7, r = 0.5, » = 0.1, and » = 0.01, the maximum
value of ¢ for which periodic design change is optimal is ¢ = 0.1852, ¢ = 0.2,
¢ = 0.2381, and ¢ = 0.2488, respectively. If the discount rate is large the decision
maker is reluctant to incur immediate costs. Therefore, the upper bound on ¢
goes down as r increases.

Proposition 10 does not imply that designs will never be changed if ¢ >
2(7"—{1-2)' If initially the market leader’s product is in the interior of the product

space (0 < X < 1), an initial design change to one of the boundaries may still

be optimal. This possibility will be explored in Section 6.

5.2 Skiba Curve

This subsection finds a curve in the (X,Y) —plane on which the fashion trend-
setter is indifferent between choosing the design X = 0 or X = 1. By definition
the outside points of this curve are (0,Y5) and (1,1 — Yp). It is also clear that
(1/2,1/2) must be part of the Skiba curve.

To find an analytical expression for the whole curve we consider an arbitrary
point ()_( , }7) , with Yy < Y < 1—Y;. Then we evaluate the objective values for
an immediate upward jump to 1 and an immediate downward jump to 0. Those

points ()_( , }7) , for which both values are equal, belong to the Skiba curve.
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First we consider an immediate upward jump from X to 1. On the initial time
interval, say 0 < ¢t < £, Y increases from Y to 1 — Y. Then, from that moment
on, the solution structure depicted in Figure 1 applies, the objective value of
which is given by V (see (6)). This implies that the value of the objective,

v (X' , 5_/) , corresponding to ”jumping upward” is
_ _ ¢ 1 _ _
VP (X,)Y)=—-c(1-X)+ / et (5(1 - Y)2> dt —e "ete "V
0

which can be rewritten as

v\
VU (X,7) = —c(1- X)+ (1&) - @%(147)2%. (9)

Analogously,

&)T%»Q
v (10)

down (v v\ _ _ .V E’r o 1_21_(
yiown (%,7) cX—i—(}—/) Vo) + 2P L

To obtain the Skiba curve, we equate the objective values of jumping upwards

and downward. The appendix shows this gives:

(1-7) (1 - (1 5_/0}7>T+2> v (1 R (éyﬂ

% ((%) B (1 _1 Y)) (1- YS) -Yy <(1 - ?Ezfi;c - (1= YU)T) N

This is the Skiba curve. Although there is no explicit expression for Yp, it is

implicitly given by (7). For the parameter values r = 0.1 and ¢ = 0.1, the
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Skiba curve is depicted in Figure 3.

Y

1

08|

06|

04|

02]

Yol

Figure 3: Skiba curve for » = 0.1 and ¢ = 0.1.

6 Solution structure for large unit cost

From Proposition 10 the cyclical solution structure of Figure 1 cannot be optimal
when the cost of changing the design is large, i.e. when ¢ > m This implies
that then it can never be optimal to change the design in such a way that X

jumps from a level lower than Y to a level that is higher than Y, or vice versa.

After excluding such design changes, three candidate policies are left, namely:

e starting from a situation where X > Y, jump up to X = 1 but make no

subsequent design changes in the future. The value of the objective that
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results from this policy is

1
r+2°

VI (S F) = e (LX) 4117

starting with X < Y, jump down to X = 0 but make no subsequent design

changes in the future. Then the value of the objective is

ldown (v V) — _ .V 1_2 1
v (X,Y)_ cX+2Y T2
stay at X, which gives
sta v v L5 )2 1
V) =3 (78

The fashion trend-setter is indifferent between making only an initial de-
sign change leading to an upward jump of X and making no change at
all, when V1w (X' ,}7) equals Vstav (X' ,37). This leads to the following

Skiba-curve:
Y= X - (c(r—&-Q)—%).

This is an upward sloping line, which lies below the 45° line, because the
policy with the initial upward jump can only occur if X > Y. The Skiba
curve only occurs in the relevant region if X < 1 for Y = 0, which leads

to the conclusion that this Skiba curve only exists in case ¢ < ﬁ
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Being indifferent between an initial downward jump or refraining from any
design change, thus equating 1/4o®n (X' , 37) and Vstay ()_( , }7) , gives the follow-
ing Skiba-curve:

}_’:%X—i—c(r—ﬁ—%.

This is an upward sloping line above the 459 line. This curve is only relevant if

1

Y <1 for X =0, which again gives ¢ < ;5.

The results are summarized in the following proposition.

Proposition 11 (a) Consider the c-region m <c< ﬁ Then the optimal

policy is

o X < 2Y —2¢(r+2) : make an initial design change to X = 0. Then

refrain from doing any changes afterwards.
¢ 2Y —2c(r+2) <X <2Y +2c(r+2) —1: make no design changes.

e X > 2Y + 2¢(r+2) — 1 : make an initial design change to X = 1.

Afterwards make no design changes.

(b) Consider the c-region ¢ > T—iQ Then the optimal policy is to make no

design changes at all.

The next figure illustrates case (a). After choosing » = 0.1 we must have
0.2381 < ¢ < 0.4762 to be in the relevant parameter region. The figure is drawn

for ¢ =0.3.
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Figure 4: Skiba curves for » = 0.1 and ¢ = 0.3.

7 Intermediate ¢

In the hairline case where ¢ = m, it holds that Yy = 0, and the Skiba curve
(11), that separates the two policies of initially jumping up or down followed by
periodic design changes as depicted in Figure 1, becomes X = Y. This hairline
case is presented in Figure 5.

Note that the Skiba curve X = Y, denoted by (11), is not really relevant
since here the unit cost is too large for periodic design changes to be optimal.
Instead, the fashion leader refrains from doing any design changes when X =Y.

This raises the question whether for values of the unit cost ¢ a little bit

below m (implying that Yy is close to zero) making no changes at all could

be better than jumping to the cycle for some initial values of X and Y. After
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Figure 5: Hairline case ¢ = m for r = 0.1.

all, in Section 3 we only compared the objective values resulting from periodic
design changes after initial upward and downward jumps, without checking their
absolute values. In case these objective values are negative, then a policy of
making no design changes at all would be preferable.

The point where it is least attractive to jump to the cycle is (1/2,1/2). This
implies that if a policy of making no new designs would be optimal anywhere,
it would certainly be optimal for X = 0.5 and Y = 0.5. In Figure 6 we plot
the difference in the objective values for jumping to the cycle and staying:
VP —Vstay swhere Yy = 0.01. This figure shows that indeed for this Yj staying
at X =Y = 0.5 is optimal for an interval that includes r-values between 0.2

and 0.4, while this does not occur for » = 0.1. The thin line proves that the
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Figure 6: Difference in objective values for jumping to the cycle and staying,
when X =Y = 0.5 and Yy = 0.1.

parameters are still in the relevant region, i.e., m —c>0.

To determine the size of the region where making no design changes is op-
timal we determine two other Skiba curves. The first includes those points
where jumping up followed by periodic design changes gives the same objective
value as making no changes. The second is its mirror image. Figure 7 gives a
numerical example in which these curves occur.

In Figure 7 two other regions occur, where it is in fact optimal to have an
initial period of making no design change followed by a jump to the cycle. Here
the idea is that when the first jump is upward (downward) it is only optimal to
make this design change after the imitator has moved in the downward (upward)

direction. Only then does jumping create a large enough difference between the

two designs for the trend-setter to make enough profits to offset the cost of
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Figure 7: Eight Skiba curves for the case that Yo = 0.01, » = 0.2, and ¢ = 0.189.

jumping. Within the region ”wait-up” (”wait-down”) the upward (downward)
movement takes place at the moment that Y reaches the lower (upper) boundary
of this region. Appendix B provides details on the computation of these Skiba

curves.

8 Conclusions

Fashions change and even cycle. A variety of models have been advanced to
explain this. Most have focused on consumers’ tastes and behavior. Pesendor-
fer (1995) introduced perhaps the best-known model that explicitly considers
optimal dynamic strategies for suppliers of fashion goods. It focuses on the

monopoly case. However, it is not always easy to protect intellectual property
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claims concerning fashion (as opposed to technical) innovations, so competition
is the norm. Indeed, two basic elements of the fashion industry are constant
innovation by high-end designer labels and low-cost "knock-oftf" brands striving
to offer products that look like those of the trend-setters.

Here we introduce a model whose solution describes how a high-end trend-
setter ought to respond to competition from one or more low-cost imitators
when consumers value one design over another only to the extent that it is
distinguishable from the low-cost products. That is, consumers have no intrinsic
preference for one design over another.

The optimal strategy depends on the parameter values and, in many cases,
there is state-dependency. When the costs of innovation are low enough, the
trend-setter should innovate indefinitely even though the product space is bounded.
Le., it is optimal to create fashion cycles. Because neither side of product space
is intrinsically better or worse than the other, the optimal initial direction of
innovation depends on the innovator and imitator’s initial positions in product
space. In particular, a two-dimensional Skiba curve separates regions in state
space within which it is optimal for the innovator to begin by moving "left" or
"right" in product space.

Not surprisingly, when the costs of innovation are high enough, the optimal
strategy involves no innovation. The trend-setter simply milks the profits avail-
able because of its initial product differentiation, but is eventually overtaken by
imitators who by virtue of their lower cost structure take over the entire market.

Sometimes it is optimal for the trend-setter to extend this transient leadership
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with a single innovation.

For intermediate costs there are initial positions such that the innovator is
indifferent between embarking on a long-term strategy of innovating indefinitely
and one of these alternate strategies. Again, the collection of these indifference
points constitute Skiba curves. Indeed, there are places in state space where
several different Skiba curves meet. Furthermore, in most instances it is possi-
ble to write explicit analytical expressions characterizing these two-dimensional
Skiba curves and to explore how they depend on various model parameters.

Given our one-dimensional abstraction of product space, some aspects of
the optimal solution are artificial, such as the idea that fashion bounces forever
between the same two points. In reality, there may be simple cycling in one
dimensional projections of a higher dimensional product space (e.g., a color can
be in, then out of fashion, then back in again), the true product space is of much
higher-dimension. Translating the insights of our stylized model into a richer
image of the variety possible in fashion goods, we would obtain the following
prediction. The fashion leader should make bold moves (equivalent to jumping
from one boundary to another) in directions that maximally differentiate it
from the followers, while still remaining within the realm of what is "feasible"
in customers’ minds. That is in fact not a bad characterization of what is done

at fashion shows.
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9 Appendix A: Derivation of the Skiba Curve of

Section 3

From (9) and (10) it is obtained that equating the objective values of jumping

upwards and downward gives:

Y r
r+2
_ Yo \" 1 (P
_ —c(l—X)+<1 OY (V=) +501-7) (::2)
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Plugging in V from (6) results in:

1
2(r+2)

— c(1-2X)
) () (e
42 r+2
a0 ()" (- ()
— c¢(1-2X)
() () e (A2
( )Y (o ()
( < 7)) (- ()
() <1fy> )by (O )

which is the Skiba curve given by expression (11). QED

"<|

10 Appendix B: Technical Details of Section 5

We now discuss some technical details that relate to Figure 7. Ignoring for the
moment the regions ”wait-up” and ”wait-down”, we arrive at Figure 8.

Note that at point A the curve V5% = V¥ crosses the 45° line X = Y.
This means that to the left of point A, the curve V%% = V¥ is not relevant

anymore. Consider e.g. point B. Here V5% = V¥ but both policies ”stay
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Figure 8: Figure 7 without regions ”wait-up” and ”wait-down”.

forever” and ”jump up and follow cycle” are not optimal anymore. The reason
is that from B onwards, staying at the current value of X one immediately enters
the region where ”jumping up” is better than ”staying”. This implies that a
jump taking place at any point in time after leaving B is better than staying
forever or jumping immediately. This means that to the left of A and around
the ”naive triple point” T another policy has to be considered, namely ” wait

until Y has reached ¥ and then jump up”. The value of this policy is

t
pwait—up _ / e_Tt% (X —Y)2dt + ety (X, ff) : (12)
0
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where £ is given by the time that Y reaches Y i.e.,

start __

Since Y = X — (X — Y*"*) e~ the integral in (12) equals

Fo (X — ystart)? v-x \'"
—rt 2 B B
(X — P G P A I TR (N e
/6 (X Y) i 2 (7" + 2) 1 (Ysta’rt _ X)
0

and (12) becomes

~ r+2
start)2 Y - X
wait—up _ (X V") 1 _( ) (~_ )T up( ~>
v 201 ey | Taera T X)) VXY

(14)

Since the term in brackets (depending on 57) does not depend on Yt the

maximization of V¥%=4P w1 t. Y does not depend on Y*t"t. Clearly this value

Y will be below the A-B-T line in Figure 8. At point T, i.e., for Y = 0.27431

and X = 0.24217 in Figure 8 we numerically obtain Y = 0.2475 which means
that Y is closer to the 45° line than to T.

It should be noted that the difference V*%#=uP —/uP > () can be interpreted

as the option value of waiting.
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