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Abstract

Inventory management studies how a single firm can minimize the average cost per time unit of its inventory. In this
paper we extend this analysis to situations where a collective of firms minimizes its joint inventory cost by means of
cooperation. Depending on the information revealed by the individual firms, we analyze related cooperative TU games
and focus on proportional division mechanisms to share the joint cost.
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1. Introduction

Generally speaking, shops or firms trade vari-
ous types of goods, and to keep their service to
their customers at a high level they aim at meeting
the demand for all goods on time. To attain this
goal, shops may keep inventories in a private
warehouse. These inventories bring costs along
with them. To keep these costs low, a good man-
agement of the inventories is needed. The man-
agement of inventory, or inventory management,
started at the beginning of this century when
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manufacturing industries and engineering grew
rapidly. A starting paper on mathematical models
of inventory management was Harris (1915). Since
then, many books on this subject have been
published (for example, Hadley and Whitin, 1963;
Hax and Candea, 1984; Tersine, 1994). The main
objective of inventory management is to mini-
mize the average cost per time unit (in the long
run) incurred by the inventory system, while
guaranteeing a pre-specified minimal level of ser-
vice.

In this paper we study an extremely simple
model of inventory systems. In this so-called basic
inventory model we begin with a single firm that
stores a single good. Demand for this good
is continuous over time and occurs at a constant
rate. The lead-time of the good is deterministic,
and without loss of generality assumed to be
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zero. The related inventory cost is assumed to be
time-invariant and there are no constraints on the
quantity ordered and stored. The inventory cost
consists of two parts: the ordering cost and the
holding cost. The ordering cost, the cost one has to
pay each time an order is placed, is fixed, i.e., it is
independent of the quantity ordered. The holding
cost reflects the cost per time unit of storage of the
good in a private warehouse and is assumed to be
linear in the quantity stored. As a decision crite-
rion we use the average inventory cost per time
unit, so we have to decide upon an ordering policy
that minimizes this cost. This decision criterion is
well known in the literature and in text books (see,
for example, Winston, 1994).

New aspects and features come in when we
consider situations with several firms or shops and
a single good. One can think for example of some
franchise operators restricted to a single good.
Each of these firms has its own private demand
and its own private storage possibilities for the
good. There is a single supplier where all firms
place their orders, concerning the good, at the
same ordering cost. By means of placing their or-
ders simultaneously, these firms can reduce their
total cost ! compared to the total cost in the initial
situation in which they all order separately, be-
cause of the lower total number of orders. An in-
teresting question is what the optimal ordering
policy for a group of agents will be. Here, another
aspect enters. When coordination leads to joint
cost savings, how should these savings be allocated
among the firms? This paper provides answers to
both questions. In particular, the last question is
addressed by means of cooperative game theory
arguments.

To provide adequate answers to the two re-
search questions above, we have to specify the
exact informational structure we want to consider.
Both the constant rates of the demand and the
holding cost are assumed to be private informa-
tion; only the ordering cost, which is the same for
all firms, is public information. To coordinate the
ordering policy of the cooperating firms, some

! When we write ‘cost’ we mean average (inventory) cost per
time wnit,

revelation of information is needed. > We will as-
sume first that the only information of a firm that
is truthfully revealed to the other firms is its ave-
rage number of orders per time unit in case this
firm would act on its own in an optimal way. In
fact, we will show that this is the only information
one needs to determine an optimal joint ordering
policy. If all information would have been public,
we would arrive at the same optimal policy.

In Section 3 we consider this first model and
corresponding cooperative inventory cost games.
We propose an allocation rule in which the or-
dering cost is divided proportionally to the square
of the individual ordering cost. This cost only de-
pends on the ordering cost and the individual ave-
rage number of orders per time unit, which is
public information. The holding cost component is
included implicitly since this cost can only be
computed using private information. It turns out
that the proportional rule leads to a core alloca-
tion of the corresponding game that even can be
sustained as a population monotonic allocation
scheme (Sprumont, 1990), which is a core alloca-
tion supported by a monotonic scheme of core
allocations for all subgames. Furthermore, we give
an axiomatic characterization of this rule on the
class of ordering cost games, i.e., games where we
forget about the private holding cost and only
consider the ordering cost.

Subsequently, we compare the above results
with the results in case all information on demands
and holding cost is revealed within a cooperating
group of firms. No strengthening can be obtained,
s0 there seems no real need for the disclosure of
private information if one only focuses on savings
with respect to ordering cost. However, if we have
full disclosure of information, no limits to storage
capacities, no transport cost and deterministic
transport times, one could also consider coordi-
nation with regard to holding cost. Stocks will be
stored in the warehouse of the firm with lowest

% We keep the amount of revealed information between the
firms as low as possible since the firms may be competitors on
the consumer market. To establish meaningful cooperation
without full disclosure of information some kind of intermedi-
ary will be needed.
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holding cost. This kind of situations and the cor-
responding games are considered in Section 4. We
show that these games are not necessarily concave
but they are permutationally concave.

Section 2 starts with an analysis of the optimal
ordering policy in a multi-firm situation with a
single good and a single supplier of the good. We
already described Sections 3 and 4. In Section 5 we
provide an example that illustrates all the games
and allocation rules of Sections 3 and 4. Section 6
concludes.

2. The basic inventory model

In the basic inventory model, a single firm has
to meet the demand for a single good on time. To
attain this, the firm keeps stock on hand. We as-
sume that the firm owns or rents a warehouse,
which has an unlimited capacity, and there is a
single supplier who delivers all orders. The de-
mand for the good is assumed to be known, con-
stant and equals d units per time unit, d > 0. The
firm is not allowed to run out of stock. The lead-
time, the time between placement of an order and
delivery of that order, is assumed to be determin-
istic and constant, and without loss of generality
equal to zero. °

There are two types of cost involved. First,
there is the ordering cost. We assume that this cost
does not depend on the quantity ordered. It in-
cludes, for example, telephone charges, delivery
costs and the labour cost incurred in processing
the order. Each time the firm places an order to
replenish its stock, it pays a fixed ordering cost
a > 0. Second, there is the holding cost; the cost of
storing goods. This cost includes insurance, ware-
house rental if the warehouse is not owned by the
firm, depreciation if the warehouse is owned by the
firm, light, maintenance and so on. The cost of
carrying one good in stock for one time unit is
assumed to be constant and is denoted by the
constant 2 > 0.

3 Since the lead-time of an order only determines the actual
time of delivery of an order and does not influence the optimal
amount of the good to order, this is not a restrictive
assumption.

Since the demand is deterministic and constant
and the lead-time equals zero time units, the firm
that wants to minimize its average cost per time
unit, will order the same quantity each time an
order is placed. Also, the size of the on hand in-
ventory when an order is issued, will always be
zero, to minimize the average holding cost, since
the order is delivered immediately. The firm
wants to determine how many orders it should
place per time unit and how much to order
such that its goal, to minimize the average cost per
time unit, is attained. The following analysis
follows the lines set out by Hadley and Whitin
(1963).

Denote by Q the quantity ordered each time the
firm places an order to replenish the stock. The
time between two successive placements of orders
is thus Q/d time units. A cycle will be defined as an
interval of time of length Q/d starting at that point
in time when an order is placed. During each cycle,
the behaviour of the inventory system is exactly
the same. By m we denote the number of orders
placed per time unit, that is, m =d/Q.

Let us take a look at a single time period of unit
length. In this period, the demand for the good
equals d units. The firm wants to meet all demand
on time, so if the quantity ordered equals Q, then
the number of orders placed per time unit is d/Q
on the average and the average ordering cost per
time unit equals ad/Q. Since an order is placed
when the size of the stock equals zero, the average
size of the inventory will be § (Q + 0) = Q/2. Then
the average holding cost per time unit will be
hQ/2. The average cost of the firm per time unit,
AC(Q), equals the sum of the average ordering and
holding cost per time unit:

d .9
AC(Q) —a§+h—2-.
The minimal cost is obtained in @Q* with AC' x
(@) =0 and AC"(Q*) > 0. It follows that 0" =
2ad/h. The optimal cycle length is Q*/d =
2a/(dh), the optimal number of orders placed
per time unit, m*, equals m* =d/Q* = \/dh/(2a)
and the minimal average cost per time unit is
AC(Q*) = v2adh = 2am*. Note that in the opti-
mum both the holding and the ordering cost per
time unit equal am*.
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In an n-firm inventory situation, there is a set
N ={1,2,...,n} of firms. We denote the demand,
holding cost and order size of firm i € N by d; = 0,
ki >0 and O; > 0, respectively. There is a single
good and each firm has its own private storehouse.
When these firms cooperate, they minimize their
total cost by placing their orders together as one
big order. So, in the optimum, cycle lengths are
equal for all firms. Why? Suppose that we have a
situation with two firms and unequal cycle lengths,
as in Fig. 1. We consider the time interval from ¢
up to and including #. Firm Long is the firm with
the largest cycle length. Its cycle length equals
t; — t;. Firm Short has the smallest cycle length,
namely & — #. If both firms decide to cooperate
then we see from the figure that they place a joint
order at #; and separate orders at £, #; and ¢. This
makes a total of four orders. Firm Long can re-
duce the total cost of the cooperating firms by
reducing its cycle length to £ — 1, the cycle length
of firm Short. If we compare Fig. 1 and Fig. 2 we
see that the reduction of the cycle length reduces

inventory level

Qp, e

t ta ts 4

\ <+— firm Short

+— firm Long

time

Fig. 1. Unequal cycle lengths.

inventory level

\ -— firm Short

\ «— firm Long

; — time
1 ta t3 t4

Fig. 2. Equal cycle lengths.

the order-size of firm Long from @ to ¢ since it
is optimal to issue an order when the inventory
level equals zero. Consequently, the average in-
ventory level goes down from {./2 to ¢ /2 and
the holding cost of firm Long decreases. The re-
duction of the cycle length also implies that the
firms place joint orders at times #, £, and # and no
order is placed at time f3. The total number of
orders has fallen from four to three, so, the or-
dering cost will decrease.

From the explanation above, it follows that if
the total cost is minimized then the cycle lengths of
all firms are equal. The cycle length of firm i e N
equals Q;/d,, so it should hold that Q;/d; = Q,/d;
foralli,j € N.If we take j = 1 then we can express
©; as a function of O:

Q=0 (1)

The average cost per time unit for the firms in N
consists of ordering and holding cost. One order is
placed per cycle, so the average ordering cost per
time unit equals ady/Q,. Since each firm stores its
goods in its own storehouse, the holding cost will
be the sum of the individual holding cost. Thus,
the average cost per time unit for the firms in N
equals

d O
a4 h,'—.
O ; 2

Compare this to the individual average cost per
time unit ad;/Q; + h:Q:/2. To express this cost as a
function of Q; only, we substitute (1) and get

a O
a— + - h,‘di-
O 24 %\;

Minimizing this with respect to Q; gives the fol-
lowing results. The optimal order size O, for firm i
is

2ad?
e Gihy

The optimal cycle length equals

- 2a
i 2 jen G

@x’:

[

I
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for all i € N. The optimal number of orders the
firms should place, my, is

—_ ZJEN d./h./ — Z mjz-
g YV Z2a TN

Here, m; = d;/Q; = \/dihi/(2a) denotes the num-
ber of orders that minimizes the cost of firm i. The
minimal average cost equals 2amy. As in the one-
firm situation, the ordering and holding cost both
equal amy in the optimum. Also notice that the
minimal cost only depends on a, which is assumed
to be public information, and my, which only de-
pends on all m;. So, to calculate the minimal cost,
it suffices for each firm to reveal its number m;, the
optimal number of orders if the firm would oper-
ate on its own. The firms do not have to reveal
their private demand or holding cost; we do not
need full disclosure of information. However, the
amount of information disclosed may influence the
possible allocation mechanism. In Section 3, where
each firm only reveals its individual optimal
number of orders m;, we propose an allocation
mechanism that allocates the total cost propor-
tionally to the square of the individual cost. In
Section 4, where we have full disclosure of infor-
mation, we could use the same allocation mecha-
nism as in Section 3. But now we have more
information available. Each firm reveals its de-
mand and holding cost, so we might as well design
an allocation mechanism that depends on this in-
formation. We will propose a mechanism that al-
locates the total cost proportionally to the
demands.

Y

my =

3. Ordering cost

In this section we consider situations in which
each firm only reveals m,, its individual optimal
number of orders per unit of time. Its private in-
formation thus consists of d;, »; and Q.

We have seen that when all firms work together,
the optimal amount to order equals Q, =d;/my
for firm i € N. This amount is smaller than the
individual optimal amount to order, O} = d;/m;,
since my = /3,y m7 = m; for all i€ N. So, the
average inventory level will be lower for each firm:

0,/2< 0!/2. Bach firm saves on holding cost.
Since the holding cost of each firm is private in-
formation, we cannot consider how to divide total
holding cost among the firms. Therefore, we as-
sume that each firm pays its own holding cost.

The optimal order size Q, = d;/my of firm i is
private information because of d;. To be able to
place a joint order without revealing any private
information, there is an intermediary who will
place all orders. Each firm i € N tells this inter-
mediary its optimal order size @, and the inter-
mediary will place an order of size ), O, The
numbers m; are known by the intermediary but not
by the supplier. Thus the supplier only knows
2 ey ©;- Furthermore, the intermediary will not
pass information about one firm to another firm
thus ensuring that all private information remains
private.

We are only interested in allocations of the
optimal ordering cost amy. In short, an ordering
cost situation is described by the 3-tuple (N, a,
{m;},en)- If a coalition § of firms cooperates then
their optimal ordering cost equals

a \/{? (2)

Consequently, one can define the corresponding
ordering cost game (N,c,) as follows. For all co-
alitions S C N, the cost ¢,(S) equals the cost in (2)
and ¢, (@) = 0. We will consider some properties of
ordering cost games. A cost game (N, ¢) is concave
ifforallie Nand forall § C T C N\ {i} we have
that ¢(S U {i}) — ¢(S) = (T U {i}) — ¢(T) and it is
monotone if for all SCT CN it holds that
c(8) € e(T).

Proposition 1. Let (N,a,{m;},.y) be an ordering
cost situation and let (N,c,) be the corresponding
ordering cost game. Then the game (N,c,) is con-
cave and monotone.

Proof. Let (N,c,) be the corresponding ordering
cost game. Since ) .o m? is increasing in the
number of elements in § and since /x is a mono-
tonically increasing and concave function, it fol-
lows immediately that (N,c,) is monotone and
concave. [
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One of the main issues treated in cooperative
game theory is how to divide the benefits from
cooperation if coalition N has formed. One way to
share these benefits is according to an allocation in
the core. The core of a cost game (N,¢) is the set

Zx, = ¢(N) and

eN

Cle) = {x e RY

Zx,—éc(S) for all S C N,S # (b}.
ics
When an element of the core x € C{(c) is proposed
as a distribution of the total cost ¢(N) where firm i
has to pay x;, then a coalition § of firms has to pay
at most its own cost since 3¢ % <¢(S). So, no
coalition has an incentive to leave the grand co-
alition N. A game is balanced if it has a nonempty
core (see Bondareva, 1963; Shapley, 1967), and it
is called totally balanced if each subgame (S, ¢;s) is
balanced, where ¢s(T) := ¢(T) for all T C §. Since
ordering cost games are concave, it follows from
Shapley (1971) that these games are totally bal-
anced.

Another property of ordering cost games is that
a nonnegative multiple of such a game is another
ordering cost game. Take a nonnegative number A,
then for all coalitions S of firms in N it holds that

Jeo(S) = \/W

and this describes the value of coalition § in an
ordering cost game corresponding to the ordering
cost situation (N,a,{im}.y). Such a situation
arises for example when all individual demands
and holding costs increase by the factor 1. Hence,
(N, Ac,) is an ordering cost game. Nevertheless, the
sum of two ordering cost games (¥,¢,) and (N,
b)), (N, ¢o + ), does not have to be another order-
ing cost game. For example, take N = {1,2}, a =
2,m=1,m=2d =35 m =2, m)=13. Let the
game (N, ¢,) correspond to the ordering cost situ-
ation (N, a, {m;},cy) and (N, c,) to (N,a’, {m}};cn)-
Then ¢, ({1}) =2, c({2}) =4, c(N)=2V5,
c,({1}) = 10, ,({2}) = 15 and ¢, (N) =5V13. If
we sum these games we get (¢, + ¢l) x ({1}) =12,
(co+c){2H) =19 and (co+c)(N) = 245+
5v/13. Suppose that we can find values for 4, m{

and mj such that (N,d", {m}},cy) is the ordering
cost situation corresponding to the game
(N,co +¢,). Then the following equations should
hold:

d'my = (co +¢;)({1}) = 12, (3)
a'my = (co+¢,)({2}) =19, 4
a"y/ (m))* + (m3)* = (co + <) (N)

=25 +5v13. (5)

From (3) it follows that m{ = 12/4" and from (4)
my = 19/a”. When we substitute this in (5) we get

361

(a//)2 (a//)z
_ a,,% T34 5361 = /305

which is not equal to 2+/5 + 5v/13 (though very
close). We conclude that (N,c,+cl) is not an
ordering cost game.

Ordering cost games are a special kind of pro-
duction games, as introduced by Shapley and
Shubik (1967). A production game is a cooperative
game with player set N and the value of a coalition
S of players equals g(b(S)) with g a (concave)
production function and b(S) =} s b({i}) the
resources owned by coalition S. To specify an or-
dering cost game we set ¢,(S) = g(b(S)) with
g(x) = ay/x and b(S) =3, ym?. If each unit of
production costs $1 then g(5(S)) not only denotes
how much is produced by cealition § but it also
denotes the cost of these produced goods. The
amount of resources held by firm i equals 5({i}) =
m?. An interesting solution concept for these
games is the proportional rule. We will define the
proportional rule 7(c,) as the rule that divides
the total cost ¢,(N) proportionally to the individ-
ual resources. This implies that firm i € N has to

pay

2

oy b} "M,
7i(co) Sen (U W) 2 jen M o)
__om (6)
ZjeN mz'
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where the last equality follows from (2) for § = N.
Another interpretation of this proportional rule
follows from the fact that ¢,({i}) = am; for all
firms i. If we decide to divide the total cost ¢,(N)
proportionally to the square of the individual cost
then firm i has to pay
es({i}) __am
53D " = T

2
m;

B ZJEN m}

so we end up with the same proportional rule. 4
This rule has some nice properties.

First, for all ordering cost games (N, ¢,) it holds
that 7n(c,) is an element of the core C(c,). This is
easy to see. From (6) it follows that ., m x
(€o) = ¢o(N) and for all nonempty coalitions S of
N it holds that

2 2

_ am; am;
E 7':I(Co) = § 2 < § "'—2
ies €S A/ jen™i €S [ esm)

=aqa me = ¢o(S).
v 7es

Second, this proportional rule can be reached
through a population monotonic allocation scheme,
in short, a PMAS. These schemes were introduced
in Sprumont (1990) and defined as follows. A
vector y = {y;s}, i € S, S C N, S # 0, is a popula-
tion monotonic allocation scheme of the cost game
(N,e¢) if and only if it satisfies the following two
conditions. Firstly, it should hold that 3. .ys =
¢(8) for all nonempty coalitions S of N. Secondly,
for all nonempty coalitions § and T of N and for
all i € § it should hold that S C T implies y;s = yir.
Also from Sprumont (1990) it follows that, since
each ordering cost game (N,c,) is concave and
since n(c,) € C(c,), there exists a PMAS y = {y;s},
ieS, SCN,S+#0D of the game (N, ¢,) such that

co(N)

4We thank a referee for pointing out to us that the
proportional rule coincides with the Aumann-Shapley value
(Aumann and Shapley, 1974) in a slightly changed version of
the game. This version is such that the firms are free to choose
the level of demand that they wish to cover,

yiv = mi{c,) for all i € N. Define for all ie S,
SCNand S #0,

am?

Ejes mj

Then for all SC N, S #0,

2
Se= 2 S e
; " 2 J °
ie§ ies Zjesmj Jjes

and for all S,U C N, §,U # 0, such that SC U
and for all i € §,

am?

Yis =

: am?
- = > = Y.
\/ Ejes mj \/ ZjeU m;

Finally, we see that yy = m{c,) for all i € N. So,
the rule n(cq) can be reached through the PMAS y.

We will now introduce three properties for so-
lution rules on the class of ordering cost games.
Let f be a solution rule on the class of ordering
cost games. Then fi(c,) € R denotes the cost al-
located to player i € N according to this rule in the
game ¢, and f(co) = (fi(Co))iey € R". Let (N,co)
and (N,&,) be ordering cost games. The rule f
satisfies efficiency if 3,y fi(co) = co(N). It satis-
fies symmetry if fi(co) = f;(co) when the players i
and j are symmetric, that is, when ¢,(SU {i}) =
co(SU{/}) for all S ¢ N\ {i,/}. Finally, the rule
[ satisfies monotonicity if for all i € N such that
c,({i}) 2 &({i}) it holds that ¢,(N)fi(c,) = &, X
(N)/i(@o).

This monotonicity property, which resembles
strong monotonicity as defined by Young (1985),
starts from the following assumption: “if ¢, ({i}) >
Zo({i}) and co(N) =% (N) then fi(c) > fi(2o)”.
That is, if we have two inventory situations with
the same total cost to share and a player generates
more cost on his own in one situation than in the
other, then he should pay more in the former than
in the latter situation. This assumption is equiva-
lent to: if ¢, ({i}) = &,({i}) and ¢,(N) = &,(N) then
co(N)fi(co) = E(N)fi(2,). However, we want to go
even further. If ¢, ({i}) 2, ({i}) and c,(N) #
Co(N) then we demand that the above inequality
also holds and so fi(c,) has to be greater than

Yis =
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fi(€,) except for a correction with respect to the
cost due to the other players.

Efficiency, symmetry and monotonicity char-
acterize the proportional rule on the class of or-
dering cost games, as the next theorem shows.

Theorem 1. There exists a unique rule on the class
of ordering cost games satisfying efficiency, sym-
metry and monotonicity. It is the proportional rule.

Proof. It is clear that the proportional rule satisfies
efficiency, symmetry and monotonicity.

To show the converse, we take a rule f on the
class of ordering cost games that satisfies effi-
ciency, symmetry and monotonicity. Note that
monotonicity implies that for all ordering cost
games (N, ¢)) and (N, cl),

c,({i}) = eg({1}) = ¢, (N)filc;) = o (N)fi(cy)-

(7)
Define the ordering cost game (N, c2) by c? gS) =0
for all § C N. By efficiency and symmetry ° it fol-
lows that f;(c) = 0 for all i € N. Take an ordering
cost game (N, ¢,). If for some i € N it holds that
co({i}) = 0 then ¢, ({i}) = 2({i}). When ¢,(N) =
0 then ¢, = 3, because ordering cost games are
monotone, and so fi(¢c,) = 0. Otherwise, when
¢o(N) > 0 then it follows from (7) that ¢,(N) x
fileo) = A(N)fi(c?) = 0 and thus fi(c,) =0. We
conclude that

if ¢, ({i}) = 0 then f;(c,)} = 0. (8)

Define the number /{c,) to be the number of
players i € N with ¢, ({i}) >0. We show that
fi(eo) = mi(c,) for all i € N by induction on I{c,).

If I(¢,) = 0 then by (8), fi(c,) =0 for alli € N.

If I{c,) =1 then there is a single player k € N
with ¢,({k}) > 0. For all i € N\ {k} ¢,({i}) =0,
so by (8), fi(c,) = 0 = m(c,). By efficiency it fol-
lows that fi(co) = co(N) — 2iu filco) = co(N) ~
Zi#k mi(co) = mi(co)-

5 This is the only instance where we use the symmetry
property. In fact, it could be weakened to symmetry only for the
zero game. Alternatively, one could consider another property
like dummy player or positivity.

Assume now that f(¢c,) = 7(c,) for all ordering
cost games (N,c,) with I{c,) <I, I<n—1. Con-
sider an ordering cost game (N, ¢,) corresponding
to (N,a, {M},ey) With I(Z,) = I + 1. Without loss
of generality assume that c¢,({i}) >0 for the
players i = 1,2,...,] + 1. Define the game (N, c,)
to be corresponding to (N, a, {m;},.y) Where a =g,
m; = i; for all j € N\ {I + 1} and m;,; = 0. Then
I(co) =1 and f(c,) = m(co). Since ¢o({k}) = € x
({k}) >0 for all k=1,2,...,1 it follows by (7)
that 8,(N)fi(G) = co(N)fi(co) = co(N)mi(co). By
(2) and (6),

m(co) = amy/ ijz = c;({k})/co(N),

JEN

so using induction,

Co(N)fi(Bo) = co(N)mx(co) = Co(N) co({K)

co(N)
= G ({k}) = E5({k}).

From this it follows that f£(S)=c2({k})/
%o(N) = m(3,). We also have ¢,({j}) = ¢ ({j}) =
0forall j=I+2,...,n—1,n, so by (8) fi(c,) =
0 = 7j(c,). Finally, efficiency implies that
S141(Bo) = Eo(N) — Z Je(@o)
kAT
—am- Y
KR+

T (Co) = mr41(%o),
which concludes the proof. O

The minimal cost for coalition ¥, including hold-
ing cost, equals, as we have seen before, 2amy =
2a+\/> .y m?, since the holding cost equals the
ordering cost in the optimum. We define the cor-
responding inventory cost game (N,c,) to be the
game with the cost of coalition § equal to the min-
imal cost it can obtain on its own, that is, ¢,(S) =
2a\/3 . csm? and c,(8) = 0. Thus, ¢, = 2¢,. The
properties for ordering cost games also hold for
inventory cost games, so these games are concave.
Furthermore, based on the proportional rule for
the ordering cost game, we can find a core allo-
cation of the inventory cost game.

In the ordering cost game, the proportional rule
divides the total ordering cost of the grand coali-
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tion among the players. In an inventory cost game,
we have to divide ordering and holding cost. De-
fine the distribution rule r(c,) as follows. Firm i
has to pay its part of the ordering cost according
to the proportional rule and its private holdmg
cost, so that r(c,) = m(co) + 40, /2, where 0, is
the optimal order size for firm i when he cooper-
ates with all the other firms.

Theorem 2. If (N,c,) is an inventory cost game,
then r(c,) € C(c,) and r(c,) can be reached through
a PMAS.

Proof. Let (N, c,) be an inventory cost game. First,
we show that m(c,) =/#0,/2. If we solve the
cost minimization problem for coalition N, we get
that

my  hmy

hiy/ Zj;N mjz

So, the holding cost for firm i equals

0, h 2am? 2
b % hi am; am; = (o)

2 2 h \/Z_]EN m2 \/EJGN m2

for all i € N, where the last equality follows from
(6). Next, we show that »(¢,) is an element of the
core. From the first part of this proof it follows
that r;(c,) = 2m(c,) for all i € N. Furthermore, it
holds that

Z 27mi(c,) =2 Z (o) = 2¢of

ieN ieN

N) = ¢y(N)

and for all S C N, § # 0, it holds that
ZZm(co) =2 Z m(Co) < 2¢5(5) = cu(S).

ie§ ies
Hence, r{c,) € C(cy).

Just as in the case of ordering cost games, we
can show that the rule r(c,) can be reached
through the PMAS 2y where y is defined as be-
fore. [

What would happen to these results if we had
full disclosure of information, i.e., if each firm
would reveal its demand and holding cost? Noth-
ing. This is not very surprising since knowing other

firm’s 4, and 4, is not valuable for determining the
optimal order quantity. The value of each coali-
tion remains unchanged. What does change is that
QO and Q become public information for all i € N.
Furthermore, it is possible to define rules to divide
the cost of the grand coalition based on this new
information. For example, one could think of a
division rule based on the demand d; of each firm .

4. Ordering and holding cost

In this section we will consider situations in
which there is full disclosure of information. Each
firm i € N reveals its demand d;, holding cost 4;, its
individual optimal number of orders m; and its
individual optimal order size Q. If we assume that
there are no limits to storage capacities, transport
cost equal to zero and deterministic transport
times, then we can consider coordination with re-
gard to holding cost. If a member of a coalition
has a very low holding cost, then this coalition can
reduce its cost if it stores its inventory in the
storehouse of this member.

The average cost per time unit for a coalition S
of firms consists of ordering and holding cost. Just
as before, the total cost is minimized if all cycle
lengths are equal, so it should hold that Q;/d; =
Q;/d; for all i, j € S. Without loss of generality we
assume that firm 1 is a member of coalition .S. Now
we can express (J; as a function of O, forall i € S:
O; = 4,0, /4;. In each cycle the coalition places one
joint order at cost a, so the average ordering cost
per time unit equals adi/Q;. All goods will be
stored in the warehouse of the firm with lowest
holding cost. Define kg ;= min;esh;. The average
inventory level of firm i € S equals Q;/2 per time
unit and AsQ;/2 denotes the average holding cost
per time unit. Putting things together we see that the
average cost per time unit for the firms in S equals

+ Z hs Q’
ies

When we substitute Q; = d;0,/d) we express the
cost as a function of Q; and we get

G
+ hs—=—
2%
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This cost will be minimized if

2ad?
O = A [~
o hs Ejes

so,

d [ 2ad}
Q: - dl Ql = hS zjes dj

for all { € S. The minimal cost per time unit for
coalition § now equals

[2ahg ZS d,. 9)

A holding cost situation is described by the tuple
(N,a,{hi,di},cy). Given a holding cost situation
we can define the corresponding holding cost game
(N, c;) as the game that assigns to coalition S C N
its minimal cost as in (9) and ¢,(@) =0. These
games are subadditive, i.e., for all coalitions S and
T in N such that SNT = { it holds that ¢,(S) +
ex(T) = ey (S U T), but not necessarily concave, as
the following example shows.

Example 1. Consider the holding cost situation
with player set N = {1,2, 3}, a = 0.5, holding cost
hy =10, by = 10, k3 = 30 and demand equal to 1
for each player. Then

er({1,3}) — e({3}) = V20 - 30 < 0
and
en({1,2,3}) —en({2,3}) = V30 — v20 > 0.

So, this holding cost game is not concave.

As in the case of ordering cost games, we can
define a proportional rule to allocate the cost of
the grand coalition. The rule p(c;) divides the cost
of the grand coalition proportionally to the de-
mands. 8 This means that for each i € N,

S Again, we thank a referee for pointing out to us that also
here the proportional rule coincides with the Aumann-Shapley
value (Aumann and Shapley, 1974) in a slightly changed version
of the game. This version is such that the firms are free to
choose the level of demand that they wish to cover.

d;
pilen) = 2ien Sord ) = E,eN V 2ahy jeZN G

Theorem 3. Let (N,a,{h;,d:},.y) be a holding cost
situation. Then the proportional rule p(cy) is a core-
allocation of the corresponding holding cost game
and can be reached through a PMAS y.

Proof. By definition of the proportional rule p(cs)
it holds that 3,y pi(ch) = ex(N). It also holds that

S pe) =25 foany S
ies ZJ‘EN 7 JeN
2ahN 2ah~
= }:d
ieS JGN I Ejes

= \/2ah1v Z‘ijé \/2(1th£1] = cx(S).

Jes 7e8

Hence, p(¢;) € C(cy). Similar to the proof in the
previous paragraph we can define a PMAS y such
that yw = pi(cy) forallie N. O

If a cost game is concave, then it follows from
Shapley (1971) that all its marginal vectors belong
to the core. Since holding cost games are not
necessarily concave, there may be marginal vectors
that lie outside the core. However, we will show
that holding cost games are permutationally con-
cave games from which it follows that there is at
least one marginal vector in the core.

Permutationally concave games were intro-
duced in Granot and Huberman (1982) and stud-
ied in Driessen (1988) from which the following
definitions are taken. Let II{N) denote the set of
all permutations of the player set N. For all
o € II(N), o(i) denotes the position of player i € N
in the ordering 0. Let P7 be the set of players who
precede player i with respect to the ordering o.
Further, the set T’" is obtained from P’ by adding
player i. Thus, P ={jeNlo(j) <o(i)} and
P} ={jeNle(j) < a(z)} P U {i}. Define for all
o€ II(N), o(0) =0 and F¢ = .

A cost game (N,¢) is called permutationally
concave with respect to the ordering o € TI(N) if it
satisfies
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¢(P; UR) — ¢(P]) > ¢(P] UR) — c(F;) (10

for all i, je NU{0} and all RC N such that
(i) <o(j) and RC N\ P|. A game is said to be
permutationally concave if there exists an ordering
o € II(N) such that the game is permutationally
concave with respect to the ordering ¢. The
marginal vector x°(c) € RV with respect to the
ordering ¢ in the cost game (N,c) is given by
x7(c) = ¢(P]) —c(P?) for all i€ N. Granot and
Huberman (1982) showed that if the game (¥, ¢) is
permutationally concave with respect to the or-
dering o € II(N) then x°(c) € C(c). If we show
that holding cost games are permutationally con-
cave then it follows from this result that there is
at least one marginal vector in the core.

Theorem 4. Holding cost games are permutation-
ally concave games.

Proof. Let (N, ¢;) be a holding cost game. Without
loss of generality we number all players from 1 to
n,N = {1,2,...,n}, in such a way that the holding
cost per time unit of all players forms a non-
decreasing sequence, i.e., Ay <A< -+ €A, Take
o € II(N) such that (i) =i for all i € N. We show
that (N,¢,;) is permutationally concave with re-
spect to this ordering and thus that (N, c;) is per-
mutationally concave.

Let i,j € NU{0}, o(i)<o(j) and RC N\ P,
Then i < since o(k) = k for all k € NU {0}. The
game (N, &) where 2(S) = ; /2 s d forall S CN,
is a concave game (cf. Proposition 1), that is,
ESUU)—2(S)=e(TUU) —¢(T)
for all SCTCN and for all U CN\T. Take
S=P;, T=P, and U=R. Then it holds that
SCT since o(i)<o(j), UCN\T and (cf. the
proof of Proposition 1)

\/z dk—\/dez\/Z dy — \/de.
kePB{UR keP; kEPUR keP]
(11)

We have to show that
c,,('IB:.r UR) — c;,(?f) = c,,(f";.r UR) — ¢y (75;).

We distinguish three cases. If i = 0 and j = 0 then
P =P, ={ and

e (P UR) — ci(F) = ex(R) — e4(0)
= C;,(}—)}r UR) - Cj,(ﬁ;).

If i=0 and j> 0 then P; =0 and P] = {1,
.yJj}. Since 1 € P and 1 ¢ R it holds that h—a =
hF’uR =hy and hz = hl Multiplying both sxdes of

(1 1) by /2ahy gives

2ahR Z dk -0
V keR

> \/ZahR 3 d- \/ZahRde

kEF;UR keP]
= 2ah1 Z dk—- 2ah1 E dk
kePFjUR keF;

and this is equal to
&x(R) = () = en(F UR) — s ().

Finally, if 0 < i< jthen 1 € F] and 1 € P; so
e = hprn = i = bz = 1.

PjUR PuR

Multiplying both sides of (11) with +/2ah, gives

by Y di— [2am Y dez [2ah Y dy
kePUR keP; kePjUR

— [2an, Z s
keF;

which is ¢y, (F:’ UR) — ¢y (P;T) = Cp (pj U R) —Cy (F;)
This shows that condition (10) is satisfied. O

5. An example

In this example, we consider three airline com-
panies, Linel, Line2, and Line3 (in short: 1, 2 and
3), which operate in the same country. Airplanes
can suffer from small defects that need repair.
Each airline company would like to see that its
airplanes are repaired as soon as possible so that
no flights have to be canceled. To attain this goal,
each airline company owns a warehouse in which
it stores all the things their repairmen may need.
One of the items stored in these warehouses are
taillights. Over time, each firm has learned how
much taillights are used on the average by the
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repairmen in a year. Linel needs 500 taillights per
year, Line2 300 and Line3 400 taillights per year.
The holding cost to store one light for one year is,
respectively, 9.6, 11 and 10 dollars. The individual
demand and holding cost are private information.
The cost of placing an order for taillights equals
$600. We can model this situation as an inventory
situation.

If the airline companies work on their own,
then Linel will order Of = +/2ad,/h = 250 tail-
lights per cycle of length Q}/d; =0.5 years and
place m; =d,/Q} =2 orders per year. Its annual
cost equals $2400.00. Note that most numbers in
this section are approximations. Line2 will order
@5 = 180.9 taillights per cycle of length 0.61 years
and it places m, = 1.66 orders per year. Its annual
cost equals $1989.98, Finally, Line3 will order
0; = 219.1 taillights per cycle of length 0.55 years,
so it places my = 1.83 orders per year and its an-
nual cost equals $2190.89. The cost of the various
coalitions in the inventory cost game equals (in
dollars)

¢,({1}) = 2400.00,
¢,({3}) = 2190.89,
eo({1,3}) = 3249.62,
e({1,2,3}) = 3810.51.

In case all airline companies work together, the
cycle length equals 0.32 years, which is shorter
than any individual optimal cycle length. The cost
for a coalition in the ordering cost game is half its
cost in the inventory cost game. The rule r(c,)
assigns the total cost ¢,(NV) proportionally to the
square of the individual cost, so it assigns the cost
$(1511.61, 1039.23, 1259.67) to the airlines. This
allocation lies in the core of the inventory cost
game. The proportional rule in the ordering cost
game assigns half of this cost to the airlines. Again,
this results in a core-allocation. If there is full
disclosure of information, then the values above
will not change. All calculations are based on the
individual optimal number of times to place an
order, m;, for all firms / in N. These m; depend on
the demand and holding cost of the corresponding
firm since m; = \/dih;/(2a).

If we include coordination with respect to
holding cost, then we see that Linel owns a very

e, ({2}) = 1989.98,
e({1,2}) = 3117.69,
¢o({2,3}) = 2959.73,

attractive warehouse, since its holding cost is the
lowest. The holding cost game (N,c;) looks as
follows:

en({1}) = 2400.00,

( cr({2}) = 1989.98,
er({3}) = 2190.89,

(

(

en({1,2}) = 3035.79,

ch({1,3}) =3219.94, c,({2,3}) = 2898.28,

en({1,2,3}) = 3718.06.

The rule which assigns c,(N) proportionally to the
demands, assigns $(1549.19, 929,52, 1239.36) to
the airlines. Line2 pays the smallest amount since
its demand is smallest. The marginal vec-
tor x, which results in a core-element, corresponds
to Linel entering first, then Line3 and finally,
Line2. So, x = $(2400,498.13, 819.94). Notice that
although all firms store their goods in the ware-
house of Linel, this firm has to pay the greatest
part of the total cost. This is caused by the fact
that x; = ¢({1}) and x; € e({i}) for all i # 1.

6. Concluding remarks

The model introduced in the second paragraph
is called the basic inventory model since it forms
the basis for a wide variety of inventory models.
The basic inventory model is a simple model and
extensions would make the model more realistic.
Some possible extensions are a purchasing cost per
unit of the good, a stochastic lead time, a finite
supply rate for the ordered goods, individual or-
dering cost, allowing for stockouts, quantity dis-
counts and non-constant demand. We will shortly
discuss some of these extensions.

A purchasing cost ¢ per unit of the good implies
that next to the fixed cost per order firms also have
to pay the variable cost ¢Q per order of Q units.
Per time unit this implies an extra cost of ¢Q-d/
Q = cd, a constant cost. Since this extra cost is a
constant, it will not influence the optimal order
size or the cycle length. Only the cost will increase.
Therefore this is not really an extension.

When we speak of a finite supply rate s, we
assume that the amount ordered is not delivered
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all at once. We assume that the supplying process
is continuous and takes place at a constant rate s
until Q units are delivered to the stock and then it
stops. This is only interesting if s > d.

Quantity discounts can be defined in at least
two ways. First, we can think of quantity dis-
counts for all units purchased. If we ordered a
certain amount of goods then all units will have
the same purchasing cost. Second, we can think of
increasing quantity discounts. For example, the
first 100 goods ordered have a unit price of 20
dollars, the next 100 a unit price of 15, and so on.

In case of non-deterministic demand we may
think of D being the stochastic demand for the
firm. The games arising from these inventory sit-
uations may fall within the class of inventory
centralization games (see e.g. Hartman et al., 2000)
where expected values are considered. Otherwise
they may fall within the class of cooperative TU
games with stochastic payoffs as considered in e.g.
Suijs et al. (1999).
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