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Abstract

In this paper we introduce situations involving the linear transformation of products,

in short: LTP situations. LTP situations are production situations where each producer

has a single linear transformation technique. We show that the corresponding LTP

games are totally balanced. Next, we relate LTP situations to exchange economies in

two different ways and we prove the existence of an equilibrium in these economies.

Finally, we extend the LTP situation to one where a producer may have more than

one linear transformation technique. We show that each totally balanced game with

nonnegative values is an extended LTP game.
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1 Introduction

In OWEN (1975) linear production situations were introduced. These are production situations

where each producer can use a pre-determined set of linear production techniques to produce

goods. Each producer is endowed with a bundle of resources. A restriction of this model is

that each production process can have only one output good, so, this model excludes linear

production processes with by-products. In this paper we introduce situations involving the

linear transformation of products (LTP situations) to deal with production techniques with

at least one output good. We define the set of products to be the set of all goods including

resources. In an LTP situation we have a set of producers and, for the moment, we assume

that each producer controls only one transformation technique. Later, we will extend this to

situations where each producer can control more than one linear transformation technique.

Each producer owns a bundle of resource goods which he can use in his transformation

∗CentER and Department of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The

Netherlands; e-mail: J.B.Timmer@kub.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6416364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(production) process or which he can sell directly on the market. The outcome of the

transformation process, the produced goods, will also be sold on the market. The goal of

each producer is to maximize his profit given his transformation technique, resource bundle

and market prices.

The organization of this paper is as follows. First we give a formal description of LTP

situations. Next we introduce LTP games and we show that these games are totally balanced.

Then we relate LTP situations to exchange economies in two different ways. In the first model,

producers may exchange their resources at endogenous exchange prices before production

starts. Each producer wants to maximize his profit given the exogenous market prices. In

the second model, producers may exchange their production at endogenous exchange prices.

After this exchange, they can, once more, apply their transformation technique and sell the

resulting bundle of goods at the exogenous market prices. Again each producer wants to

maximize his profit. We show that under certain conditions both models allow for a market

equilibrium. A new characterization of totally balanced games with nonnegative values is

given next by means of extended LTP situations in which each producer can control more than

one linear transformation technique. Existing characterizations of totally balanced games in

the literature are the class of flow games by KALAI and ZEMEL (1982) and the class of market

games, by SHAPLEY and SHUBIK (1969). A characterization of totally balanced games with

nonnegative values is the class of linear production games (cf. OWEN (1975) and TIJS (1995)).

Finally, an appendix contains the proofs that were omitted in the text.

2 LTP situations

We start this section with an example. In the chemical industry, a refinery process is used to

manufacture from crude oil other, more useful, products like gasoline, kerosene and petroleum

solvents. For example, suppose that 500 barrels of gasoline, 300 barrels of kerosene and 100

barrels of petroleum solvents can be manufactured from 1000 barrels of crude oil requiring

100 hours of labour. Assuming that the production process is linear, this production technique

is represented by the following vector.

a =



−100

−1000

500

300

100



labour hours

crude oil

gasoline

kerosene

petroleum solvents

So, labour and crude oil are the input goods in this production process while gasoline,kerosene

and petroleum solvents are the output goods. Since the production technique is linear, any

nonnegative multiple of a is a possible production technique. The value of this nonnegative

multiplier is called the activity level. For instance, if a firm operates at activity level 3, she can

2



manufacture 1500 barrels of gasoline, 900 barrels of kerosene and 300 barrels of petroleum

solvents from 300 hours of labour and 3000 barrels of crude oil. Obviously, the activity level

of a firm is restrained by the number of input goods at her disposal.

LTP situations describe production situations in which each producer controls a transfor-

mation technique, as described in the example above, and a bundle of (resource) goods. The

transformation technique is modelled by a vector that describes which goods and how many

the producer needs to produce other goods. Transformation techniques are linear, i.e. the

output is a linear function of the input. A producer has to choose at which activity level his

production process will operate. The choice of the activity level will depend on the resources

owned by the producer. Given an activity level, the transformation technique describes how

much input is needed. Then the producer can carry out his production process at a certain

activity level only if his resources contain the required input. After production, the producer

sells all the remaining goods, i.e. produced goods and resources not used in the transformation

process, on the market. We assume that the market is insatiable, so that all goods can be sold.

Furthermore, all producers are pricetakers. Their output does not influence the market prices.

The goal of each producer is to maximize his profit from the sale of the remaining goods.

Next, we introduce some notation. Denote by M the finite set of goods and by N the

finite set of producers. Each producer i ∈ N is endowed with a bundle of goods ω(i) ∈ IRM
+ .

The vector ai ∈ IRM describes the transformation technique of producer i in the following

way. Producer i needs−aij units of each good j with aij ≤ 0 to produce aik units of the goods

k with aik ≥ 0. We assume that each vector ai contains at least one positive and one negative

element. Let yi be the activity level of producer i ∈ N . Then for the production of the bundle

{aijyi| a
i
j ≥ 0} he needs the resources {−aijyi| a

i
j ≤ 0}. Since we assume the transformation

technique to be irreversible, we have that activity levels are nonnegative, that is, yi ≥ 0.

We have seen that producer i uses good j as an input in his transformation process if

aij ≤ 0 and that good j is an output if aij ≥ 0. The resources needed for the transformation

process are thus described by the vector gi with gij := max{0,−aij} for all j ∈ M , i ∈ N .

So, at activity level yi producer i uses the bundle giyi to produce (ai+gi)yi. After production,

producer i possesses the bundle ω(i) + (ai + gi)yi − giyi = ω(i) + aiyi which he can sell

at exogenously given market prices p ∈ IRM
+ \{0}. Since a producer cannot use more goods

than he has available, it must hold that giyi ≤ ω(i). The profit maximization problem of

producer i ∈ N thus becomes:

max pT (ω(i) + aiyi)

s.t. giyi ≤ ω(i)

yi ≥ 0

The transformation techniques and resources of all producers can be summarized by defining

the transformation matrix A ∈ IRM×N , where the ith column of A corresponds to the

transformation vector ai and the vector ω := (ω(i))i∈N. In short, an LTP situation is

described by a 4-tuple 〈N,A, ω, p〉.
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3 LTP games

By cooperating, producers can pool their transformation techniques and their resources. Each

producer then gets a part of the total resources to use in his transformation process. We assume

that when producers cooperate, they cannot use the output of other producers as resources

for their production. Furthermore, the activity levels of the producers in this coalition should

be such that the total resources cover the total input needed. After transformation, the

coalition sells the remaining goods, i.e. produced goods and resources not used in any of the

transformation processes, on the market at exogenous market prices. The goal of a coalition

is to maximize its profit.

If a coalition S ⊂ N , S 6= ∅ cooperates, it collectively owns the resource bundle

ω(S) :=
∑
i∈S ω(i) and moreover, this coalition can use each transformation technique ai,

i ∈ S. To produce
∑
i∈S(a

i + gi)yi it needs the input
∑
i∈S g

iyi. After transformation,

coalition S can sell
∑
i∈S(ω(i) + aiyi) = ω(S) + Ay where y is the vector of all activity

levels with yi = 0 if i /∈ S. Since the coalition cannot use more goods than it has available,

it should hold that
∑
i∈S g

iyi ≤ ω(S) or, equivalently,Gy ≤ ω(S) with yi = 0 if i /∈ S. The

profit maximization problem of the coalition thus equals

max pT (ω(S) + Ay)

s.t. Gy ≤ ω(S)

y ≥ 0

yi = 0 if i /∈ S

(1)

So, an LTP situation gives rise to a cooperative game as the following definition shows. Let

〈N,A, ω, p〉 be an LTP situation. Then the corresponding LTP game (N, v) is such that the

characteristic function v assigns to each coalition S ⊂ N the maximal profit it can obtain as

given in (1) and v(∅) = 0. The following example illustrates this definition.

Example 1 Consider the following LTP situation: N = {1, 2, 3}, p = (1, 1, 1)T ,

A =


1 −4 −1

−1 1 3

0 2 −1

 , ω(1) =


3

0

6

 , ω(2) =


12

2

0

 and ω(3) =


5

4

4


The corresponding LTP game equals

v(S) : optimal activity level y :

v({1}) = 9 y = (0, 0, 0)T

v({2}) = 14 y = (0, 0, 0)T

v({3}) = 17 y = (0, 0, 4)T

v({1, 2}) = 23 y = (y1, 0, 0)T , 0 ≤ y1 ≤ 2

v({1, 3}) = 30 y = (y1, 0, 8)T , 0 ≤ y1 ≤ 4

v({2, 3}) = 31 y = (0, 0, 4)T

v({1, 2, 3}) = 46 y = (y1, 0, 10)T , 0 ≤ y1 ≤ 4

4



The main issue of cooperative game theory is how to divide the benefits from cooperation.

For LTP games, this means how cooperating producers divide their joint profit among each

other. One way to share the joint profit from cooperation is to do this according to a core-

allocation. The core of a game (N, v) is the set

C(v) =

{
x ∈ IRN

∣∣∣∣∣∑
i∈N

xi = v(N ) and
∑
i∈S

xi ≥ v(S) for all S ∈ 2N\{∅}

}

where 2N\{∅} denotes the set of all nonempty subsets ofN . When a core-element x ∈ C(v)

is proposed as a distribution of the total profit v(N ) where producer i gets payoff xi, then

coalition S will get at least as much as it can obtain on its own since
∑
i∈S xi ≥ v(S). So,

no coalition has an incentive to leave the grand coalition N . A game is balanced if it has a

nonempty core and it is called totally balanced if each subgame (S, v|S) is balanced, where

v|S(T ) := v(T ) if T ⊂ S. The following theorem shows that an LTP game has a nonempty

core.

Theorem 1 Let 〈N,A, ω, p〉 be an LTP situation. Then the corresponding LTP game (N, v)

has a nonempty core.

Proof. Based on the LTP game (N, v) we can define a new game (N, a) where a(S) =

pTω(S). In this game each coalition gets the value of its endowment ω(S). Next, we define

another game (N, u) where u(S) = v(S)− a(S) or, equivalently,

u(S) = max pTAy

s.t. Gy ≤ ω(S)

y ≥ 0

yi = 0 if i /∈ S

In this game, the value u(S) is the net profit coalition S obtains over the value pTω(S) of its

initial endowment by optimally using the transformation technique. In the case S = N the

above maximization problem reduces to

u(N ) = max pTAy

s.t. Gy ≤ ω(N )

y ≥ 0

To this problem corresponds the following dual minimization problem:

min zTω(N )

s.t. GT z ≥ ATp

z ≥ 0

(2)

Let the minimum1 of (2) be obtained in z. First, we show that x = (x1, . . . , xn)
T , where xi =

zTω(i), is a core-element of (N, u). According to duality theory
∑
i∈N xi =

∑
i∈N z

Tω(i) =

1Since the set of feasible solutions is closed, convex, non-empty and bounded from below by the zero-vector,

the problem can be solved and a minimum exists.
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zTω(N ) = u(N ). So, x represents a distribution of u(N ) among the members ofN . Notice

that z is also a feasible solution of the problem

min {zTω(S)|GTz ≥ AT p; z ≥ 0} for all S ⊂ N . Thus,

zTω(S) ≥ min{zTω(S)|GTz ≥ AT p; z ≥ 0}

= max{pTAy|Gy ≤ ω(S); y ≥ 0}

≥ max{pTAy|Gy ≤ ω(S); y ≥ 0; yi = 0 if i /∈ S}

= u(S)

This implies that
∑
i∈S xi =

∑
i∈S z

Tω(i) = zTω(S) ≥ u(S) and thus x ∈ C(u).

Next, we show that x′ ∈ C(v) with x′i = (z + p)Tω(i). Since v(S) = u(S) + a(S)

it follows that
∑
i∈S x

′
i = zTω(S) + pTω(S) ≥ u(S) + a(S) = v(S) for all S ⊂ N .

Furthermore,
∑
i∈N x

′
i = zTω(N ) + pTω(N ) = u(N ) + a(N ) = v(N ). Hence x′ ∈ C(v).

2

Theorem 1 implies that an LTP game is balanced. Since each subgame (S, v|S) of an LTP

game is another LTP game, an LTP game is totally balanced. Note that the proof of theorem

1 also indicates how to find a core-element of an LTP game.

When the minimum of (2) is attained in z then z + p is the vector containing the shadow

prices of the resources. The vector z contains the prices that coalitionN would want to pay

for its resources in excess of p.

The goal of each coalition is to maximize its profit. From all the bundles of goods that

the coalition can produce, it will choose the bundle that gives her maximal profit. We can use

a multi-commodity game as studied in VAN DEN NOUWELAND, AARTS and BORM (1989) to

describe for each coalition the set of bundles of goods it can sell. Let 〈N,A, ω, p〉 be an LTP

situation. Then the corresponding multi-commodity game (N, F ) is a game where N is the

player set and for all S ⊂ N

F (S) = {x ∈ IRM
+ |x ≤ ω(S) +Ay; Gy ≤ ω(S); y ≥ 0; yi = 0 if i /∈ S }

and F (∅) = {0}.

Note that if an LTP game (N, v) and a multi-commodity game (N, F ) are both based on

the same LTP situation 〈N,A, ω, p〉, then we can write

v(S) = max pTx

s.t. x ∈ F (S)

We show that a multi-commodity game corresponding to an LTP situation is totally balanced.

First, we define when multi-commodity games are (totally) balanced (cf. VAN DEN NOUWE-

LAND et al. (1989)). For S ⊂ N let eS ∈ IRN denote the characteristic vector of S, so

eSi = 1 if i ∈ S and eSi = 0 otherwise. A map λ : 2N\{∅} → IR+ is a balanced map if∑
S∈2N\{∅} λ(S)eS = eN . A multi-commodity game (N, F ) is balanced if for all balanced
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maps λ it holds that
∑
S∈2N\{∅} λ(S)F (S) ⊂ F (N ).2 This game is totally balanced if for all

S ∈ 2N\{∅} the restricted game (S, F|S) is balanced, where F|S(U) = F (U) for all U ⊂ S.

Theorem 2 Let 〈N,A, ω, p〉 be an LTP situation. Then the corresponding multi-commodity

game (N, F ) is totally balanced.

Proof. Let (N, F ) be the multi-commodity game corresponding to the LTP situation

〈N,A, ω, p〉 and let S ∈ 2N\{∅}. We show that
∑
U∈2S\{∅} λ(U)F (U) ⊂ F (S) for all

balanced maps λ for coalition S.

Let xU ∈ F (U) for all U ⊂ S. Then there is a yU ∈ IRN
+ such that xU ≤ ω(U) +

AyU , GyU ≤ ω(U) and yUi = 0 if i /∈ U . Define z :=
∑
U∈2S\{∅} λ(U)xU and y :=∑

U∈2S\{∅} λ(U)yU . Then

z =
∑
U∈2S\{∅} λ(U)xU ≤

∑
U∈2S\{∅} λ(U)[ω(U) + AyU ] =∑

U∈2S\{∅} λ(U)ω(U) +A
∑
U∈2S\{∅} λ(U)yU = ω(S) + Ay

where the last equality follows from∑
U∈2S\{∅} λ(U)ω(U) =

∑
U∈2S\{∅}

∑
i∈U λ(U)ω(i) =

∑
i∈S

∑
U :i∈U λ(U)ω(i)

=
∑
i∈S ω(i) = ω(S).

Furthermore, it holds that y ≥ 0, yi = 0 if i /∈ S and

Gy = G
∑

U∈2S\{∅}

λ(U)yU =
∑

U∈2S\{∅}

λ(U)GyU ≤
∑

U∈2S\{∅}

λ(U)ω(U) = ω(S).

Since z ≤ ω(S) + Ay, Gy ≤ ω(S), y ≥ 0 and yi = 0 if i /∈ S it follows that z ∈ F (S).2

If a multi-commodity game is balanced then there exists a so-called stable outcome (cf.

VAN DEN NOUWELAND et al.(1989)). The setSO(F ) of stable outcomes in a multi-commodity

game (N, F ) is defined by

SO(F ) =

x ∈ (IRM
+ )N

∣∣∣∣∣∣
∑
i∈N x

i ∈ Par(F (N )),∑
i∈S x

i /∈ F (S)\Par(F (S)) for all S ∈ 2N\{∅}


where Par(X) = {x ∈ X | 6 ∃z ∈ X : z ≥ x and z 6= x} is the set of Pareto-optimal

allocations in X . A stable outcome x is such that no coalition can obtain more units of each

good than it gets according to x.

The next theorem shows the relationship between core-elements of an LTP game (N, v)

and stable outcomes of a multi-commodity game (N, F ).

Theorem 3 Let 〈N,A, ω, p〉 be an LTP situation with corresponding LTP game (N, v) and

corresponding multi-commodity game (N, F ). Let β ∈ IRN
+ be a core-element of (N, v) and

let α ∈ F (N ) be such that pTα = v(N ). If p > 0 and v(N ) > 0, then x ∈ (IRM
+ )N with

xi = [βi(v(N ))−1]α for all i ∈ N , is a stable outcome of (N, F ).

2ForA,B ⊂ IRM+ , λ ∈ IR, A+B := {x + y|x ∈ A, y ∈ B} and λA := {λx| x ∈ A}.
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Proof. From the definition of x it follows that
∑
i∈N x

i =
∑
i∈N

[
βi(v(N ))−1

]
α = α ∈

F (N ). If S ∈ 2N\{∅} and z ∈ IRM
+ such that z ≥

∑
i∈S x

i, z 6=
∑
i∈S x

i then pT z >

pT
∑
i∈S x

i =
∑
i∈S p

Txi =
∑
i∈S βi ≥ v(S) so z /∈ F (S). We conclude that x ∈ SO(F ).

2

4 Exchange economies

In this section we relate LTP situations to exchange economies in two different ways. In the

first model, called model 1, producers can exchange their resources before transformation

starts. This exchange takes place in a separate market so that the endogenous price vector

q in this exchange market may differ from the prices in the market where the producers sell

their goods after production. After the exchange, each producer will use his new bundle of

goods in his transformation process. After transformation, the remaining goods will be sold

at exogenous prices p. The goal of each producer is to maximize his profit.

Let 〈N,A, ω, p〉 be an LTP situation. If q denotes the price vector in the exchange market,

then producer i ∈ N exchanges his resource bundle ω(i) for a bundle x(i) at price vector

q. A producer cannot spend more money on the bundle x(i) than the value of his resources

ω(i): qTx(i) ≤ qTω(i). After the exchange producer i will use the bundle x(i) as resources

for his transformation process. When producer i ∈ N operates his transformation process at

an activity level yi then he needs the resources giyi. Since his resources now equal x(i), we

get the restriction giyi ≤ x(i). Finally, producer i will sell the remaining goods x(i) + aiyi

on the market at given prices p. In short, the profit maximization problem of producer i in

model 1 is given by

max pT (x(i) + aiyi)

s.t. giyi ≤ x(i)

yi ≥ 0

qTx(i) ≤ qTω(i)

x(i) ≥ 0

(3)

An equilibrium in this model consists of a bundle of goods x∗(i), an activity level y∗i for all

i ∈ N and a price vector q∗ such that producer i ∈ N maximizes his profit in x∗(i) and y∗i
given q∗ and such that total demand equals total supply:

∑
i∈N x

∗(i) =
∑
i∈N ω(i).

Note that the prices p are exogenous while the prices q∗ are determined by the equilibrium

conditions. If q∗ is an equilibrium price vector and λ is a positive real number then q∗Tx(i) ≤

q∗Tω(i) if and only if (λq∗)Tx(i) ≤ (λq∗)Tω(i) and thus is λq∗ another equilibrium price

vector. This implies that in our search for equilibrium price vectors, we can restrict our

attention to prices in ∆M = {q ∈ IRM
+ |
∑
j∈M qj = 1}. Also note that if there is an

equilibrium price vector q∗ then we can always find a λ > 0 such that λq∗ ≥ p. This new

equilibrium price vector λq∗ ensures that producers trade their resources instead of selling

them on the market at exogenous prices p. We will now show that this model allows for an
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equilibrium.

Theorem 4 Let 〈N,A, ω, p〉 be an LTP situation. If p ∈ IRM
+ and ω(i) ∈ IRM

++ for all i ∈ N

then there exists an equilibrium in model 1.

Proof. The profit maximization problem of producer i ∈ N is given by (3). The producer

can solve this problem in two steps. When he knows that he will own x(i) after the exchange

then his maximization problem reduces to

max pT (x(i) + aiyi)

s.t. giyi ≤ x(i)

yi ≥ 0

Since the objective function is continuous and the set {yi| giyi ≤ x(i), yi ≥ 0} is compact

and non-empty, this reduced problem can be solved for all x(i). Define

Ri(x(i)) = max{pT (x(i) + aiyi)| g
iyi ≤ x(i); yi ≥ 0} (4)

Then we can rewrite (3) as
max Ri(x(i))

s.t. qTx(i) ≤ qTω(i)

x(i) ≥ 0

In the appendix we show that Ri is a continuous, monotone and quasi-concave function. If

we think ofRi as the utility function of producer i then this maximization problem equals the

utility maximization problem of agent i in an exchange economy. DEBREU (1959) proves the

existence of an equilibrium in such an exchange economy and this also proves the existence

of an equilibrium in model 1. 2

In the second model, called model 2, a producer can start by transforming his resource

bundle, after which the producers can mutually exchange their products in a separate market.

After the exchange, each producer will use his new bundle of goods in his transformation pro-

cess and sell the remaining goods at exogenous prices p. Notice that in this model production

takes place at two points in time. Again the goal of each producer is to maximize his profit.

For a formal description of model 2, let 〈N,A, ω, p〉 be an LTP situation. Then producer

i ∈ N starts by transforming his resource bundle ω(i) into ω(i) + aiŷi with ŷi such that

giŷi ≤ ω(i) and ŷi ≥ 0. Next, this producer exchanges his products ω(i) + aiŷi for the

bundle x(i) at endogenous prices q. A producer cannot spend more money on the bundle

x(i) than the value of his products: qTx(i) ≤ qT (ω(i)+ aiŷi). After the exchange has taken

place producer i will use the bundle x(i) as resources for his transformation process. He will

sell the remaining goods x(i) + aiyi on the market at endogenous prices p where yi is such

that giyi ≤ x(i) and yi ≥ 0. In short, the profit maximization problem of producer i in model

9



2 is
max pT (x(i) + aiyi)

s.t. giyi ≤ x(i)

yi ≥ 0

qTx(i) ≤ qT (ω(i) + aiŷi)

x(i) ≥ 0

giŷi ≤ ω(i)

ŷi ≥ 0

(5)

An equilibrium in this model consists of a price vector q∗ and for all i ∈ N of a bundle

of goods x∗(i), a production level y∗i and a production level ŷ∗i such that producer i ∈ N

maximizes his profit in x∗(i), y∗i and ŷ∗i given q∗ and total demand equals total supply in the

intermediate exchange market:
∑
i∈N x

∗(i) =
∑
i∈N(ω(i) + aiŷ∗i ).

As in model 1 it holds that if q∗ is an equilibrium price vector and λ is a positive real

number then λq∗ is another equilibrium price vector. So in our search for equilibrium price

vectors, we can restrict our attention to prices in ∆M = {q ∈ IRM
+ |
∑
j∈M qj = 1}.

Next, we define irreversibility of the transformation process. The transformation set Ti

for the producer i is the set of all transformations possible for him:

Ti = {x ∈ IRM | x ≤ aiyi, g
iyi ≤ ω(i), yi ≥ 0} (6)

The set T =
∑
i∈N Ti is called the total transformation set. We say that the transformation

process is irreversible if T ∩ (−T ) = {0}, where −T = {x| − x ∈ T}. This means that for

each transformation x ∈ T , x 6= 0, the transformation−x is not possible; the transformation

process cannot be reversed.

Theorem 5 Let 〈N,A, ω, p〉 be an LTP situation. If p ∈ IRM
+ , ω(i) ∈ IRM

++ for all i ∈ N

and the transformation process is irreversible then there exists an equilibrium in model 2.

Proof. The profit maximization problem of producer i ∈ N is given by (5). In lemma 3 in

the appendix we show that this problem is equivalent to

max pT (x(i) + aiyi) where vq(i) = max qT (ω(i) + aiŷi)

s.t. giyi ≤ x(i) s.t. giŷi ≤ ω(i)

yi ≥ 0 ŷi ≥ 0

qTx(i) ≤ vq(i)

x(i) ≥ 0

We can write this as

max Ri(x(i)) where vq(i) = qTω(i) + max qT aiŷi

s.t. qTx(i) ≤ vq(i) s.t. giŷi ≤ ω(i)

x(i) ≥ 0 ŷi ≥ 0

(7)
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where, as in the proof of theorem 4,Ri(x(i)) = max{pT (x(i)+ aiyi)| giyi ≤ x(i); yi ≥ 0}̇

is a continuous, monotone and quasi-concave function. Let uq(i) be the net profit producer

i obtains over the value qTω(i) of his initial endowment: uq(i) = vq(i) − qTω(i), or,

equivalently,

uq(i) = max qTaiŷi = max qTx

s.t. giŷi ≤ ω(i) s.t. x ∈ Ti

ŷi ≥ 0

where Ti is the transformation set of producer i as defined in (6). If we substitute this in (7)

we get

max Ri(x(i)) where uq(i) = max qTx

s.t. qTx(i) ≤ qTω(i) + uq(i) s.t. x ∈ Ti

x(i) ≥ 0

(8)

If we think of Ri as the utility function of ’consumer’ i then the left hand side of (8) is the

utility maximization problem of consumer i in a private ownership economy as described in

DEBREU (1959). This consumer cannot spend more money on the bundle x(i) than the sum

of the value of his endowment and the net profit of producer i. The right hand side of (8) is

the net profit maximization problem of a producer in a private ownership economy. In this

model, consumer i and producer i are the same person and the net profit of producer i goes

to consumer i. Debreu proves the existence of an equilibrium in such an economy and this

also proves the existence of an equilibrium in model 2. 2

We illustrate both models with the following example.

Example 2 Consider an LTP situation with two producers,N = {1, 2}. The transformation

matrix A equals

A =

 −1 −1

2 3


Each producer owns one unit of each good: ω(1) = ω(2) = (1, 1)T . One unit of each good

can be sold for 1 dollar: p = (1, 1)T . The value of each coalition in the LTP game is

v({1}) = 3, y∗1 = 1

v({2}) = 4, y∗2 = 1

v({1, 2}) = 8, y∗1 = 0, y∗2 = 2

The core of this game is the set C(v) = {(x, 8− x)| 3 ≤ x ≤ 4}.

In model 1, the profit maximization problem of producer 1 is

max x(1)1 + x(1)2 + y1

s.t. 0 ≤ y1 ≤ x(1)1

qTx(1) ≤ qTω(1)

x(1) ≥ 0
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Producer 1 will choose y1 as high as possible, so y∗1 = x(1)1. The maximization problem

reduces to
max 2x(1)1 + x(1)2

s.t. qTx(1) ≤ qTω(1)

x(1) ≥ 0

We restrict ourselves to prices q in ∆2 = {q ∈ IR2| q1 + q2 = 1}. For all q ∈ ∆2 it holds that

qTω(1) = q1 + q2 = 1. If we substitute this in the maximization problem we get

max 2x(1)1 + x(1)2

s.t. qTx(1) ≤ 1

x(1) ≥ 0

Similarly we can reduce the profit maximization problem of producer 2 to

max 3x(2)1 + x(2)2

s.t. qTx(2) ≤ 1

x(2) ≥ 0

where y∗2 = x(2)1. In an equilibrium, demand should equal supply: x∗(1)+x∗(2) = ω(1)+

ω(2) = (2, 2)T . The unique equilibrium price in ∆2 is q∗ = (2
3 ,

1
3)T . To ensure that producers

exchange their endowments, we can take, e.g., price vector q = 3q∗ = (2, 1)T ≥ p = (1, 1)T

in the exchange market. The equilibrium bundles are x∗(1) = (1
2 , 2)T , x∗(2) = (11

2 , 0)T

and the equilibrium activity levels are y∗1 = 1
2 , y∗2 = 11

2 . Note that producer 2 would like to

have as much units of good 1 as possible since he is the more efficient producer and can earn

a lot of money by transforming them into units of good 2 and selling these on the market. To

receive all the units of good 1 owned by producer 1, producer 2 has to offer in exchange the

goods that producer 1 could have produced from his units of good 1. Thus, producer 2 will

exchange two units of good 2 for one unit of good 1. But he owns just one unit of good 2

so he will exchange that unit for half a unit of good 1. Producer 2 now owns one and a half

units of good 1 which he transforms into four and a half units of good 2. He sells these on the

market and his profit equals 41
2 . Producer 1 transforms half a unit of good 1 into one unit of

good 2 and sells this together with his other two units of good 2 on the market. The profit of

producer 1 equals 3 = v({1}), so he is indifferent between participating in the exchange and

acting on his own. Producer 2 gains from the exchange, 41
2 > v({2}), thus both producers

participating in the exchange is better than both producers acting on their own. However,

(3, 41
2) /∈ C(v) since 3+41

2 < v(N ) = 8. Working together results in a higher profit. In this

example, both producers need good 1 in their transformation process. When producers need

different goods in their transformation process then it may hold that the equilibrium payoffs

in model 1 generate a core-element of the corresponding LTP game.
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In model 2, the profit maximization problem of producer 1 is

max 2x(1)1 + x(1)2

s.t. qTx(1) ≤ vq(1)

x(1) ≥ 0

vq(1) =


3q2, q1 <

2
3 (ŷ∗1 = 1)

1, q1 = 2
3 (ŷ∗1 ∈ [0, 1])

1, q1 >
2
3 (ŷ∗1 = 0)

where q ∈ ∆2 and we substituted y∗1 = x(1)1. For producer 2 it equals

max 3x(2)1 + x(2)2

s.t. qTx(2) ≤ vq(2)

x(2) ≥ 0

vq(2) =


4q2, q1 <

3
4 (ŷ∗2 = 1)

1, q1 = 3
4 (ŷ∗2 ∈ [0, 1])

1, q1 >
3
4 (ŷ∗2 = 0)

where y∗2 = x(2)1. In an equilibrium it should hold that x∗(1) + x∗(2) = ω(1) + a1ŷ∗1 +

ω(2) + a2ŷ∗2. The unique equilibrium price in ∆2 is q∗ = (3
4 ,

1
4)T . To ensure that producers

exchange their endowments, we can take, e.g. q = 4q∗ = (3, 1)T ≥ p = (1, 1)T . The

equilibrium bundles are x∗(1) = (0, 4)T , x∗(2) = (2 − ŷ∗2 , 3ŷ
∗
2 − 2)T and the equilibrium

activity levels are y∗1 = 0, y∗2 = 2− ŷ∗2, ŷ∗1 = 0 and 2
3 ≤ ŷ∗2 ≤ 1. As in model 1, producer 2

would like to have as much units of good 1 as possible, therefore he starts by transforming

good 1 into good 2. Producer 1 knows this and he starts by doing nothing. Producer 1 owns

one unit of the scarce good and he can ask three units of good 2 in exchange. This is exactly

what player 2 can produce from one unit of good 2. So, producer 1 exchanges one unit of

good 1 for three units of good 2. Since producer 1 now has no units of good 1 he cannot

produce so he sells his four units of good 2 on the market. His profit equals 4. Producer

2 owns (2 − ŷ∗2 , 3ŷ
∗
2 − 2)T after the exchange. He transforms 2 − ŷ∗2 units of good 1 into

3(2 − ŷ∗2) = 6 − 3ŷ∗2 units of good 2. This leaves him with 3ŷ∗2 − 2 + 6 − 3ŷ∗2 = 4 units

of good 2 to sell on the market. His profit equals 4. Note that (4, 4) ∈ C(v). However,

there are LTP situations where the payoffs in model 2 do not generate a core-element of the

corresponding LTP game.

5 A characterization of totally balanced games

One restriction of LTP situations is that each producer has only one transformation technique.

This is not very realistic. We can think, for example, of a firm producing two goods by using

two different transformation techniques. In this section we will extend LTP situations so that

each producer may have more than one technique. We will call these situations extended LTP

situations.

We assume now that a producer controls some resources and at least one transformation

technique. He chooses an activity level for each of his techniques. These choices depend

on his resources. Given an activity level, a transformation technique describes how much

input is needed. The producer can carry out his production processes at the desired activity
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levels only if his resources contain the required inputs. After production, the producer sells

the produced goods and unused resources in the insatiable market at exogenous prices.

We will now introduce some additional notation. A transformation technique is a vector

in IRM . Producer i ∈ N can use a transformation technique ak if and only if k ∈ Di

where Di denotes the set of all techniques controlled by producer i. The resources needed

for this technique are described by the vector gk ∈ IRM
+ with gkj = max{0,−akj}. The

transformation matrix A, with its kth column corresponding to ak, is an element of IRM×D

whereD := (Di)i∈N and the related matrixG, with its kth column corresponding to gk, is an

element of IRM×D
+ . The vector of activity levels y ∈ IRD

+ describes for each transformation

technique at which level it is operated. If we denote by D(S) := ∪i∈SDi the set of all

transformation techniques available to coalition S then the profit maximization problem of

this coalition is
max pT (ω(S) +Ay)

s.t. Gy ≤ ω(S)

y ≥ 0

yi = 0 if i /∈ D(S)

(9)

An extended LTP situation is described by a 5-tuple 〈N,A,D, ω, p〉. Given such a situation

we define the corresponding extended LTP game (N, v) by the player set N and a function v

that assigns to each coalitionS ⊂ N the maximal profit it can obtain as in (9) where v(∅) = 0.

These extended LTP games have some nice properties. First, they are balanced. The

proof is similar to that of theorem 1. Since each subgame (S, v|S) is another extended LTP

game, these games are totally balanced. Moreover, we can write each totally balanced game

(N, u) with nonnegative values, i.e. u(S) ≥ 0 for all S ⊂ N , as an extended LTP game.

Theorem 6 Each totally balanced game with nonnegative values is an extended LTP game.

Proof. Let (N, u) be a totally balanced game with nonnegative values. We construct an

extended LTP situation such that for the corresponding LTP game it holds that v(S) = u(S)

for all S ⊂ N .

The set of producers equalsN . Assume thatN = {1, . . . , n}. DefineDi = {S ⊂ N | i ∈

S, j < i⇒ j /∈ S} then each transformation technique of producer i is related to a coalition

of which the producer is the ’first’ member. So, each coalition is related to one producer.

Producer i controls 2n−i techniques and all the producers together control 2n−1 techniques.

Define n+2n−1 goods inM as follows. Each of the first n goods is related to a producer

in N and each of the 2n − 1 goods is related to a nonempty coalition in N .

The transformation technique related to coalition S is denoted by aS . Technique aS ∈

IRn+2n−1 contains −eS on the first n rows and the remaining 2n − 1 rows are related to the

nonempty coalitions such that aSU = 1 if U = S and 0 otherwise. So, the transformation

technique aS uses one unit of each ”good” j for all j ∈ S to produce one unit of ”good” S.
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The transformation matrix A is an (n + 2n − 1) × (2n − 1)-matrix. The related matrix G

contains columns gS with eS on its first n rows and zeros in the remaining rows.

Producer i owns one unit of good i, so ω(i) is the resource bundle with e{i} on the first n

rows and zeros in the other rows. As before, when players cooperate they pool their resources:

ω(S) =
∑
i∈S ω(i). The price vector p ∈ IRn+2n−1 is defined as follows. The first n goods,

the inputs, have price zero, pj = 0 if 1 ≤ j ≤ n, and good S has value u(S), pS = u(S). For

ease of notation, define the shortened price vector p(u) ∈ IR2n−1 by p(u)S := pS . The vector

of activity levels y ∈ IR2n−1
+ describes the activity level of each transformation technique aS ,

y = (yS)S∈2N\{∅}.

Take an S ∈ 2N\{∅}. The value v(S) of this coalition is defined by (9). From our

construction it follows that pTA = p(u)T , pTω(S) = 0, Gy ≤ ω(S)

yi = 0 if i /∈ D(S)
⇔


∑
T e

TyT ≤ e
S

yT = 0 if T ∩ S = ∅
⇔


∑
T :T∩S 6=∅ e

T yT ≤ e
S

yT = 0 if T ∩ S = ∅

So we get that

v(S) = max p(u)Ty

s.t.
∑
T :T∩S 6=∅ e

T yT ≤ eS

yT ≥ 0 for all T

yT = 0 if T ∩ S = ∅

According to the last constraint, we can rewrite this as

v(S) = max
∑
T :T∩S 6=∅ u(T )yT

s.t.
∑
T :T∩S 6=∅ e

T yT ≤ e
S

yT ≥ 0 for all T

yT = 0 if T ∩ S = ∅

Since (N, u) is a totally balanced game with nonnegative values, it follows that v(S) = u(S)

and yT = 1 if T = S and yT = 0 otherwise. 2

This theorem implies in particular that each linear production game, as introduced by

OWEN (1975) and studied in CURIEL, DERKS and TIJS (1989), can be written as an extended

LTP game. Since each totally balanced game with nonnegative values can also be written as

a linear production game, the other way around also holds.

A Appendix

In this section we present the proofs that were omitted in section 4.

Lemma 1 The functionRi as defined in (4) is continuous for all i ∈ N .

Proof. This proof consists of six steps. Let i ∈ N .
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(i) Define the multifunctionF i from IRM
+ to IR+ by F i(x) = {yi| giyi ≤ x; yi ≥ 0} then

F i(x) = [0, yi(x)] where yi(x) = max{yi| g
iyi ≤ x; yi ≥ 0}. Since gi and x both contain

a finite number of elements that are finite and nonnegative and since we assumed that gi

contains at least one positive element, the number yi(x) is finite. So, F i is a compact-valued

multifunction.

(ii) We show that yi(x) is a continuous function. Define the carrier set of gi by C(gi) =

{j ∈M | gij > 0}. This set is nonempty. Next, consider the following observations:

• j /∈ C(gi) ⇒ gijyi(x) = 0 ≤ xj

• j ∈ C(gi), gijyi(x) = xj ⇒ yi(x) = xj/g
i
j

• j ∈ C(gi), gijyi(x) < xj ⇒ yi(x) < xj/g
i
j

These observations imply that yi(x) = min{xj/gij| j ∈ C(gi)}. Since gi is a fixed vector,

C(gi) is a fixed set containing a finite number of elements, so yi(x) is the minimum of a

finite number of continuous functions. We conclude that yi(x) is a continuous function.

(iii) We show that F i is an upper semicontinuous (usc) multifunction. Let xi ∈ IRM
+ and

let O be an open set in IR+ such that F i(xi) ⊂ O. Then yi(x
i) ∈ O. Since yi is a continuous

function, y−1
i (O) is an open set in IRM

+ . By definition of the inverse, for all x̂i ∈ y−1
i (O) it

holds that yi(x̂
i) ∈ O and thus F i(x̂i) ⊂ O. So, F i is usc.

(iv) We show that F i is a lower semicontinuous (lsc) multifunction. Let xi ∈ IRM
+ and

let O be an open set in IR+ such that F i(xi) ∩ O 6= ∅. If yi(x
i) = 0 then F i(xi) = {0} and

0 ∈ O. Take an open set Ox in IRM
+ such that xi ∈ Ox. Then for all x̂i ∈ Ox it holds that

F i(x̂i) ∩O ⊃ {0} ∩O = {0} 6= ∅

If yi(x
i) > 0 then there is a t ∈ F i(xi) ∩O such that 0 < t < yi(x

i). Define x̃i = git then

yi(x̃
i) = t. Since yi(x

i) > t there is an r > 0 such that for all x̂i ∈ B(xi, r), the sphere

in IRM
+ around xi with radius r, it holds that yi(x̂

i) ≥ yi(x̃
i) = t. This implies that for all

x̂i ∈ B(xi, r)

F i(x̂i) ∩O = [0, yi(x̂
i)] ∩O ⊃ [t, yi(x̂

i)] ∩O ⊃ {t} 6= ∅

So, F i is lsc.

(v) Define f i(xi, yi) = pT (xi + aiyi). This function is the sum of two continuous

functions, so f i is continuous.

(vi) Since F i : IRM
+ → IR+ is a compact-valued usc and lsc multifunction and f i :

IRM
+ × IR+ → IR+ is a continuous function, the Maximum theorem of BERGE (1963) says

that Ri(xi) = max{f i(xi, yi)| yi ∈ F i(xi)} is a continuous function for all i ∈ N . 2

Lemma 2 The functionRi as defined in (4) is monotone and quasi-concave for all i ∈ N .
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Proof. Let i ∈ N . First, we show that Ri is monotone. Let z, x ∈ IRM
+ such that z ≥ x,

z 6= x. If giyi ≤ x then also giyi ≤ z so {yi| giyi ≤ x; yi ≥ 0} ⊂ {yi| g
iyi ≤ z; yi ≥ 0}.

We assumed in theorem 4 that p ∈ IRM
+ so pTx ≤ pT z. Now it holds that

Ri(x) = max{pT (x+ aiyi)| giyi ≤ x; yi ≥ 0}

≤ max{pT (z + aiyi)| g
iyi ≤ z; yi ≥ 0} = Ri(z)

so Ri is a monotone function for all i ∈ N .

Next, we show that Ri is quasi-concave, i.e. we show that for all b, c ∈ IRM
+ , b 6= c and

for all α ∈ (0, 1) it holds that Ri(αb + (1 − α)c) ≥ min{Ri(b), Ri(c)}. Let b, c ∈ IRM
+ ,

b 6= c and let α ∈ (0, 1).

If pTai ≤ 0 then

Ri(αb+ (1− α)c) = pT (αb+ (1− α)c) = αpT b+ (1− α)pT c

≥ min{pT b, pTc} = min{Ri(b), Ri(c)}

If pT ai > 0 then Ri(αb+ (1− α)c) = pT (αb+ (1− α)c+ aiyi(αb+ (1− α)c)). By

definition of yi it holds that

yi(αb+ (1− α)c) = min{(αb+ (1− α)c)j/g
i
j| j ∈ C(gi)}

≥ min{αbj/g
i
j| j ∈ C(gi)}+ min{(1− α)cj/g

i
j| j ∈ C(gi)}

= αmin{bj/gij| j ∈ C(gi)}+ (1− α) min{cj/gij| j ∈ C(gi)}

= αyi(b) + (1− α)yi(c)

This implies that

Ri(αb+ (1− α)c) = pT (αb+ (1− α)c+ aiyi(αb+ (1− α)c))

= αpT b+ (1− α)pT c+ pT aiyi(αb+ (1− α)c)

≥ αpT b+ (1− α)pT c+ pT ai[αyi(b) + (1− α)yi(c)]

= αpT (b+ aiyi(b)) + (1− α)pT (c+ aiyi(c))

= αRi(b) + (1− α)Ri(c)

≥ min{Ri(b), Ri(c)}

So, we conclude that Ri is a quasi-concave function for all i ∈ N . 2

The next lemma shows that there is another way to find the equilibrium solution (x∗(i), y∗i ,ŷ
∗
i )

of model 2. This result is used in the proof of theorem 5.

Lemma 3 Let 〈N,A, ω, p〉 be an LTP situation. Then the following two statements are

equivalent.
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a) (x∗(i), y∗i ,ŷ
∗
i ) is an optimal solution of

max pT (x(i) + aiyi)

s.t. giyi ≤ x(i)

yi ≥ 0

qTx(i) ≤ qT (ω(i) + aiŷi)

giŷi ≤ ω(i)

ŷi ≥ 0

x(i) ≥ 0

b) (x∗(i), y∗i ,ŷ
∗
i ) is an optimal solution of

max pT (x(i) + aiyi) where vq(i) = max qT (ω(i) + aiŷi)

s.t. giyi ≤ x(i) s.t. giŷi ≤ ω(i)

yi ≥ 0 ŷi ≥ 0

qTx(i) ≤ vq(i)

x(i) ≥ 0

Proof. First, let (x∗(i), y∗i ,ŷ
∗
i ) be an optimal solution of a). It remains to show that ŷ∗i is an

optimal solution of vq(i), i.e.

qT (ω(i) + aiŷ∗i ) = max qT (ω(i) + aiŷi)

s.t. giŷi ≤ ω(i)

ŷi ≥ 0

We show this by contradiction. Suppose that it is not true. Then there exists a ỹi such that

qT (ω(i) + aiỹi) = max qT (ω(i) + aiŷi) > qT (ω(i) + aiŷ∗i )

s.t. giŷi ≤ ω(i)

ŷi ≥ 0

So vq(i) = qT (ω(i) + aiỹi). Producer i can spend more money and in particular he can buy

a bundle of goods x̃(i) such that he has more of all goods: x̃(i)j > x∗(i)j for all j ∈ M .

But since he now has more goods, he can produce more goods, reaching a higher activity

level and receiving a higher profit: pT (x̃(i)+ aiyi) > pT (x∗(i)+ aiyi). This contradicts the

assumption that (x∗(i), y∗i ,ŷ
∗
i ) maximizes the profit of producer i.

Next, let (x∗(i), y∗i ,ŷ
∗
i ) be an optimal solution of b). Then (x∗(i), y∗i ,ŷ

∗
i ) satisfies all the

constraints in a). Since the maximization problem of a) contains more constraints than the

problem of b), (x∗(i), y∗i ,ŷ
∗
i ) is also an optimal solution of a). 2
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