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Abstract

In this paper we introduce situationsinvolving the linear transformation of products,
in short: LTP situations. LTP situations are production situations where each producer
has a single linear transformation technique. We show that the corresponding LTP
games are totaly balanced. Next, we relate LTP situations to exchange economies in
two different ways and we prove the existence of an equilibrium in these economies.
Finally, we extend the LTP situation to one where a producer may have more than
one linear transformation technique. We show that each totally balanced game with
nonnegative valuesis an extended LTP game.
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1 Introduction

In OWEN (1975) linear productionsituationswereintroduced. Theseare productionsituations
where each producer can use apre-determined set of linear production techniquesto produce
goods. Each producer is endowed with a bundle of resources. A restriction of thismodel is
that each production process can have only one output good, so, this model excludes linear
production processes with by-products. In this paper we introduce situations involving the
linear transformation of products (LTP situations) to deal with production techniques with
at least one output good. We define the set of products to be the set of al goods including
resources. In an LTP situation we have a set of producers and, for the moment, we assume
that each producer controls only one transformation technique. Later, we will extend thisto
situations where each producer can control more than one linear transformation technique.
Each producer owns a bundle of resource goods which he can use in his transformation
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(production) process or which he can sell directly on the market. The outcome of the
transformation process, the produced goods, will also be sold on the market. The goa of
each producer isto maximize his profit given his transformation technique, resource bundle
and market prices.

The organization of this paper is as follows. First we give aformal description of LTP
situations. Next we introduce LTP games and we show that these games are totally balanced.
Thenwerelate LTPsituationsto exchange economiesintwo different ways. Inthefirst model,
producers may exchange their resources at endogenous exchange prices before production
starts. Each producer wants to maximize his profit given the exogenous market prices. In
the second model, producers may exchange their production at endogenous exchange prices.
After this exchange, they can, once more, apply their transformation technique and sell the
resulting bundle of goods at the exogenous market prices. Again each producer wants to
maximize his profit. We show that under certain conditions both models allow for a market
equilibrium. A new characterization of totally balanced games with nonnegative values is
given next by means of extended LTP situationsin which each producer can control more than
one linear transformation technique. Existing characterizations of totally balanced gamesin
theliterature are the class of flow games by KALAI and ZEMEL (1982) and the class of market
games, by SHAPLEY and SHUBIK (1969). A characterization of totally balanced games with
nonnegativevaluesisthe class of linear productiongames (cf. OWEN (1975) and T1Js (1995)).
Finally, an appendix contains the proofs that were omitted in the text.

2 LTP gtuations

We start this section with an example. In the chemical industry, arefinery processis used to
manufacturefrom crude oil other, more useful, productslikegasoline, keroseneand petroleum
solvents. For example, suppose that 500 barrels of gasoline, 300 barrels of kerosene and 100
barrels of petroleum solvents can be manufactured from 1000 barrels of crude oil requiring
100 hoursof labour. Assuming that the production processislinear, thisproduction technique
is represented by the following vector.

—100 labour hours
—1000 crude oil
a= 500 | gasoline

300 kerosene

100 | petroleum solvents

So, labour and crude oil aretheinput goodsin this production processwhil e gasoline, kerosene
and petroleum solvents are the output goods. Since the production technique is linear, any
nonnegative multiple of a is a possible production technique. The value of this nonnegative
multiplier iscalled the activity level. For instance, if afirm operates at activity level 3, shecan



manufacture 1500 barrels of gasoline, 900 barrels of kerosene and 300 barrels of petroleum
solvents from 300 hours of labour and 3000 barrels of crude oil. Obviously, the activity level
of afirmisrestrained by the number of input goods at her disposal.

LTP situations describe production situationsin which each producer controlsatransfor-
mation technique, as described in the example above, and a bundle of (resource) goods. The
transformation techniqueis modelled by a vector that describes which goods and how many
the producer needs to produce other goods. Transformation techniques are linear, i.e. the
output is alinear function of the input. A producer has to choose at which activity level his
production processwill operate. The choice of the activity level will depend on the resources
owned by the producer. Given an activity level, the transformation technique describes how
much input is needed. Then the producer can carry out his production process at a certain
activity level only if hisresources contain the required input. After production, the producer
sellsall theremaining goods, i.e. produced goodsand resourcesnot used inthetransformation
process, on the market. We assume that the market isinsatiable, so that all goods can be sold.
Furthermore, al producers are pricetakers. Their output does not influence the market prices.
The goa of each producer isto maximize his profit from the sale of the remaining goods.

Next, we introduce some notation. Denote by M the finite set of goods and by N the
finite set of producers. Each producer i € N isendowed with abundle of goodsw(i) € RY.
The vector o’ € RM describes the transformation technique of producer i in the following
way. Producer i needs —a’; unitsof each good j witha’; < 0 to produce a}, unitsof the goods
k with aj, > 0. We assume that each vector a* contains at | east one positive and one negative
element. Let y; betheactivity leve of produceri € N. Then for the production of the bundle
{aly;| a’ > 0} heneedsthe resources {—a’y;| a’; < 0}. Sinceweassume thetransformation
techniqueto be irreversible, we have that activity levels are nonnegative, that is, y; > 0.

We have seen that producer ¢ uses good j as an input in his transformation process if
a’, < 0 and that good j isan output if a’ > 0. The resources needed for the transformation
process are thus described by the vector g* with g% := max{0, —a’} foral j € M,i € N.
So, at activity level y; producer ¢ usesthebundle g*y; toproduce (a*+g*)y;. After production,
producer i possesses the bundle w (i) + (a® + g%)y; — g'y; = w(i) + a’y; which he can sell
at exogenously given market pricesp € ]Rf \{0}. Since aproducer cannot use more goods
than he has available, it must hold that g'y; < w(i). The profit maximization problem of
producer i € N thus becomes:

max p? (w(i) + a'y;)
st gy <w(d)
yi >0
The transformation techniques and resources of al producers can be summarized by defining
the transformation matrix A € RM* where the i** column of A corresponds to the
transformation vector o’ and the vector w := (w(i))ien. In short, an LTP situation is
described by a4-tuple (N, A, w, p).



3 LTPgames

By cooperating, producerscan pool their transformationtechniquesand their resources. Each
producer then getsapart of thetotal resourcesto usein histransformation process. We assume
that when producers cooperate, they cannot use the output of other producers as resources
for their production. Furthermore, the activity levels of the producersin this coalition should
be such that the total resources cover the total input needed. After transformation, the
coalition sellsthe remaining goods, i.e. produced goods and resources not used in any of the
transformation processes, on the market at exogenous market prices. The goal of a coalition
isto maximizeits profit.

If a codition S C N, S # () cooperates, it collectively owns the resource bundle
w(S) 1= 3,cgw(i) and moreover, this coalition can use each transformation technique a,
i € S. To produce 3,cq(a’ + g*)y; it needs the input 3", g'vi. After transformation,
codition S can sell 3, ¢(w(i) + a'y;) = w(S) + Ay where y is the vector of all activity
levelswithy; = 0if ¢ ¢ S. Since the codition cannot use more goods than it has available,
it should hold that 3", g'y; < w(S) or, equivalently, Gy < w(S) withy; = 0if i ¢ S. The
profit maximization problem of the coalition thus equals

max p? (w(S) + Ay)
st. Gy <w(S)
y=>0
y;=0ifi ¢ S

D)

So, an LTP situation givesrise to a cooperative game as the following definition shows. Let
(N, A, w, p) bean LTP situation. Then the corresponding LTP game (V, v) is such that the
characteristic function v assignsto each codition S C N the maximal profit it can obtain as
givenin (1) and v(0) = 0. Thefollowing example illustrates this definition.

Example 1 Consider thefollowing LTPsituation: N = {1,2,3},p = (1,1,1)7,

1 -4 -1 3 12
A= -1 1 3|,w@)=|0|,w?2)=]| 2| andw(3)=| 4
0 2 -1 6 0

The corresponding LTP game equals

v(S): optimal activity level y :
v({1}) = =(0,0,0)"

v({2})=14 =(0,0,0)T

v({3}) =17 = (0,0,4)7

v({1,2}) =23 = (¥1,0,0)7, 0 <y <2
v({1,3}) =30 = (41,0,8)", 0 <y <4
v({2,3}) =31 =(0,0,4)"
v({1,2,3})—46 (y1,0 10)7, 0<y; <4
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Themainissueof cooperative gametheory ishow to dividethe benefitsfrom cooperation.
For LTP games, this means how cooperating producers divide their joint profit among each
other. One way to share the joint profit from cooperation is to do this according to a core-
alocation. The core of agame (IV, v) isthe set

C(v) = {x cRY

Z x; = v(N) andei >v(S) forall S € 2N\{(Z)}}
iEN i€S

where 2V\ {()} denotesthe set of all nonempty subsetsof N. When acore-element z € C(v)
is proposed as a distribution of the total profit v(IV') where producer i gets payoff x;, then
coalition S will get at least as much as it can obtain on itsown since Y, g z; > v(S5). So,
no codlition has an incentive to leave the grand coalition N. A gameisbalanced if it hasa
nonempty core and it is called totally balanced if each subgame (S, vs) is balanced, where
v)s(T) :=v(T) if T C S. The following theorem shows that an LTP game has a nonempty
core.

Theorem 1 Let (N, A, w, p) bean LTP situation. Then the corresponding LTP game (N, v)
has a nhonempty core.

Proof. Based on the LTP game (NN, v) we can define a new game (N, a) where a(S) =
pTw(9). In this game each coalition gets the value of its endowment w(S). Next, we define
another game (N, u) where u(S) = v(S) — a(S) or, equivaently,

u(S) = max plAy
st. Gy <w(9)
y=0
yi=0ifi ¢ S

In this game, the value u(.S) isthe net profit coalition S obtains over the value p” w(S) of its
initial endowment by optimally using the transformation technique. In thecase S = N the
above maximization problem reduces to
u(N) = max p! Ay
st. Gy <w(N)
y=>0
To this problem corresponds the following dual minimization problem:

min 2Tw(N)

st. GTz> ATp (2
z>0
Let theminimum! of (2) be obtainedin z. First, weshow that = = (1, ..., ,)7, wherez; =

2Tw(i),isacore-element of (V, u). Accordingtoduality theory >™, oy i = > ey 27 w(i) =

Since the set of feasible solutions is closed, convex, non-empty and bounded from below by the zero-vector,
the problem can be solved and a minimum exists.



2Tw(N) = u(N). So, = represents adistribution of (V') among the members of N. Notice
that z is aso a feasible solution of the problem
min {2Tw(S)|GTz > ATp; 2 > 0}foral S C N. Thus,

z'w(8) > min{z"w(S)|G"z > ATp; 2 > 0}
= max{p" Ay| Gy < w(S); y > 0}
max{p” Ay| Gy < w(S); y > 0; ;i = 0if i ¢ S}

= u(S)

A\

Thisimpliesthat 3";cg zi = Y ieg 2T w(i) = 2Tw(S) > u(S) and thusz € C(u).

Next, we show that 2’ € C(v) with 2} = (z + p)Tw(i). Since v(S) = u(S) + a(S)
it follows that >°,c g2} = 2Tw(9) + pTw(S) > u(S) + a(S) = v(9) foral S C N.
Furthermore, ;e y @5 = 2T w(N) + pTw(N) = u(N) + a(N) = v(N). Hencez’ € C(v).

a

Theorem 1impliesthat an LTP gameisbalanced. Since each subgame (S, v|s) of anLTP
gameisanother LTP game, an LTP game istotally balanced. Note that the proof of theorem
1 dso indicates how to find a core-element of an LTP game.

When the minimum of (2) isattained in z then z + p isthe vector containing the shadow
prices of the resources. The vector z containsthe prices that codition N would want to pay
for itsresourcesin excess of p.

The goal of each codlition isto maximize its profit. From all the bundles of goods that
the coalition can produce, it will choosethe bundlethat gives her maximal profit. We can use
amulti-commodity game as studied in VAN DEN NOUWELAND, AARTS and BORM (1989) to
describe for each coalition the set of bundles of goodsit can sell. Let (N, A, w, p) bean LTP
situation. Then the corresponding multi-commodity game (N, F') is a game where N isthe
player set and for al S ¢ N

F(S)={z e RY |z <w(S)+ Ay; Gy <w(S); y > 0; y; =0if i ¢ S}

and F () = {0}.
Notethat if an LTP game (V, v) and amulti-commodity game (N, F') are both based on
the same LTP situation (N, A, w, p), then we can write

v(S) =max plz
s.t. z e F(9)

We show that a multi-commodity game corresponding to an LTP situationistotally balanced.
First, we define when multi-commodity games are (totally) balanced (cf. VAN DEN NOUWE-
LAND et a. (1989)). For S C N let e5 € R” denote the characteristic vector of S, so
ef = 1ifi € Sandef = 0 otherwise. A map X : 2M\{0} — R, is abaanced map if
D52\ (0} A(S)e® = eV. A multi-commodity game (N, F) is balanced if for all balanced



maps A itholdsthat 3 - gcon (g A(S)F(S) C F(N).2 Thisgameistotally balanced if for all
S € 2N\ {0} therestricted game (S, Fjs) isbalanced, where Fi5(U) = F(U) foral U c S.

Theorem 2 Let (N, A, w, p) bean LTP situation. Then the corresponding multi-commodity
game (N, F) istotally balanced.

Proof. Let (N, F) be the multi-commodity game corresponding to the LTP situation
(N, A,w,p) and let S € 2V\{0}. We show that }-;cos: 9y M(U)F(U) C F(S) for dl
ba anced maps A for codlition S.

Let 2V € F(U) fordl U c S. Then thereisay? € RY such that 2V < w(U) +
AyY, GyY < w(U) andyY = 0if i ¢ U. Define z := U8\ {0} AU)zY and y :=
ZUEQS\{@} )\(U)yU. Then

2= Yyers\(oy MU)2Y < Cpeas\ iy MU)[w(U) + AyY] =
Suezs\ oy MO)w(U) + A peasy oy MU )yY = w(S) + Ay
where the last equality followsfrom

ZUEQS\{(Z)} AO)w(U) = ZUEQS\{(Z)} Yiev MU)w(i) = Yies Cvsicv AU)w(i)

= Yiesw(i) = w(S).
Furthermore, it holdsthaty > 0,y; = 0if ¢ ¢ S and

Gy=G > AO= > AxOGY< > AU)wU)=w(S).
Ue25\{0} Ue25\{0} Ue25\{0}

Sincez < w(S) + Ay, Gy <w(S),y > 0andy; = 0if i ¢ Sitfollowsthat z € F(S).O

If a multi-commodity game is balanced then there exists a so-called stable outcome (cf.
VAN DEN NOUWELAND et al.(1989)). Theset SO(F') of stableoutcomesinamulti-commodity
game (N, F) is defined by

SO(F) = {x e RHY

Yien o € Par(F(N)),
Yics 2t ¢ F(S)\Par(F(S)) for all S € 2M\ {0}

where Par(X) = {z € X| Az € X : z > x and z # z} is the set of Pareto-optimal
alocationsin X . A stable outcome z is such that no coalition can obtain more units of each
good than it gets according to x.

The next theorem shows the relationship between core-elements of an LTP game (N, v)
and stable outcomes of amulti-commodity game (NN, F').

Theorem 3 Let (N, A, w, p) be an LTP situation with corresponding LTP game (N, v) and
corresponding multi-commodity game (N, F). Let 8 € RY be a core-element of (IV, v) and
let « € F(N) besuchthat p’a = v(N). If p > 0and v(N) > 0, thenz € (RY)N with
2 = [Bi(v(N)) Yafor all i € N,isa stableoutcomeof (N, F).

For A BCRY,NeR, A+ B:={z+y|lz € A yec Btand A := {\z|z € A}.
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Proof. From the definition of = it followsthat 3",y 2° = > ;cn [Bi(v(N)) T a=a €
F(N). If S € 2M\{0} and z € RY suchthat z > Y,cq7f, 2 # Ycg2 thenplz >
Pl Y ies i =Y egpT 2t =3 ,c9 8 > v(S) 02 ¢ F(S). Weconcludethat = € SO(F).
m

4 Exchange economies

In this section we relate LTP situationsto exchange economies in two different ways. In the
first model, caled modd 1, producers can exchange their resources before transformation
starts. This exchange takes place in a separate market so that the endogenous price vector
g in this exchange market may differ from the prices in the market where the producers sell
their goods after production. After the exchange, each producer will use his new bundle of
goods in his transformation process. After transformation, the remaining goods will be sold
at exogenous prices p. The goal of each producer isto maximize his profit.

Let (N, A, w, p) bean LTPsituation. If ¢ denotesthe price vector in theexchange market,
then producer i € N exchanges his resource bundle w(7) for a bundle z(:) at price vector
g. A producer cannot spend more money on the bundle z(4) than the value of his resources
w(i): q¢'z(i) < qT'w(i). After the exchange producer i will use the bundle x(i) as resources
for histransformation process. When producer ¢ € N operates his transformation process at
an activity level y; then he needs the resources g'y;. Since his resources now equal z (i), we
get the restriction g'y; < (). Finally, producer i will sell the remaining goods (i) + a’y;
on the market at given prices p. In short, the profit maximization problem of producer i in
model 1 isgiven by

max p? (z(i) + a'y;)
st gy < x(i)

yi >0 (©)]

q¢" (i) < q"w(i)

z(i) >0
An equilibriumin thismodel consists of abundle of goods z*(7), an activity level y for all
i € N and aprice vector ¢* such that producer i € N maximizes his profit in z*(:) and y;
given ¢* and such that total demand equalstotal supply: >,y 2*(i) = >;e v w(i).

Notethat the prices p are exogenouswhilethe pricesq* are determined by the equilibrium
conditions. If ¢* isan equilibrium price vector and \ isapositivereal number then ¢* 7'z (i) <
¢ Tw(i) if and only if (Ag*)Tz(i) < (Ag*)Tw(i) and thusis \g* another equilibrium price
vector. This implies that in our search for equilibrium price vectors, we can restrict our
attention to prices in AM = {q € RY|Y;c5q; = 1}. Also note that if there is an
equilibrium price vector ¢* then we can dwaysfind a A > 0 such that A\¢* > p. This new
equilibrium price vector A\¢* ensures that producers trade their resources instead of selling
them on the market at exogenous prices p. We will now show that this model allows for an



equilibrium.

Theorem 4 Let (N, A, w, p) bean LTP situation. If p € RY andw(i) € RY, foralli e N
then there exists an equilibriumin model 1.

Proof. The profit maximization problem of producer : € N is given by (3). The producer
can solvethis problem in two steps. When he knowsthat he will own z(4) after the exchange
then his maximization problem reducesto

max p? (z(i) + a'y;)
st gly < (i)
yi >0

Since the objective function is continuous and the set {v;| g'y; < x(i), v; > 0} is compact
and non-empty, this reduced problem can be solved for al z(:). Define

R’(a:(z)) = max{pT(a:(i) + aiyi)\ gly; < x(i); y; > 0} 4)

Then we can rewrite (3) as

In the appendix we show that R is a continuous, monotone and quasi-concave function. If
wethink of R’ asthe utility function of producer i then this maximization problem equalsthe
utility maximization problem of agent ¢ in an exchange economy. DEBREU (1959) provesthe
existence of an equilibrium in such an exchange economy and this also proves the existence
of an equilibriumin model 1. O

In the second model, called model 2, a producer can start by transforming his resource
bundle, after which the producers can mutually exchange their productsin a separate market.
After theexchange, each producer will use hisnew bundle of goodsin histransformation pro-
cess and sell the remaining goods at exogenous prices p. Notice that in thismode production
takes place at two pointsintime. Again the goa of each producer isto maximize his profit.

For aformal description of model 2, let (N, A, w, p) bean LTP situation. Then producer
i € N starts by transforming his resource bundle w(i) into w(i) + a'%y; with 7; such that
g'7; < w(i) and 7; > 0. Next, this producer exchanges his products w(i) + a'7; for the
bundle z(i) at endogenous prices g. A producer cannot spend more money on the bundle
(i) than the value of his products: ¢7z (i) < ¢ (w(i) + a'y;). After the exchange has taken
place producer i will usethe bundle z(7) as resources for histransformation process. He will
sdll the remaining goods x(4) + a’y; on the market at endogenous prices p where y; is such
that g'y; < x(i) andy; > 0. In short, the profit maximization problem of producer i in model



2is
max p’(x(i) + a'y;)
st gly < x(d)

yi >0

q"z(i) < ¢"(w(9) + a'y;) (5)

z(i) >0

97 < w(9)

vi >0
An equilibrium in this model consists of a price vector ¢* and for all i € N of a bundle
of goods z*(7), a production level y* and a production level 7 such that producer i € N
maximizes hisprofit in z*(¢), y; and g given ¢* and total demand equals total supply in the
intermediate exchange market: 3oy 2*(i) = ;e n (w(3) + a'y}).

Asin model 1 it holds that if ¢* is an equilibrium price vector and X is a positive real
number then Ag* is another equilibrium price vector. So in our search for equilibrium price
vectors, we can restrict our attention to pricesin AM = {g € RY| Y01 q5 = 1}

Next, we define irreversibility of the transformation process. The transformation set T;
for the producer ¢ isthe set of al transformations possiblefor him:

T; = {z €e RM|z < d'y;, g'y; <w(i), y; > 0} (6)

Theset T' = ;. T; is caled the total transformation set. We say that the transformation
processisirreversibleif T'N (—71") = {0}, where —T' = {z| — = € T'}. Thismeansthat for
each transformationz € T', x # 0, the transformation —z is not possible; the transformation
process cannot be reversed.

Theorem 5 Let (N, A,w, p) be an LTP situation. If p € RY, w(i) € RYY, foralli e N
and the transformation processis irreversible then there exists an equilibriumin model 2.

Proof. The profit maximization problem of producer i € N isgivenby (5). Inlemma3in
the appendix we show that this problem is equivalent to

max p’(x(i) + a'y;) where v9(i) = max ¢ (w(i) + a'y;)
st gly < x(d) st gy < w(i)
yi >0 yi >0
gz (i) < vi(i)
z(i) >0

We can writethisas

max Ri(x(i)) where v9(i) = ¢ w(i) + max qTa'y;
st qlx(i) < vi(i) st g7 < wl(i) (7)
z(i) 2 0 yi >0
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where, asin the proof of theorem 4, Ri(x(i)) = max{p” (x(i) + a'y;)| g'y; < z(i); y; > 0}
is a continuous, monotone and quasi-concave function. Let u9(i) be the net profit producer
i obtains over the value ¢7w(i) of his initia endowment: w9(i) = vi(i) — ¢*w(i), or,
equivaently,

ul(i) = max q¢Ta'y; =max ¢z
st. g7 < w(i) st. zel;
¥ >0

where T; is the transformation set of producer ¢ as defined in (6). If we substitutethisin (7)
we get

max R (z(i)) where u4(i) = max ¢’z
st qlz(i) < qTw(i) +ui(i) st. zeT; €5))
z(i) >0

If we think of R as the utility function of 'consumer’ i then the left hand side of (8) is the
utility maximization problem of consumer 7 in a private ownership economy as described in
DEBREU (1959). This consumer cannot spend more money on the bundle z(¢) than the sum
of the value of his endowment and the net profit of producer i. Theright hand side of (8) is
the net profit maximization problem of a producer in a private ownership economy. In this
model, consumer ¢ and producer ¢ are the same person and the net profit of producer ¢ goes
to consumer i. Debreu proves the existence of an equilibrium in such an economy and this
also proves the existence of an equilibrium in model 2. O

We illustrate both model s with the following example.

Example2 Consider an LTP situation with two producers, N = {1, 2}. The transformation
matrix A equas
-1 -1
2 3

Each producer owns one unit of each good: w(1) = w(2) = (1,1)7. One unit of each good
can be sold for 1 dollar: p = (1,1)%. Thevalueof each codlitioninthe LTP gameis

A:

v({1}) =3, =1

v({2}) =4, =1

U({1a2}):8a y; =0, y; =2
The core of thisgameistheset C(v) = {(z,8 — z)| 3 <z < 4}.

In modd 1, the profit maximization problem of producer 1is

max (1)1 +z(1)2 +
s.t. 0<y1_a:()
Tx(1) < q"w(1)

()20
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Producer 1 will choose y; as high as possible, so y; = z(1);. The maximization problem

reduces to
max 2z(1); +x(1)2

st qTx(1) < qfw(l)
z(1) >0

We restrict ourselvesto pricesq in A2 = {qg € R?| q1 + ¢2 = 1}. Foral ¢ € A% it holdsthat
qTw(1) = q1 + g2 = 1. If we substitute thisin the maximization problem we get

max 2x(1); +z(1),
st. ¢glz(1) <1
z(1) >0

Similarly we can reduce the profit maximization problem of producer 2 to

max  3x(2); + z(2)2
st. ¢fz(2) <1
z(2) >0

whereys = x(2);. Inanequilibrium, demand should equal supply: z*(1) +2*(2) = w(1) +
21

w(2) = (2,2)T. Theuniqueequilibriumpricein A%isqg* = (%, 1)T. Toensurethat producers

3
exchange their endowments, we can take, e.g., pricevector g = 3¢* = (2,1)T > p = (1, 1)T
in the exchange market. The equilibrium bundles are z*(1) = (3,2)7, z*(2) = (13,0)
and the equilibrium activity levelsare y} = % ys = 1%. Note that producer 2 would liketo

Il wl

have as much units of good 1 as possible since he isthe more efficient producer and can earn
alot of money by transforming them into units of good 2 and selling these on the market. To
receive al the units of good 1 owned by producer 1, producer 2 has to offer in exchange the
goods that producer 1 could have produced from his units of good 1. Thus, producer 2 will
exchange two units of good 2 for one unit of good 1. But he owns just one unit of good 2
so he will exchange that unit for half a unit of good 1. Producer 2 now owns one and a half
units of good 1 which hetransformsinto four and ahalf unitsof good 2. He sellsthese on the
market and his profit equals 41. Producer 1 transforms half a unit of good 1 into one unit of
good 2 and sellsthistogether with his other two units of good 2 on the market. The profit of
producer 1 equals3 = v({1}), so heisindifferent between participating in the exchange and
acting on his own. Producer 2 gains from the exchange, 41 > v({2}), thus both producers
participating in the exchange is better than both producers acting on their own. However,
(3,43) ¢ C(v) since3+41 < v(N) = 8. Working together resultsin ahigher profit. Inthis
example, both producers need good 1 in their transformation process. When producers need
different goodsin their transformation process then it may hold that the equilibrium payoffs
in model 1 generate a core-element of the corresponding LTP game.
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In modd 2, the profit maximization problem of producer 1is

max 2z(1); +z(1)9 3q2, q1 < % (rr=1)
st. ¢Tx(1) <vi(1) 09(1) = 1, ¢ =2 (g7 €[0,1))
z(1) >0 L, >3 (71=0)

where ¢ € A? and we substituted y} = x(1);. For producer 2 it equas

max  32(2)1 + 2(2)s A, e <i (B=1)
st qlz(2) <0vi(2) vi(2) = 1, ¢ =3 (g5 €[0,1])
z(2) >0 L, >3 (15=0)

where y3 = z(2)1. In an equilibrium it should hold that z*(1) + *(2) = w(1) + o'yt +
w(2) + a*y3. Theuniqueequilibriumpricein A% is¢* = (2, 1)T. To ensure that producers

= 3, 1)T >p=(1,1)T. The
equilibrium bundles are z*(1) = (0,4)T, z*(2) = (2 — 73, 375 — 2)T and the equilibrium
activity levelsarey; = 0,y3 =2 — 3, y7 = 0and % <73 < 1. Asinmodel 1, producer 2
would like to have as much units of good 1 as possible, therefore he starts by transforming
good 1 into good 2. Producer 1 knowsthis and he starts by doing nothing. Producer 1 owns

exchange their endowments, we can take, eg. § = 4¢*

one unit of the scarce good and he can ask three units of good 2 in exchange. Thisis exactly
what player 2 can produce from one unit of good 2. So, producer 1 exchanges one unit of
good 1 for three units of good 2. Since producer 1 now has no units of good 1 he cannot
produce so he sells his four units of good 2 on the market. His profit equals 4. Producer
2 owns (2 — 43, 375 — 2)7 after the exchange. He transforms 2 — 73 units of good 1 into
3(2 — y5) = 6 — 3y5 unitsof good 2. This leaves him with 375 — 2 + 6 — 3y = 4 units
of good 2 to sell on the market. His profit equals 4. Notethat (4,4) € C(v). However,
there are LTP situationswhere the payoffsin model 2 do not generate a core-element of the
corresponding LTP game.

5 A characterization of totally balanced games

Onerestriction of LTP situationsisthat each producer has only one transformation technique.
Thisisnot very realistic. We can think, for example, of afirm producing two goods by using
two different transformation techniques. In this section wewill extend LTP situations so that
each producer may have more than onetechnique. We will call these situationsextended LTP
situations.

We assume now that a producer controls some resources and at |east one transformation
technique. He chooses an activity level for each of his techniques. These choices depend
on his resources. Given an activity level, a transformation technique describes how much
input is needed. The producer can carry out his production processes at the desired activity
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levels only if hisresources contain the required inputs. After production, the producer sells
the produced goods and unused resources in the insatiable market at exogenous prices.
We will now introduce some additional notation. A transformation techniqueis a vector
in RM. Producer i € N can use a transformation technique a* if and only if k € D;
where D; denotes the set of al techniques controlled by producer 7. The resources needed
for this technique are described by the vector g¥ € R} with g% = max{0, —a%}. The
transformation matrix A, with its k** column corresponding to o, is an element of R *P
where D := (D;);cn and therelated matrix G, withits k** column corresponding to g*, isan
dement of RY*P. The vector of activity levelsy € RY describes for each transformation
technique at which level it is operated. If we denote by D(S) := U;esD; the set of al
transformation techniques available to codition .S then the profit maximization problem of
thiscoalitionis
max pT(w(S) + Ay)
st. Gy <w(S)
y=>0
y; =0if i ¢ D(S)

(9)

An extended LTP situation is described by a 5-tuple (N, A, D, w, p). Given such asituation
we define the corresponding extended LTP game (N, v) by the player set N and afunction v
that assignsto each coalition.S C N themaxima profitit can obtainasin (9) wherev(0) = 0.

These extended LTP games have some nice properties. First, they are baanced. The
proof is similar to that of theorem 1. Since each subgame (.S, v|5) is another extended LTP
game, these games are totally balanced. Moreover, we can write each totally balanced game
(N, u) with nonnegative values, i.e. u(S) > 0 foral S C N, asan extended LTP game.

Theorem 6 Each totally balanced game with nonnegative valuesis an extended LTP game.

Proof. Let (N, u) be atotaly balanced game with nonnegative values. We construct an
extended LTP situation such that for the corresponding LTP game it holdsthat v(S) = u(S)
foral S C N.

Theset of producersequals N. Assumethat N = {1,...,n}. DefineD; = {S C N|i €
S, j <i= j ¢ S} then each transformation technique of producer i is related to a coalition
of which the producer is the first’ member. So, each coalition is related to one producer.
Producer i controls2™~* techniques and all the producerstogether control 2" — 1 techniques.

Definen+2™ —1 goodsin M asfollows. Each of thefirst n goodsisrelated to aproducer
in N and each of the 2™ — 1 goodsisrelated to a nonempty coalitionin N.

The transformation technique related to coalition S is denoted by a®. Technique a® €
R™"2"~1 contains —e® on thefirst n rows and the remaining 2" — 1 rows are related to the
nonempty coalitions such that a3, = 1if U = S and 0 otherwise. So, the transformation
technique a® uses one unit of each ”good” j for dl j € S to produce one unit of "good” S.
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The transformation matrix A isan (n + 2™ — 1) x (2™ — 1)-matrix. The related matrix G
contains columns g with e on itsfirst n rows and zeros in the remaining rows.

Producer i owns one unit of good i, so w(i) isthe resource bundlewith {%} on thefirst n
rowsand zerosintheother rows. Asbefore, when players cooperatethey pool their resources:
w(S) = ¥;egw(i). Thepricevector p € R™"*2"~1 isdefined asfollows. Thefirst n goods,
theinputs, have price zero, p; = 0if 1 < j < n, andgood S hasvaueu(S), ps = u(S). For
ease of notation, define the shortened price vector p(u) € R2" ! by p(u)s := ps. Thevector
of activity levelsy € R~ describesthe activity level of each transformation techniquea®,
Y = (ys) se2m\{0}-

Take an S € 2NV\{0}. The vaue v(S) of this codlition is defined by (9). From our
constructionit followsthat p” A = p(u)”, pTw(S) = 0,

Gy <w(9) - Srelyr <eé® - Srrnszo€ yr < €°
yi = 0if i ¢ D(9) yr =0ifTNS=10 yr =0ifTNS=10
So we get that

v(S) = max p(u)'y

s.b. Xrrnse eTyr < e
yr > 0forall T

yr =0if TNS =0

According to the last constraint, we can rewrite thisas

v(S) = max 2T TNS£D u(T)yr
st Yrrnsze yr < e’
yr > 0forall T

yr =0ifTNS =10

Since (N, u) isatotally balanced game with nonnegative values, it followsthat v(S) = u(S)
andypr = 1if T'= S and yr = 0 otherwise. O

This theorem implies in particular that each linear production game, as introduced by
OWEN (1975) and studied in CURIEL, DERKS and T13s (1989), can be written as an extended
LTP game. Since each totally balanced game with nonnegative values can a so be written as
alinear production game, the other way around al so holds.

A Appendix
In this section we present the proofs that were omitted in section 4.
Lemma 1 The function R¢ as defined in (4) is continuousfor all i € N.

Proof. Thisproof consistsof six steps. Leti € V.
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(i) Define the multifunction F from RY! to Ry by F(z) = {yi| ¢'y; < z; y; > 0} then
Fi(z) = [0,7;(z)] wherey;(x) = max{y;| g'y; < x; y; > 0}. Since g* and x both contain
a finite number of elements that are finite and nonnegative and since we assumed that ¢°
contains at |east one positive element, the number 7, (z) isfinite. So, F* isacompact-valued
multifunction.

(ii) We show that 7, () is a continuous function. Define the carrier set of g by C(g°) =
{j € M| g} > 0}. Thisset isnonempty. Next, consider the following observations:

e j¢C(g") = gimi(x)=0<u;
o j€C(9"), giyi(x) =25 = Ti(z)==;/g;
o j€C(9"), giyi(x) <zj = Ti(z) <zi/g;

These observationsimply that 7;(z) = min{z;/g!| j € C(g")}. Since ¢" isafixed vector,
C(g¢") is afixed set containing a finite number of elements, so y,(z) is the minimum of a
finite number of continuous functions. We conclude that y;(x) is acontinuous function.

(iii) We show that £ isan upper semicontinuous (usc) multifunction. Let z* € R’ and
let O bean opensetin R, suchthat F(z%) € O. Theny;(z%) € O. Sincey; isacontinuous
function, 7; 1 (O) is an open set in RY!. By definition of theinverse, for al 2 € 7; *(0) it
holdsthat 77,(z) € O and thus F*(z%) C O. So, F' isusc.

(iv) We show that F is a lower semicontinuous (Isc) multifunction. Let z° € R%! and
let O be an open setin R, such that F*(x*) N O # (. If 7;(z*) = 0 then F¥(2*) = {0} and
0 € O. Takean open set O, in RY suchthat 2 € O,. Thenfor adl z* € O, it holdsthat

Fi@)NO 2> {0}n0O ={0}#0

If 7;(z") > 0 thenthereisat € Fi(x*) N O suchthat 0 < t < 7,;(z*). Definez* = gt then
7;(7") = t. Since y;(z!) > t thereisan r > 0 such that for al z° € B(z?, ), the sphere
in R} around z* with radius , it holds that 7;(z%) > 7;(z%) = t. Thisimpliesthat for all
z € B(2%,r)

Fi(@)n0=[0,5&) N0 > [t,7E)N0 > {t} #0

So, F' islsc.

(v) Define fi(z%,y;) = p’(x® + a'y;). This function is the sum of two continuous
functions, so f* is continuous.

(vi) Since F' : R} — R, is a compact-valued usc and Isc multifunction and f° :
]Rf x Ry — Ry isa continuous function, the Maximum theorem of BERGE (1963) says
that R'(2%) = max{ f'(«%,y;)| y; € F'(2*)} isacontinuousfunctionfor all i € N. O

Lemma 2 The function R as defined in (4) is monotone and quasi-concavefor all i € N.
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Proof. Leti € N. First, we show that R’ is monotone. Let z, z € RY suchthat z > z,
z# x. If g'y; < wthendso g'y; < 250 {yil g'yi < x; yi > 0} C {wil ¢'yi < 25 vi > 0}.
We assumed in theorem 4 that p € RY! so pTx < pT'2. Now it holdsthat

Ri(z) = max{p”(z + a'y;)| g'y; < x; yi > 0}

< max{p’ (2 +a'y;)| g'yi < z; yi > 0} = R'(2)

S0 R* isamonotonefunctionfor al i € N.

Next, we show that R is quasi-concave, i.e. we show that for al b, ¢ € ]R%, b # cand
for al o € (0,1) it holdsthat R*(ab + (1 — a)c) > min{R!(b), R(c)}. Letb,c € RY,
b#candleta € (0,1).

If pTa’ < 0 then

Ri(ab+ (1 —a)c) = pl(ab+ (1 —a)c)=ap’b+ (1—a)plc
> min{p’b, pTc} = min{ R*(b), Ri(c)}

If pTa® > 0then Ré(ab + (1 — a)c) = pT' (ab + (1 — a)c + a'F;(ab + (1 — a)c)). By
definition of g; it holds that

giab+ (1 - a)c) = min{(ab+ (1 - a)c);/gi| j € C(g")}
> min{ab;/gil j € C(g")} + min{(1 — a)c;/gt| j € C(g")}
= amin{b;/gi| j € C(¢")} + (1 — &) min{c;/gl| j € Cg")}
ay;(b) + (1 — @)y;(c)

Thisimpliesthat

Ri(ab+ (1 —a)c) = pf(ab+ (1 —a)c+ a'y;(ab+ (1 — a)c))
= ap’b+ (1 —a)plc+ plaiy;(ab+ (1 — a)c)

> ap’b+ (1 —a)pTe+pla’lag;(b) + (1 - a)g;(c)]
= ap’(b+a'7(h)) + (1 — a)p’ (c+ a'Fy(c))
= aR'(b)+ (1 — a)R(c)
> min{R'(b), R¥(c)}
So, we conclude that R’ is a quasi-concave function for al i € N. O

Thenext lemmashowsthat thereisanother way to find theequilibriumsolution (z*(4), y}.y)
of model 2. Thisresult isused in the proof of theorem 5.

Lemma3 Let (N, A,w,p) be an LTP situation. Then the following two statements are
equivalent.
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a) (z*(4), y},y;) isan optimal solution of

max p’(x(i) + a'y;)
st gly < x(d)
yi >0
g z(i) < ¢ (w(i) + a'y;)
97 < w(i)
¥i >0
z(i) >0

b) (x*(¢),y},y;) isan optimal solution of

max p?(z(i) + a’y;) where v9(i) = max ¢7 (w(i) + a'7;)
st g'yi < (i) st g'%i < w(9)
yi =0 yi >0
gz (i) < vi(i)
z(i) >0

Proof. First, let (z*(7), y/,y;) bean optimal solution of &). It remains to show that g isan
optimal solution of v4(i), i.e.

g% (w(i) + aigj;*) =max qf (w(i) + a'%;)
st. g7 < w(i)

We show this by contradiction. Supposethat it isnot true. Then there exists a y; such that

q(w(i) + a'y;) = max  ¢F(w(i) +a'y;) > ¢ (w(i) + a'F})
st. gy < w(i)
¥i >0

So v4(i) = q* (w(i) + a'y;). Producer i can spend more money and in particular he can buy
abundle of goods z(4) such that he has more of al goods: z(i); > «*(i), for dl j € M.
But since he now has more goods, he can produce more goods, reaching a higher activity
level and receiving ahigher profit: p? (Z(i) + a'y;) > p? (z*(i) + a’y;). Thiscontradictsthe
assumption that (z*(4), y},y;) maximizes the profit of producer s.

Next, let (x*(), y;,y;) bean optimal solutionof b). Then (z*(7), y;.y;) satisfiesall the
constraintsin @). Since the maximization problem of a) contains more constraints than the
problem of b), (z*(4), y},y;) isaso an optimal solution of ). ]
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