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In this paper upper cycle free effectivity functions are implemented by strategic
claim game correspondences. Conditions are provided such that an effectivity
function coincides with the a- and B-effectivity functions corresponding to its
associated claim game correspondence. Furthermore, the notion of the core of
an effectivity function 1s extended to subsets of alternatives, and 1t 1s shown that
for upper cycle free effectivity functions this so-called setcore 1s always non-
empty. Moreover, given a preference profile, relations between the setcore of
an effectivity function and strong Nash equilibria of the associated claim game
correspondence are established. Journal of Economic Literature Classification
Numbers: 025, 026. © 1995 Academic Press, Inc.

. INTRODUCTION AND NOTATION

The first to indicate connections between different types of games were
von Neumann and Morgenstern (1944). They showed that it was possible to
construct a cooperative game with side payments (or: a game in coalitional
form) from a game in strategic form, and conversely. Later, others also
established relationships between cooperative and non-cooperative games
(see, for example, Nash, 1950; Aumann, 1961, 1967).

Borm and Tijs (1992) introduced a ‘‘claim’ game in strategic form
corresponding to an NTU-game. In the claim game strategies of players
can be interpreted as claims on coalitions and. payoffs. Among others
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EFFECTIVITY FUNCTIONS AND CLAIM GAMES 173

Borm and Tijs showed that if the NTU-game 1s superadditive, strong core
elements of the NTU-game correspond to strong Nash equilibria of the
associlated claim game.

In the domain of social choice theory there are several papers which
provide relations between cooperative and non-cooperative situations. An
important example is the implementation of effectivity functions by game
forms in Moulin and Peleg (1982). Effectivity functions describe coalitional
power in a society. The interpretation is that if a coalition 1s effective for
a subset of alternatives, it can force the outcome within that set.

Game forms describe non-cooperative situations and are introduced by
Gibbard (1973). Peleg (1984b) introduced game correspondences as an
extension of game forms. In a game form the outcome function assigns
to every strategy vector one alternative, while in a game correspondence
the outcome function assigns to each strategy vector a subset of alterna-
tives. Similar to social choice correspondences the use of game correspon-
dences is particularly useful in situations where there are many ties and
it therefore is impossible to select a single alternative without violating
certain elementary equity requirements such as anonymity and neutrality.

The aim of this paper is to implement effectivity functions by game
correspondences using techniques similar to those of Borm and Tis (1992).
Therefore we extend the definition of the core (at a given preference
profile), introduced by Moulin and Peleg (1982), to be a collection of
subsets of alternatives rather than only one subset. This is the subject of
Section 3. Moreover, Section 3 shows that this extended core, which we
call the setcore of an effectivity function, is never empty if the effectivity
function is upper cycle free.

First, in Section 2 we recall the definition of an effectivity function and
establish some preliminary results.

Section 4 discusses game correspondences and, given a preference pro-
file, formally defines the notion of strong Nash equilibrium. Moreover,
we recall the definition of the a-effectivity function EY, and that of the
B-effectivity function E§, associated with a game correspondence G, as
introduced in Peleg (1984Db).

Section 5 is the central part of the paper. We construct the claim game
correspondence G(F) associated with an upper cycle free effectivity func-
tion E and we show that the a- and B-effectivity functions associated with
G(E) are identical, i.e., that the claim game correspondence 1s tight. We
also show that the a-effectivity function associated with G(E) equals E
if and only if E is weakly A-monotonic and superadditive. Furthermore,
Section 5 establishes relations between cooperative and non-cooperative
solution concepts. It is shown that if E is superadditive, the setcore ele-
ments of E at a given preference profile exactly correspond to the outcomes
of strong Nash equilibria of G(E) at that profile.
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In Section 6 we discuss a process for deriving a game form from a claim
game correspondence in such a way that the a-effectivity function does
not change. As a result of this process we obtain an alternative proof of
the fact that, given an effectivity function E, it 1s possible to construct a
ecame form G such that E = EY if and only if E is superadditive and A-
monotonic (cf. Moulin, 1983).

Notation. Let D be a set. By (D) we denote the power set of D, 1.¢e.,
P(D)={C | C C D}, and by 2” we denote the set of all non-empty subsets
of D. So 2P = P(D)\{J}.

A preference relation R on D is a subset of D x D which satisfies

(1) completeness: for all a, b € D, (a, b) € R or (b, a) € R; and
(11) transitivity: for all a, b, ¢ € D, if (a, b) € R and (b, ¢) € R, then
(a, ¢) € R.

We use the notation a R b if (a, b) € R, and a P b 1if a R b and not
b R a.

If A is a set of alternatives, with a, b € A, N a finite set of individuals,
and R' a preference relation on A for all i € N, then a R' b is to be
interpreted as “‘alternative a is at least as good as alternative b according
to R.”’ Furthermore, R% := (R"),cs, P° := (P'),c5, and R" is called a
(preference) profile on A.

2. EFFECTIVITY FUNCTIONS

[et A be a finite set of alternatives and let N be the set {1, ..., n}. N
is called a society, members of N are called players or voters, and non-
empty subsets of N are called coalitions.

DEFINITION 2.1. An effectivity function is a map E: 2V — P(2%) such
that

(1) E(N) = 24,
(i1) A € E(S) for all § € 2V,

The interpretation of E is as follows: it B € E(S), then § can force the
final decision within the subset B of alternatives. By definition the society
N can force every outcome.

Effectivity functions were introduced by Moulin and Peleg (1982), but
the idea of effectiveness of coalitions was proposed earlier by Rosenthal
(1972). In the following definition we collect several properties of etfec-
tivity functions which we use later on. With the exception of (11) these
properties can all be found in Abdou and Keiding (1991).
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DEFINITION 2.2. Let E: 2¥ — P(24) be an effectivity function.

(1) E is A-monotonic if for all S € 2% and all B, B' € 24 with B C
B’ and B € E(S), we have B' € E(S).

(i1) E is weakly A-monotonic if for all § € 2% and all B, B’ € 24,
with B C B": if B € E(S), then there exists a partition {§,, . . ., S, Jof §
and there are B, € E(S,) forall r € {1, . . ., k} such that B’ = M*_, B..

(i11) E is N-monotonic if for all S, S’ € 2V with § C §’, and all
B € 24 with B € E(S), we have B € E(S').

(iv) E is superadditive if for all §;, §, € 2%, with §, N S, = J, and
all B, € E(S,), B, € E(S,), we have B, N B, € E(§, U §,).

(v) E is upper cycle free if forall S,, . ... S, €2¥with §, U S, =
Gforall r,te{l, ..., k}, r # t and all B, . . ., B, € 24 with B, €
ES)forallre{l,..., k}, we have N*_ B, # .

Clearly, if E 1s superadditive, then E is upper cycle free and N-mono-
tonic, and if E is A-monotonic, then E 1s weakly A-monotonic.

Now we define the superadditive cover E of an effectivity function E
(Peleg, 1984a).

DEFINITION 2.3. Let E: 2V — 9(24) be an effectivity function. The
superadditive cover E of E is a map that assigns to each § € 2" a subset
of P(A) such that it satisfies the following property: B € %P(A) 1s an element
of E(S) if and only if there exist a partition {S,, . . ., S.} of § and sets
B. € ES,) forall r €{1, ..., k} such that B = N*_, B,.

So. E is a function from 2V to P(P(A)). It is easy to see that E C E for
all effectivity functions E, i.e., E(S) C E(S) for all § € 27, It is clear that
E is an effectivity function (& & E(S) for all S € 2%) if and only if E is
upper cycle free. The name ‘“‘superadditive cover’’ 1s explained in the
next two lemmas.

LEMMA 2.4. Let E: 2% — P(24) be an effectivity function. The follow-
ing three properties are equivalent.

(1) E is upper c¢ycle free.
(i) E is a superadditive effectivity function.
(iti) There exists a superadditive effectivity function E’ such that
ECE'.

Proof. (i) = (ii) Let E be upper cycle free. Then by definition &J &
E(S) for all S € 2V. Hence E is an effectivity function. Let §, T € 2%
withS N T = @ and let B € E(S) and D € E(T). Then there are partitions
5, S} of S and {7, . .., T,} of T and there are B,, . . . , B, and
1 D, with B, € E(S)forallrEe{l,.. ., k} and D, € E(T,) for all
s €{l, ..., 1} such that B = N*, B, and D = N{_, D,. Then
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Wi 5 v o iBe T = ¥ 4% T} is a partition of § U T and therefore by defini-
tion of E we obtain BN D € E(S U T). So E is superadditive.

(ii) = (iii) Trivial because E C E.

(ii1) = (1) Let E' be a superadditive effectivity function such that
E C E'. Since E’ is superadditive, E’ 1s upper cycle free. But then E, too,
1s upper cycle free because EC E'. =

The following lemma shows that for an upper cycle free effectivity
function E, E is the smallest superadditive effectivity function containing

Ei

LEMMA 2.5. Let E: 2% — P(2%) be an effectivity function. Then for
each superadditive effectivity function E' with E C E' we have EC ECE".

Proof. Let E’ be a superadditive effectivity function such that £ C E".
Since E C E' and E' is superadditive, it follows from Lemma 2.4 that E 1s
upper cycle free and that E is superadditive. Let § € 2" and let
B € E(S). Then there is a partition {S,, ..., S} of § and there are
B,, ..., B, with B, € E(S,) for all r € {1, ..., k} such that B =
X, B,. Then by superadditivity of E' and E C E’ it follows that
BeEE(S) =

LLemma 2.6, which we will use in Section 5, describes monotonicity
relations between an upper cycle free effectivity function and its superaddi-
tive cover.

LEMMA 2.6. Let E: 2V — P(24) be an upper cycle free effectivity
function. Then E is weakly A-monotonic if and only if E is A-monotonic.

Proof. (=) Let E be weakly A-monotonic. Let B, B" € 24 with
B C B' and suppose B € E(S) for some § € 2N We prove that B’ € E(S).

Since B € E(S), there is a partition {S,, ..., S, of § and there are
B. € ES, forall r € {1, ..., k}such that B = MN}_, B,. Define B, :=
BUB forallreil; . ; :; k}. Then B, C B . for all r €41, . . . 5 k} and
N*_. B' = B'. E is weakly A-monotonic, so for each r € {1, . . . , k} there
exist a partition {S,, ..., S} of §, and B, € E(S,,) for all s €
{1, ..., k) such that B, = N, B'.. But then {S,. |s €{l, ..., k),
r € {1, ..., k}} 1s a partition of §, and since B, € E(S,,) for all s €
{1, ..., k}and r € {1, ..., k}, we obtain by definition of E that

B' = N, N* B, € E(S). So E is A-monotonic.

(&) Let E be A-monotonic. Let B, B’ € 2”4 with B C B’ and suppose
B € E(S) for some S € 2V. Since E is A-monotonic and E C E, we have
B' € E(S). Hence, there is a partition {S,, . . . , S} of S and there are
B.e ES)forallre{l, ..., k} such that B = M*_, B.. So E is weakly
A-monotonic. =
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3. THE SETCORE OF AN EFFECTIVITY FUNCTION

Let E: 2N — 9P(24) be an effectivity function and R" a profile on A. The
problem s, given all the preterences of the players, to find an alternative, or
a set of alternatives, which every player can agree upon. One important
solution concept is the core, defined (cf. Moulin and Peleg, 1982) as the
subset of A which consists of all “‘undominated’ elements with respect
to the profile R”. Other solution concepts which assign to an effectivity
function and a profile a subset of alternatives are the nucleus (Holzman,
1987) and the supernucleus (Fristrup and Keiding, 1988).

DEFINITION 3.1. (cf. Moulin and Peleg, 1982). Let E: 2V — %P(24) be
an effectivity function, and let R" be a profile on A. The core of E at R,

Core(E, RY), consists of all alternatives a € A for which there do not
exist S € 2V and B € E(S) with B ? a and b P® a for all b € B.

We will now modify the notion of the core in the sense that it will assign
to an effectivity function and a preference profile a collection of subsets
of A rather than one subset. This modification of the core 1s called the
setcore.

For this aim we first must extend preference profiles on A to preference
profiles on 2%.

DEFINITION 3.2. Let R be a preference relation on A. We define the
extension R of R to 24 by: for all B, B’ € 2* we have B’ R B if and only
1f

(1) for all ' € B'\B and all b € B we have b' R b,
(11) for all b’ € B' and all b € B\B' we have b' R b.

Furthermore, we define B’ P B if and only if B\B' #  and

(1) for all b’ € B'\B and all b € B we have b' P b,
(iv) for all ' € B' and all b € B\B' we have b' P b.

We write RS instead of (R7)..¢ and P* instead of (P),y.

[t readily follows that, if we restrict R to the singletons of 2, then this
restriction can be identified with R by identifying a singleton with its
unique element. Note that R is also reflexive and transitive but it need
not be complete. According to this definition B’ € 24 is preferred to
B € 24 if, in going from B to B’, the elements added to B (i.e., B'\B) are
better than the ones already present, and the elements of B that are
dropped (i.e., B\B') are worse than the elements of B which are kept (1.e.,
B N B').

Note that B’ P B implies that B’ is not a set that strictly contains B.
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Now we are able to give the definition of the setcore.

DEfFINITION 3.3. Let E: 2V — P(24) be an effectivity function and let
RY be a profile on A. Let B € 24 be a subset of alternatives. B is an
element of the setcore of E at RY, Setcore(E, R"), if there do not exist
S €2V and B’ € E(S), such that B’ PS B.

Remark 3.4. The setcore of E at R" definitionally extends the core to
subsets of alternatives. One easily checks that ¢« € Core(E, RY) if and
only if {a} € Setcore(E, R"). Moreover, it holds that, if B C Core(E, R"),
B # O, then B € Setcore(E, RY).

For, suppose B & Setcore(E, R"). Then there exist a coalition § € 2V
and a B’ € E(S) such that B’ P B. Hence, B\B' # J. Take a € B\B'.
Since B’ PS B, we obtain by definition of PS that b’ PS a forall b’ € B'.
Hence a & Core(E, RY), which leads to a contradiction.

From Remark 3.4 1t follows that the setcore of an effectivity function
(at a profile) 1s non-empty, whenever the core of the effectivity function
(at this profile) is non-empty. However, Example 3.5 shows that if the
core of an effectivity function at a profile 1s empty, then the setcore 1s
not necessarily empty.

ExaMPLE 3.5. Let N ={1,2,3}and A = {a, b, c}.
Define E: 2 — P(24) as follows. For § € 2V

{A} if | Si=1
2 if | S| > 1.

E(S):‘——-{

(E represents a situation in which the majority decides.) Clearly, E 1s an
upper cycle free effectivity function.
Define the preference profile RY = (R', R*, R?) on A by

R =dbe,
R>=bca.
R>=¢cab.

Here there are no indifferences and the preferences of the players are
denoted in decreasing order, 1.e., player 1 likes a the most, then b, and
then c, etc.

One easily checks that Core(E, RY) = J. However, the setcore of E
at R"™ is non-empty: Setcore(E, R") = {A}, which is a rather natural
solution.

Now we formulate the main theorem of this section, which yields an
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existence theorem of the setcore on the class of upper cycle free effectivity
functions.

THEOREM 3.6. Let E: 2N — P24 be an upper cycle free effectivity
function, and let RY be a profile on A. Then Setcore(E, RY) # @.

Proof. The proof is by induction on |A|. Clearly, if |[A| = 1, then
Setcore(E, RN) # @. Let |A| > 1, and assume that Setcore(E', R'Y) # &
for all upper cycle free effectivity functions E': 2% — P(24") with
|A'| <|Al| and all profiles R'Y on A’. Suppose Setcore(E, R") = . Then,
in particular, there exist a coalition 7 € 2" and an A" € E(T) such that
A' PT A. By definition of P7 it follows that |A’| <|A|and that A" PT (A\A").

Define E': 2V — ®?(24") by E'(N) := 2%’ and for S € 2™M\{N} and
B € 24

BEE'(S)© B =A'orthereexistC CA\A"and D C A’, D # (J such that
BUCEElS) and (BUC)PSD.

Clearly, E' is an effectivity function. Furthermore, let P'" be the restriction
of PN to A’. We will show that

(I) Setcore(E’, R'N) = J;
(II) E’ 1s upper cycle free.

(I) Let B’ € 24", Since Setcore(E, RY) = O, there are S € 2" and
B € E(S)suchthat BP*B'. Let X:=BNA".

CLAIM. X €E E'(S)and X P'° B'.

From the claim it immediately follows that B’ & Setcore(E’, R'Y).
Hence, Setcore(E’, R'Y) = .

Proof of the claim. First we show that X # . Suppose X = (J. Then
B C A\A' and therefore, B’ N B = &. Since A’ PT (A\A"), it follows that
SNT=.Since A’ N B =, this leads to a contradiction with upper
cycle freeness of E. Hence, X # O.

Since X U (B\A') = B € E(S), and B P3 B’ it follows that X € E'(S).
Using the fact that B PSB' and B’ N B C X C B, it follows from the definition
of P'S that X P'S B'.

(I) Let S;, ..., S, €2¥with§, NS, =D foralr,tE{l,... kb,
r # t, and By, ..., B, € 2% be such that B, € E'(S,) for all r €
{1, ..., k}. It suffices to prove that N;_, B, # &.

Suppose that N%_, B, = &. We assume, w.l.o.g., that B, # A" for all
r. From the definition of E’ it follows that there are C, . . ., G © ANA
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and D,, ..., D, C A" such that B, U C, € E(S,) and (B, U C,) P° D, for
all r. Since E is upper cycle free, it follows that N*_., (B, U C,) =
Nk C. # . Let b e ML, C,. Since b & A" and (B, U C.)P5 D, for
all r, it follows that {b} PS5 D, for all r. As A" PT (A\A'), we have

S = forall r.

Consider 7, S, ..., S, and A' € E(T), B, U C, € E(S)), ...,
B, U C, € E(S,). Since Ni_, (B, U C,) N A" = &, it follows that E is not
upper cycle free. This leads to a contradiction and hence E’ 1s upper cycle
free.

Statements (1) and (II) are in contradiction with the induction hypothe-
sis. So, Setcore(E, RYN) # J. =

Example 3.7 shows that upper cycle freeness 1s not a necessary property
for guaranteeing non-emptyness of the setcore at every profile.

ExXAMPLE 3.7. Let N ={1,2,3}and A = {q,, ..., as}. Let B, =
lay, a,, a3}, B, = {a,, ay, a4}, By = {a;, ay, asf. Define the ettectivity
function E by

E{i)={B,,A}, i=1,2,3
E(S) = {A} if|S| =2
E(N) =24,

Clearly, E 1s not upper cycle free. |
We leave it to the reader to verify that Setcore(E, RY) # O for all

profiles R".

4. GAME CORRESPONDENCES AND ASSOCIATED
EFFECTIVITY FUNCTIONS

In this section we tormally consider game correspondences and their
associated a- and B-effectivity functions. Let S € 2% be a coalition. For
all 1 € §, let X. be a non-empty set. We denote the Cartesian product
[I-.¢ X, by Xs. It 0; € X, for all i € §, then we write o Instead of (o) ..

DEFINITION 4.1. (cf. Peleg, 1984b). A game correspondence 1s an
(n + 2)-tuple G = (X,, ..., X,, A, ), where X, 1s a non-empty set
of strategies for each i € N, A 1s a finite set of alternatives, and
7 Xy — 24 1s non-imposed, i.e., for each ¢ € A there is a strategy
oy = (0, ..., o,) € Xy such that w(oy) = {aj}.

The interpretation of G 1s as follows: given the choice o; € X, of each
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player i € N, the outcome multifunction 7 determines a non-empty subset
(o) of alternatives.

This definition is almost similar to the definition of a game form intro-
duced by Gibbard (1973), where the map  is a surjective function from
XytoA.

Moulin and Peleg (1982) defined the a- and B-effectivity functions associ-
ated with a game form. Peleg (1984b) extended this definition to game
correspondences.

DEFINITION 4.2. LetG=(X,,...,X,, A, m) be a game correspon-
dence. The a-effectivity function EY and the B-effectivity function Eg
associated with G are defined as follows. Let S € 2%. Then

EE(S) ;= {B = 2A | 30'5 = XS VTN\S = XN“%.S ; TT(US, TN\S) - B}

EE(S) i {B = 2A I VTN\S = XN\S HG-S = XS:W(G-S’ TN\S) ¢ B}

Note that when one defines the a- and B-effectivity functions associated
with a game form 7 (o, 7y ) C B changes into w(og, Tav5) € B.

The reader can easily verify that ES and E are indeed effectivity func-
tions (since 7 is non-imposed) and that EG(S C E§(S) forall § € 2N and
all game correspondences G. A game correspondence G 1s called tight 1t
EC = E§. Furthermore, it is easy to see that for every game correspon-
dence G E%and E§ are both N-monotonic and A-monotonic and that
EC is superaddltwe

Some solution concepts for game correspondences at a given profile
are recalled in

DEFINITION 4.3. Let G = (X, .. ., X,, A, m) be agame correspon-
dence and R" a profile. A strategy vector oy € Xy 1s a Nash equilibrium
of G at R" if there do not exist i € N and 7, € X; such that
T (T iy T 7)Pim(oy). Further, oy is called a strong Nm/z eqmlrbuum of
G at RN if there do not exist S € 2% and 7 € X such that w(oy g, T5)
Pz (oy).

S. IMPLEMENTATION RESULTS

This section shows how for an upper cycle free effectivity function E,
one can construct a game correspondence G(E) such that G(E) is tight
and E C ES®). The game correspondence G(E) is called the claim game
correspondence associated with E. We provide necessary and sufficient
conditions on E such that E = EY¥®) Finally, this section establishes
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relationships between the setcore of E at a preference profile R” and the
set of strong Nash equilibria of the claim game correspondence G(E) at

R™,

DEFINITION S5.1. Let E: 2%V — P(24) be an upper cycle free effectivity

function. The claim game corirespondence G(E) associated with E 1s given
by G(E) = (X, .. ., X, , A, m), where foreachi € N

X.:={S,B) €2V x24|i€S, BE EWS).

[

and for oy = (§;, B),eny € Xy, m(oy) 1s defined by

(N{BeE22?|BEF(oyn)  ifF(oy) #D
A if F(oy) = Q.

m(oy) = -

Here F: X, — 24 is defined as follows. For oy € X

F(oy) :={B€24|35 €2VB € ES)], Vi € S[o;, = (S, B)]}.

Note that 7(oy) # O for all oy € X, because E 1s upper cycle free.

In the claim game correspondence G(E) the strategy (5., B;) of player
[ € N can be interpreted as a claim in the following way. Player i wants
to form coalition §; 2 i and he wants the final outcome to be in a subset
B; of alternatives for which §; 1s eftective. According to the outcome
function 7, the final outcome will certainly be 1n B; if all the players in S,
have exactly the same claims.

ExaMPLE 5.2. Let N={1,2,3,4}and A = {a,, a,, a,, a;, a,, as, ag}.
Define E: 2 — P(24) by

E{1}) = {ay, ai}, {a,, a,, a}, A}, EQ1, 2}) = {a,, a,, as, a¢}, A},
E({2,3}) = {{ay, a,, a-, as}, A}, E{3, 4}) = {{a,, a,, a,, ag}, A},
E(N) =24, and E(S) = {A}else.

Then E is upper cycle free, so G(E) = (X,, ..., X,, A, m)1s well-defined.
Note that E 1s not superadditive. Define the strategy oy € X\ by
o =({l}, {a,, ag), o,=03=02, 3}, {a,, a,, a,, as}),

A—

o, = ({3, 4}, {a,, a5, a4, as}). Then F(oy) = {a,, a4}, {qy, a,, a,, as}} and
therefore, w(oy) = {a,, a4 N {a,, a,, a,, as} = {a,}.

Tightness of claim game correspondences associated with upper cycle
free effectivity functions follows from



EFFECTIVITY FUNCTIONS AND CLAIM GAMES 183

PROPOSITION 5.3. Let the effectivity function E: 2¥ — P(24) be upper
cycle free. Then

E C EG{E] E— Eg{E}_

Proof. Let S € 2" and B € E(S). Define oy € X by o; := (§, B) for
all i € S. Then for all 7, € X\ we have B € F(og, Ty5). Hence,
(o5, Tang) C B forall rns € Xas- Hence, B € ESVX(S).

To prove tightness of G(E) it suffices to show that E{'®)(S) C EJ*)(S)
forall S € 2N. Let S € 2¥ and B € E§®)(S). Define 7y, € Xy g by 7; 1=
({i}, A) for all i € N\S. Since B € E{")(§), there is a o5 € X such that
w(os, Tang) C B. Hence, N{D € 24| D € F(og, ms)} C B. Because
(F(og, TmgMAD C F(og, 7a) for all 76 € Xy, we obtain
"D € 24|D € F(os, Tvs)} C B for all 7,.¢ € Xyg. Hence,
B € ECE)(S). =

The next proposition shows the importance of the condition of upper
cycle freeness.

PROPOSITION 5.4. Let E: 2N — P(2%) be an effectivity function. There
exists a game correspondence G such that E C ES if and only if E is upper
cycle free.

Proof. (=) Since EY is superadditive this follows immediately trom
[Lemma 2.4.

(&) This follows immediately from Proposition 5.3. =

Theorem 5.6 below characterizes the properties an effectivity function
E must satisfy for coincidence of E and EY'". For this we need the

monotonicity result of

LEMMA 5.5. Let E and E' be upper cycle free effectivity functions and
let G(E) = (X, ..., X,,A, m)and GE') = (X],....X,,A, ) be the
associated claim game correspondences. If E C E' then ES'® C EJ").

Proof. Let B € ESEXS) for some S € 2V. If B = A, then B € EJ*’
(S). Suppose B # A. There is a strategy oy = (§;, B)es € X such that
m(as, Tavg) C B for all 75 € Xy 5. Take 7y 5 € Xy, such that 7, = ({i},
A)foralli € Xn. Let Sy:={i € S| 3j € §,[S; # S; or B; # B;]}. Since
(o, Tvg) C B # A, we have §;, # § and there is a partition
(S*. ...,S¥ of S\S, and B¥ € E(S}) for all r € {I, . .., k} such that
(S;, B) = (S*,B¥) foralli€ Standallr €11, .. ., ky and M4 BF C.B,
Since o¢ € X%, and B¥ € F(og, Tz for r € {1, ... , k; and all
s € Xas, We obtain 7'(og, ) C B for all 745 € Xy S0 B €
ES(E'l(S). q
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THEOREM 5.6. Let E: 2V — P(24) be an upper cycle free effectivity
function. Then

(1 E(;{E} Emu ol EG{E} ae EG{F}
(11) E EGE) if and only if E iIs A-monotonic:
(m) E Efk_”’ if and only 1if E 1s A-monotonic and superadditive.

Proof. (1) Because of Proposition 5.3 1t suffices to prove that
FG(E) = EG!E}_

(C) This follows by Lemma 5.5.

(D) Let G(E) = (A, , X, A, ) and G(E) :=
(X,,...,X,,A, 7. Let S € 2V and B € E(’“”(S) If B= A, then B €
ECE)S). Suppose B # A. Then there is a o € X such that 7(T¢, Ty ) C
B for all TN ¢ € Xynos LTAKE Tane € X \S such that 7, = ({i}, A) for all i €
N\S. As 1n the proof of Lemma 5.5, since 7 (o, 7y ) C B one can find

disjoint subcoalitions S,, ... , S, of S and B, € E(S,) for all r €
3 PR k} such that o. = (§,, B,) foralli € S and r € {1, . . ., k}, and
M*., B, C B. For all r € {1, ... , k} by definition of E, there are
partitions {8y « + « » FA) of S, and there are B.. € E(S,.) for all s €
§ A k.} such that B. = M%,

Define o € X by o; := (§,,, B,._\.) for Al TE Sos 86 1)y onn s k,} and
r € 11, ; K. Then B, € Flo., o) Torall s € 41, . 5 ; k}, r €
1Py }and'r\MEX\,{_, Since BD N*_, B.= MN%*_ N*, B _we obtain

77(()-5 T.-\m) C B for all 7\n¢ € X\ 5. Hence, B € ECE)(S).
(i) (&) Suppose E is A-monotonic. By Proposition 5.3 it is sufficient
to prove that E D EE), Therefore, let S € 2¥ and B € ESEXS). If B
= A, then B € E(S). Suppose B # A. Then there exists a ¢ € X such
that T(T¢, Tans) C B for all Tyne € Xy Take Tine € Xin Such that 7. =
({i}, A) forall i € N\S. Since 7 (o, 7. ¢) C B, one can find disjoint subsets
Sis s ww 3 SA of S and B, € E(S,) for all » € {I, ... , k} such that
ﬁ(r:_r'g,?m', = (}_, B,. Since E is superadditive, we obtain (1% B E
E(LJS: 8. Smce Eis supeladdltwe and hence N-monotonic, this 1mplles
MK I1‘5’ € E(S). Hence, since E is A-monotonic and M*_, B, C B it follows
that B € E(S). B B
(=) Suppose E = EY®). Then E is A-monotonic since EY®) is A-
monotonic.
(ii1) (&) If E is superadditive, then E = E by Lemma 2.5. Using A-
monotonicity (i) and (ii) imply that E = E“),
(=) Suppose E = E¢®), By Lemma 2.5, E=E%®) = E. So, in
particular, E 1s superadditive, and from (1) and (11) 1t follows that E 1s A-
monotonic. m

Using Lemma 2.6 we now obtain
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CoRrOLLARY 5.7. [LetE: 2N — PRA) be an upper cycle free effectivity
function. Then E = EY'®) if and only if E is weakly A-monotonic.

In the last part of this section we examine relations between solution
concepts of effectivity functions at a profile R" and solution concepts of
the associated claim game correspondence at R"™. It is shown that, if the
effectivity function is superadditive, the setcore exactly corresponds to
the set of outcomes of the strong Nash equilibria.

THEOREM 5.8. Let E: 2N — P(24) be an upper cycle free effectivity
function and R" a profile on A. Let G(E) := (X, . . ., X, ,A, m be the
associated claim game correspondence. Then the following two assertions

hold.

(i) If oy is a strong Nash equilibrium of G(E) at R", then m (o) is
an element of the setcore of E at R,

(i) If E is superadditive, then for each element B of the setcore of
E at RN there exists a strong Nash equilibrium oy of G(E) at R" such
that w(oy) = B.

Proof. (i) Let oy € X, be a strong Nash equilibrium of G(E) at R".
Define B := m(oy). Suppose there are § € 2% and B € E(S) such that
B' PS B. Define 7, € Xg by 7,:= (S, B') forall i € S. Then m(rg, oy5) C
B' and therefore B\m (7, on ) # J. Moreover, we have F(rg, oy s)\{B'}
C F(o,). Hence, w(rg, ong) = MWD D € F(rg, oms)t O
N{D | D € F(oy)} N B' = BN B'. Since B\m(rg, opg) # D, BN B C
m(7¢, on ) C B',and B' PS B, it follows by definition of PS that w (75, o s)
PS B. This leads to a contradiction since oy is a strong Nash equilibrium of
G(E) at R™.

(ii) Let E be superadditive and let B be an element of the setcore of
E at RN. Define oy € Xy by o, := (N, B) forall i € N. Then w(oy) = B.
Suppose that o is not a strong Nash equilibrium of G(E) at R"™. Then
there exist S € 2V and 7, € X, such that 7(zg, ong) P> m(oy). Hence,
7(1¢, ons) # A and there are disjoint subsets §;, . .. §,of § and B, €
E(S) for all » € {1, ..., k} such that 7, = (S,, B,) for all j € §, and all
& =2 ) PP k}, and 7 (7¢, on) = M5, B,. Since E is superadditive, we
have N*_, B, € E(U*_, S,) C E(S). This leads to a contradiction since B
is an element of the setcore of E at R". m

6. TowARD GAME FORMS
In Definition 5.1 every upper cycle free effectivity function E 1s associ-

ated with a claim game correspondence G(E) = (X,,. .., X,, A, m). Here
7 is a correspondence from X, to A. In this section we derive a claim
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game form H(E) = (X,, ..., X,, A, p) from G(E), where p is a surjective
function from X, to A. Moreover, this is done in such a way that
EGE) = EHE)

Moulin (1983) already describes a process for going from a game corre-
spondence G to a game form H such that E¢ = E¥ but his construction
only works for a finite set of alternatives, while the construction described
In this section can also be applied to an infinite set of alternatives. As a
result this section yields an alternative proof of

THEOREM 6.1 (Moulin, 1983). Let E be an effectivity function. Then
there exists a game form H such that EY = E if and only if E is superadditive
and A-monotonic.

An obvious way to go from a game correspondence to a game form is
by means of a choice function.

LEMMA 6.2. Let C: 2% — A be a “‘choice function,” i.e., C(B) € B
forallBE€ 2% Let G = (X,,...,X,, A, m) be agame correspondence.
Define p = C o 7. Then

1) H=(X,, ..., X,, A, p)is agame form;
(i} E5 C E; and Ef c Ef.

Proof. (1) The surjectiveness of p follows from the non-imposedness
of .
(i) Let S € 2¥and B € 24 and suppose B € E“(S). Then there exists
a strategy oy € X such that (o, 7y, 5) C B for all 75, ¢ € Xy . But then
Com(og, Tas) € Bforall 7y g € Xy 5. Hence B € EH(S).

The proot of the second assertion is similar. =

However, in general the inclusions in Lemma 6.2(ii) need not be equali-
ties, not even if G is a claim game correspondence. The following example
shows that there are claim game correspondences such that for every
choice function these inclusions are not equalities.

EXAMPLE 6.3. Let N = {1, 2}, A = {a, b}, and define the effectivity
function E: 2V — ?(24) as follows. E({1}) = E{2}) = {A}, and E(N) =
24. Then G(E) = (X,, X,, A, m), where for all i € N, X, = {({i}. A)} U
{(N, B) | B € 24} and for all oy, € X,

{a} it oy = 0, = (N, {a})
W(UN) — {b} ifo—l — 0, = (IV, {b})
A otherwise.
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Let C: 24 — A be a choice function. Suppose, w.l.0.g., that C(A) = {a}.
Let p:= Cemand H(E) := (X,, X5, A, p). Then

(A} = EGEY{i}) = EGEX {r} EHE({i})
= Ef®i}) = {{a}, A} foralli € N.

In order to establish an equality between E“'*) and E/'*) for some game
form H(E) derived from G(E), we must go beyond the scope ot choice
functions. In particular, p(oy) will have to depend more directly on oy
itself, not only on 7 (o).

DEFINITION 6.4. Let C: 2% — A be a choice function. For each B €
24 define a surjection /iy from A to B such that

{b ifb €B
G(b) 1= |
C(B) if b € A\B.

[et A: 24 x 24 — 24 be a binary operation on the non-empty subsets of
A defined for all B, D € 24 as follows.

B itB=D

BAD := { |
(B\D) U (D\B) itB#D.

If B # D. then BAD is the symmetric difference between B and D. Let
B. D € 24 with B # D. Note that (BAB)AD = BAD and that BA(BAD) =
D. So. A is not associative. In order to avoid parentheses 1t 1s necessary
to define the order in which a sequence of A operations must be evaluated.
Let D,, ..., D, be elements of 24, Then by D ,AD,AD; we mean
(D,AD,)AD; and for all 3 < ¢ < A by D,AD,...AD, we mean
(D, ...AD, ))AD,. So, the evaluation of D ADJ* ED, is from left to
right.

PROPOSITION 6.5. Let 2 = kand 1 =t = k. Let Dy, ..., Dy be
elements of 2*. Then {D, . . . AD,_,ABAD,.,...AD,| B € 24} = 24,

Proof. Let D, D' € 24. Then there is a B € 2 such that DAB = D':
if D = D', then take B = D, else take B = DAD'. So, {DAB | B € 24} =
{BAD | B € 24} = 24, Consequently, {D,...AD,_,AB|B € 24} = 24,
Hence. {D, ... AD, ,ABAD,.,| B € 24} = {PAD,,, | P € 24} = 24
Hence, {D, ... AD,_,ABAD, ,AD,,.,|B € 2 "} = {PAD, , | P € 24}
24 Repetition of this argument yields {D, . . . AD,_,ABAD,.,. . .AD,
Be?24 =24 =

|
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Now we are able to define a claim game form derived from a claim
game correspondence.

DEFINITION 6.6. Let G(E) = (X,, ..., X,, A, m) be a claim game
correspondence associated with an upper cycle free effectivity function
E. Let C: 24 — A be a choice function and let {h§ | B € 24} be as in
Definition 6.4.

Define fz: Xy — 24 as follows: For oy = (S;, B).eny € Xy, fe(oy) :=
B, ... AB,. Then the claim game form H(E) := (X,, ..., X,, A, p)
corresponding to G(E) and C 1s defined by

ploy) = hgtgyl(C ° feloy))

for all oy € Xy . Clearly, p(oy) € m(oy) for all oy € X,. So by non-
imposedness of 7 it follows that p 1s surjective.

We now show that the a-effectivity functions of G(E) and H(E) coincide
for every upper cycle free effectivity function E.

THEOREM 6.7. Let E: 2N — P(24) be an upper cycle free effectivity
function. Let G(E) = (X, ..., X,, A, m) be the claim game correspon-
dence associated with E, and let HIE) = (X,,...,X,,A, p) be the claim
game form corresponding to G(E) and a choice function C. Then

G(E) — [ H(E)
B = o

Proof. As 1n the proof of Lemma 6.2(11) one can show that
ECE) C EA®) 1t remains to prove that ESEX(S) D EAEXS) for all § € 2V,
Let S € 2¥ and B € E!'®)(§). We have to prove that B € E¢®)(S). This
1s obvious if B = A or if § = N. Therefore, suppose B # A and § # N.
Since B € EfE)(S), there is a strategy o € X, such that for all 7, ¢ €
X We have p(og, 7avg) € B.

CLAIM. For each D € 27 there is ani € S such that o, # (N, D).

Proof of the claim. Let D € 24. Suppose for alli € S, o, = (N, D).
Take a € A\B. By Proposition 6.5 it follows that there are D; € 24, j €
N\S, such that D,AD, . . . AD, = {a}, where for ease of notation D, = D
ifi e §. Letr, = (N, D) for allj € N\S. Then

e L 3 e E : = L
p(O-S ’ Tf\“. S) o I?TT{[TS T AN 5}( C fof(o-.ﬁ' ’ TN'R_ S)) o /?TT[ETH,T'\.- ;‘I(C({a})) T ,I mlog _Tﬁ-,_ﬁ;]( a) :

If D; = D for all j € N\S, then {a} = DAD .. .AD = D and n(7g, o)
= D. However, this would imply that p(og, 7A.¢) = a & B. So, there i1s
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a j € N\S such that D; # D. Hence, 7(os, Ty\s) = A and again
o(as, Tas) = a & B. So, there is no D € 27 such that for all i € § we
have o; = (N, D), and this proves the claim.

Fix i € N\S. For each D € 24, consider the strategy vector 7x,s €
X, defined by 72 = (N, D) and 7 = (N, A) for all j € N\(S U y).
Then it follows that there exists a Z € 24 such that for all D € 27,
m(os, 72.¢) = Z. By definition p(og, TRs) = h3(C ° fe(os, TRs)). By
Proposition 6.5 we have {fz(os, %) | D € 24} = 2% and therefore,
{p(ag, TR.5) | D € 24} = Z. Since p(og, TR\s) € Bforall D € 2%, we have
m(og, 78.g) = Z C B for all D € 24, But then it readily follows that 7 (o,
ras) C B for all g € Xas. Hence, B € EJEXS). =

COROLLARY 6.8. Let E: 2N — P(24) be an upper cycle free effectivity
function. Then there exists a game form H such that E" = E if and only
E is superadditive and A-monotonic.

Proof. Combine Theorems 5.6 and 6.7. =

ExXAMPLE 6.9. Again consider Example 6.3. Applying Theorem 6.7
vields p(oy) = b if o, = o, = (N, {b}) or if oy = (N, {aj) and 0, €
{(N, A), {2}, A)}orif o, = (N, {a}) and o, € (N, A), {1}, A)} and 1n all
other cases p(oy) = a. Now it follows that Ef®({1}) = Ef®({2}) =
{{a}, A}. Moreover, since E is not maximal (cf. Moulin and Peleg, 1982),
it follows that there is no game form H such that Ef = E.
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