
Modelling Interactive Behaviour,
and Solution Concepts

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6416319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Modelling Interactive Behaviour,
and Solution Concepts

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Tilburg, op gezag van de rector
magnificus, prof.dr. Ph. Eijlander, in het openbaar te
verdedigen ten overstaan van een door het college voor
promoties aangewezen commissie in de aula van de
Universiteit op vrijdag 22 januari 2010 om 14.15 uur
door

John Kleppe

geboren op 19 oktober 1982 te Tholen.



Promotor: prof.dr. P.E.M. Borm
Copromotores: dr. R.L.P. Hendrickx

dr. J.H. Reijnierse



Nothing shocks me. I’m a scientist.

Indiana Jones, Indiana Jones and

the Temple of Doom (1984)





Preface

Questions of science, science and progress
Do not speak as loud as my heart

Coldplay, A Rush of Blood to the Head:

The Scientist (2002)

From (personal) experience I know that the Preface often gets the most, if not ex-

clusive, attention from the reader. If you are such a reader, and the main reason

for checking out this part of the thesis is that Prefaces are generally short, then you

might want to skip this one. For a shorter section in this thesis I can suggest either

the Samenvatting (summary in Dutch) (if you can read Dutch) or the Preliminaries

(if you can read mathematics).

Since the first paragraph of this Preface did not scare you away you are currently

reading my Ph. D. thesis “Modelling Interactive Behaviour, and Solution Concepts”,

which covers several topics within the field of game theory. It is the result of four

years’ work (although the university has found an inventive way, by introducing a

Research Master ( 6= Master of Philosophy), to only pay me for three of those years)

as a researcher at Tilburg University within the Department of Econometrics and

Operations Research. So what brought me there?

My educational life started in my home town, Tholen, at elementary school

C.N.S. De Regenboog in 1986. With the exception of a one-year excursion to De

Klimroos, probably to master the skills of cutting, pasting and playing outdoors, I

stayed there until the summer of 1995. Then, at the age of 12, I moved on to high

school R.K. Gymnasium Juvenaat H. Hart in Bergen op Zoom, where they prepared
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viii Preface

me an additional six years for Tilburg University. The first of many thanks in this

Preface goes out to all my teachers who gave it their best.

The first time I came into contact with game theory was in 2003 during the

course Oriëntatie ME/EM in the second semester of my second year as a student

Econometrics and Operations Research. (I thank Paul A. for bringing this study

to my attention.) Lecturer of the course? Ruud. Guest lecturer? Peter B. A

coincidence? Highly doubtful. I remember seeing prisoners’ dilemma, battle of the

sexes, Cournot and Bertrand duopolies, bargaining problems and two-player mini-

poker. It is a pity the first part of this course deals with econometric methods,

otherwise the Educational Board could really be onto something with it. Anyway,

these topics tickled my interest in game theory and hence, when we were able to

choose courses for our third year, the course Game theory was the first to make the

cut. (Although it is fair to say that the name of the course was also appealing.)

This turned out to be an excellent choice, because from the very first lecture I was

enthusiastic about the discussed topics, something which happened very rarely.

Therefore, it seemed to make sense to contact the lecturer of this course, Peter B.,

at the moment a topic for a Bachelor’s thesis had to be found. And together with

Ruud he supervised me on “The Visiting Repairman Problem and Related Games”

of which some indirect results can be found in Section 5.10 of this thesis. Based

on the idea to never change a winning team I was back at Peter B.’s office a year

later when the assignment was to write a Master’s thesis. With Ruud replaced by

Marieke the work “Fall Back Proof Equilibria” was completed. In the final stage of

this project also Hans joined the team as part of the committee. The direct results

of this work can be found in Sections 7.7 and 7.8. I guess it was also during this

period that I was “recruited” as a Ph. D. student, which pretty much completes the

answer to the first question posed in this Preface.

In the next part of this Preface I want to express my gratitude to the people who

made it possible for me to write this thesis. Since the list is quite extensive I have

decided to thank people by category. This implies that some will be mentioned more

than once, but note that a name count is not a representative measure for one’s in-

fluence on this thesis. I take off by thanking the “3 non-angy men1” that (besides

myself of course) had the most direct influence on the outcome of this thesis: my

supervisors Peter B., Hans and Ruud. All of them were extremely helpful and even

1See 12 Angry Men (1957).
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if meetings did not lead up to anything to work with, they were never a waste of

time, at least not to me.

Furthermore, I am grateful to Peter B. for getting me interested in game theory

in the first place. If it was not for his enthusiastic lectures I might not have started

to work within this field at all. I also really appreciate the way he supervised me for

the last six years. Whenever I was out of ideas, Peter B. had many more. Whenever

I got stuck in details, Peter B. made me see the big picture again, something which

never seemed to get out of his sight. And most importantly, he has always let me

do the research I wanted to do. Besides all that he was also there if I needed some

advice on topics not directly related to my research. Is there no criticism at all?

Well, it is a bit of a disappointment when you have to wait for comments on your

written work for weeks or even months and then they turn out to be unreadable.

While Peter B. always looks at the big picture, Hans has an excellent eye for

detail. As a result, he has thought me to be more precise, and I use his comment

“My name is not 3, my name is Hans,” as a reminder of this. Additionally, it is really

amazing at what speed he is able to find a counter-example for almost anything you

are unable to prove (or sometimes even for things you thought you could prove),

which earned him the nickname “Counter-example” Hans. Above all, Hans is a

pleasant man to cooperate with, which comes to light most prominently in the fact

that to me he was always more of an experienced co-author than a supervisor. On

top of that I thank Hans for bringing me to Bilbao for a few days in 2008 to work

with Javier. Besides the start of the work that culminated in Chapter 3 of this thesis

I really enjoyed the time there.

I thank Ruud (a.k.a. Rudy, Rudy, Rudy, Rudy) for many things and as a con-

sequence, his name will show up some more during this Preface, but let me focus

here on his influence as a copromotor. Whenever I had an idea, whether this was

the sketch of a proof, a counter-example or a plan to structure a paper, I always ran

it first by Ruud, who made the time to hear me out and discuss the idea critically.

These discussions have been crucial for the content of this thesis. Next to this,

Ruud also made a great contribution to the presentation of this thesis with many

linguistic comments (What else can you expert from a punctuation expert in the

English language?) and solutions to many of my LaTeX-related problems. (Hardly

ever did I have to turn to LaTeX guru Henri.) Most importantly, however, Ruud

made it possible for me to come to the university every day by lending me his spare

bike for three years.
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After thanking my supervisors I figured this to be a natural place to thank the rest

of my committee as well, for their time and effort as committee member.

On top of that I thank Dolf Talman, in particular for his detailed comments on my

manuscript. I already met Dolf in 2001 as lecturer of the course Micro-economie, and

over the years I was lucky to have him as a teacher for many other courses (Applied

public sector economics, Micro-econometrics, Micro II). Later when I became his

teaching assistant for the course Micro I: Equilibrium theory I found out that he is

not only an excellent teacher, but also a pleasant colleague. I guess I slowly move

ahead, because, fortunately, during the last few months we have worked together

again, both as lecturers for the course Mathematics I.

I think Dries Vermeulen has no idea how much he influenced this thesis. At

some point our research on fall back equilibrium was kind of stuck. Therefore,

Peter B. decided to bring in Dries for a meeting, I guess hoping he would be our

“Wolf2”. However, since cleaning up a mess is often easier than creating something

beautiful this meeting did not seem to be part of the solution at all, but only five

minutes afterwards I wrote down the crucial idea for the characterisation of fall back

equilibrium by blocking games which is the basis for most results in Chapter 7. Dries

is also the first, and up to now only, one to personally invite me as a speaker. That

he himself did not make it to this presentation is therefore forgiven. I also want to

thank his son Feodor for lightening up a rather stiff conference dinner in Madrid by

throwing paper airplanes through the room. Excellent stuff!

I met Javier Arin in Bibao in May 2008. Hans was invited as a speaker and

suggested that I would accompany him so that we could work with Javier on some

new research. I was doubtful as to whether working together for only two or three

days would be useful at all, but I certainly was not going to say “no” to a five-day

trip to Bilbao. And I was right, as also due to Javier I had a great time in this

city. But I was also very very wrong, because the two days work culminated into

fifty-three pages of this thesis (Chapter 3).

This brings me to the final member of my committee, Peter Sudhölter. I have

to say that I am more familiar with some of his work than with the man himself,

although he visited my talk in Amsterdam last summer. Some time earlier that

year Peter B. suggested him as a member of my committee, at which time I only

knew him from his book “Introduction to the Theory of Cooperative Games” (in

cooperation with Bezalel Peleg), which I consulted many times for Chapter 3 of this

2See Pulp Fiction (1994).
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thesis. In fact, I borrowed it (in stages) for about one and a half years from the

university library. It is a good thing they have two copies, although sometimes I

borrowed the other copy as well, for Hans. Well, since Peter S. did not know me

either I especially appreciate his willingness to join my committee.

Without a committee there is no approval of the thesis, but without co-authors

there may have been no thesis at all. Therefore, I want to thank Ignacio, Gloria,

Hans, Javier, Marieke, Peter B. and Ruud for cooperating on the research of this

thesis.

For a while it seemed that Marieke would not receive such a credit, because

although she supervised my Master’s thesis “Fall Back Proof Equilibria” she was

dropped bluntly as a co-author of the final paper when we decided to take quite

a different approach (fall back equilibrium versus dependent fall back equilibrium).

Luckily, after stealing some of her work out of an unpublished CentER discussion pa-

per to improve the paper “Public congestion network situations and related games”,

also Chapter 4 of this thesis, she can be credited as a co-author as well. It is well

deserved.

The friendly Spaniards Ignacio and Gloria seem to be able to come up with a

paper out of thin air. Although I had to adjust to their Spanish way of creation and

explanation (with definitions instead of examples) we were able to write the paper

“Transfers, contracts and strategic games” (Chapter 6 of this thesis) in just a few

days basically.

Due to a lack of results Pedro cannot be mentioned as one of my co-authors

(although some of our joint work ended up in Section 5.10), but I want to thank

him anyway as it was amusing working with him. I think I have never seen anybody

with so much passion and sometimes even desperation for his work, at least not in

game theory.

I also want to thank Yvonne for making the front cover of this thesis, which as-

sures that at least the exterior of this dissertation is exceptional.

This ends the list of people with a direct influence on this thesis. There are, how-

ever, many more who contributed in an indirect way. Let me begin to thank the

ones whom I had the pleasure of sharing an office with during these years, starting

in the Research Master with Gerwald and Gijs. It was a good way to get going, as

our room hosted several exciting Slime game matches and was the creative home to
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classic songs like “Woo ooh, Gijs Rennen, bam-a-lam!” and “There’s only one Gijsje

Rennen”. I also thank our other roommate Tim for never showing up, giving me the

possibility to store all my stuff on the extra desk.

As a Ph. D. student I moved across the hall to join Paul Ka. in K514. Unfortu-

nately, this was only a short collaboration, as he quit the job after nearly two months

with me. His departure and that of next-door neighbour Frans also brought an end

to the game of Hearts, which was frequently played (online) during this brief period.

Since Paul Ka. left me his speakers he still managed to have a great impact on my

remaining years, as the net influence of the music (coming from these speakers) on

my work has been positive.

After Paul Ka. left soon Qu Liu (a.k.a. William) accompanied me in the office.

I have many great memories of this friendly guy, especially since he had no idea

how to deal with the sleeping mode of his computer, which is strange as you would

expect someone with such a name3 to be sort of a gadget expert, and moreover since

he was on sleeping mode himself quite often. Well, maybe it had to do with the

“Trojan whore” on his computer. Those things can be a bitch to deal with.

For the last two and a half years my roommate has been Salima. It has never

been a greater mess, but at the same time, it has never been more fun. I apologise

to her for humming, tapping, clapping and singing along with the music on one or

two occasions, for my temporary addiction to Radiohead’s “Kid A” in 2008 and for

many bad jokes. I especially thank her for pimping up our room with a couch, for

bringing delicious food from mamma Salima and for laughing at some of these jokes.

Whenever I was not in my room, chances were that I was on some sort of work-

related trip. Let me first thank Feico, who made these trips financially possible.

The first time my work at Tilburg University brought me to a foreign country

was in the summer of 2007 when I went to Madrid for a conference with Gerwald

and Ruud. Later also Hans, HENK and Marco S. joined. It was an excellent start

as some legendary events during this trip include sea breezes in Madrid, Gerwald

breaking Ruud’s camera at the first picture moment, deer from the mountains of

Toledo, joining (with gracious bathing caps) the elderly for some gymnastics in the

hotel swimming pool, competing with Marco S. in running up and down the same

pool, and Gerwald “decorating” first our hotel bathroom and later, on the way to

the airport, also the subway.

3See, e.g., Goldfinger (1964).
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The return to Spain for the successful spring 2008 trip to Bilbao was already

mentioned before. Later that same year I also visited a conference in Evanston

with Gerwald, Ruud and Marco S. I will never forget nearly pushing John Nash

out of equilibrium while entering the men’s room, nor the view on the Chicago

skyline (regardless of whether Oprah Winfrey had lived there or not), especially

in combination with some perfectly timed fireworks. The best part of this journey

was, however, the more than marvelous road-trip with Vincent through North-East

America after the conference.

Also 2009 was an excellent year for travelling. In April Edwin L. and I accompa-

nied twenty-three students on a sixteen-day study trip to Japan. I never imagined

that one could survive with this futile amount of sleep, but Tokyo (a warm welcome

by Panasonic and beers by touch screen), Nagoya (city walks by “Silly walks” and

an extraordinary lunch at AkzoNobel) and Kyoto (karaoke and neatly swept gravel)

were fun all the way.

In the summer Edwin L., Gerwald, Ruud and I teamed up for a conference in

St. Petersburg. Despite a taxi driver using my bag as a tire cleaner, suddenly closing

bridges, Edwin L.’s lost sunglasses and a creepy associated police station visit, too

much wodka during the conference dinner for Gerwald (a.k.a. Gerardiño) and the

multiple debates on the colour of cheese cake, also this trip was first-rate. I think

Simon Tahamata would agree.

A non-work related weekend trip to CentreParcs in 2008 with the faculty

Ph. D. students Alex G., Chris, Christian, Jan, Kenan, Kim, Marta and Martin,

including a visit to Paparazzi and multiple-ball bowling, should also not be forgotten.

Of course there were many fun activities in the neighbourhood of my own home as

well. I thank Cristian, Edwin L., Elleke, Gerwald, Gijs, Iris, Josine, Kim, Lisanne,

Maaike, Marieke, Mark, Marloes G., Mikel, Mirjam, Oriol, Ralph, Romeo, Ruud,

Salima and Soesja for several sub-departmental activities like Sinterklaas, laser-

gaming, kart racing, bungee-soccer, bowling, wii-ing, board and card games (in

particular Oranje Boven), and drinks (combined with “bittergarnituur”) in Kadin-

sky.

Writing a thesis can be seen as quite an achievement, but also outside room

K514 I accomplished a thing or two the last few years, e.g., by winning both the

Asset | Econometrics (a.k.a. TEV) football tournament and sports afternoon in 2009.

I thank my teammates Cristian, Edwin D., Gerwald, HENK, Jacob, Marco D. and
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Mohammed, and Cristian, Edwin L., Gerwald and Josine for making this possible.

Also thanks to everyone, including Chris, Elleke, Geraldo (a.k.a. “The Star”), Gerard,

Herbert, Nathanael, Pedro, Peter O., Ralph and Sander, for teaming up in other

less successful football competitions.

You might almost forget it, but sometimes it was also time to do some work.

Most often this involved tinkering at this thesis by myself, but during teaching I

could fortunately cooperate with some of my colleagues. I thank Dolf, Edwin D.,

Edwin L., Elleke, HENK, Herbert, Gerwald, Jacob, Leo, Marieke, Romeo, Ruud and

Thijs for their effort as (fellow) coordinator and/or fellow teacher. A special thanks

goes out to Willem, just because he deserves it. And by the way, B.E.M. rules!

Over the last years sometimes the work has been made easier due to the help of

the secretaries Jolande, Karin, Korine, Loes, Marloes V. and Nicole. In particular I

thank Heidi for her enthusiasm, loud laughter and uplifting spirit. And there is also

a special thanks for the former “semi-head of department” Annemiek. Somehow

she made me feel at home from the very beginning, maybe even before that. I

figured that this could very well be due to my familiarity with a smoking woman

who meddles with people’s affairs, but I am not sure.

Unfortunately, some (former) colleagues do not seem to fall within any of the

above categories, but I feel that Alex S., Baris, Bart, David, Hanka, Patrick, Pim,

Ramon, Roy and Tunga deserve their place in this Preface as well.

Although there is an extremely strong bias in this Preface towards colleagues, I

certainly do not want to pass over the people who kept me connected to the real

world during the past few years. As it seems rather stupid to thank certain people for

anything in particular, I thank the “BoZ BoyZ” Bas, Bert, Kristel, Cornald, Ellen,

Gregor, Marjolein S., Lars, Peter M., Karlijn, Remy, Lia, Vincent and Caroline, and

Marjolein J. for everything. Their direct influence on the results of this thesis might

be quite limited, but on the other hand, their indirect effects may have no limit at

all. I hope that I can thank all of them again if I ever write another Preface.

I also thank the black and white gladiators of TSVV Merlijn. Over the last two

and a half years they made it possible for me to worry about losing possession,

defending opponents and missing chances instead of proving theorems, composing

papers and writing meaningless (sub)sentences. Besides that, I especially want to

thank the whole football club for giving me the feeling of being a student whenever

needed. Without them I would probably never have gotten familiar with expressions



Preface xv

like “Atten-John”, “Adtje schoen” and “Broek-uit-op-je-hoofd”.

Last but not least I want to express my gratitude to my family, including Marisca

and Suzanne. In particular I thank Julian for countless discussions on movies

and TV-series, often driving others crazy, Peter K. for countless discussions on

Feyenoord, often driving others (sometimes including myself) crazy, and Dennis for

not starting such discussions. Above all, I thank my parents, Janny and Paul Kl.,

for always supporting me in everything I do, without pushing me in any direction.

Finally, I want to conclude this Preface with some, to me relevant, quotes that

put the work on this thesis into some perspective. Let me, however, first say that I

hope you will not stop reading after that. Please check out the rest of this thesis as

well, maybe you will find something you like.

Literature:

He knows how to read. And he also knows that finishing an entire book doesn’t
prove anything.

George Costanza, Seinfeld: The Van Buren boys (1997)

Who’s the more foolish, the fool or the fool who follows him?

Obi-Wan Kenobi, Star Wars (1977)

Never underestimate the predictability of stupidity.

“Bullet tooth” Tony, Snatch (2000)

Karma police, arrest this man
He talks in maths
He buzzes like a fridge
He’s like a detuned radio

Radiohead, OK Computer: Karma police (1997)

Many of the truths we cling to depend greatly on our own point of view.

Obi-Wan Kenobi, Star Wars Episode VI: Return of the Jedi (1983)
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Writing a thesis:

Everything in its right place

Radiohead, Kid A: Everything in its right place (2000)

You get confused, but you know it

U2, Pop: Discotheque (1996)

You’re here on your own who you gonna find to blame?

Oasis, Definitely Maybe: Bring it on down (1994)

You’ve gotta give it up to get off sometimes

Matchbox twenty, Mad Season: Stop (2000)

You can try the best you can
The best you can is good enough

Radiohead, Kid A: Optimistic (2000)

I still haven’t found what I’m looking for

U2, The Joshua Tree: I still haven’t found what I’m looking for (1987)

To the readers of this thesis:

Are you watching closely?

Alfred Borden, The Prestige (2006)

My mistakes were made for you

The Last shadow puppets, The Age of the Understatement:

My mistakes were made for you (2008)
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Chapter 1

Introduction

Coming from a long line of travelling sales people on my father’s side
I wasn‘t gonna buy just anyone‘s cockatoo
So why would I invite a complete stranger into my home?
Would you?

U2, No Line on the Horizon: Breathe (2009)

1.1 Introduction to game theory

Interaction between decision makers (players) can lead to cooperative or competitive

behaviour. Game theory is the mathematical tool to study such behaviour. The

foundation of game theory is laid in Von Neumann (1928) where the famous minimax

theorem is proved, but it is through the book “Theory of Games and Economic

Behavior” by Von Neumann and Morgenstern in 1944 that game theory developed

into an important tool for mathematical modelling of cooperative behaviour and

competition. Applications of game theory can be found in, e.g., (evolutionary)

biology, political science, international relations, computer science, philosophy and

social sciences, especially (micro) economics, which illustrates the wide applicability

of the subject.

Game theory is usually divided into two branches. In competitive, or non-

cooperative game theory , players are considered to be individual utility maximisers

playing a game against each other. The term game in this context is interpreted

as any interactive situation in which a player’s payoff depends on both his own

actions and the actions of the opponents. The players may be able to negotiate

about how to act but they cannot make binding agreements. Therefore, the focus

of non-cooperative game theory is on individual incentives and formalising notions

1
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of rationality. The most important concept to determine a reasonable strategy com-

bination in such games is the notion of Nash equilibrium (Nash (1951)). A Nash

equilibrium is a combination of strategies such that unilateral deviation does not

pay, i.e., in a Nash equilibrium each player maximises his utility given the actions

of his opponents.

Example 1.1.1 We illustrate the notion of a non-cooperative game, and in parti-

cular the concept of a Nash equilibrium, by means of the famous battle of the sexes.

Imagine a couple that can either go to a football match (F ) or to the opera (O).

The husband prefers to go to the football match, while the wife prefers to go to the

opera. However, both only enjoy the activity if they go to the same place together

rather than to different ones. If they have to make the decision independently, where

should each one of them go? This situation can be depicted by a non-cooperative

game in strategic form.

Oh F h

Ow 3, 2 0, 0
Fw 0, 0 2, 3

In the above matrix the wife chooses a row (Ow or Fw) and the husband a column

(Oh or F h). For each combination of strategies the utility of the wife (husband) is

the first (second) number in the corresponding cell. Hence, e.g., if the wife chooses

Fw and the husband F h then they both go to the football match resulting in a utility

of 2 for the wife and a utility of 3 for the husband.

Since both the wife and the husband want to go to the same place, the best choice

of each one depends on the choice of the other. In particular, if the wife chooses Ow,

then the husband’s best choice is Oh, while his best choice is F h if the wife chooses

Fw. Since a Nash equilibrium is a combination of strategies such that each player

maximises his/her utility given the actions of the others, this game has two (pure)

Nash equilibria. These Nash equilibria are the strategy combinations (Ow, Oh) and

(Fw, F h), as for both strategy combinations unilateral deviation of either one of the

players results in a decrease of utility for the deviator. One can easily check that

the other two strategy combinations are not Nash equilibria, as there is at least one

player (in fact both players) that can increase his/her utility by deviating to another

strategy. ⊳
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The second branch of game theory is cooperative game theory , which studies situ-

ations where players can cooperate in order to generate benefits (or reduce costs).

Its main focus is on the study of fair allocations of the joint benefits by means of

cooperation. The most commonly used model in this type of situations is that of

transferable utility games. In a transferable utility (or TU) game each coalition of

players is associated with a certain worth, which corresponds to the benefits this

coalition can obtain without help from players outside the coalition. These coali-

tional worths can be used as a reference point for dividing the worth of the grand

coalition (the coalition of all players).

The most fundamental solution concept for TU-games is the core (Gillies (1959)).

An allocation is an element of the core if it satisfies two requirements. First of all

it should be efficient, which means that the worth of the grand coalition should be

divided among the players of the game. Secondly, it should be stable, which means

that no coalition of players is better off by separating from the grand coalition and

obtaining its coalitional worth.

In order to allocate the worth of the grand coalition of a TU-game also several

single-valued solution concepts are introduced in the literature, each with its own

appealing properties. In this introduction we would like to mention three of these so-

lution concepts: the Shapley value (Shapley (1953)), the (pre)nucleolus (Schmeidler

(1969)) and the compromise value (Tijs (1981)).

Example 1.1.2 We illustrate the idea of a TU-game, its core and an associated

single-valued solution concept (the Shapley value) by means of a glove game. Sup-

pose there are three players; player 1, player 2 and player 3. Player 1 is in possession

of a right hand glove, while players 2 and 3 both have a left hand glove, but of dif-

ferent quality. Gloves can only be sold in pairs (one left and one right hand glove).

Therefore, none of the players can obtain any benefits by himself and this also holds

for the coalition of players 2 and 3. However, if players 1 and 2 cooperate they have

a pair of gloves, which can be sold for 10. Also players 1 and 3 together have a

pair of gloves, but due to the inferior quality of player 3’s glove this pair is only

worth 5. Note that if all players cooperate there is still only one pair of gloves, with

a total worth of 10. This situation can be modelled by a TU-game (N, v), with

N = {1, 2, 3}.
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The worths v(S) of all1 coalitions S ⊆ N are given in the table below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 10 5 0 10

Let us first of all consider the core of this game. By efficiency, all players together

should receive exactly 10. Further, by the stability restriction players 1 and 2 to-

gether should receive at least 10 and player 3 at least 0. This implies that player 3

receives exactly 0. Moreover, since players 1 and 3 together should receive at least

5 this means that player 1 should receive something between 5 and 10 and that

the remainder goes to player 2. Formally the core C(N, v) of this game is given by

C(N, v) = {x ∈ RN | 5 ≤ x1 ≤ 10, x2 = 10 − x1, x3 = 0}.
In order to determine the Shapley value of this game we first have to calculate the

marginal vector for each ordering of the player set. Let the players “enter” the game

in the order (1, 3, 2). This means that player 1 joins the empty coalition. Since the

worths of both coalition {1} and the empty coalition are 0 the marginal contribution

of player 1 is 0 for this ordering. Then player 3 joins coalition {1}, which increases

the worth from 0 to 5, as due to player 3’s presence a pair of inferior-quality gloves

can be sold. Therefore, the marginal contribution of player 3 in this ordering is 5.

Finally, player 2 joins coalition {1, 3} resulting in a marginal contribution of also 5,

because now the high-quality pair of gloves can be sold. Hence, the marginal vector

associated with ordering (1, 3, 2) is given by (0, 5, 5). We denote an ordering of the

player set by π and the corresponding marginal vector by mπ. The table below gives

for each ordering of the player set the corresponding marginal vector.

π m1
π m2

π m3
π

(1, 2, 3) 0 10 0
(1, 3, 2) 0 5 5
(2, 1, 3) 10 0 0
(2, 3, 1) 10 0 0
(3, 1, 2) 5 5 0
(3, 2, 1) 10 0 0

The Shapley value Φ(N, v) of a TU-game (N, v) is the average over all marginal

vectors. Therefore, the Shapley value of this game is given by Φ(N, v) = (55
6
, 31

3
, 5

6
).

1The worth of the empty coalition is defined to be 0 for all TU-games. Therefore, we omit the
worth of this coalition.
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Note that since player 3 receives a positive amount the Shapley value is not a core

element of this game. ⊳

1.2 Overview

In the first part of this thesis we discuss topics within the field of cooperative game

theory. In Chapter 3 we analyse solution concepts for TU-games. One of the

most important single-valued solution concepts for TU-games is the (pre)nucleolus

which is the unique element in the (pre)imputation set for which the maximal coali-

tional objection to it is minimised. In Chapter 3 we discuss the related per capita

(pre)nucleolus, which is the unique element in the (pre)imputation set for which the

maximal objection per player of a coalition to it is minimised. For the per capita

prenucleolus and the per capita nucleolus we discuss several properties and their re-

lations to other solution concepts for TU-games. Furthermore, for both concepts we

define a reduced game and prove that they satisfy the corresponding reduced game

property. Moreover, we characterise the concepts by the use of this reduced game

property and the properties single-valuedness, covariance and anonymity.

We also introduce the per capita (pre)kernel, which is related to the per capita

(pre)nucleolus in the same way as the (pre)kernel (Davis and Maschler (1965)) is

related to the (pre)nucleolus. Our analysis of the per capita (pre)kernel is analogous

to our analysis of the per capita (pre)nucleolus and includes a characterisation of

the per capita prekernel. Moreover, we also provide a new characterisation of the

core.

In Chapters 4 and 5 the starting point is not a TU-game, but an underlying co-

operative situation. A cooperative situation typically involves a group of players

that can choose from a set of alternatives, where each alternative results in a cost

for the (group of) players. The set of alternatives and associated costs usually stem

from a combinatorial operations research problem in which several players control

parts (e.g., vertices, edges, jobs, machines) of the underlying system. A cooperative

situation gives rise to two main questions; which alternative should be realised and

how should the costs of this alternative be divided? To answer the second question,

the cooperative situation can be modelled as a TU-game. Well-known examples of

cooperative situations are, e.g., travelling salesman problems (Potters et al. (1992))
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and minimum cost spanning tree situations (Claus and Kleitman (1973) and Bird

(1976)). We refer to Borm et al. (2001) for a comprehensive survey of these type of

problems, usually summarised under the heading of operations research games.

In Chapter 4 we discuss a specific class of cooperative situations, public congestion

network situations. In congestion network situations a single source is considered

to which all players have to be connected, and the cost of using an arc in order to

achieve this depends on the number of its users. Quant et al. (2006) discuss this

situation in the context of private arcs. We analyse congestion network situations

with public arcs, which means that each coalition of players is allowed to use any

arc of the network. We consider public congestion network situations with either

concave or convex cost functions. We model the first type by the direct congestion

cost game in which the coalitional costs are based upon the idea that the comple-

mentary set of players does not make use of any arcs. However, the main focus

is on public congestion network situations with convex cost functions. Within this

framework we present an algorithm to find an optimal network for each coalition

of players. Furthermore, with the explicit use of transferable utility we argue that

this type of situations should be modelled differently by the marginal congestion

cost game, which is the dual of the direct congestion cost game. We show that

the marginal congestion cost game is concave. As a consequence, cooperation is

likely to occur and stable allocations exist. We also introduce a solution concept,

based upon three equal treatment principles, that provides such a stable allocation.

Finally, we extend these results to a divisible framework in which, contrary to the

standard framework, each player can use several paths to get connected to the source.

In Chapter 5 we take a more general approach. The starting point is an arbi-

trary cooperative situation and the central question is how to divide the costs of

the optimal alternative of this cooperative situation among the associated players.

We assume that there is a general consensus that in principle total costs should be

minimised, which means that TU-games can be used to solve this problem. How-

ever, in general it is not clear which TU-game best fits the situation. Therefore, we

introduce a model that can be used as a guidance for finding a suitable TU-game.

Our approach is based on the idea that a cooperative situation can be represented

by a corresponding order problem. An order problem consists of three elements: the

player set of the underlying cooperative situation, the set of orderings of the player
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set and an individualised cost function that describes for each ordering of the player

set a corresponding cost to every player.

We discuss two types of order problems. In a positive externality order problem

each group of players obtains the minimum cost for an ordering in which the group is

“served” last. In a negative externality order problem it is the other way around and

the minimum cost for a group of players is obtained for an ordering in which they are

served first. We argue that each positive externality order problem is appropriately

modelled by the so called direct cost game in which the players of a coalition are

served first. Furthermore, we argue that each negative externality order problem is

appropriately modelled by the dual of the direct cost game, called the marginal cost

game. Consequently, if an order problem is a fair representation of the underlying

cooperative situation the game by which this order problem is modelled seems a

good fit for the cooperative situation itself.

The order problem framework is not only used to find suitable TU-games for co-

operative situations, but also to obtain core elements of these games. We associate

with each order problem a generalised Bird solution that is based upon Bird’s tree

solution (Bird (1976)) for the class of minimum cost spanning tree situations, in the

sense that each player contributes his individual cost in the optimal order for the

grand coalition. With the order problem framework and the associated generalised

Bird solution in mind we discuss several classes of cooperative situations, among

which sequencing situations without initial order (Klijn and Sánchez (2006)), mini-

mum cost spanning tree situations, permutation situations without initial allocation

(cf. Tijs et al. (1984)) and travelling salesman problems.

In somewhat more detail we discuss the class of travelling repairman problems.

In a travelling repairman problem (Afrati et al. (1986)) the objective is to find a

tour visiting a group of players such that the total waiting time of the players is

minimised. We introduce the associated cost allocation problem and argue by the

use of the order problem framework to model these situations by the associated

marginal cost game of which we discuss several properties. Furthermore, we also

consider two context-specific single-valued solution concepts for this class.

Chapter 6 forms a bridge between cooperative and non-cooperative game theory,

as we investigate the role of allowing certain aspects of commitment and coope-

ration within the framework of non-cooperative games in strategic form. More in

particular, we focus on the explicit strategic option of costless contracting on mone-
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tary transfer schemes with respect to particular outcomes.

The first part deals with the possibility of making a specific strategy combina-

tion individually stable by having a simple monetary transfer scheme contingent

on whether the agreed strategy combination is actually realised. Under standard

regularity conditions it turns out that the set of such individually stable strategy

combinations, called transfer equilibria, coincides with the set of Nash equilibria.

Transfer equilibria are especially analysed in finite games without randomisation in

which they generalise Nash equilibria.

The second part models contracting on monetary transfers as an explicit strategic

option within a two-stage extensive form setting. We obtain a full characterisation

of all Nash and virtual subgame perfect equilibria (García-Jurado and González-Díaz

(2006)) payoff vectors in the same spirit as the well-known Folk theorems in the con-

text of repeated games.

In Chapter 7 we consider mixed extensions of finite non-cooperative games in strate-

gic form. For such games the notion of Nash equilibrium is the fundamental concept,

but since the set of Nash equilibria may be large and can contain counterintuitive

outcomes several refinements of this solution concept, e.g., perfect (Selten (1975))

and proper (Myerson (1978)) equilibrium have been introduced. In Chapter 7 we

introduce a new equilibrium concept, called fall back equilibrium, in which the idea

is that an equilibrium should be stable against pertubations in the strategies due to

blocked actions. In the associated thought experiment each player anticipates the

possibility of a blocked action by choosing beforehand a back-up action, which he

plays whenever the action of his first choice is blocked.

We show that the set of fall back equilibria is a non-empty and closed subset of

the set of Nash equilibria. We also analyse the relation between fall back equilibrium

and other equilibrium concepts. We prove, e.g., that each robust equilibrium (Okada

(1983)) is a fall back equilibrium and that for bimatrix games each proper equili-

brium is a fall back equilibrium. Similar to the way Okada (1984) refines perfectness

to strict perfectness, we define the concept of strictly fall back equilibrium. It turns

out that the sets of fall back and strictly fall back equilibria coincide for bimatrix

games.

In the thought experiment underlying fall back equilibrium we assume that

exactly one action of each player can be blocked. We also consider two modifi-

cations of this concept. We first of all analyse the equilibrium concept that emerges
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when we allow multiple actions of each player to be blocked. The first main result

provided for this concept, called complete fall back equilibrium, is that the set of

complete fall back equilibria is a non-empty and closed subset of the set of proper

equilibria. Secondly, for bimatrix games the sets of complete fall back and proper

equilibria coincide, which means that the concept of complete fall back equilibrium

is a strategic characterisation of proper equilibrium.

In the second modification we consider there can only be one blocked action in

total. For this concept, called dependent fall back equilibrium, we show that for 2×2

bimatrix games the sets of dependent fall back and perfect equilibria coincide, but

for bimatrix games in general the intersection between the two sets can be empty.

We conclude Chapter 7 with a complete overview of fall back equilibrium in

bimatrix games in which at least one of the players only has two pure strategies.

Within this framework we geometrically characterise the sets of fall back, complete

fall back and dependent fall back equilibria.





Chapter 2

Preliminaries

Words are meaningless and forgettable

Depeche mode, Violator:

Enjoy the silence (1990)

In these preliminaries we introduce some basic notation, and fundamental concepts

in cooperative game theory. In this thesis we also consider non-cooperative games,

but since we discuss different types of strategic games the notation for these games

is introduced in the corresponding chapters.

2.1 Basic notation

The set of all natural numbers is denoted by N, the set of real numbers by R, the

set of non-negative reals by R+ and the set of positive reals by R++. For a finite set

N the cardinality of N is denoted by |N | or n and the set N ∪{0} is denoted by N0.

We denote the power set of N , i.e., the collection of all its subsets, by 2N . By RN

we denote the set of elements of Rn whose entries are indexed by N , or equivalently,

the set of all real-valued functions on N . An element of RN is denoted by a vector

x = (xi)i∈N . For S ⊆ N, S 6= ∅, we denote the restriction of x on S by xS = (xi)i∈S

and we denote
∑

i∈S x
i also by x(S). For a finite set N and a subset S ⊆ N , we

denote by eS the vector in RN defined by ei
S = 1 for all i ∈ S and ei

S = 0 for all

i ∈ N\S.

An ordering of the elements in a finite (player) set N is a bijection

π : {1, . . . , n} → N , where π(t) denotes the player at position t. The set of all n!

orderings of N is denoted by Π. By ΠS we denote the set of all orderings π ∈ Π such

11
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that the players in S ⊆ N are placed on the first |S| positions, i.e., π−1(i) < π−1(j)

for all i ∈ S, j ∈ N\S.

For a set A ⊆ Rm we denote by cl(A) the closure of A, by relint(A) its relative

interior and by conv(A) its convex hull.

2.2 Cooperative game theory

A cooperative game with transferable utility , or TU-game, is a pair (N, v), where

N denotes the finite set of players and v : 2N → R is the characteristic function,

assigning to every coalition S ⊆ N of players a value, or worth, v(S), representing

the total benefits of this coalition of players when they cooperate. By convention,

v(∅) = 0.

In case a TU-game involves costs instead of revenues it is denoted by (N, c), with

c : 2N → R the characteristic function, assigning to every coalition S ⊆ N of players

a cost, c(S), representing the total cost of this coalition of players when they coope-

rate. By convention, c(∅) = 0. In the remainder of these preliminaries we restrict

our attention to TU-games with revenues. Note that for cost games the definitions

are analogous, but often different with respect to signs.

Let (N, v) be a TU-game. Then x ∈ RN is called an allocation. The carrier

Carv(x) of an allocation x with respect to (N, v) is given by

Carv(x) = {i ∈ N | xi > v({i})}.

The set of feasible payoff vectors X∗(N, v) is given by

X∗(N, v) = {x ∈ RN |x(N) ≤ v(N)}.

A solution σ on the set of all TU-games associates with each TU-game (N, v) a

subset σ(N, v) of X∗(N, v). The preimputation set X(N, v) is the set of all efficient

allocation vectors and it is given by

X(N, v) = {x ∈ RN |x(N) = v(N)}.

An element of this set is called a preimputation. The imputation set I(N, v) is the

set of all preimpuations for which no player receives less than his individual worth.
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This set is defined by

I(N, v) = {x ∈ X(N, v) |xi ≥ v({i}) for all i ∈ N}.

An element of the imputation set is called an imputation. The core C(N, v) (Gillies

(1959)) consists of those imputations for which no coalition would be better off if it

would separate itself and get its coalitional worth. It is given by

C(N, v) = {x ∈ RN |x(N) = v(N), x(S) ≥ v(S) for all S ⊆ N}.

Let x ∈ I(N, v). An objection of player i against player j with respect to x is a pair

(S, y) ∈ 2N × RS such that

(i) i ∈ S, j /∈ S,

(ii) y > xS ,

(iii)
∑

k∈S y
k = v(S).

A counterobjection of player j against i to the objection (S, y) is a pair (T, z) ∈
2N × RT such that

(i) j ∈ T, i /∈ T ,

(ii) z ≥ (xT\S, yT∩S),

(iii)
∑

k∈T z
k = v(T ).

An objection is called justified if there is no counterobjection of any player against

it. The bargaining set BS(N, v) (Aumann and Maschler (1964)) is the set of impu-

tations to which no justified objection of any player exists.

A TU-game (N, v) is called additive if for all coalitions S, T ⊆ N such that S∩T = ∅
we have

v(S) + v(T ) = v(S ∪ T ).

Hence, in an additive TU-game two coalitions cannot create extra profit by coope-

rating.
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A TU-game (N, v) is called superadditive if for all coalitions S, T ⊆ N such that

S ∩ T = ∅ we have

v(S) + v(T ) ≤ v(S ∪ T ).

In a superadditive TU-game cooperation pays. A TU-game (N, v) is called convex

if for all S ⊆ T ⊆ N\{i},

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T )

for all i ∈ N . Thus in a convex TU-game the marginal contribution of a player to

a coalition is higher in a larger coalition. A TU-game (N, v) is called monotonic if

for all coalitions S ⊆ T ⊆ N we have

v(S) ≤ v(T ).

So, in monotonic TU-games, larger coalitions have a higher value.

The marginal vector mπ(N, v) of a TU-game (N, v) corresponding to the ordering

π ∈ Π is defined by

mπ(t)
π (N, v) = v({π(1), . . . , π(t)}) − v({π(1), . . . , π(t− 1)})

for all t ∈ {1, . . . , n}.
The Shapley value Φ(N, v) (Shapley (1953)) of a TU-game (N, v) is defined as

the average over the marginal vectors

Φ(N, v) =
1

n!

∑

π∈Π

mπ(N, v).

For each TU-game (N, v) we define the utopia payoff to player i ∈ N by M i
v =

v(N) − v(N\{i}). Furthermore, mi
v = maxS:i∈S{v(S) −Mv(S\{i})} is the minimal

right of player i. TU-game (N, v) is called compromise admissible if mv ≤ Mv and

mv(N) ≤ v(N) ≤Mv(N).

For a compromise admissible TU-game (N, v) the compromise value τ(N, v) (Tijs

(1981)) is defined by

τ(N, v) = αMv + (1 − α)mv,
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where α is the unique element of [0, 1] such that
∑

i∈N τ
i(N, v) = v(N). Hence, the

compromise value is the efficient weighted average between the utopia and minimal

rights vector.

Let (N, v) be a TU-game. The gap function gv : 2N → R is defined by

gv(S) = Mv(S) − v(S) for all S ⊆ N . A compromise admissible TU-game (N, v)

is called strongly compromise admissible if gv(N) ≤ gv(S) for all S ⊆ N . If (N, v)

is strongly compromise admissible, then C(N, v) = conv{Mv − gv(N)e{i}}i∈N 6= ∅
(Driessen and Tijs (1983)).

The excess of coalition S ⊆ N for preimputation x ∈ X(N, v) is defined by

e(S, x, v) = v(S) − x(S).

If x is proposed as an allocation vector, the excess of S measures to which extent

S is satisfied with x: the lower the excess, the more pleased S is with the proposed

allocation. The idea behind the (pre)nucleolus is to minimise the highest excesses

in a hierarchical manner.

For x, y ∈ Rn we have x ≤L y, i.e., x is lexicographically smaller than (or equal to)

y, if x = y or if there exists a j ∈ {1, . . . , n} such that xi = yi for all i ∈ {1, . . . , j−1}
and xj < yj. For a TU-game (N, v) and x ∈ X(N, v) the excess vector χ(x) ∈ R2N

has as its coordinates the excesses of all possible 2N coalitions written down in a

(weakly) decreasing order. So χk(x) ≥ χk+1(x) for all k ∈ {1, 2, . . . , 2n − 1}.
Let (N, v) be a TU-game with a non-empty imputation set. The nucleolus n(N, v)

(Schmeidler (1969)) of (N, v) is the unique point in I(N, v) for which the excesses

are lexicographically minimal, i.e,

χ(n(N, v)) ≤L χ(x)

for all x ∈ I(N, v). For TU-game (N, v) the prenucleolus pn(N, v) is the unique point

in X(N, v) for which the excesses are lexicographically minimal. If the prenucleolus

is an element of the imputation set, then the prenucleolus and the nucleolus coincide.

Let (N, v) be a TU-game. If i, j ∈ N , i 6= j, then we denote Tij = {S ⊆ N\{j} | i ∈
S}. The maximum excess of i over j at x ∈ RN (with respect to (N, v)) is given by

zij(x, v) = maxS∈Tij e(S, x, v).
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The prekernel PK(N, v) of TU-game (N, v) is given by

PK(N, v) = {x ∈ X(N, v) | zij(x, v) = zji(x, v) for all i, j ∈ N},

while the kernel K(N, v) (Davis and Maschler (1965)) of a TU-game (N, v) with a

non-empty imputation set is given by

K(N, v) = {x ∈ I(N, v) | zij(x, v) ≥ zji(x, v) or xi = v({i}) for all i, j ∈ N, i 6= j}.



Chapter 3

Per capita nucleolus

A compromise is the art of dividing a cake in
such a way that everyone believes he has the
biggest piece.

Ludwig Erhard (1897 - 1977)

3.1 Introduction

Two of the most important and studied single-valued solution concepts for coopera-

tive games are the nucleolus (Schmeidler (1969)) and the closely related prenucleolus.

The (pre)nucleolus is the unique element in the (pre)imputation set for which the

maximal coalitional objection, called excess, to it is minimised. Schmeidler (1969)

shows that for each cooperative game the nucleolus is single-valued, continuous and

a core element (if the core is non-empty). The main contribution of Kohlberg (1971)

is a characterisation of the nucleolus by the use of balanced collections. Later the

prenucleolus (Sobolev (1975)) and the nucleolus (Snijders (1995)) are characterised

by the axioms single-valuedness, covariance, anonymity and the (imputation saving)

reduced game property.

Related to the (pre)nucleolus is the per capita (pre)nucleolus. The per capita

(pre)nucleolus is the unique element in the (pre)imputation set for which the maxi-

mal objection per player of a coalition to it is minimised. The idea of the per capita

nucleolus is first considered by Grotte (1970), who calls it the normalised nucleo-

lus. He claims, but does not show, that Kohlberg (1971)’s characterisation based

on balanced collections can also be applied for the per capita nucleolus. The actual

result is shown, in a more general setting, by Potters and Tijs (1992). Over the

17
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years the per capita (pre)nucleolus has made its appearance in several papers, e.g.,

Young et al. (1982), Zhou (1991) and Arin and Feltkamp (1997), but it has never

been extensively studied. Therefore, this chapter tries to give a comprehensive and

objective overview of both the per capita prenucleolus and the per capita nucleolus.

We discuss several properties and their relations to other solution concepts for co-

operative games. Furthermore, we define for both solution concepts a reduced game

and prove that they satisfy the corresponding reduced game properties. Moreover,

we characterise both the per capita prenucleolus and the per capita nucleolus by the

use of these reduced game properties in a similar way as the characterisations of the

prenucleolus (Sobolev (1975), as presented by Peleg and Sudhölter (2003)) and the

nucleolus (Snijders (1995)).

Example 3.1.1 To illustrate a difference between the prenucleolus and the per

capita prenucleolus we consider the following ten-player game (N, v). Let N =

{1, . . . , 10}, T = {1, 2} and U = N\T . The coalitional worths are defined by

v(S) =















18 if T ⊆ S, S 6= N,
72 if U ⊆ S, S 6= N,
100 if S = N,
0 else.

The only interesting coalitions of this game are T and U , in which the average payoff

is 9, and N , in which the average payoff is 10. If we consider a core selector that

satisfies anonymity, which implies that all benefits of T (U) are equally distributed

among the players in T (U), the only question is how to divide the additional benefits

of 10 (100 − 18 − 72) obtained by full cooperation among the players of coalitions

T and U .

The idea behind the prenucleolus is that (the complaint of) every coalition is

equally important. Consequently, since the cooperation of two disjoint coalitions is

needed to obtain the additional benefits, both coalitions receive an equal amount of

these benefits. However, due to the fact that coalition U contains more players than

T , each player in U gets less than each player in T . The prenucleolus of this game,

pn(N, v), is given by pni(N, v) = 111
2

if i ∈ T and pni(N, v) = 95
8

if i ∈ U .

The idea behind the per capita prenucleolus is that (the complaint of) each player

in every coalition is equally important. Hence, since all players are needed to form

the grand coalition and all players receive 9 if T and U do not cooperate, the benefits

of 10 are equally divided into 10 parts such that each player receives 1. Therefore,
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the per capita prenucleolus of this game, pcpn(N, v), is given by pcpni(N, v) = 10

for all i ∈ N . ⊳

Besides the per capita (pre)nucleolus we also introduce, analyse and discuss the

related concepts of the per capita prekernel and the per capita kernel. The kernel

(Davis and Maschler (1965)) and the prekernel are well-known solution concepts

in cooperative game theory. The prekernel contains all preimputations for which

the maximum excess of player i over player j is equal to to maximum excess of

j over i for all players i and j. The maximum excess of a player i over player j

with respect to preimputation x is defined as the maximal amount player i can gain

without the cooperation of player j by withdrawing from the grand coalition under

preimputation x, assuming that the other players in i’s withdrawing coalition are

satisfied with their payoffs under x. The maximum excess can be seen as a way to

measure a player’s bargaining power over another given a particular preimputation.

Peleg and Sudhölter (2003) characterise the prekernel by the axioms non-emptiness,

efficiency, covariance, the equal treatment property, the reduced game property and

the converse reduced game property.

In the definition of the maximum excess one assumes that all players in a coalition

S, except player i, are satisfied with their payoffs under x. Further, it is assumed

that any player in S can use the difference between the worth of S, v(S), and the

payoff to S, x(S), to express his bargaining power over a player outside S. If we

express the bargaining power by the per capita excess, which is given by v(S)−x(S)

divided by the number of players in S, then the bargaining power denotes what

each player in coalition S can additionally gain simultaneously given x. This idea

leads to the notion of the per capita (pre)kernel. In this chapter we discuss several

properties of both the per capita prekernel and the per capita kernel and relate them

to other solution concepts. Furthermore, we characterise the per capita prekernel

by the use of the reduced game property in a similar way as the characterisation of

the prekernel (Peleg and Sudhölter (2003)).

This reduced game property is also used to obtain a new characterisation of the

core (Gillies (1959)) in a similar way as the characterisation by Peleg (1986), who

shows that the core can be characterised (on the set of all games with a non-empty

core) by non-emptiness, individual rationality, super-additivity and the weak reduced

game property.
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The outline of this chapter is as follows. In Section 3.2 we introduce some no-

tation and definitions needed in the remainder of this chapter. In Section 3.3 we

discuss the per capita prenucleolus and in Section 3.4 we analyse the per capita

prekernel. Both solution concepts are characterised. Then we switch to the solution

concepts that only consider elements in the imputation set. In Section 3.5 we discuss

and characterise the per capita nucleolus and in Section 3.6 the per capita kernel

is considered. In Section 3.7 we provide a new characterisation of the core. We

conclude with an overview of the discussed solution concepts and their properties in

Section 3.8.

3.2 Preliminaries

Let U be a non-empty set of players. The set U is either finite or countable. A TU-

game is a pair (N, v), where N ⊆ U denotes the finite set of players and v : 2N → R
is the characteristic function, assigning to every coalition S ⊆ N of players a worth,

v(S). By convention, v(∅) = 0. The set of all TU-games is denoted by Γ.

Let |S| denote the cardinality of S ⊆ N, S 6= ∅. For a TU-game (N, v) we define

the per capita excess epc(S, x, v) of coalition S ⊆ N, S 6= ∅ with respect to x ∈ RN

by

epc(S, x, v) =
v(S) − x(S)

|S| .

If no confusion can occur we use the notation epc(S, x). The per capita excess

epc(S, x) measures the complaint or dissatisfaction per player in S with the proposed

vector x.

For (N, v) ∈ Γ and x ∈ X(N, v) the excess vector θ(x) ∈ R2n−1 has as its coordi-

nates the per capita excesses of all possible 2n−1 coalitions (S ⊆ N , S 6= ∅) written

down in a (weakly) decreasing order. So θk(x) ≥ θk+1(x) for all k ∈ {1, 2, . . . , 2n−2}.
Given a TU-game (N, v) ∈ Γ and allocation x ∈ RN we define the set of

all coalitions S ⊆ N, S 6= ∅ with a per capita excess of at least t ∈ R by

B(x, v, t) = {S ⊆ N, S 6= ∅ | epc(S, x, v) ≥ t}. If no confusion can occur we also

use the notation B(x, t).

Several proofs and proof constructions in this chapter are based upon similar proofs

for the (pre)nucleolus and the (pre)kernel. We are in particular inspired by the
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work of Schmeidler (1969), Kohlberg (1971), Driessen and Tijs (1983), Peleg (1986),

Snijders (1995) and Peleg and Sudhölter (2003).

3.3 Per capita prenucleolus

In this section we thoroughly discuss the per capita prenucleolus. This solution

concept, which is related to the prenucleolus (cf. Schmeidler (1969)) is the preimpu-

tation for which the maximal objection per player of a coalition to it is minimised.

After its definition we discuss several properties in Subsection 3.3.1. In parti-

cular, we introduce a reduced game and show that the prenucleolus satisfies the

corresponding reduced game property. In Subsection 3.3.2 we consider the relations

between the per capita prenucleolus and other solution concepts for cooperative

games. Finally, in Subsection 3.3.3 we characterise the per capita prenucleolus by

the use of the reduced game property.

Definition Let (N, v) ∈ Γ. The per capita prenucleolus is given by pcpn(N, v) =

{x ∈ X(N, v) | θ(x) ≤L θ(y) for all y ∈ X(N, v)}.

3.3.1 Properties

In this subsection we consider which (well-known) properties are satisfied by the per

capita prenucleolus. Let σ be a solution on Γ. Then σ satisfies non-emptiness if

σ(N, v) 6= ∅ for all (N, v) ∈ Γ.

Lemma 3.3.1 The per capita prenucleolus satisfies non-emptiness.

Proof: Consider the equal split solution ESS, with ESSi(N, v) = v(N)
n

for all i ∈ N

and all (N, v) ∈ Γ. The set {x ∈ X(N, v) | θ(x) ≤L θ(ESS(N, v))} is compact. Since

θ(·) is a continuous function there exists a lexicographic minimum on this set and

hence, the per capita prenucleolus is non-empty. �

Let σ be a solution on Γ. Then σ satisfies efficiency if σ(N, v) ⊆ X(N, v) for

all (N, v) ∈ Γ. Efficiency implies that the worth of the grand coalition is exactly

distributed over the players. Since pcpn(N, v) is defined as a subset of X(N, v) it

follows immediately that the per capita prenucleolus is efficient.
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Corollary 3.3.2 The per capita prenucleous satisfies efficiency.

Let (N, v) ∈ Γ. Let (B1, . . . ,Bp) be a sequence of sets whose elements are coalitions

of N . This sequence is an ordered partition whenever every coalition S ⊆ N, S 6= ∅
is contained in exactly one of the sets B1, . . . ,Bp. Let B be a collection of coalitions.

Then B is called balanced if there exist weights λS ∈ R, S ∈ B, with
∑

S∈B λSeS = eN

and λS > 0 for all S ∈ B. An ordered partition (B1, . . . ,Bp) is called balanced if

B1 ∪ · · · ∪ Bk is balanced for all k ∈ {1, . . . , p}.
For (N, v) ∈ Γ and payoff vector x, let B1(x, v) be the set1 of those coalitions

S ⊆ N, S 6= ∅ for which max{epc(S, x)} is attained. Similarly, B2(x) is the set of

those S ⊆ N, S 6= ∅ where max{epc(S, x) |S /∈ B1(x)} is attained, and so on. This

procedure results in the ordered partition (B1(x), . . . ,Bp(x)).

Let σ be a solution on Γ. Then σ satisfies single-valuedness if |σ(N, v)| = 1 for

all (N, v) ∈ Γ.

Theorem 3.3.3 The per capita prenucleolus satisfies single-valuedness.

Proof: Let (N, v) ∈ Γ and let x, y ∈ pcpn(N, v), which implies that θt(x) = θt(y)

for all t ∈ {1, 2, . . . , 2n − 1}. Let z = 1
2
(x + y). For all S ⊆ N we have epc(S, z) ≤

max{epc(S, x), epc(S, y)}. Let k ∈ N be such that Bk(x) 6= ∅ and Bℓ(x) = Bℓ(y) =

Bℓ(z) for all ℓ ∈ {1, . . . , k − 1}. Let t =
∑k−1

ℓ=1 |Bℓ(x)| + 1. For all S ∈ Bk(z),

θt(x) ≤ θt(z)

= epc(S, z)

≤ max{epc(S, x), epc(S, y)}
≤ max{θt(x), θt(y)}
= θt(x),

which implies that all inequalities are in fact equalities. Hence, Bk(z) ⊆ Bk(x).

However, since x ∈ pcpn(N, v), Bk(x) ⊆ Bk(z), which implies that Bk(z) = Bk(x).

Similarly, Bk(z) = Bk(y). We conclude that x = y = z. �

1If no confusion can occur we use the notation B1(x) instead.
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Theorem 3.3.4 Preimputation x ∈ X(N, v) is the per capita prenucleolus of

(N, v) ∈ Γ if and only if the ordered partition (B1(x), . . . ,Bp(x)) is balanced.

The proof of this theorem follows from Theorem 5.(a) in Potters and Tijs (1992),

where it is shown that each weighted (pre)nucleolus satisfies this type of condition.

It has been considered first in Kohlberg (1971) for the nucleolus.

Let (N, v), (N,w) ∈ Γ and let σ be a solution on Γ. Then σ satisfies covariance

if whenever α > 0, β ∈ R and w = αv + β, then σ(N,w) = ασ(N, v) + β. Covari-

ance implies that if two games are strategically equivalent, then the solution sets

are related by the same transformation of the utilities of the players.

Proposition 3.3.5 The per capita prenucleolus satisfies covariance.

Proof: Let (N, v), (N,w) ∈ Γ such that w = αv + β. Let x = pcpn(N, v) and let

y = αx+ β. Let S ⊆ N, S 6= ∅. Then epc(S, x, v) = v(S)−x(S)
|S|

. Further,

epc(S, y, w) =
w(S) − y(S)

|S|

=
(αv(S) + β(S)) − (αx(S) + β(S))

|S|
= α · epc(S, x, v).

Since the ordered partition (B1(x, v), . . . ,Bp(x, v)) is balanced (Theorem 3.3.4) the

ordered partition (B1(y, w), . . . ,Bp(y, w)) is also balanced and hence, again by The-

orem 3.3.4, y = pcpn(N,w). �

Let N be fixed and let V(N) = {(N, v) | v : 2N → R, v(∅) = 0}. We now prove that

the per capita prenucleolus is a continuous function on V(N).

Theorem 3.3.6 The per capita prenucleolus pcpn(N, v) : V(N) → RN is continu-

ous.

Proof: Let {(N, vt)}t∈N be a sequence of games converging to (N, v) and let {xt}t∈N

be a sequence such that the ordered partitions (Bt
1(xt, vt), . . . ,Bt

pt
(xt, vt)) are balan-

ced for all t ∈ N. Note that by Theorem 3.3.4, xt is the per capita prenucleolus of

(N, vt) for all t ∈ N. There exists an M ∈ N with maxt∈N,S⊆N |vt(S)| ≤ M . Let



24 Chapter 3. Per capita nucleolus

for all t ∈ N, ESSt be the equal split solution of (N, vt), hence ESSi
t = vt(N)

n
for

all i ∈ N . We obtain maxS⊆N e
pc(S,ESSt, vt) = ESSt(S)−vt(S)

|S|
≤ |vt(N)|+M

1
≤ 2M

for all t ∈ N. Hence, maxS⊆N e
pc(S, xt, vt) ≤ 2M for all t ∈ N, which implies that

vt({i}) − xi
t ≤ 2M for all i ∈ N and all t ∈ N. Consequently, xi

t ≥ vt({i}) − 2M ≥
−3M . On the other hand, xi

t = vt(N)−xt(N\{i}) ≤M+3M(n−1). Hence, the se-

quence {xt}t∈N is bounded. Therefore, this sequence has a converging subsequence.

This subsequence is denoted by {x̄t}t∈N, with {(N, v̄t)}t∈N the corresponding subse-

quence of games converging to (N, v). Let x be the limit of the subsequence {x̄t}t∈N.

The ordered partition corresponding to game (N, v) and allocation x is denoted by

(B1(x, v), . . . ,Bp(x, v)). It suffices to prove that x = pcpn(N, v).

As the number of ordered partitions is finite, we may assume, without loss of gene-

rality, that the ordered partition of ((N, v̄t), x̄t) is the same for all t ∈ N. Since all

weak inequalities are preserved under limits, it follows that (B1(x, v), . . . ,Bp(x, v)) is

a coarsening of (Bt
1(x̄t, v̄t), . . . ,Bt

pt
(x̄t, v̄t)), i.e., for all k ≤ p, B1(x, v)∪· · ·∪Bk(x, v) =

Bt
1(x̄t, v̄t)∪· · ·∪Bt

ℓ(x̄t, v̄t) for some ℓ ≤ pt. Hence, (B1(x, v), . . . ,Bp(x, v)) is balanced.

Consequently, x = pcpn(N, v). �

Let ζ : N → N be an injection. The game (ζ(N), ζv) is defined by ζv(ζ(S)) = v(S)

for all S ⊆ N . Let (N, v) ∈ Γ and let σ be a solution on Γ. Then σ satisfies

anonymity if ζ : N → U is an injection and (ζ(N), ζv) ∈ Γ, then σ(ζ(N), ζv) =

ζ(σ(N, v)). Anonymity means that σ is independent of the names of the players.

Since the result is obvious we provide the following proposition without proof.

Proposition 3.3.7 The per capita prenucleolus satisfies anonymity.

Let (N, v) ∈ Γ. A player i ∈ N is said to be at least as desirable as player j ∈ N with

respect to (N, v), denoted by i �v j, if v(S ∪{i}) ≥ v(S ∪{j}) for all S ⊆ N\{i, j},
which implies that i is at least as desirable as j if the marginal contribution of

player i (weakly) exceeds the marginal contribution of player j for each coalition

they might join. If i �v j and j �v i, then we write i ∼v j. Let σ be a solution on

Γ. Then σ satisfies desirability if xi ≥ xj for all x ∈ σ(N, v) and all players i, j ∈ N

satisfying i �v j.

Proposition 3.3.8 The per capita prenucleolus satisfies desirability.
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For the proof of this proposition we refer to Proposition 3.4.6 in which we show that

the per capita prekernel satisfies desirability. Since the per capita prenucleolus is

an element of the per capita prekernel for all (N, v) ∈ Γ (Theorem 3.3.20) this is

sufficient.

Let (N, v) ∈ Γ and let σ be a solution on Γ. Then σ satisfies the equal treat-

ment property if whenever x ∈ σ(N, v), and i, j ∈ N satisfy i ∼v j, then xi = xj .

Note that desirability implies the equal treatment property.

Corollary 3.3.9 The per capita prenucleolus satisfies the equal treatment property.

Let (N, v) ∈ Γ and let i, j ∈ N . Player i is more desirable than player j, denoted

by i ≻v j, if i �v j, but not j �v i. Let σ be a solution on Γ. Then σ satisfies

strong desirability if xi > xj for all x ∈ σ(N, v) and all players i, j ∈ N satisfying

i ≻v j. The next example illustrates that core selection and strong desirability are

not compatible.

Example 3.3.10 Consider the three-player game (N, v) depicted below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 1 0 0 4 4 4 6

The core is given by C(N, v) = {(2, 2, 2)}. However, 1 ≻v 2, which implies that

this allocation does not satisfy strong desirability. ⊳

Since the per capita prenucleolus is a core selector (Theorem 3.3.19) the per capita

prenucleolus does not satisfy strong desirability.

Let (N, v) ∈ Γ and let σ be a solution on Γ. Then σ satisfies individual ratio-

nality if xi ≥ v({i}) for all i ∈ N and all x ∈ σ(N, v). Hence, individual rationality

implies that each player gets at least his individual worth. Furthermore, σ is

• reasonable from above if xi ≤ maxS⊆N\{i}(v(S∪{i})−v(S)) for all x ∈ σ(N, v),

• reasonable from below if xi ≥ minS⊆N\{i}(v(S∪{i})−v(S)) for all x ∈ σ(N, v),

• reasonable if it is both reasonable from above and from below.
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The property reasonable (from above) is due to Milnor (1952). The arguments that

support both reasonableness from below and above are straightforward. It seems

unreasonable to pay any player more than his maximal marginal contribution to any

coalition, because that seems to be the strongest threat that he can employ against a

particular coalition. On the other hand, he may refuse to join any coalition that of-

fers him less than his minimal marginal contribution. Moreover, player i can demand

minS⊆N\{i}(v(S∪{i})−v(S)) and nevertheless join any coalition without hurting its

members by this demand. Note that individual rationality implies reasonableness

from below. The following example illustrates that the per capita prenucleolus is

not reasonable from below and therefore neither individually rational.

Example 3.3.11 Consider the four-player game2 (N, v) given below.

S 1 2 3 4 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4 N
v(S) 0 0 0 0 8 8 0 8 0 0 8 8 8 8 8

The per capita prenucleolus of this game is given by x = (3, 3, 3,−1). Since

x4 < 0 = minS⊆N\{i}(v(S ∪ {i}) − v(S)) the per capita prenucleolus is not rea-

sonable from below. ⊳

Proposition 3.3.12 The per capita prenucleolus is reasonable from above.

For the proof of this proposition we refer to Proposition 3.4.8 in which we show that

the per capita prekernel is reasonable from above.

Let (N, v) ∈ Γ. Player i ∈ N is called a dummy player if v(S ∪ {i}) = v(S) + v({i})
for all S ⊆ N\{i}. A solution σ satisfies the dummy property if xi(N, v) = v({i})
for all dummy players i ∈ N , all x ∈ σ(N, v) and all (N, v) ∈ Γ. Consequently,

the dummy property says that players that do not contribute anything (except their

individual worths) should receive their individual worths. A solution σ satisfies the

adding dummies property if for all games (N1, v1), (N2, v2) ∈ Γ, with N2 = N1 ∪H ,

H ∩ N1 = ∅, such that v2(S ∪ Q) = v1(S) + v2(Q) for all S ⊆ N and all Q ⊆ H ,

it holds that σ(N1, v1) = σN1(N2, v2). This property requires that the adding of

dummy players to the player set does not influence the distribution of the worth of

2Due to space limitations we omit the braces around the player sets.
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the grand coalition over the (original) players. Note that the adding dummies pro-

perty implies the dummy property. The per capita prenucleolus does not satisfy the

dummy property. This is illustrated by Example 3.3.11, where player 4 is a dummy

player, but x4 = −1 6= 0 = v({4}). Consequently, the per capita prenucleolus does

not satisfy the adding dummies property either.

Let (N, v), (N,w), (N, v+w) ∈ Γ and let σ be a single-valued solution on Γ. Then σ

satisfies additivity if σ(N, v) + σ(N,w) = σ(N, v + w). The per capita prenucleolus

does not satisfy additivity, as the following example illustrates.

Example 3.3.13 Consider the games (N, v), (N,w) and (N, v+w) depicted below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 1 6 7 8
w(S) 0 0 0 1 0 0 2

(v + w)(S) 0 0 0 2 6 7 10

The per capita prenucleolus of (N, v) is given by pcpn(N, v) = (1
3
, 11

3
, 61

3
), while

pcpn(N,w) = (5
6
, 15

6
, 1

3
). Moreover, pcpn(N, v + w) = (11

3
, 21

3
, 61

3
) 6= (11

6
, 21

6
, 62

3
) =

pcpn(N, v) + pcpn(N,w) and the per capita prenucleolus violates the additivity re-

quirement. ⊳

Let (N, v), (N,w) ∈ Γ and let σ be a single-valued solution on Γ. Then σ is

coalitionally monotonic if whenever v(S) ≤ w(S) for some S ⊆ N and v(T ) =

w(T ) for all T 6= S, then σi(N, v) ≤ σi(N,w) for all i ∈ S. This property states

that if the worth of only one coalition increases all its members should be (weakly)

better off. Since the per capita prenucleolus is a core selector (Theorem 3.3.19)

and no core selector can be coalitionally monotonic (Young (1985)), the per capita

prenucleolus is not coalitionally monotonic. It is, however, weakly coalitionally

monotonic, which is a concept introduced by Zhou (1991). Let (N, v), (N,w) ∈ Γ

and let σ be a single-valued solution on Γ. Then σ is weakly coalitionally monotonic

if whenever v(S) ≤ w(S) for some S ⊆ N and v(T ) = w(T ) for all T 6= S, then
∑

i∈S σ
i(N, v) ≤ ∑

i∈S σ
i(N,w). Hence, this property requires that if the worth of

only one coalition increases its members should on average be better off. By Theo-

rem 1 and Remark 3 of Zhou (1991) we obtain Proposition 3.3.14. Note that Zhou

(1991) refers to the (per capita) prenucleolus as (per capita) nucleolus.
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Proposition 3.3.14 The per capita prenucleolus is weakly coalitionally monotonic.

Let (N, v), (N,w) ∈ Γ and let σ be a single-valued solution on Γ. Then σ satisfies

aggregate monotonicity if whenever v(S) = w(S) for all S $ N and v(N) < w(N),

then σi(N, v) ≤ σi(N,w) for all i ∈ N . Furthermore, σ satisfies strong aggre-

gate monotonicity if whenever v(S) = w(S) for all S $ N and v(N) < w(N),

then σi(N,w) − σi(N, v) = σj(N,w) − σj(N, v) > 0 for all i, j ∈ N . Aggregate

monotonicity has the following interpretation. If the worth of the grand coalition

is increased, while at the same time the worth of any proper subcoalition remains

unchanged, then everybody should benefit from the increase of v(N). Moreover,

strong aggregate monotonicity requires that everyone should benefit by receiving an

equal share of the additional benefits.

Proposition 3.3.15 The per capita prenucleolus satisfies strong aggregate mono-

tonicity.

Proof: Let (N, v), (N,w) ∈ Γ such that v(S) = w(S) for all S $ N and v(N) <

w(N). Let x = pcpn(N, v) and define y ∈ X(N,w) such that yi = xi + w(N)−v(N)
n

for all i ∈ N . Let S ⊆ N, S 6= ∅. Then

epc(S, y, w) =
w(S) − y(S)

|S|

=
w(S) − (x(S) + w(N)−v(N)

n
· |S|)

|S|

=
w(S) − x(S)

|S| − w(N) − v(N)

n
.

Since the ordered partition (B1(x, v), . . . ,Bp(x, v)) is balanced (Theorem 3.3.4) the

ordered partition (B1(y, w), . . . ,Bp(y, w)) is balanced as well and hence, by Theo-

rem 3.3.4, y = pcpn(N,w). �

Several solution concepts, e.g., the prenucleolus, satisfy a reduced game property.

This is also the case for the per capita prenucleolus. We introduce the reduced game

(T, vT,x) with respect to coalition T and preimputation x by

vT,x(S) =







0 if S = ∅,
v(N) − x(N\T ) if S = T,
maxQ⊆N\T v(S ∪Q) − x(Q) − |Q| · epc(S ∪Q, x, v) otherwise.
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Let (N, v) ∈ Γ and let σ be a solution on Γ. Then σ satisfies the reduced game

property if whenever T ⊆ N, T 6= ∅ and x ∈ σ(N, v), then (T, vT,x) ∈ Γ and xT ∈
σ(T, vT,x). The reduced game property is a condition of consistency. If (N, v) ∈ Γ

and x ∈ σ(N, v), then for all T ⊆ N, T 6= ∅ the proposal xT solves (T, vT,x) and

therefore, it is consistent with the expectations of the members of T as reflected by

the reduced game (T, vT,x). The per capita prenucleolus satisfies the reduced game

property, but in order to prove this result we first need some preliminary lemmas.

Lemma 3.3.16 Let (N, v) ∈ Γ. For all S $ T ⊆ N and all x ∈ X(N, v) we have

epc(S, xT , vT,x) = max
Q⊆N\T

epc(S ∪Q, x, v).

Proof: Let S $ T ⊆ N . Then

epc(S, xT , vT,x) =
1

|S| ·
(

vT,x(S) − x(S)
)

=
1

|S| ·
(

max
Q⊆N\T

(v(S ∪Q) − x(Q) − |Q| · epc(S ∪Q, x, v)) − x(S)
)

=
1

|S| ·
(

max
Q⊆N\T

v(S ∪Q) − x(S ∪Q) − |Q| · (v(S ∪Q) − x(S ∪Q))

|S ∪Q|
)

=
1

|S| ·
(

max
Q⊆N\T

|S| · (v(S ∪Q) − x(S ∪Q))

|S ∪Q|
)

= max
Q⊆N\T

v(S ∪Q) − x(S ∪Q)

|S ∪Q|
= max

Q⊆N\T
epc(S ∪Q, x, v).

�

Lemma 3.3.17 Let (N, v) ∈ Γ and let T ⊆ N . Then B(xT , vT,x, t) = {S ∩ T |S ∈
B(x, v, t)}.

Proof: We first prove that {S ∩ T |S ∈ B(x, v, t)} ⊆ B(xT , vT,x, t). Let S ⊆
B(x, v, t). Then

epc(S ∩ T, xT , vT,x) = max
Q⊆N\T

epc((S ∩ T ) ∪Q, x, v)

≥ epc(S, x, v)

≥ t,
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where the equality follows from Lemma 3.3.16. Hence, (S ∩ T ) ∈ B(xT , vT,x, t).

Secondly, we show that B(xT , vT,x, t) ⊆ {S ∩T |S ∈ B(x, t)}. Let U ∈ B(xT , vT,x, t).

Let R ∈ arg maxQ⊆N\T e
pc(U ∪ Q, x, v) and let S = U ∪ R, which implies that

U = S ∩ T . Then

epc(S, x, v) = epc(U, xT , vT,x)

≥ t,

where the equality follows from Lemma 3.3.16. This implies that S ∈ B(x, v, t). �

Theorem 3.3.18 The per capita prenucleolus satisfies the reduced game property.

Proof: Let (N, v) ∈ Γ and let x = pcpn(N, v). Let T ⊆ N , with reduced game

(T, vT,x). Further, let t ∈ R be such that B(x, v, t) 6= ∅ and let {λS}S∈B(x,v,t) be a

set of balancing weights for B(x, v, t), i.e., for all i ∈ N we have
∑

S∈B(x,v,t):i∈S

λS = 1.

Define for all Q ∈ B(xT , vT,x, t)

µQ =
∑

S∈B(x,v,t):S∩T=Q

λS.

Then {µQ}Q∈B(xT ,vT,x,t) is a set of balancing weights for B(xT , vT,x, t), because for all

i ∈ T

∑

Q∈B(xT ,vT,x,t):i∈Q

µQ =
∑

Q∈{R∩T | R∈B(x,v,t)}:i∈Q

µQ

=
∑

Q∈{R∩T | R∈B(x,v,t)}:i∈Q

∑

S∈B(x,v,t):S∩T=Q

λS

=
∑

S∈B(x,v,t):i∈S

λS

= 1,

where the first equality follows from Lemma 3.3.17. We conclude that the ordered

partition (B1(xT , vT,x), . . . ,Bp(xT , vT,x)) is balanced and therefore, by Theorem 3.3.4,

xT is the per capita prenucleolus of (T, vT,x). �
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If (N, v) ∈ Γ, then we denote P (N) =
{

T ⊆ N
∣

∣

∣
|T | = 2

}

. A solution σ on a set Γ of

games satisfies the converse reduced game property if whenever n ≥ 2, x ∈ X(N, v),

(T, vT,x) ∈ Γ, and xT ∈ σ(T, vT,x) for every T ∈ P (N), then x ∈ σ(N, v). This

property implies that if x is a solution for any pair of players, then x is a solution

for the whole group of players. The per capita prenucleolus does not satisfy the

converse reduced game property, which follows from Theorem 3.4.13 in Section 3.4.

3.3.2 Relations to other solution concepts

In this subsection we discuss the relation of the per capita prenucleolus to other

solution concepts for cooperative games. The first theorem states that the per

capita prenucleolus is, just as the prenucleolus, an element of the core, whenever

the core is non-empty. By ΓC ⊆ Γ we denote the set of all games with a non-empty

core.

Theorem 3.3.19 Let (N, v) ∈ ΓC . Then pcpn(N, v) ∈ C(N, v).

Proof: Let x ∈ C(N, v). Then x(N) = v(N) and x(S) ≥ v(S) for all

S ⊆ N . Therefore, epc(S, x) ≤ 0 for all S ⊆ N . Hence, θ(x) ≤L 0 and

θ1(x) = 0, as epc(N, x) = 0. By definition θ(pcpn(N, v)) ≤L θ(x). Conse-

quently, maxS⊆N e
pc(S, pcpn(N, v), v) = θ1(pcpn(N, v)) ≤ θ1(x) = 0, which implies

pcpn(N, v) ∈ C(N, v). �

If i, j ∈ N , i 6= j, then we denote T
ij = {S ⊆ N\{j} | i ∈ S}. The maximum

per capita excess of i over j at x ∈ RN (with respect to (N, v)) is given by3

sij(x, v) = maxS∈Tij epc(S, x, v). We define the per capita prekernel4 in a similar

way as the prekernel.

Definition Let (N, v) ∈ Γ. The per capita prekernel of (N, v) is given by

PCPK(N, v) = {x ∈ X(N, v) | sij(x) = sji(x) for all i, j ∈ N}.

The next theorem shows that the per capita prenucleolus is an element of the per

capita prekernel for any cooperative game. Note that this also implies that the per

capita prekernel is a non-empty set.

3If no confusion can occur we use the notation sij(x) instead of sij(x, v).
4For an elaborate discussion of the per capita prekernel we refer to Section 3.4.
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Theorem 3.3.20 Let (N, v) ∈ Γ. Then pcpn(N, v) ∈ PCPK(N, v).

Proof: Let x ∈ X(N, v)\PCPK(N, v). Hence, sij(x) > sji(x) for some i, j ∈ N .

Take t = sij(x). Then the collection B(x, v, t) contains a coalition S ∈ Tij, but

no coalition T ∈ Tji. Consequently, B(x, v, t) cannot be balanced and by the use

of Theorem 3.3.4 x 6= pcpn(N, v). The fact that the per capita prenucleolus is

non-empty (Lemma 3.3.1) completes the proof. �

Recall that the bargaining set, introduced by Aumann and Maschler (1964), is the

non-empty set of imputations to which no player has a justified objection. The

per capita prenucleolus is not a bargaining set selector, as the following example

illustrates.

Example 3.3.21 Consider the four-player game (N, v).

S 1 2 3 4 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4 N
v(S) 0 0 0 0 8 0 0 0 0 0 0 0 8 8 8

The per capita prenucleolus of this game is given by pcpn(N, v) = (3, 3, 1, 1). How-

ever, ({2, 3, 4}, (51
3
, 11

3
, 11

3
)) is a justified objection of player 4 to player 1 with respect

to pcpn(N, v). Hence, pcpn(N, v) /∈ BS(N, v). ⊳

Note that since C(N, v) ⊆ BS(N, v) for all (N, v) ∈ ΓC , pcpn(N, v) ∈ BS(N, v) for

all (N, v) ∈ ΓC .

Driessen and Tijs (1983) show that both the prenucleolus and the nucleolus are

equal to the compromise value (Tijs (1981)) for strongly compromise admissible

games. We obtain the same result for the per capita prenucleolus, which implies

that for this class of games also the (pre)nucleolus and the per capita prenucleolus

coincide. By ΓSCA ⊆ Γ we denote the set of strongly compromise admissible games.

Theorem 3.3.22 Let (N, v) ∈ ΓSCA. Then pcpn(N, v) = τ(N, v).

Proof: Since (N, v) ∈ ΓSCA the compromise value is given by τ(N, v) = Mv −
1
n
(gv(N), . . . , gv(N)), with gv(S) = Mv(S) − v(S) for all S ⊆ N , S 6= ∅.
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Therefore,

epc(S, τ(N, v), v) =
v(S) − τ(S)

|S|

=
v(S) −Mv(S) − |S|

n
· gv(N)

|S|

=
1

n
· gv(N) − gv(S)

|S|

for all S ⊆ N , S 6= ∅. We note that

(i) epc(N, τ(N, v), v) = 0.

(ii) For all i ∈ N ,

epc(N\{i}, τ(N, v), v) =
1

n
· gv(N) − gv(N\{i})

n− 1

=
1

n
· gv(N) − gv(N)

n− 1

=
−1

n(n− 1)
· gv(N)

≤ 0,

where the inequality follows from the fact that (N, v) ∈ ΓSCA.

(iii) For all S ⊆ N with 2 ≤ |S| ≤ n− 1 we have

1

n
· gv(N) − gv(S)

|S| ≤ 1

n
· gv(N) − gv(N)

|S|

≤ 1

n
· gv(N) − gv(N)

n− 1

=
−1

n(n− 1)
· gv(N),

where the first inequality follows from the fact that (N, v) ∈ ΓSCA.

Hence, B1(τ(N, v)) of the ordered partition (B1(τ(N, v)), . . . ,Bp(τ(N, v))) contains
{

S
∣

∣

∣
|S| = n − 1

}

, which implies that (B1(τ(N, v)), . . . ,Bp(τ(N, v))) is balanced.

Consequently, τ(N, v) = pcpn(N, v). �
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3.3.3 Characterisation

In this subsection we characterise the per capita prenucleolus. We first introduce

some definitions, notation and preliminary lemmas.

Definition A coalitional family is a pair B = (N,B) where N is a finite non-empty

set of players and B ⊆ 2N is a non-empty collection of coalitions.

We denote coalitions by italic characters, collections of coalitions by calligraphic

characters, and coalitional families by boldfaced characters.

Definition Let B = (N,B) be a coalitional family. A permutation π of N is a

symmetry of B if for every S ∈ B we have5 π(S) ∈ B. B is transitive if for every

pair of players (i, j) there exists a symmetry π of B such that π(i) = j.

If (N,B) is a coalitional family and i ∈ N , then we denote Bi = {S ∈ B | i ∈ S}.
Note that for all S ∈ B we have S ∈ ⋂

i∈S Bi.

Example 3.3.23 Let coalitional family B = (N,B) be given by N = {1, 2, 3, 4, 5, 6}
and B = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}}. A symmetry that maps player

1 to player 5 is given by (π(1), π(2), π(3), π(4), π(5), π(6)) = (5, 6, 3, 4, 1, 2). By

Lemma 3.3.24, (N,B) is transitive (take m = 2, r = 1). ⊳

Lemma 3.3.24 Let B = (N,B) be a coalitional family and let m, r ∈ N. If, for

every subcollection D ⊆ B of cardinality m, the number of players i ∈ N with D = Bi

equals r, and if |Bi| = m for all i ∈ N , then B is transitive.

Proof: Let B = (N,B) be a coalitional family such that for every subcollection

D ⊆ B of cardinality m, the number of players i ∈ N with D = Bi equals r, and

|Bi| = m for all i ∈ N . Denote |N | = n and |B| = b. There are n/r subcollections

of B of cardinality m, so n = r
(

b

m

)

. Every player i ∈ N is a member of m coalitions

in B. Each coalition S ∈ B is contained in
(

b−1
m−1

)

subcollections of B of cardinality

m. Each of these subcollections corresponds with r players, all members of S, so

|S| = r
(

b−1
m−1

)

=
nm

b
.

Let k, ℓ ∈ N . We are going to find a symmetric permutation π of N with π(k) = ℓ.

5Formally, π(S) should be denoted by
⋃

i∈S{π(i)}.
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If Bk = Bℓ, simply take π(k) = ℓ, π(ℓ) = k, and π(j) = j for all j ∈ N\{k, ℓ}. Then

π(S) = S for all S ∈ B, and hence π(S) ∈ B for all S ∈ B.

So, we assume from here that Bk 6= Bℓ. We define πB : B → B as a coalitional

permutation, which means that πB permutates coalitions in B. Let πB : B → B be

a coalitional permutation with πB(Bk) = Bℓ. (Note that there may be more than

one coalitional permutation with this property.) Take a permutation π of N with

Bπ(i) = πB(Bi) for all i ∈ N and π(k) = ℓ. (If r > 1 there also may be many of these

permutations given πB.) The proof is completed by showing that π is symmetric,

i.e., π(S) ∈ B for all S ∈ B.

Let S ∈ B. For all i ∈ N , the following four statements are equivalent:

• i ∈ S,

• S ∈ Bi,

• πB(S) ∈ Bπ(i),

• π(i) ∈ πB(S).

This explains the second equality in
⋂

j∈πB(S)

Bj =
⋂

i∈N : π(i)∈πB(S)

Bπ(i)

=
⋂

i∈S

Bπ(i)

=
⋂

j∈π(S)

Bj .

Since πB(S) ∈ ⋂

j∈πB(S) Bj , the above equality gives πB(S) ∈ ⋂

j∈π(S) Bj . Hence, for

all j ∈ π(S), πB(S) ∈ Bj , which implies that j ∈ πB(S). Consequently, π(S) ⊆
πB(S), and since |πB(S)| = |π(S)| = |S|, π(S) = πB(S). Therefore, as πB(S) ∈ B,

also π(S) ∈ B. �

Definition Let B = (N,B) be a coalitional family. B is balanced if B is

balanced. B is an embedding of coalitional family (N∗,B∗) if N ⊆ N∗ and

B = {N ∩ S∗ : S∗ ∈ B∗}.
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Lemma 3.3.25 Every balanced coalitional family is embedded in a transitive coali-

tional family.

Proof: Let (N,B) be a balanced coalitional family. We call players i and j equi-

valent if Bi = Bj . Let r = maxS⊆N{|S| : all pairs of players in S are equivalent}.
Since B is balanced, there exist natural numbers λS, S ∈ B, and m such that
∑

S∈Bi λS = m for all i ∈ N . Let b =
∑

S∈B λS and n∗ = r
(

b

m

)

. Let S1, . . . , Sb be

a sequence of elements of B such that each S ∈ B occurs λS times in the sequence.

Then |{u ∈ {1, . . . , b} : i ∈ Su}| = m for all i ∈ N . We add r
(

b

m

)

− n new players

to N by the following procedure.

1. Initialise t = 1.

2. Set N∗(t− 1) = N and S∗
u(t− 1) = Su for all u ∈ {1, . . . , b}.

3. Take M(t) ⊆ {1, . . . , b} such that |M(t)| = m and M(t) 6= M(v) for all

v ∈ {1, . . . , t− 1}.

4. Let SM(t) be a set of r−|⋂u∈M(t) S
∗
u(t)| new players, i.e., SM(t)∩N∗(t−1) = ∅.

5. Add SM(t) to N∗(t − 1) and to each coalition with its index in M(t), i.e.,

N∗(t) = N∗(t− 1)∪ SM(t), S∗
u(t) = S∗

u(t− 1) ∪ SM(t) if u ∈M(t) and S∗
u(t) =

S∗
u(t− 1) if u /∈M(t).

6. If t <
(

b

k

)

, then set t = t+ 1 and return to Step 3. Otherwise, set N∗ = N∗(t)

and S∗
u = S∗

u(t) for all u ∈ {1, . . . , b}.

Once this procedure has been finished, all coalitions in the sequence are different.

Define B∗ = {S∗
u : u ∈ {1, . . . , b}}. Then (N∗,B∗) satisfies the requirements of

Lemma 3.3.24, with m =
∑

S∈Bi λS and r = maxS⊆N{|S| : all pairs of players in S

are equivalent}. �

Example 3.3.26 Consider the balanced coalitional family B = (N,B) with N =

{1, 2, 3, 4} and B = {{1}, {2, 3}, {2, 4}, {3, 4}}. No pair of players are equivalent, so

r = 1. We can take λS =
2

|S| for all S ∈ B, making b = 5 and m = 2. Hence, the

number of players inN∗ in coalitional family (N∗,B∗) equals n∗ = r
(

b

k

)

= 1·
(

5
2

)

= 10.

Initially, (S1, . . . , S5) = ({1}, {1}, {2, 3}, {2, 4}, {3, 4}). We must add new players
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such that eventually for every pair (since m = 2) {u1, u2} ⊆ {1, 2, 3, 4, 5}, there is

one (since r = 1) player i with Bi = {Su1 , Su2}. There are 10 pairs in {1, 2, 3, 4, 5}
and initially we have 4 players, so 6 new players have to be added. With M(1) =

{1, 2},M(2) = {1, 3}, . . . ,M(10) = {4, 5} and new players added in order 5, 6, . . . , 10

the procedure of Lemma 3.3.25 results in

B∗ = {{1, 5, 6, 7}, {1, 8, 9, 10}, {2, 3, 5, 8}, {2, 4, 6, 9}, {3, 4, 7, 10}}.

Hence, for any two (m = 2) coalitions of B∗ there is one player (r = 1) that is an

element of both of them. Furthermore, |Bi| = 2 for all i ∈ N . ⊳

Lemma 3.3.27 Let σ be a solution on Γ. If σ satisfies single-valuedness, covariance

and the reduced game property, then σ is also efficient.

Proof: Let σ be a solution on Γ that satisfies single-valuedness, covariance and

the reduced game property. Let ({i}, v) ∈ Γ be a one-player game. If v({i}) = 0,

then, by covariance σ({i}, 0) = σ({i}, 2 · 0) = 2 · σ({i}), 0). Hence, σ({i}, 0) = {0}.
Again by covariance, σ({i}, v) = σ({i}, 0 + v) = σ({i}, 0) + v({i}) = {v({i}} and σ

is efficient.

Now let (N, v) be an n-player game, with n ≥ 2. Let x ∈ σ(N, v) and i ∈ N .

The reduced game ({i}, v{i},x) is a one-player game. By the reduced game property,

xi ∈ σ({i}, v{i},x). Hence, by the definition of the reduced game xi = v{i},x({i}) =

v(N) − x(N\{i}), which results in x(N) = v(N) and therefore in the efficiency of

σ. �

Theorem 3.3.28 Let U be infinitely countable and let ΓU be the set of all games

whose player set is contained in U . The per capita prenucleolus is the unique solution

on ΓU that satisfies single-valuedness, covariance, anonymity, and the reduced game

property.

Proof: Step 1. By Theorem 3.3.3, Proposition 3.3.5, Proposition 3.3.7 and The-

orem 3.3.18 we obtain that the per capita prenucleolus satisfies single-valuedness,

covariance, anonymity and the reduced game property, respectively. Thus it remains
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to prove that the per capita prenucleolus is the only solution concept satisfying these

four properties.

Step 2. Let σ be a solution on ΓU that satisfies single-valuedness, covariance,

anonymity and the reduced game property, let (N, v) ∈ ΓU and let x = pcpn(N, v).

We have to prove that σ(N, v) = {x}. Define (N,w) ∈ ΓU by w(S) = v(S) − x(S)

for every S ⊆ N . By covariance of the per capita prenucleolus, pcpn(N,w) = 0. By

covariance of σ, it suffices to prove that σ(N,w) = {0}. Thus, we consider the game

(N,w).

Step 3. Let
{

w(S)
|S|

∣

∣

∣
∅ 6= S ⊆ N

}

= {µ1, . . . , µp}, where µ1 > · · · > µp. Let

P = {1, . . . , p}. We denote

Bh = B(0, w, µh)

= {∅ 6= S $ N | w(S)

|S| ≥ µh}

for all h ∈ P . By Theorem 3.3.4, Bh is a balanced collection on N for all h ∈ P .

Let, for every h ∈ P , (N∗
h ,B∗

h) be a transitive coalitional family that embeds (N,Bh).

Define N̂ = N∗
1 ×N∗

2 × · · · ×N∗
p and let (N̂ , ŵ) be the game defined by

ŵ(Ŝ) =







0 if Ŝ ∈ {∅, N̂},
|Ŝ| · µh if Ŝ = N∗

1 × · · · ×N∗
h−1 × T ∗ ×N∗

h+1 × · · · ×N∗
p for some T ∗ ∈ B∗

h,

|Ŝ| · µp else.

Step 4. We show that (N̂ , ŵ) is symmetric, i.e., for every pair {̂i, ĵ} ⊆ N̂ , there

exist a permutation π of N̂ such that π(̂i) = ĵ and ŵ(π(Ŝ)) = ŵ(Ŝ) for all Ŝ ⊆ N̂ ,

which means that every player is interchangeable with every other player. Let

î = (̂i1, . . . , îp) and ĵ = (ĵ1, . . . , ĵp) be players in N̂ . For all h ∈ P coalitional

family (N∗
h ,B∗

h) is transitive, so there exists a permutation πh of N∗
h with πh(̂ih) = ĵh

and πh(T
∗) ∈ B∗

h for all T ∗ ∈ B∗
h. Define π by π(k̂) = (π1(k̂1), . . . , πp(k̂p)) for all

k̂ = (k̂1, . . . , k̂p) ∈ N̂ . It is straightforward to verify that π qualifies, which means

that (N̂ , ŵ) is symmetric.

Step 5. From the game (N̂ , ŵ) we construct the game (N̄ , w̄). Since U is an

infinite set of players, there exists a player set N̄ ⊆ U with N ⊆ N̄ and |N̂ | = |N̄ |.
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Each player in N̂ consists of p coordinates, but we take N̄ such that each player in N̄

consist of one coordinate. Let f : N̄ → N̂ be a bijection satisfying f(i) = (i, . . . , i)

for all i ∈ N . Define (N̄ , w̄) by w̄(S̄) = ŵ(f(S̄)) for all S̄ ⊆ N̄ . The game (N̄, w̄)

inherits the symmetry of (N̂, ŵ). Due to this symmetry and the fact that w̄(N̄) = 0

we obtain by single-valuedness, anonymity and efficiency of σ that σ(w̄) = {0}. We

complete the proof by showing that (N, w̄N,0) = (N,w).

Step 6. Let S $ N and let k ∈ P with w(S) = |S| · µk. Since (N∗
k ,B∗

k) em-

beds (N,Bk), there exists a T ∗ ∈ B∗
k with T ∗ ∩N = S. Let Ŝ = N∗

1 × · · · ×N∗
k−1 ×

T ∗ × N∗
k+1 × · · · × N∗

p . Note that f(S) = {(i, . . . , i) | i ∈ S}. Since f(S) ⊆ Ŝ, we

have

w̄N,0(S) = max
Q⊆N̄\N

w̄(S ∪Q) − |Q| · w̄(S ∪Q)

|S ∪Q|

= max
Q⊆N̄\N

ŵ(f(S ∪Q)) − |Q| · ŵ(f(S ∪Q))

|f(S ∪Q|

= max
Q⊆N̂\f(N)

ŵ(f(S) ∪Q) − |Q| · ŵ(f(S) ∪Q)

|f(S) ∪Q|

≥ ŵ(Ŝ) − |Ŝ\f(S)| · ŵ(Ŝ)

|Ŝ|
= |Ŝ| · µk − |Ŝ\f(S)| · µk

= |f(S)| · µk

= w(S).

In order to show that w̄N,0(S) ≤ w(S) let Q ∈ arg maxQ⊆N̄\N (w̄(S∪Q)−|Q|· w̄(S∪Q)
|S∪Q|

)

and let Ŝ = f(S ∪Q). Let h ∈ P such that ŵ(Ŝ) = |Ŝ| · µh. We have

w̄N,0(S) = w̄(S ∪Q) − |Q| · w̄(S ∪Q)

|S ∪Q|

= ŵ(Ŝ) − |Q| · ŵ(Ŝ)

|Ŝ|
= |Ŝ| · µh − |Q| · µh

= |S| · µh.
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If h = p, then the proof is completed by

w̄N,0(S) = |S| · µp

≤ |S| · µk

≤ w(S).

If h < p, then there exists a T ∗ ∈ B∗
h such that Ŝ = N∗

1 × · · · ×N∗
h−1 × T ∗ ×N∗

h+1 ×
· · · ×N∗

p . Since (i, . . . , i) ∈ Ŝ if and only if i ∈ S, it must be that S = T ∗ ∩ N , so

S ∈ Bh. This gives

w̄N,0(S) = |S| · µh

≤ w(S).

�

In the remainder of this subsection we show that the axioms single-valuedness, co-

variance, anonymity and the reduced game property are independent. We show

in Section 3.4 that the per capita prekernel satisfies covariance (Proposition 3.4.4),

anonymity (Proposition 3.4.5) and the reduced game property (Theorem 3.4.10),

but violates single-valuedness (Example 3.4.3).

The Shapley value (Shapley (1953)) satisfies single-valuedness, covariance and

anonymity. However, the Shapley value also satisfies additivity, which implies that it

does not coincide with the per capita prenucleolus (Example 3.3.13). Consequently,

by Theorem 3.3.28 it does not satisfy the reduced game property.

Furthermore, the equal split solution, given by ESSi(N, v) = v(N)
n

for all i ∈ N ,

satisfies single-valuedness, anonymity and the reduced game property, but violates

covariance.

In the remainder of this subsection we show that anonymity is independent of the

other three properties. We first define the positive per capita precore. The expres-

sion “positive core”, as defined in relation to the prenucleolus, is due to Maschler

(see Orshan (1994)). Let (y)+ = max{0, y}.

Definition Let (N, v) ∈ Γ. The positive per capita precore of (N, v) is given by

Cpc
+ (N, v) = {x ∈ X(N, v) | epc(S, x, v) ≤ (epc(S, pcpn(N, v), v))+ for all S ⊆ N}.

Note that the positive per capita precore is a polytope. We provide two preliminary

lemmas.
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Lemma 3.3.29 Let (N, v) ∈ ΓC. Then C(N, v) = Cpc
+ (N, v).

Proof: Since C(N, v) 6= ∅, epc(S, pcpn(N, v), v) ≤ 0 for all S ⊆ N . Hence,

(epc(S, pcpn(N, v), v))+ = 0 for all S ⊆ N . Consequently, x ∈ Cpc
+ (N, v) if and

only if x ∈ C(N, v). �

The next lemma is straightforward and therefore, no proof is given.

Lemma 3.3.30 Let (N, v) ∈ Γ. Then pcpn(N, v) ∈ Cpc
+ (N, v).

A solution σ on Γ satisfies the reconfirmation property if the following condition is

satisfied for all (N, v) ∈ Γ, all x ∈ σ(N, v) and every T ⊆ N, T 6= ∅: if (T, vT,x) ∈ Γ

and yT ∈ σ(T, vT,x), then (yT , xN\T ) ∈ σ(N, v). The reconfirmation property in

relation to the reduced game of the prenucleolus occurs first in Balinsky and Young

(1982) as one condition inside a property. The reconfirmation property can be seen

as a stability property. Any allocation that is part of the solution of the reduced

game when combined with xN\T , the payoff vector of the passive players, yields an

allocation in the solution set σ(N, v). Hence, σ is stable for behaviour in the reduced

games which is specified by σ itself.

Lemma 3.3.31 The positive per capita precore on Γ satisfies non-emptiness,

anonymity, covariance, the reduced game property, and the reconfirmation property.

Proof: Non-emptiness follows from Lemma 3.3.30. Both anonymity and covari-

ance follow from the fact that the per capita prenucleolus satisfies these properties

(Propositions 3.3.7 and 3.3.5, respectively).

Next we show that the positive per capita precore satisfies the reduced game pro-

perty. Let (N, v) ∈ Γ. If C(N, v) 6= ∅, then we know by Lemma 3.3.29 that

C(N, v) = Cpc
+ (N, v) and in Section 3.7 we show that the core satisfies the reduced

game property (Theorem 3.7.1). Hence, let us assume that C(N, v) = ∅, which

means that θ1(pcpn(N, v)) > 0. Since θ(pcpn(N, v)) ≤L θ(x) for all x ∈ X(N, v),

for all x ∈ Cpc
+ (N, v), epc(S, x, v) = epc(S, pcpn(N, v), v) for all S ⊆ N with

epc(S, pcpn(N, v), v) > 0. Hence, x ∈ Cpc
+ (N, v) if and only if B(x, v, t) is balan-

ced for all t > 0. To prove that B(x, v, t) is balanced for all t > 0 is analogous

to the proof that the per capita prenucleolus satisfies the reduced game property
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(Theorem 3.3.18).

Finally, we prove that the positive per capita precore satisfies the reconfirmation pro-

perty. Let (N, v) ∈ Γ and T ⊆ N, T 6= ∅. Further, let x ∈ Cpc
+ (N, v), y ∈ Cpc

+ (T, vT,x)

and z = (y, xN\T ). Let S ⊆ N, S 6= ∅. We show that (epc(S, x, v))+ =

(epc(S, z, v))+, which completes the proof. Note that x = (xS∩T , xT\S, xN\T ) and

z = (yS∩T , yT\S, xN\T ), which implies that the only relevant part to consider is yS∩T

compared to xS∩T . Hence, if S ∩ T = ∅ or if T ⊆ S, then yS∩T = xS∩T , and the

proof is complete.

Next assume that ∅ 6= S ∩ T 6= T . Take Q ⊆ N\T such that

vT,x(S ∩ T ) = v((S ∩ T ) ∪Q) − x(Q) − |Q| · epc((S ∩ T ) ∪Q, x, v).

If epc(S ∩ T, xT , vT,x) > 0, then since xT ∈ Cpc
+ (T, vT,x) (by the reduced game pro-

perty) we know that epc(S ∩ T, q, vT,x) = epc(S ∩ T, pcpn(T, vT,x), vT,x) for all q ∈
Cpc

+ (T, vT,x), which implies that yS∩T = xS∩T . If epc(S ∩ T, xT , vT,x) ≤ 0, then since

xT ∈ Cpc
+ (T, vT,x) (by the reduced game property), epc(S∩T, pcpn(T, vT,x), vT,x) ≤ 0.

Therefore, epc(S ∩ T, y, vT,x) ≤ 0. As a consequence,

epc(S, z, v) ≤ max
Q⊆N\T

epc((S ∩ T ) ∪Q), x, v)

= epc(S ∩ T, xT , vT,x)

≤ 0,

where the equality follows from Lemma 3.3.16. Similarly, epc(S, x, v) ≤ 0, which

completes the proof. �

Assume |U| ≥ 2. Take an injection π : U → N. Define ξ(N, v) = {x ∈
Cpc

+ (N, v) |x �L y for all y ∈ Cpc
+ (N, v)}, where x �L y if there exists a k ∈ N

such that xi = yi for all i ∈ N with π(i) < π(k) and xk > yk.

Lemma 3.3.32 The solution ξ on Γ satisfies single-valuedness, covariance and the

reduced game property.

Proof: By Lemma 3.3.30 we know that Cpc
+ (N, v) 6= ∅ and clearly there is a unique

element in this set that is preferred over all others. By Lemma 3.3.31 we know
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that the positive per capita precore is covariant under strategic equivalence. Hence,

ξ(N, v) also satisfies covariance.

Finally, we prove that ξ(N, v) satisfies the reduced game property. Let (N, v) and

T ⊆ N, T 6= ∅. Let {x} = ξ(N, v) ∈ Cpc
+ (N, v). By the reduced game property

of the positive per capita precore xT ∈ Cpc
+ (T, vT,x). Let z ∈ Cpc

+ (T, vT,x). By the

reconfirmation property of the positive per capita precore (z, xN\T ) ∈ Cpc
+ (N, v).

Suppose that z �L xT . Then (z, xN\T ) �L x and consequently, x /∈ ξ(N, v), which

is a contradiction. Hence, xT �L y for all y ∈ Cpc
+ (N, v). �

Finally, we show by means of an example that ξ does not satisfy anonymity.

Example 3.3.33 Let (N, v) ∈ Γ be given by the table below.

S {1} {2} N
v(S) 0 0 1

The positive per capita precore is given by Cpc
+ (N, v) = conv{(1, 0), (0, 1)} and

hence, ξ(N, v) = {(1, 0)} and ξ does not satisfy anonymity. ⊳

3.4 Per capita prekernel

In this section we introduce, analyse and discuss the per capita prekernel, which

is related to the per capita prenucleolus in the same way the prekernel (cf. Davis

and Maschler (1965)) is related to the prenucleolus. In Subsection 3.4.1 we discuss

several properties of the per capita prekernel. In Subsection 3.4.2 we relate the per

capita prekernel to other solution concepts and in Subsection 3.4.3 we characterise

the per capita prekernel. The definition of the per capita prekernel is already given

in Section 3.3, but for the sake of completeness we repeat its definition here.

Definition Let (N, v) ∈ Γ. The per capita prekernel of (N, v) is given by

PCPK(N, v) = {x ∈ X(N, v) | sij(x) = sji(x) for all i, j ∈ N}.
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3.4.1 Properties

In this subsection properties of the per capita prekernel are discussed. By Theorem

3.3.20 we know that the per capita prenucleolus is an element of the per capita

prekernel. Consequently, this set is non-empty.

Corollary 3.4.1 The per capita prekernel satisfies non-emptiness.

Furthermore, by definition the per capita prekernel satisfies efficiency.

Corollary 3.4.2 The per capita prekernel is efficient.

The following example shows that the per capita prekernel is not single-valued.

Example 3.4.3 Consider the five-player game (N, v), with v(S) = min{|S ∩
{1, 2}|, |S ∩ {3, 4, 5}|}, which is the (2, 3)-glove game. Then C(N, v) = (1, 1, 0, 0, 0),

which implies by Theorem 3.3.19 that pcpn(N, v) = (1, 1, 0, 0, 0), and by The-

orem 3.3.20, pcpn(N, v) ∈ PCPK(N, v). However, also x = (0, 0, 2
3
, 2

3
, 2

3
) ∈

PCPK(N, v), with sij(x) = 1
6

for all i, j ∈ N , which implies that the per capita

prekernel is not single-valued.

Note that this example also implies that the per capita prekernel is not a sub-

set of the core and that the per capita prenucleolus and the per capita prekernel are

not equivalent on Γ. ⊳

Proposition 3.4.4 The per capita prekernel satisfies covariance.

The proof of this proposition is similar to the proof of Proposition 3.3.5 in which

we show that the per capita prenucleolus satisfies covariance. The next proposition

is given without proof.

Proposition 3.4.5 The per capita prekernel satisfies anonymity.

Proposition 3.4.6 The per capita prekernel satisfies desirability.
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Proof: Let (N, v) ∈ Γ, with i �v j for some i, j ∈ N . Assume on the contrary

that x ∈ PCPK(N, v), with xj > xi. Choose S ∈ Tji such that sji(x) = epc(S, x).

Let T = (S\{j} ∪ {i}). Then v(T ) ≥ v(S), because i �v j. Therefore, epc(T, x) >

epc(S, x). Thus,

sij(x) ≥ epc(T, x)

> epc(S, x)

= sji(x),

which contradicts the assumption that x ∈ PCPK(N, v). �

Note that Proposition 3.4.6 implies that any solution concept that is always an ele-

ment of the per capita prekernel, like the per capita prenucleous (Theorem 3.3.19),

also satisfies desirability. Furthermore, since the per capita prekernel satisfies desir-

ability it also satisfies the equal treatment property.

Corollary 3.4.7 The per capita prekernel satisfies the equal treatment property.

Since the per capita prenucleolus does not satisfy individual rationality, strong de-

sirability, reasonableness from below, the dummy and the adding dummies property

it follows that the per capita prekernel does not satisfy these properties either. The

per capita prekernel is, just as the per capita prenucleolus, reasonable from above,

which we show in the next proposition. Let (N, v) ∈ Γ and x ∈ X(N, v). Recall

that B1(x) = {R ⊆ N,R 6= ∅ | epc(R, x) ≥ epc(T, x) for all T ⊆ N, T 6= ∅}.

Proposition 3.4.8 The per capita prekernel is reasonable from above.

Proof: Let (N, v) ∈ Γ. If x ∈ C(N, v), then x is reasonable from above,

since the core is reasonable (Peleg and Sudhölter (2003)). So let us assume x ∈
PCPK(N, v)\C(N, v). Furthermore, assume on the contrary xi > maxS⊆N\{i} v(S∪
{i}) − v(S) for some i ∈ N . Let S ⊆ N\{i} be such that (S ∪ {i}) ∈ B1(x). Note

that there must exist such a coalition S ⊆ N\{i}, as otherwise sij(x) < sji(x) for

some j ∈ N , which contradicts that x ∈ PCPK(N, v).
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Then

epc(S ∪ {i}, x) =
v(S ∪ {i}) − x(S ∪ {i})

|S| + 1

<
v(S ∪ {i}) − x(S ∪ {i})

|S|

<
v(S) − x(S)

|S|
= epc(S, x),

where the first inequality follows from the fact that v(S ∪ {i}) − x(S ∪ {i}) > 0, as

x /∈ C(N, v) and (S ∪ {i}) ∈ B1(x). Consequently, (S ∪ {i}) /∈ B1(x), which is a

contradiction. �

The property additivity for single-valued solution concepts is extended to the pro-

perty super-additivity for set solutions. Let (N, v), (N,w), (N, v + w) ∈ Γ and let

σ be a solution on Γ. Then σ is super-additive if σ(N, v) + σ(N,w) ⊆ σ(N, v + w).

The per capita prekernel does not satisfy super-additivity as the following example

illustrates.

Example 3.4.9 Let (N, v) ∈ Γ, with n = 4 be the unanimity game on {1, 2, 3}.
Clearly, PCPK(N, v) = {(1

3
, 1

3
, 1

3
, 0)}. Let (N,w), with n = 4 be the unanimity

game on {2, 3, 4}. Then PCPK(N,w) = {(0, 1
3
, 1

3
, 1

3
)}. However, PCPK(N, v) +

PCPK(N,w) = {(1
3
, 2

3
, 2

3
, 1

3
)} * PCPK(N, v + w), because s24(PCPK(N, v) +

PCPK(N,w), v + w) = −2
9
> −1

3
= s42(PCPK(N, v) + PCPK(N,w), v + w). ⊳

In Section 3.3 we have introduced a reduced game and the corresponding reduced

game property. The per capita prekernel satisfies this reduced game property. Let

(N, v) ∈ Γ, and T ⊆ N . Then we define T
ij
T = {S ⊆ T\{j} | i ∈ S}.

Theorem 3.4.10 The per capita prekernel satisfies the reduced game property.
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Proof: Let (N, v) ∈ Γ, x ∈ PCPK(N, v) and T ⊆ N . By means of Lemma 3.3.16

we obtain

sij(xT , vT,x) = max
S∈T

ij
T

epc(S, xT , vT,x)

= max
S∈T

ij
T

max
Q⊆N\T

epc(S ∪Q, x, v)

= max
S∈Tij

epc(S, x, v)

= sij(x, v)

= sji(x, v)

= max
S∈Tji

epc(S, x, v)

= max
S∈T

ji
T

max
Q⊆N\T

epc(S ∪Q, x, v)

= max
S∈T

ji
T

epc(S, xT , vT,x)

= sji(xT , vT,x).

�

Since the proof of Theorem 3.4.10 only contains equalities we can equivalently show

that sij(x, v) = sji(x, v) by the fact that sij(xT , vT,x) = sji(xT , vT,x). This observa-

tion results in the next proposition.

Proposition 3.4.11 The per capita prekernel satisfies the converse reduced game

property.

3.4.2 Relations to other solution concepts

In this subsection we discuss the relations of the per capita prekernel to other solution

concepts for cooperative games. In Section 3.3 we already establish that the per

capita prenucleolus is an element of the per capita prekernel (Theorem 3.3.20).

Further, we reconsider Example 3.4.3. In this example we show that the per capita

prekernel is not equivalent to the per capita prenucleolus. Moreover, the per capita

prekernel is not a subset of the core. Finally, since the per capita prenucleolus is not

a bargaining set selector (Example 3.3.21) the per capita prekernel is not a subset

of the bargaining set either.
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3.4.3 Characterisation

In this subsection we characterise the per capita prekernel by the use of some pro-

perties discussed in Subsection 3.4.1. We first restate Lemma 5.4.3 of Peleg and

Sudhölter (2003).

Lemma 3.4.12 Let σ be a solution Γ that satisfies non-emptiness, efficiency, co-

variance and the equal treatment property on the class of all two-player games. Then

for every two-player game (N, v) ∈ Γ, σ(N, v) is the standard solution of (N, v),

i.e.,

σi(N, v) = v({i}) +
v(N) − ∑

j∈N v({j})
2

for all i ∈ N .

Theorem 3.4.13 The per capita prekernel is the unique solution on Γ that satisfies

non-emptiness, efficiency, covariance, the equal treatment property, the reduced

game property and the converse reduced game property.

Proof: By Corollary 3.4.1, Corollary 3.4.2, Proposition 3.4.4, Corollary 3.4.7, The-

orem 3.4.10 and Proposition 3.4.11 we obtain that the per capita prekernel satisfies

non-emptiness, efficiency, covariance, the equal treatment property, the reduced

game property and the converse reduced game property, respectively. Hence, it

suffices to show that the per capita prekernel is the unique solution concept that

satisfies these axioms.

Let σ be a solution on Γ that satisfies the foregoing six properties and let (N, v) ∈ Γ

be an n-player game. If n = 1, then σ(N, v) = PCPK(N, v) by non-emptiness and

efficiency. For the case n = 2, Lemma 3.4.12 shows that σ(N, v) = PCPK(N, v).

Next we assume that n ≥ 3. If x ∈ σ(N, v), then by the reduced game pro-

perty, xT ∈ σ(T, vT,x) for all T ∈ P (N). Hence, xT ∈ PCPK(T, vT,x) for all

T ∈ P (N). As the per capita prekernel satisfies the converse reduced game property,

x ∈ PCPK(N, v). Conversely, let x ∈ PCPK(N, v). Then xT ∈ PCPK(T, vT,x)

for all T ∈ P (N), because the per capita prekernel satisfies the reduced game pro-

perty. Hence, xT ∈ σ(T, vT,x) for all T ∈ P (N). Thus, by the converse reduced

game property, x ∈ σ(N, v). �
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In the previous section we have mentioned that the per capita prenucleolus does

not satisfy the converse reduced game property. This follows from the fact that the

per capita prenucleolus satisfies non-emptiness (Lemma 3.3.1), efficiency (Corol-

lary 3.3.2), covariance (Proposition 3.3.5), the equal treatment property (Corol-

lary 3.3.9) and the reduced game property (Theorem 3.3.18). Since the per capita

prenucleolus is unequal to the per capita prekernel (Example 3.4.3), it can therefore,

by Theorem 3.4.13, not satisfy the converse reduced game property.

In the remainder of this subsection we show that the six properties that charac-

terise the per capita prekernel are independent. We discuss some solution concepts

that satisfy five of these six properties. If it is clear that a solution concept satisfies

the other five properties we only indicate which axiom is not satisfied.

As mentioned above, the per capita prenucleolus does not satisfy the converse

reduced game property.

The empty solution is given by σ(N, v) = ∅ for all (N, v) ∈ Γ. The empty solution

does not satisfy non-emptiness.

For (N, v) ∈ Γ let σ(N, v) = {x ∈ X∗(N, v) | sij(x) = sji(x) for all i 6= j}. By

the corresponding proofs for the per capita prekernel it is easy to verify that this

solution concept satisfies all six properties except efficiency.

The equal split solution, introduced in Section 3.3, satisfies all properties except

covariance.

The preimputation set X(N, v), with (N, v) ∈ Γ, satisfies all properties except

the equal treatment property.

We finally show that the reduced game property is independent of the other

properties. Let (N, v) ∈ Γ and i, j ∈ N . Players i and j are equivalent, denoted by

i ∼=v j, if v(S ∪ {i}) − v({i}) = v(S ∪ {j}) − v({j}) for all S ⊆ N\{i, j}. Now, let

σ(N, v) = {x ∈ X(N, v) | xi − v({i}) = xj − v({j}) if i ∼=v j, i, j ∈ N}.

It is straightforward that σ satisfies non-emptiness, efficiency, covariance and the

equal treatment property. Consequently, by Lemma 3.4.12, σ(N, v) = PCPK(N, v)

if n = 2. We prove that σ satisfies the converse reduced game property. Let

x ∈ X(N, v) such that xT ∈ σ(T, vT,x) for all T ∈ P (N). By the foregoing remarks,

xT ∈ PCPK(T, vT,x) for all T ∈ P (N). Since the per capita prekernel satisfies the

converse reduced game property, x ∈ PCPK(N, v). Now, as the per capita prekernel

satisfies covariance and the equal treatment property we obtain that PCPK(N, v) ⊆
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σ(N, v). Thus, x ∈ σ(N, v), which means that σ satisfies the converse reduced game

property. Finally, if |U| > 2, then σ is unequal to the per capita prekernel and

therefore, by Theorem 3.4.13, σ does not satisfy the reduced game property.

3.5 Per capita nucleolus

The per capita prenucleolus, discussed in Section 3.3, is the unique element in the

preimputation set for which the maximal objection per player of a coalition to it is

minimised. In this section we discuss the per capita nucleolus, which is the unique

element in the imputation set for which the maximal objection per player of a

coalition to it is minimised. Hence, the difference between the per capita nucleolus

and the per capita prenucleolus is that by using the first solution concept it is

ensured that each player gets at least his individual worth.

The setup of this section is similar to that of Section 3.3. Hence, we first discuss

properties of the per capita nucleolus in Subsection 3.5.1. In Subsection 3.5.2 we

discuss the relations to other solution concepts and in Subsection 3.5.3 we charac-

terise the per capita nucleolus.

The set of all games with a non-empty imputation set is denoted by ΓI .

Definition Let (N, v) ∈ ΓI . The per capita nucleolus of (N, v) is given by

pcn(N, v) = {x ∈ I(N, v) | θ(x) ≤L θ(y) for all y ∈ I(N, v)}.

3.5.1 Properties

In this subsection we discuss a number of properties of the per capita nucleolus. By

the same reasoning as for the per capita prenucleolus we obtain that the per capita

nucleolus is non-empty.

Lemma 3.5.1 The per capita nucleolus satisfies non-emptiness.

Since pcn(N, v) ⊆ I(N, v) we obtain that the per capita nucleolus is efficient.

Corollary 3.5.2 The per capita nucleolus satisfies efficiency.
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Theorem 3.5.3 The per capita nucleolus satisfies single-valuedness.

The proof of this theorem is similar to the proof of Theorem 3.3.3 in which

we show that the per capita prenucleolus is single-valued. An ordered partition

(B1(x), . . . ,Bp(x)) is called balanced on Carv(x) if B1 ∪ · · · ∪ Bk is balanced on

Carv(x) for all k = 1, . . . , p.

Theorem 3.5.4 Imputation x ∈ I(N, v) is the per capita nucleolus of (N, v) ∈ ΓI

if and only if the ordered partition (B1(x), . . . ,Bp(x)) is balanced on Carv(x).

The proof of this theorem follows from Theorem 5.(a) in Potters and Tijs (1992).

It follows from the proof of Proposition 3.3.5 that the per capita nucleolus satisfies

covariance.

Proposition 3.5.5 The per capita nucleolus satisfies covariance.

Let N be fixed and let VI(N) = {(N, v) ∈ ΓI | v : 2N → R, v(∅) = 0}.

Theorem 3.5.6 The per capita nucleolus pcpn(N, v) : VI(N) → RN is continuous.

Also the proof of this theorem is analogous to the proof of the corresponding theorem

(Theorem 3.3.6) for the per capita prenucleolus. Without proof we provide the

following proposition.

Proposition 3.5.7 The per capita nucleolus satisfies anonymity.

Proposition 3.5.8 The per capita nucleolus satisfies desirability.

For the proof of this proposition we refer to Proposition 3.6.4 which states that the

per capita kernel satisfies desirability. Since the per capita nucleolus is an element

of the per capita kernel (Theorem 3.5.21) this is sufficient.

Since the per capita nucleolus is a core selector (Theorem 3.5.20) it does not sa-

tisfy strong desirability. The per capita nucleolus satisfies individual rationality,

which follows directly from the definition. Consequently, the per capita nucleolus

is reasonable from below. Furthermore, the per capita nucleolus is also reasonable

from above.
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Proposition 3.5.9 The per capita nucleolus is reasonable from above.

For a proof of this proposition we refer to Proposition 3.6.5 which states that the

per capita kernel is reasonable from above.

Corollary 3.5.10 The per capita nucleolus is reasonable.

Note that any solution concept that is reasonable satisfies the dummy property, as

the upper- and lower-bound of the payoff to each dummy player i ∈ N equal v({i}).

Corollary 3.5.11 The per capita nucleolus satisfies the dummy property.

The per capita nucleolus does not satisfy the adding dummies property, which is

shown in the following example.

Example 3.5.12 Consider the game (N, v) given in the next table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 0 8 8 9

The per capita nucleolus of this game is given by pcn(N, v) = (1
3
, 1

3
, 81

3
). Now we

add dummy player 4 to this game, which gives the game (N∪{4}, w), depicted below.

S 1 2 3 4 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4 N
w(S) 0 0 0 0 0 8 0 8 0 0 9 0 8 8 9

The per capita nucleolus of (N ∪ {4}, w) is given by pcn(N ∪ {4}, w) = (1
5
, 1

5
, 81

5
, 0).

Hence, the way v(N) is divided is not invariant to the adding of dummy players. ⊳

The per capita nucleolus does not satisfy additivity. This result follows from the

game of Example 3.3.13, where in each game the per capita nucleolus equals the

per capita prenucleolus. Since the per capita nucleolus is a core selector (The-

orem 3.5.20) and no core selector can be coalitionally monotonic, the per capita

nucleolus is not coalitionally monotonic. However, the per capita nucleolus is weak

coalitionally monotonic.

Proposition 3.5.13 The per capita nucleolus is weak coalitionally monotonic.
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This result follows with a minor adjustment6 in its proof by Theorem 3 (and Remark

1) in Zhou (1991) in which it is shown that the (per capita) prenucleolus7 satisfies

weak coalitional monotonicity. The per capita nucleolus is not aggregate monotonic,

as is shown in the next example, and therefore also not strongly aggregate monotonic.

Example 3.5.14 Consider the five-player game (N, v), which is given by

v(S) =























14 if S = {1, 3} or {2, 3},
25 if S = {1, 2, 3},
5 if S = {1, 4, 5} or {2, 4, 5},
24 if S = N,
0 otherwise.

The per capita nucleolus of this game is given by pcn(N, v) = (8, 8, 8, 0, 0). The

game (N,w) is defined such that w(N) = 25 and w(S) = v(S) for all S & N .

The per capita nucleolus of (N,w) is given by pcn(N,w) = (83
5
, 83

5
, 74

5
, 0, 0). Hence,

although only the worth of the grand coalition increases player 3 is worse off under

(N,w) than under (N, v). ⊳

In Section 3.3 we introduce the reduced game, which is used to characterise both

the per capita prenucleolus and the per capita prekernel. Similar to the imputation

saving reduced game introduced for the nucleolus (Snijders (1995)) we introduce

an imputation saving reduced game for the per capita nucleolus. The imputation

saving reduced game (T, ṽT,x) with respect to coalition T ⊆ N and preimputation x

is defined as follows. If |T | = 1, then (T, ṽT,x) = (T, vT,x). If |T | ≥ 2, then

ṽT,x(S) =

{

vT,x(S) if S ⊆ T, |S| 6= 1,
min{xi, vT,x({i})} if S = {i}, i ∈ T.

In this way it is ensured that xT ∈ I(T, ṽT,x) for all T ⊆ N , whenever x ∈ I(N, v).

Let (N, v) ∈ Γ and let σ be a solution on Γ. Then σ satisfies the imputation saving

reduced game property whenever T ⊆ N, T 6= ∅ and x ∈ σ(N, v), then (T, ṽT,x) ∈ Γ

and xT ∈ σ(T, ṽT,x). We prove that the per capita nucleolus satisfies this imputation

saving reduced game property. We start by introducing some additional notation

and preliminary lemmas.

6In the proof of Theorem 3 in Zhou (1991) it is claimed that “ . . . since y is the prenucleolus

of w, θw(y) is lexicographically smaller than θw(x).” If we consider the nucleolus and not the
prenucleolus, then this result is not immediate, but it can be shown to be true nevertheless.

7Note that Zhou (1991) refers to the (per capita) prenucleolus as (per capita) nucleolus.
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Lemma 3.5.15 Let (N, v) ∈ ΓI , x ∈ X(N, v) and T ⊆ N . Then, CarṽT,x
(xT ) ⊆

(Carv(x) ∩ T ).

Proof:

i ∈ CarṽT,x
(xT ) ⇔ xi > ṽT,x({i}) and i ∈ T

⇔ xi > vT,x({i}) and i ∈ T

⇒ xi > v({i}) and i ∈ T

⇔ i ∈ Carv(x) and i ∈ T

⇔ i ∈ (Carv(x) ∩ T ).

�

Lemma 3.5.16 Let (N, v) ∈ ΓI , S ′, T ⊆ N, S ′, T 6= ∅, t ∈ R, then we obtain the

following two properties.

1. S ∈ B(xT , ṽT,x, t) if and only if S ∈ {S ′ ∩ T |S ′ ∈ B(x, v, t)} for all S ⊆ T ,

S 6= ∅ with ṽT,x(S) = vT,x(S).

2. If {i} ∈ B(xT , ṽT,x, t), then {i} ∈ {S ′ ∩ T |S ′ ∈ B(x, v, t)} for all i ∈ N such

that ṽT,x({i}) = xi.

Proof: For the second part note that ṽT,x({i}) ≤ vT,x({i}) for all i ∈ N , which

implies that B(xT , ṽT,x, t) ⊆ B(xT , vT,x, t). The remainder of the proof follows by

the proof of Lemma 3.3.17 in which B(xT , vT,x, t) = {S∩T |S ∈ B(x, v, t)} is shown.

�

Theorem 3.5.17 The per capita nucleolus satisfies the imputation saving reduced

game property.

Proof: Let (N, v) ∈ ΓI and T ⊆ N, T 6= ∅. For |T | = 1 the result follows im-

mediately. So let us assume that |T | > 1. Let x = pcn(N, v) and let t ∈ R. By

Theorem 3.5.4 this implies that B(x, v, t) is balanced on Carv(x). Furthermore,

x ∈ I(N, v).

Since (Carv(x)∩T ) ⊆ Carv(x) this implies that B(x, v, t) is balanced on (Carv(x)∩T ).
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Also, since ṽT,x({i}) ≤ xi we obtain that xT ∈ I(T, ṽT,x). Due to Lemma 3.5.15

Carṽ(xT ) ⊆ (Carv(x) ∩ T ) and consequently, B(x, v, t) is balanced on Carṽ(xT ).

Finally, by the first part of Lemma 3.5.16 this implies that B(xT , ṽT,x, t) is ba-

lanced on Carṽ(xT ). Combining this with the fact that xT ∈ I(T, ṽT,x) results in

xT = pcn(T, ṽT,x). �

Let (N, v) ∈ ΓI and let σ be a solution on ΓI . Then σ satisfies the converse

imputation saving reduced game property if whenever n ≥ 2, x ∈ I(N, v), (T, ṽT,x) ∈
ΓI , and xT ∈ σ(T, ṽT,x) for all T ∈ P (N), then x ∈ σ(N, v). The per capita

nucleolus does not satisfy the converse imputation saving reduced game property,

as the following example illustrates.

Example 3.5.18 Consider the game (N, v), which is due to Sudhölter and Potters

(2001), depicted below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
u(S) −1 −1 −1 1 0 0 0

Let x = (0, 0, 0). Then in each imputation saving reduced game, with n = 2,

all coalition worths are zero, which implies that the per capita nucleolus of each

game is (0, 0). Hence, xT = pcn(T, ṽT,x) for all T ∈ P (N). However, x = (0, 0, 0) 6=
(1

3
, 1

3
,−2

3
) = pcn(N, v). Consequently, the per capita nucleolus does not satisfy the

converse imputation saving reduced game property. ⊳

3.5.2 Relations to other solution concepts

In this subsection we discuss the relation of the per capita nucleolus to other solu-

tion concepts for cooperative games. The first theorem states that the per capita

nucleolus coincides with the per capita prenucleolus whenever the core is non-empty.

Theorem 3.5.19 Let (N, v) ∈ ΓC . Then the per capita nucleolus and the per

capita prenucleolus coincide.

Proof: Let (N, v) ∈ ΓC . Since pcpn(N, v) ∈ C(N, v) (Theorem 3.3.19) and

C(N, v) ⊆ I(N, v), pcn(N, v) = pcpn(N, v). �



56 Chapter 3. Per capita nucleolus

As a direct result we obtain also the following theorem.

Theorem 3.5.20 Let (N, v) ∈ ΓC . Then pcn(N, v) ∈ C(N, v).

Analogous to the per capita prekernel, introduced in Section 3.3 and discussed in

Section 3.4, we also introduce the per capita kernel8.

Definition Let (N, v) ∈ ΓI . The per capita kernel of (N, v) is given by

PCK(N, v) = {x ∈ I(N, v) | sij(x) ≥ sji(x) or xi = v({i}) for all i, j ∈ N, i 6= j}.

Theorem 3.5.21 Let (N, v) ∈ ΓI . Then pcn(N, v) ∈ PCK(N, v).

Proof: Let x ∈ I(N, v), and let i, j ∈ N such that sij(x) < sji(x) and xi > v({i}).
Hence, x /∈ PCK(N, ). We show that x 6= pcn(N, v), which gives by the non-

emptiness of the per capita nucleolus (Corollary 3.5.1) the desired result. Take

t = sji(x). Then collection B(x, t) contains a coalition S ∈ Tji, but no coalition

T ∈ Tij. Since i ∈ Carv(x) we obtain that (B1(x), . . . ,Bp(x)) is not balanced on

Carv(x), which proves x 6= pcn(N, v). �

The per capita nucleolus is not a bargaining set selector. This result follows from the

game of Example 3.3.21, where the per capita nucleolus is equal to the per capita

prenucleolus. Note however that since pcn(N, v) = pcpn(N, v) for all (N, v) ∈ ΓC

we obtain that pcn(N, v) ∈ BS(N, v) for all (N, v) ∈ ΓC .

Each strongly compromise admissible game has a non-empty core (Driessen and

Tijs (1983)). Therefore, pcn(N, v) = pcpn(N, v) for all (N, v) ∈ ΓSCA. Conse-

quently, we obtain the following proposition.

Proposition 3.5.22 Let (N, v) ∈ ΓSCA. Then pcn(N, v) = τ(N, v).

3.5.3 Characterisation

In this subsection we characterise the per capita nucleolus.

8For an elaborate analysis of the per capita kernel we refer to Section 3.6.
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Theorem 3.5.23 Let U be infinitely countable and let ΓU be the set of all games

whose player set is contained in U . The per capita nucleolus is the unique solution

on ΓU that satisfies single-valuedness, covariance, anonymity, and the imputation

saving reduced game property.

Proof: By Theorem 3.5.3, Proposition 3.5.5, Proposition 3.5.7 and Theorem 3.5.17

the per capita nucleolus satisfies single-valuedness, covariance, anonymity and the

imputation saving reduced game property. Hence, it suffices to show that the per

capita nucleolus is the only solution concept satisfying these four axioms.

The remainder of the proof is closely related to the proof of Theorem 3.3.28 in

which we characterise the per capita prenucleolus. Therefore, we will only indicate

where this proof differs from the proof of Theorem 3.3.28.

In Step 2, x now has to be the per capita nucleolus of (N, v).

In Step 3, the sets Bh are defined for all h ∈ P . Let us alternatively de-

note these sets by B′
h for h ∈ P . Then, for every h ∈ P there exists a set

Eh ⊆ {{i} | i ∈ N, xi = w({i})} such that Bh = B′(0, w, µh) ∪ Eh is balanced. In the

remainder of the proof we use these sets Bh, h ∈ P .

In Step 6, let (N, w̃N,0) be the imputation saving reduced game with respect to coali-

tion N ⊆ N̄ and imputation 0 given game (N̄ , w̄). It follows that w̃N,0(S) = w(S)

for all S ⊆ N , with |S| 6= 1, because the imputation saving reduced game may

differ from the reduced game only for one-person coalitions. Furthermore, since

0 = pcn(N,w), w({i}) ≤ 0 for all i ∈ N . Consequently, w̃N,0({i}) = w({i}) for all

i ∈ N . �

In the remainder of this section we show that the axioms single-valuedness, covari-

ance, anonymity and the imputation saving reduced game property are independent.

We show in Section 3.6 that the per capita kernel satisfies covariance (Proposi-

tion 3.6.2), anonymity (Proposition 3.6.3) and the imputation saving reduced game

property (Theorem 3.6.9), but violates single-valuedness (Example 3.6.1).

It is known that the Shapley value satisfies single-valuedness, covariance and

anonymity. However, since it also satisfies additivity it does not coincide with the

per capita nucleolus, which implies that it does not satisfy the imputation saving
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reduced game property.

The equal split solution satisfies single-valuedness, anonymity and the imputation

saving reduced game property, but violates covariance.

It remains to be shown that anonymity is independent of the other three proper-

ties. Therefore, we introduce the positive per capita core.

Definition Let (N, v) ∈ ΓI . The positive per capita core of (N, v) is given by

C̄pc
+ (N, v) = {x ∈ I(N, v) | epc(S, x, v) ≤ (epc(S, pcpn(N, v), v))+ for all S ⊆ N}.

A solution σ on Γ satisfies the imputation saving reconfirmation property if the

following condition is satisfied for all (N, v) ∈ ΓI , all x ∈ σ(N, v) and every

T ⊆ N, T 6= ∅: if (T, ṽT,x) ∈ ΓI and yT ∈ σ(T, ṽT,x), then (yT , xN\T ) ∈ σ(N, v).

Lemma 3.5.24 The positive per capita core on ΓI satisfies non-emptiness,

anonymity, covariance, the imputation saving reduced game property, and the impu-

tation saving reconfirmation property.

Proof: The properties non-emptiness, anonymity, covariance, and the impu-

tation saving reduced game property can be shown analogously to the proof of

Lemma 3.3.31 in which it is shown that the positive per capita precore satisfies

non-emptiness, anonymity, covariance, the reduced game property, and the recon-

firmation property.

Also the proof to show that the positive per capita core satisfies the imputation

saving reconfirmation property is mainly equivalent to its counterpart in the proof

of Lemma 3.3.31. Only if S ∩ T = {i} for some i ∈ N and ṽT,x({i}) = xi we

have to provide an alternative proof. In that case we know that yi ≥ xi. Hence,

epc({i}, x, v) ≥ epc({i}, z, v), which implies that z ∈ C̄pc
+ (N, v), as x ∈ C̄pc

+ (N, v).

This completes the proof. �

Assume |U| ≥ 2. Take an injection π : U → N. Define ξ̄(N, v) = {x ∈
C̄pc

+ (N, v) |x �L y for all y ∈ C̄pc
+ (N, v)}, where x �L y if there exists a k ∈ N

such that xi = yi for all i ∈ N with π(i) < π(k) and xk > yk.

Lemma 3.5.25 The solution ξ̄ satisfies single-valuedness, covariance and the im-

putation saving reduced game property.
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The proof of this lemma is analogous to the proof of Lemma 3.3.32 in which we

show that ξ satisfies single-valuedness, covariance and the reduced game property.

Finally, we show by means of an example that ξ̄ does not satisfy anonymity.

Example 3.5.26 Reconsider the game (N, v) of Example 3.3.33. The positive per

capita core of (N, v) is given by C̄pc
+ (N, v) = conv{(1, 0), (0, 1)} and hence, ξ̄(N, v) =

{(1, 0)} and ξ̄ does not satisfy anonymity. ⊳

3.6 Per capita kernel

In this section we analyse the per capita kernel, which, contrary to the per capita

prekernel, only considers elements of the imputation set of a game. The idea of the

per capita kernel is that the maximum excess of player i over player j must equal the

maximal excess of j over i, except if one of the players receives his individual worth.

In that case he is considered to be immune for the additional power another player

might have over him. This section is divided into two subsections; in Subsection 3.6.1

we discuss several properties of the per capita kernel, and in Subsection 3.6.2 we

discuss the relation between the per capita kernel and other solution concepts for

cooperative games.

The definition of the per capita kernel is already given in Section 3.5, but is, for

the sake of completeness, repeated below.

Definition Let (N, v) ∈ ΓI . The per capita kernel of (N, v) is given by

PCK(N, v) = {x ∈ I(N, v) | sij(x) ≥ sji(x) or xi = v({i}) for all i, j ∈ N, i 6= j}.

3.6.1 Properties

In this subsection we discuss some properties of the per capita kernel. By Theorem

3.5.21 we know that the per capita nucleolus is an element of the per capita kernel

for games with a non-empty imputation set. Consequently, the per capita kernel

satisfies non-emptiness on ΓI . Furthermore, by definition, we obtain that the per

capita kernel satisfies efficiency. The per capita prekernel is not single-valued as the

following example illustrates.



60 Chapter 3. Per capita nucleolus

Example 3.6.1 Reconsider the five-player game (N, v) of Example 3.4.3. By

Theorem 3.5.20, pcn(N, v) = (1, 1, 0, 0, 0) and by Theorem 3.5.21, pcn(N, v) ∈
PCK(N, v). Furthermore, x = (0, 0, 2

3
, 2

3
, 2

3
) ∈ PCK(N, v). Consequently, the

per capita kernel is not single-valued.

Note that this example also implies that the per capita kernel is not a subset of

the core and that the per capita nucleolus and the per capita kernel are not equiva-

lent on Γ. ⊳

Proposition 3.6.2 The per capita kernel satisfies covariance.

The proof of Proposition 3.6.2 is equivalent to the proof of Proposition 3.3.5 in

which we show that the per capita prenucleolus satisfies covariance. Without proof

we provide the following proposition.

Proposition 3.6.3 The per capita kernel satisfies anonymity.

Proposition 3.6.4 The per capita kernel satisfies desirability.

Proof: Let (N, v) ∈ ΓI , with i �v j for some i, j ∈ N . Assume on the contrary

x ∈ PCK(N, v), with xj > xi. Let us first assume that xj = v({j}). Then by the

fact that we assume xj > xi and that x ∈ I(N, v) we obtain

v({j}) = xj

> xi

≥ v({i}),

which contradicts the assumption that i �v j. Hence, xj > v({j}) and the proof

proceeds as the proof of Proposition 3.4.6 in which we show that the per capita

prekernel satisfies desirability. �

Since the per capita nucleolus does not satisfy strong desirability, the per capita

kernel does not satisfy this property either. By definition the per capita kernel

is individually rational, and consequently, the per capita kernel is reasonable from
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below. The next proposition shows that the per capita kernel is also reasonable from

above.

Proposition 3.6.5 The per capita kernel is reasonable from above.

Proof: Let (N, v) ∈ ΓI and x ∈ PCK(N, v). We have to show that

xi ≤ max
S⊆N\{i}

v(S ∪ {i}) − v(S)

for all i ∈ N . If xi = v({i}), then this result follows immediately. Otherwise

the proof of Proposition 3.4.8, in which we show that the per capita prekernel is

reasonable from above, can be followed. �

Corollary 3.6.6 The per capita kernel is reasonable.

This result also leads to the following corollary.

Corollary 3.6.7 The per capita kernel satisfies the dummy property.

The following example shows that the per capita kernel does not satisfy the adding

dummies property.

Example 3.6.8 Reconsider Example 3.5.12, with pcn(N, v) = (1
3
, 1

3
, 81

3
). Consider

the game (N∪{4}, w) and allocation x = (1
3
, 1

3
, 81

3
, 0). Then s13(x, w) = −1

6
> −2

9
=

s31(x, w), which implies that x /∈ PCK(N ∪ {4}, w). Consequently, the per capita

kernel does not satisfy the adding dummies property. ⊳

The per capita kernel does not satisfy super-additivity, which follows from the game

of Example 3.4.9 in which the per capita kernel equals the per capita prekernel.

Theorem 3.6.9 The per capita kernel satisfies the imputation saving reduced game

property.
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Proof: Let (N, v) ∈ ΓI and let x ∈ PCK(N, v). Let T ⊆ N, T 6= ∅. We have

to show that xT ∈ PCK(T, ṽT,x), or equivalently that sij(x, ṽT,x) ≥ sji(x, ṽT,x) or

xi = ṽT,x({i}) for all i, j ∈ N , i 6= j. Let i ∈ N . If xi
T = ṽT,x({i}), then the

above condition is fulfilled. Hence, we assume xi
T > ṽT,x({i}). Note that this im-

plies that xi > v({i}). It remains to be shown that sij(xT , ṽT,x) ≥ sji(xT , ṽT,x)

for all j ∈ N\{i}. Let j ∈ N\{i}. Since xi
T > ṽT,x({i}) we know that

max
S∈T

ij
T
epc(S, xT , ṽT,x) = max

S∈T
ij
T
epc(S, xT , vT,x). Hence,

sij(xT , vT,x) = max
S∈T

ij
T

epc(S, xT , ṽT,x)

= max
S∈T

ij
T

epc(S, xT , vT,x)

= max
S∈T

ij
T

max
Q⊆N\T

epc(S ∪Q, x, v)

= max
S∈Tij

epc(S, x, v)

= sij(x, v)

≥ sji(x, v)

= max
S∈Tji

epc(S, x, v)

= max
S∈T

ji
T

max
Q⊆N\T

epc(S ∪Q, x, v)

= max
S∈T

ji
T

epc(S, xT , vT,x)

≥ max
S∈T

ji
T

epc(S, xT , ṽT,x)

= sji(xT , vT,x),

where the first inequality follows from the fact that x ∈ PCK(N, v) and xi > v({i}).
The second inequality follows from the fact that vT,x(S) ≥ ṽT,x(S) for all S ⊆ N . �

The per capita kernel does not satisfy the converse imputation saving reduced game

property, as is illustrated by the following example.

Example 3.6.10 Consider the game (N, v) of Example 3.5.18. Once more, let

x = (0, 0, 0). Then allocation (0, 0) ∈ PCK(T, ṽT,x) for all T ∈ P (N). However,

s13(x, v) = 1
2
> 0 = s31(x, v), while v({3}) 6= x3, which implies that x /∈ PCK(N, v).

Hence, the per capita kernel does not satisfy the converse imputation saving reduced

game property. ⊳



3.7. Core 63

Since the per capita kernel does not satisfy the converse imputation saving reduced

game property we are not able to characterise the per capita kernel in a similar way

as the per capita prekernel.

3.6.2 Relations to other solution concepts

In this subsection we discuss the relations of the per capita kernel to other solution

concepts for cooperative games. In Section 3.5 we already establish that the per

capita nucleolus is an element of the per capita kernel (Theorem 3.5.21). Further,

we reconsider Example 3.6.1. In this example we show that the per capita prekernel

is not equivalent to the per capita prenucleolus. Moreover, the per capita prekernel

is not a subset of the core. Also, since the per capita nucleolus is not a bargaining

set selector, which follows from Example 3.3.21 in which the per capita prenucleolus

and the per capita nucleolus coincide, the per capita prekernel is not a subset of the

bargaining set either.

3.7 Core

Peleg and Sudhölter (2003) show that the core can be characterised by the use of the

weak reduced game property, corresponding to the reduced game of the prenucleolus.

The main result of this section is that in this characterisation we can replace this

property by the weak reduced game property, corresponding to the reduced game

of the per capita prenucleolus, as defined in Section 3.3. For a discussion of the

properties of the core we refer to Peleg and Sudhölter (2003).

Let (N, v) ∈ Γ and let σ be a solution on Γ. Then σ satisfies the weak reduced

game property if whenever T ⊆ N , 1 ≤ |T | ≤ 2, and x ∈ σ(N, v), then (T, vT,x) ∈ Γ

and xT ∈ σ(T, vT,x). Clearly, if some solution concept satisfies the reduced game

property, then it also satisfies the weak reduced game property. We start this section

by showing that the core satisfies the (weak) reduced game property.

Theorem 3.7.1 The core satisfies the reduced game property.

Proof: Let (N, v) ∈ Γ and x ∈ C(N, v). By Lemma 3.3.16 we obtain

epc(S, xT , vT,x) = max
Q⊆N\T

v(S ∪Q) − x(S ∪Q)

|S ∪Q|
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for all S $ T ⊆ N . Let T ⊆ N, T 6= ∅. Since x ∈ C(N, v) the right hand side of the

equality is non-positive for all S $ T . Hence, xT ∈ C(T, vT,x). �

Corollary 3.7.2 The core satisfies the weak reduced game property.

Before we obtain our main result we first have to provide some prelimary lemmas.

In the remainder of this section we assume that the universe U of players contains

at least three members.

Lemma 3.7.3 Let σ be a solution on Γ. If σ satisfies individual rationality and the

weak reduced game property, then σ satisfies efficiency.

Proof: This proof is by contradiction. Hence, assume σ satisfies individual ratio-

nality and the weak reduced game property, and there exists a game (N, v) ∈ Γ and

an allocation x ∈ σ(N, v) such that x(N) < v(N). Let i ∈ N . By the weak reduced

game property, ({i}, v{i},x) ∈ Γ and xi ∈ σ({i}, v{i},x). By individual rationality

xi ≥ v{i},x({i}). On the other hand, v{i},x({i}) = v(N) − x(N\{i}) > xi. Thus, the

desired contradiction has been obtained. �

Lemma 3.7.4 The core satisfies the converse reduced game property.

Proof: Let (N, v) ∈ Γ and x ∈ X(N, v). Assume that (T, vT,x) ∈ Γ and xT ∈
C(T, vT,x) for all T ∈ P (N). Let S $ N , S 6= ∅. Choose i ∈ S and j ∈ N\S, and

let T = {i, j}. The fact that xT ∈ C(T, vT,x) implies that

0 ≥ vT,x({i}) − xi

= max
Q⊆N\T

(v({i} ∪Q) − x(Q) − |Q| · epc({i} ∪Q, x, v)) − xi

≥ v(S) − x(S) − (|S| − 1) · epc(S, x, v)

=
1

|S|(v(S) − x(S))

= epc(S, x, v).

Consequently, x ∈ C(N, v). �
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Lemma 3.7.5 Let σ be a solution on Γ. If σ satisfies individual rationality and the

weak reduced game property, then σ(N, v) ⊆ C(N, v) for every (N, v) ∈ Γ.

Proof: Let (N, v) ∈ Γ. If n = 1, then σ(N, v) ⊆ C(N, v) by individual rationa-

lity. By Lemma 3.7.3 σ satisfies efficiency. Hence, if n = 2, then σ(N, v) ⊆ {x ∈
X(N, v) |xi ≥ v({i}) for all i ∈ N} = C(N, v).

If n ≥ 3 and x ∈ σ(N, v), then the weak reduced game property implies xT ∈
σ(T, vT,x) for all T ∈ P (N). Consequently, xT ∈ C(T, vT,x) for all T ∈ P (N). Hence,

by the fact that the core satisfies the converse reduced game property (Lemma 3.7.4),

x ∈ C(N, v). �

Corollary 3.7.6 Let σ be a solution on ΓC that satisfies non-emptiness, individual

rationality and the weak reduced game property. If the core of a game (N, v) consists

of a unique point, then σ(N, v) = C(N, v).

Since for all x ∈ C(N, v), xi ≥ v({i}) for all i ∈ N and all (N, v) ∈ ΓC , it follows

that the core is individually rational.

Corollary 3.7.7 The core satisfies individual rationality.

Furthermore, one can easily verify that the core is super-additive.

Lemma 3.7.8 The core satisfies super-additivity.

The above results lead us to the main theorem of this section.

Theorem 3.7.9 The core is the unique solution on ΓC that satisfies non-emptiness,

individual rationality, the weak reduced game property and super-additivity.

Proof: The core on ΓC satisfies non-emptiness (by definition), individual rationa-

lity (Corollary 3.7.7), super-additivity (Lemma 3.7.8) and the weak reduced game

property (Corollary 3.7.2). Hence, it suffices to prove uniqueness.
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Let σ be a solution on ΓC that satisfies non-emptiness, individual rationality, super-

additivity and the weak reduced game property, and let (N, v) ∈ ΓC be an n-

player game. By Lemma 3.7.5, σ(N, v) ⊆ C(N, v). Thus we only have to show

C(N, v) ⊆ σ(N, v). Let x ∈ C(N, v). We distinguish between three cases; n = 1,

n ≥ 3 and n = 2. If n = 1, then x ∈ σ(N, v) by non-emptiness and individual

rationality.

Secondly, we consider the situation n ≥ 3. Define the game (N,w) by w({i}) =

v({i}) for all i ∈ N and w(S) = x(S) for all S ⊆ N with |S| 6= 1. As n ≥ 3,

C(N,w) = {x}. Hence, by Corollary 3.7.6, σ(N,w) = {x}. Let u = v − w. Then

u({i}) = 0 for all i ∈ N , u(N) = 0, and u(S) ≤ 0 for all S ⊆ N . Therefore,

C(N, u) = {0} and, again by Corollary 3.7.6, σ(N, u) = {0}. Hence, by super-

additivity, {x} = σ(N, u) + σ(N,w) ⊆ σ(N, v). We conclude that x ∈ σ(N, v), and

thus C(N, v) ⊆ σ(N, v).

Finally, we consider the case n = 2. Let N = {i, j} and let k ∈ U\N . We de-

fine the game (M,u), with M = {i, j, k} and u given by the table below, with A

such that uN,y = v.

S {i} {j} {k} {i, j} {i, k} {j, k} M
u(S) v({i}) v({j}) 0 v({i}) + v({j}) A A v(N)

Then y ∈ RM , defined by yk = 0 and yN = x, is an element of C(M,u). As

|M | = 3, C(M,u) ⊆ σ(M,u). Thus y ∈ σ(M,u). Since uN,y = v the weak reduced

game property gives x ∈ σ(N, v), and thus C(N, v) ⊆ σ(N, v). �

We proceed by showing that the properties non-emptiness, individual rationality,

super-additivity and the weak reduced game property are independent. The empty

solution satisfies individual rationality, super-additivity and the (weak) reduced

game property, but violates non-emptiness.

Further, let the solution σ on ΓC be defined by σ(N, v) = C(N, v) if n ≥ 2

and by σ({i}, v) = X∗({i}, v) for all one-player games ({i}, v). Then σ satisfies

non-emptiness, super-additivity and the (weak) reduced game property, but on one-

player games it violates individual rationality.

Define solution σ on ΓC by σ(N, v) = {x ∈ X(N, v) |xi ≥ v({i}) for all i ∈ N}.
Then σ satisfies non-emptiness, individual rationality and super-additivity, but by
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Lemma 3.7.5 σ violates the weak reduced game property, as σ(N, v) is not a subset

of the core for all (N, v) ∈ Γ.

Finally, let us consider the per capita prenucleolus on ΓC . We have shown that the

per capita prenucleolus satisfies non-emptiness (Lemma 3.3.1) and the reduced game

property (Theorem 3.3.18) and since it is an element of the core (Theorem 3.3.19) it

also satisfies individual rationality. However, by Example 3.3.13 we also know that

it does not satisfy (super-)additivity on ΓC .

We conclude this section by considering the relation between the core and the im-

putation saving reduced game, defined in Section 3.5.

Proposition 3.7.10 The core satisfies the imputation saving reduced game pro-

perty.

Proof: Let (N, v) ∈ Γ and x ∈ C(N, v). Let (T, ṽT,x) be the imputation saving

reduced game with respect to T ⊆ N, T 6= ∅ and x. Firstly, let S $ T such

that ṽT,x(S) = vT,x(S). Then it follows by Lemma 3.3.16 that epc(S, xT , vT,x) =

maxQ⊆N\T
v(S∪Q)−x(S∪Q)

|S∪Q|
. Since x ∈ C(N, v) the right-hand side of the equality is

non-positive. Secondly, if ṽT,x(S) 6= vT,x(S), then ṽT,x({i}) = xi for some i ∈ N ,

which implies that epc({i}, xT , ṽT,x) = 0. Consequently, epc(S, xT , ṽT,x) ≤ 0 for all

S ⊆ T , which means that xT ∈ C(T, ṽT,x). �

The following example shows that the core does not satisfy the converse imputation

saving reduced game property.

Example 3.7.11 Consider the game depicted below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 0 0 1 1 0 1
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Consider preimputation x = (0, 5,−4) and the corresponding two-player imputation

saving reduced games.

S {1} {2} {1, 2}
ṽ{1,2},x(S) 0 3.5 5

S {1} {3} {1, 3}
ṽ{1,3},x(S) 0 −4 −4

S {2} {3} {2, 3}
ṽ{2,3},x(S) 3 −4 1

Hence, for each T ∈ P (N), xT ∈ C(T, ṽT,x). However, x /∈ C(N, v). ⊳

Since the converse reduced game property is used (Lemma 3.7.4) for proving that

the core can be characterised by non-emptiness, individual rationality, the weak

reduced game property and super-additivity, a similar characterisation with the

weak imputation saving reduced game property instead of the weak reduced game

property cannot be obtained in an analogous way.

3.8 Overview

We conclude this chapter with an overview of the analysed solution concepts and

their properties in Table 3.8.1. For comparison we have also added the prenucleolus

(pn) and the prekernel (PK) to this table.

Note that we consider the reduced game properties with respect to the reduced

games introduced in this chapter. Further, if a box is empty, then the property

is either not defined for the corresponding solution concept (e.g., some properties

are only defined for single-valued solution concepts) or irrelevant (e.g., our reduced

game property for the prenucleolus).
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Properties / Solution concepts pcpn PCPK pcn PCK core pn PK

non-emptiness
√ √ √+ √+ × √ √

efficiency
√ √ √ √ √ √ √

single-valuedness
√ × √ × × √ ×

covariance
√ √ √ √ √ √ √

anonymity
√ √ √ √ √ √ √

desirability
√ √ √ √ × √ √

equal treatment property
√ √ √ √ × √ √

strong desirability × × × × × × ×
individual rationality × × √ √ √ × ×
reasonableness from above

√ √ √ √ √ √ √

reasonableness from below × × √ √ √ √ √

reasonableness × × √ √ √ √ √

dummy property × × √ √ √ √ √

adding dummies property × × × × √ √ √

(super-)additivity × × × × √ × ×
continuity

√ √ √

coalitional monotonicity × × ×
weak coalitional monotonicity

√ √ √

aggregate monotonicity
√ × ×

strong aggregate monotonicity
√ × ×

reduced game property
√ √ √

converse reduced game property × √ √

imputation saving reduced game property
√ √ √

converse imputation reduced game property × × ×
core selector

√∗ × √∗ × √∗ ×
bargaining set selector × × × × √∗ √ ×

+ If the imputation set is non-empty.
∗ If the core is non-empty.

Table 3.8.1: Properties for solution concepts





Chapter 4

Public congestion network

situations and related games

Nobody goes there; it’s too crowded.

Yogi Berra (1925 - )

4.1 Introduction

This chapter, which is based on Kleppe et al. (2009), analyses congestion on network

situations from a cooperative game theoretic perspective. Economic congestion si-

tuations arise when a group of players uses facilities from a common pool and the

cost of using a certain facility depends on the number of its users. If players de-

cide to minimise the joint costs of using the facility a congestion situation leads to

interaction between players and the analysis of a joint cost allocation problem.

In their work Monderer and Shapley (1996) underline the importance of the ana-

lysis of congestion situations from an economic viewpoint. And there is a rich lite-

rature concerning congestion in a non-cooperative game theoretical setting, starting

from Braess’s paradox (Braess (1968)) and Rosenthal (1973), in which the existence

of pure Nash equilibria in such types of games is shown. For an overview of recent

results on congestion in a non-cooperative setting we refer to Vöcking (2006).

In general, a Nash equilibrium of a congestion game does not result in a social

optimum in the sense that it does not minimise the aggregated costs of all players

involved. Although there are several papers concerning the gap between selfish

(Nash) solutions and the social optimum, e.g., Johari and Tsitsiklis (2004), the

social optimum itself has been studied much less frequent. Examples are Milchtaich

71
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(2004), who studies the allocation of the cost associated with the social optimum

in a setup with a continuum of players, and Matsubayashi et al. (2005) in which

hub-spoke network systems with congestion effects are discussed using cooperative

games.

The main inspiration for this chapter comes, however, from a third example of

research on congestion within a cooperative setting; Quant et al. (2006) study con-

gestion network situations, which generalise the well-known minimum cost spanning

tree problems (Claus and Kleitman (1973) and Bird (1976)).

In congestion network situations a single source is considered to which all play-

ers have to be connected, and the cost of using an arc in order to achieve this

depends on the number of its users. In Quant et al. (2006) all arcs are private, i.e.,

a coalition is only allowed to use the arcs between the players of the coalition and the

source in order to establish their connection. In this chapter, however, we consider

congestion network situations with public arcs, which means that each coalition of

players is allowed to use any arc of the network.

For applications of public congestion network situations one could think, e.g., of

computer networks with one main server, a communication network with a unique

information provider, or a single distribution center with several suppliers on a

publicly available road network.

We discuss congestion network situations with the underlying idea that players

have to get from their initial nodes to the source. This describes, e.g., a situation

in which suppliers supply a single distribution center. Note however that we could

equivalently think of a setup in which players start at the source and have to get

to their final nodes, which would model a situation where suppliers supply from a

single distribution center.

In case the players have the intention to cooperate, it is natural that (in princi-

ple) an optimal network is constructed. In order to find an appropriate allocation

of the involved joint costs, two transferable utility games are introduced. In the

so-called direct cost game a coalition that is formed must construct a network that

connects all of its members, assuming that the other players do not make use of any

arcs. This is in our opinion a convenient model for situations with concave conges-

tion costs. In that situation the presence of other players would decrease marginal

costs of construction and it is reasonable to assume that a coalition formed does not
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benefit from the presence of other players. In case of convex costs, however, it is

reasonable to assume that the coalitional costs are determined from a situation in

which the non-members have been connected already. This is modelled by the so-

called marginal cost game, which is the dual of the direct cost game. We elaborate

on this in Section 4.4.

Quant et al. (2006) show that if arcs are private and costs are concave, there exists

an optimal network which is a tree. Since for the grand coalition it does not matter

whether arcs are private or public, this result still stands in our model. Further-

more, Example 4.1 in Quant et al. (2006) of a private congestion network situation

with concave costs of which the corresponding transferable utility cost game is not

balanced, gives the same result for the direct cost game in the case of public arcs.

For linear costs it is easy to verify that the direct cost game is additive (and hence

coincides with the marginal cost game). For these reasons we will mainly focus on

public congestion network situations with convex costs.

Within this framework we first present an algorithm to find an optimal network

for each coalition of players. Our second main result is that the marginal cost game

of a convex congestion network situation is concave. As a consequence, cooperation

is likely to occur and stable allocations exist. Our third main result is the introduc-

tion of a solution concept that provides such a stable allocation. Finally, we extend

these results to a framework with divisibility in which we drop the restriction that

players have to use a single path to the source.

The structure of this chapter is as follows. Section 4.2 settles notation for public

congestion network situations, while Section 4.3 deals with the problem of finding an

optimal network in case of convex costs. We start the analysis of the cost allocation

problem for public congestion network situations with convex costs in Section 4.4,

where we introduce the marginal cost game and prove that this game is concave.

The analysis of cost allocation is continued in Section 4.5, where we refine the core

of the marginal cost game by three equal treatment principles. In Section 4.6 we

extend the results of Sections 4.4 and 4.5 to a framework with divisibility.



74 Chapter 4. Public congestion network situations and related games

4.2 Public congestion network situations

A public congestion network situation, or congestion network situation as we call it

from here, is given by a triple G = (N, 0, γ), where N is the finite set of players that

has to be connected to the source 0. By AS we denote the set of all arcs between

pairs in S ⊆ N0, i.e., (S,AS) is the complete digraph on S. For each arc a ∈ AN0 the

function γa : {0, 1, . . . , n} → R+ is a non-negative (weakly) increasing cost function.

Hence, γa associates each number of users of arc a with a corresponding cost. We

assume that γa(0) = 0 for all a ∈ AN0 . Elements of AN0 are denoted by a or by

(i, j), where i, j ∈ N0. The arc (i, j) denotes the connection between i and j in the

direction from i to j. If a = (i, j), then a−1 denotes the arc in the opposite direction,

i.e., a−1 = (j, i). The cost function of an arc (i, j) is denoted by γi,j. A congestion

network situation is called symmetric if γi,j = γj,i for all i, j ∈ N0.

In a congestion network situation each player chooses a path from his initial node

to the source. A path between any two nodes i and j is denoted by P (i, j) and is a

sequence of arcs ((i0, i1), (i1, i2), . . . , (ip−1, ip)), such that i0 = i, ip = j and ir 6= is

for all r, s ∈ {0, . . . , p − 1}, r 6= s. A non-empty path P (i, i) is called a circuit.

Furthermore, instead of P (i, 0) we also write Pi.

Let G = (N, 0, γ) be a congestion network situation. A network is defined by

an integer valued function f : AN0 → {0, 1, . . . , n}, such that f assigns to each

arc a number of users. The indegree for a node i ∈ N0 with respect to network

f is defined by indegreef(i) =
∑

j∈N0\{i} f(j, i). Analogously, the outdegree is de-

fined by outdegreef(i) =
∑

j∈N0\{i} f(i, j). Combining these two concepts results in

netdegreef (i) = outdegreef (i) − indegreef(i). For a coalition S ⊆ N the collection

of all feasible networks connecting the members of S to the source is given by

FS =
{

f : AN0 → {0, . . . , n}
∣

∣

∣
netdegreef(i) = 1 for all i ∈ S,

netdegreef(i) = 0 for all i ∈ N\S,
f(a) ∈ {0, . . . , |S|} for all a ∈ AN0

}

.

Note that in a feasible network for S each player of S is connected to the source

by some path. However, as all arcs are publicly available these paths may consist

of arcs between any two nodes in N0. Each network f induces a digraph (N0, Af),

where Af consists of all used arcs:

Af = {a ∈ AN0 | f(a) > 0}.
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The cost of a network f is defined by

γ(f) =
∑

a∈Af

γa(f(a)).

With each congestion network situation G = (N, 0, γ) one can associate a direct cost

game (N, cGd ), in which cGd (S) denotes the minimum cost of a network connecting

all players of S to the source in case no players outside coalition S make use of the

arcs of the network:

cGd (S) = min
f∈FS

γ(f)

for all S ⊆ N . We omit the superscript G if no confusion can occur. As discussed

in Section 4.1, this game only models the situation properly for concave congestion

network situations. A concave congestion network situation G = (N, 0, γ) is a con-

gestion network situation in which all γa are concave. A cost function γa, a ∈ AN0 ,

is concave if for all r ∈ {1, . . . , n− 1}
γa(r + 1) − γa(r) ≤ γa(r) − γa(r − 1).

In Section 4.1 we argue that for concave cost functions all results derived by Quant

et al. (2006) for congestion network situations with private arcs are almost directly

applicable for the setup with public arcs. Since this is not the case for congestion

network situations with convex cost functions, we only consider this type of situa-

tions in the next three sections. A convex congestion network situation G = (N, 0, γ)

is a congestion network situation in which all γa are convex. A cost function γa,

a ∈ AN0 , is convex if for all r ∈ {1, . . . , n− 1}
γa(r + 1) − γa(r) ≥ γa(r) − γa(r − 1).

Note that especially within the context of road or computer networks this convexity

assumption is plausible. Furthermore, the requirement of convex cost functions

is a similar, but stronger, assumption than the one often used in literature, e.g.,

Milchtaich (2004), where the cost per user of each arc is set to be increasing in the

number of its users.

Example 4.2.1 An example of a symmetric convex congestion network situation is

given in Figure 4.2.1. In this situation there are three players, which are denoted by

1, 2 and 3, and the source, which is given by 0. The numbers on the arcs represent

the total usage costs for each number of users. ⊳
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1 3

2

0
source

(1, 5, 10)

(6, 12, 18)

(1, 2, 4)

(1, 4, 9)

(3, 9, 16)

(5, 10, 15)

Figure 4.2.1: A symmetric convex congestion network situation

4.3 Optimal networks

This section focusses on finding an optimal network for a coalition S ⊆ N for a con-

vex congestion network situation. After introducing for each network f the length

function ℓf , we characterise the optimality of a network f by the use of the corres-

ponding length function. We use this result to construct an algorithm to find an

optimal network for each coalition of players.

Let G = (N, 0, γ) be a convex congestion network situation and consider a fea-

sible network f . Recall that a circuit is a non-empty path P (i, i), with i ∈ N0. In

the remainder of this chapter we assume that Af contains no circuits, because the

network arising from f by decreasing the number of users of the arcs in a circuit

by one yields a feasible network at least as cheap as f . The fact that we exclude

circuits in particular implies that if a ∈ Af , then a−1 /∈ Af .

Given network f , we define the length function ℓf on the complete digraph

(N0, AN0) as follows:

ℓf(a) =







∞ if f(a) = n,
γa(f(a) + 1) − γa(f(a)) if f(a−1) = 0 and f(a) < n,
γa−1(f(a−1) − 1) − γa−1(f(a−1)) if f(a−1) > 0.

This function can be interpreted as the marginal cost of an extra user of an arc.

Note that if the opposite a−1 of an arc is used in the current network, an extra user
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of arc a should be interpreted as the reduction of the number of users of a−1 by one.

A circuit C is called negative with respect to length function ℓf if
∑

a∈C ℓf(a) < 0.

Let f 1 and f 2 be networks. The sum f 1 ⊕ f 2 is defined by

f 1 ⊕ f 2(a) = max{f 1(a) + f 2(a) − f 1(a−1) − f 2(a−1), 0}

for all a ∈ AN0. This operation takes into account that the usage of two oppositely

directed arcs cannot be beneficial. If there is two-way traffic between nodes, the

numbers of users are subtracted instead of added.

Similarly, we define the network f 1 ⊖ f 2 that measures the difference between f 1

and f 2 by

f 1 ⊖ f 2(a) = max{f 1(a) − f 2(a) + f 2(a−1) − f 1(a−1), 0}

for all a ∈ AN0 . It assigns a positive number of users to an arc a ∈ AN0 if the arc is

used more in f 1 than in f 2 and if the arc in opposite direction is used more in f 2

than in f 1.

Example 4.3.1 Consider the convex congestion network situation of Figure 4.2.1.

Let f 1 be given by f 1(1, 0) = 2, f 1(2, 0) = 1 and f 1(3, 1) = 1 and let f 2 be given by

f 2(1, 0) = 1, f 2(1, 3) = 1, f 2(2, 0) = 1 and f 2(3, 0) = 1. Then f⊕ = f 1 ⊕ f 2 is given

by f⊕(1, 0) = 3, f⊕(2, 0) = 2 and f⊕(3, 0) = 1 and network f⊖ = f 1 ⊖ f 2 is given

by f⊖(0, 3) = 1, f⊖(1, 0) = 1 and f⊖(3, 1) = 2. ⊳

Proposition 4.3.2 Let G = (N, 0, γ) be a convex congestion network situation, and

let S ⊆ N . Then f ∈ FS is an optimal network for S if and only if AN0 contains

no negative circuit with respect to the length function ℓf .

Proof: We first show the “only if” part. Since f is optimal, γ(f) ≤ γ(f) +
∑

a∈C ℓf(a) for all circuits C. Hence, there cannot be a negative circuit with respect

to length function ℓf .

We now show the “if” part. Let f, f̄ ∈ FS and assume that f is not optimal for

S, but f̄ is. Consider the network f̄ ⊖ f . Since both f̄ and f are feasible for S, and
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f̄ ⊖ f measures the difference between f̄ and f , netdegreef̄⊖f(i) = 0 for all i ∈ N0.

This implies that Af̄⊖f contains a circuit. We show that it contains a negative cir-

cuit with respect to ℓf , which completes the proof.

Let C be a circuit in Af̄⊖f and let a ∈ C. In the following table the five possi-

bilities of the presence of a and a−1 in Af̄ and Af are illustrated. In this table ×
indicates that neither a nor a−1 are present.

C1 C2 C3 C4 C5

Af̄ a a a × a−1

Af a × a−1 a−1 a−1

The last column, e.g., indicates that 0 < f̄(a−1) < f(a−1), because a ∈ Af̄⊖f and in

both networks a is used in opposite direction. Note that the above are the only five

possibilities. Hence, the set C can be partitioned into the five sets C1, . . . , C5.
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The length of C with respect to ℓf equals

∑

a∈C

ℓf(a) =
∑

a∈C1∪C2

(γa(f(a) + 1) − γa(f(a))) +

+
∑

a∈C3∪C4∪C5

(γa−1(f(a−1) − 1) − γa−1(f(a−1)))

≤
∑

a∈C1∪C2

(γa(f̄(a)) − γa(f̄(a) − 1)) +

+
∑

a∈C4∪C5

(γa−1(f̄(a−1)) − γa−1(f̄(a−1) + 1)) +

+
∑

a∈C3

(γa−1(f(a−1) − 1) − γa−1(f(a−1)))

≤
∑

a∈C1∪C2

(γa(f̄(a)) − γa(f̄(a) − 1)) +

+
∑

a∈C4∪C5

(γa−1(f̄(a−1)) − γa−1(f̄(a−1) + 1)) +

+
∑

a∈C3

(γa(f̄(a)) − γa(f̄(a) − 1))

= −[
∑

a∈C1∪C2∪C3

(γa(f̄(a) − 1) − γa(f̄(a))) +

+
∑

a∈C4∪C5

(γa−1(f̄(a−1) + 1) − γa−1(f̄(a−1)))]

= −
∑

a−1∈C−1

ℓf̄(a
−1)

≤ 0. (4.1)

The first inequality follows from the convexity of the functions γa and the fact that

f̄(a) ≥ f(a) + 1 if a ∈ C1 ∪ C2 and f(a−1) ≥ f̄(a−1) + 1 if a ∈ C4 ∪ C5. Inequality

(4.1) follows from the optimality of f̄ . Consequently, C is a (weakly) negative circuit

with respect to the length function ℓf .

If inequality (4.1) is strict, then a negative circuit has been found. In case inequality

(4.1) is tight, so
∑

a−1∈C−1 ℓf̄ (a
−1) = 0, we proceed by changing the network f̄ to

f̄1 = f̄⊖fC . Network f̄1 is feasible and costs γ(f̄1) = γ(f̄)+
∑

a−1∈C−1 ℓf̄(a
−1) = γ(f̄)

and is therefore also optimal. One can measure the difference between f and f̄1 in a

similar way as the difference between f and f̄ . In comparison to f̄ ⊖ f , for all arcs

a ∈ AN0 , f̄1 ⊖ f(a) = f̄ ⊖ f(a) if a /∈ C and f̄1 ⊖ f(a) = f̄ ⊖ f(a)− 1 if a ∈ C. The
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set of arcs Af̄1⊖f also contains a circuit and one can follow the lines of the proof

above. If inequality (4.1) is again tight, one must define networks f̄2, f̄3 and f̄2 ⊖ f ,

f̄3 ⊖ f and so on, until a strict inequality arises.

Since the number of feasible networks is finite, eventually a strict inequality will

arise. The values of f̄k ⊖ f(a) are decreasing in k for all a ∈ AN0 . Furthermore,

f̄k ⊖ f is the zero network if and only if f(a) = f̄k(a) for all a ∈ AN0 . Since f is

not optimal, f̄k ⊖ f cannot be the zero network for any k, and hence there is a k for

which inequality (4.1) is strict. �

The existence of negative circuits can be detected by a shortest path algorithm, e.g.,

the Floyd-Warshall algorithm (Cormen et al. (1990)). If the algorithm finds that

the “shortest path” (cheapest way) to go from some node to itself has negative costs,

then there must be a negative circuit containing this node.

By Proposition 4.3.2 we know whether a network is optimal by its length function.

We use this relation to construct an algorithm that provides an optimal network for

a coalition S ⊆ N . Such a network is denoted by f ∗
S. The idea of the algorithm is to

connect players sequentially to the source in such a way that each player minimises

the length of his path to the source, given the length function corresponding to the

network constructed by his predecessors. We denote by P ∗
S,i the shortest path in

(N0, AN0) from i ∈ N to 0, given length function ℓf∗
S
. It is important to note that,

based on the fact that two-way traffic between nodes cannot be beneficial, paths

constructed in earlier stages of the algorithm can be altered later on. We denote the

network corresponding to a path P by fP .

Algorithm 4.3.3
Input: a convex congestion network situation G = (N, 0, γ),

and an ordering π ∈ ΠS.
Output: an optimal network f ∗

S for coalition S ⊆ N.

1. Initialise V = ∅ and t = 1.

2. Find P ∗
V,π(t).

3. Set f ∗
V ∪{π(t)} = f ∗

V ⊕ fP ∗
V,π(t)

.

4. If t < |S|, set t = t+ 1, V = V ∪ {π(t)} and return to step 2.
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The complexity of the Floyd-Warshall algorithm to find shortest paths is of order

O(n3). Since we have to go through the steps of the algorithm at most n times the

complete algorithm has a complexity of order O(n4).

Theorem 4.3.4 Let G = (N, 0, γ) be a convex congestion network situation, let

S ⊆ N and π ∈ ΠS. The output f ∗
S of Algorithm 4.3.3 is an optimal network for

coalition S.

Proof: Assume without loss of generality that π is the identity, hence π(i) = i

for all i ∈ N . We first show that f ∗
S is feasible for S. At iteration t of the al-

gorithm the netdegree of node 0 decreases from 1 − t to −t, the netdegree of the

nodes 1, . . . , t − 1 remains 1, the netdegree of node t increases from 0 to 1 and the

netdegree of the nodes t+1, . . . , n remains 0. Hence, netdegreef∗
S (i) = 1 for all i ∈ S

and netdegreef∗
S (i) = 0 for all i ∈ N\S, which implies that f ∗

S is feasible. To prove

optimality of f ∗
S we use an induction argument.

If V = ∅, then ℓf∗
V
(a) = γa(1) ≥ 0 for all a ∈ AN0 . Path P ∗

∅,1 is the shortest

path from 1 to 0 and trivially f ∗
{1} = P ∗

∅,1 is an optimal network for {1}.

Let V = {1, . . . , t} $ S. Assume that the network f ∗
V is optimal for coalition

V . There exists a shortest path P = P ∗
V,t+1 from player t + 1 to 0 with respect

to length function ℓf∗
V
. We have to prove that f ∗

V ∪{t+1} = f ∗
V ⊕ fP is an optimal

network for coalition V ∪ {t+ 1}. According to Proposition 4.3.2 this can be done

by showing that there is no negative circuit with respect to ℓf∗
V ∪{t+1}

. We prove this

by contradiction.

Assume that C is a negative circuit with respect to ℓf∗
V ∪{t+1}

. By means of C and

P we find a network feasible for coalition V that costs less than f ∗
V , which yields a

contradiction. Recall f ∗
V ∪{t+1} = f ∗

V ⊕fP . Let f̂ be the network arising from f ∗
V ∪{t+1}

by adding the circuit C. Hence, f̂ = f ∗
V ∪{t+1} ⊕ fC and this network can also be

written as f̂ = f ∗
V ⊕ h, with h = fP ⊕ fC . Consequently, for all a ∈ AN0

h(a) =







2 if a is used by both P and C,
1 if a−1 is used by neither P nor C and a is used by either P or C,
0 otherwise.

As a result, netdegreeh(t+ 1) = 1, netdegreeh(0) = −1 and netdegreeh(i) = 0 for all
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i /∈ {0, t+ 1}. Hence, there is a path P̄ ⊆ Ah from t+ 1 to 0. Notice that P̄ is not

necessarily the same path as P . We decompose network h into three 0,1-networks

fP̄ , h1 and h2 such that h = fP̄ + h1 + h2
1 for all a ∈ AN0 . After path P̄ has been

chosen, h1 and h2 are given by

h1(a) =

{

1 if h(a) − fP̄ (a) > 0,
0 otherwise,

h2(a) =

{

1 if h(a) − fP̄ (a) = 2,
0 otherwise,

for all a ∈ AN0 . Note that h1+h2 is a network in which all nodes have netdegree zero.

The costs to obtain network f̂ from network f ∗
V can be computed in two ways:

γ(f̂) − γ(f ∗
V ) =

∑

a∈P

ℓf∗
V
(a) +

∑

a∈C

ℓf∗
V,t+1

(a), (4.2)

and

γ(f̂) − γ(f ∗
V ) =

∑

a∈P̄

ℓf∗
V
(a) +

∑

a∈Ah1

ℓf∗
V
⊕fP̄

(a) +
∑

a∈Ah2

ℓf∗
V
⊕fP̄⊕h1(a). (4.3)

Since P is the shortest path from t + 1 to 0,
∑

a∈P ℓf∗
V
(a) ≤ ∑

a∈P̄ ℓf∗
V
(a). Conse-

quently, combining the fact that C is a negative circuit with respect to ℓf∗
V ∪{t+1}

with

equations (4.2) and (4.3) leads to

∑

a∈Ah1

ℓf∗
V
⊕fP̄

(a) +
∑

a∈Ah2

ℓf∗
V
⊕fP̄⊕h1(a) < 0.

Note that a−1 /∈ P̄ for all a ∈ Ah1. Consequently, by the convexity of γa we obtain

that

ℓf∗
V
(a) ≤ ℓf∗

V
⊕fP̄

(a)

for all a ∈ Ah1 . Furthermore, since P̄ ∩Ah2 = ∅,

ℓf∗
V
⊕fP̄⊕h1(a) = ℓf∗

V
⊕h1(a)

for all a ∈ Ah2 .

1Note that here the regular operation + is used.
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As a result,

γ(f ∗
V ⊕ (h1 + h2)) = γ(f ∗

V ) +
∑

a∈Ah1

ℓf∗
V
(a) +

∑

a∈Ah2

ℓf∗
V
⊕h1(a)

≤ γ(f ∗
V ) +

∑

a∈Ah1

ℓf∗
V
⊕fP̄

(a) +
∑

a∈Ah2

ℓf∗
V
⊕fP̄⊕h1(a)

< γ(f ∗
V ). (4.4)

Since h1 + h2 is a network in which all nodes have netdegree zero, the network

f ∗
V ⊕ (h1 + h2) is feasible for coalition V . Consequently, inequality (4.4) contradicts

the assumption that f ∗
V is optimal for V . �

Example 4.3.5 We illustrate the use of Algorithm 4.3.3 by the convex conges-

tion network situation of Figure 4.2.1. We determine an optimal network for coali-

tion {1, 3} by the use of ordering π = {3, 1, 2}. First of all, path P ∗
3 is given

by ((3, 1), (1, 0)). The shortest path from player 1 to the source given ℓf∗
{3}

is

P ∗
{3},1 = ((1, 3), (3, 0)). Adding this path to f ∗

{3} results in network f ∗
{1,3} with

f ∗
{1,3}(1, 0) = f ∗

{1,3}(3, 0) = 1. Hence, the cost of an optimal network for coalition

{1, 3} is 4. Note that the cost of an optimal network for a coalition is by defini-

tion equal to the cost of this coalition in the direct cost game (N, cd), and hence

cd({1, 3}) = 4.

The optimal network for coalition {1, 3} for this situation is unique, but this is

not a general result. For this convex congestion network situation there are, e.g., two

optimal networks for the grand coalition, being f ∗
N , given by f ∗

N(2, 3) = f ∗
N(3, 1) =

f ∗
N (3, 0) = 1 and f ∗

N (1, 0) = 2, and f̄ ∗
N with f̄ ∗

N(1, 0) = f̄ ∗
N(2, 0) = f̄ ∗

N(3, 0) = 1. We

come back to the issue of multiple optimal networks in Section 4.6. ⊳

4.4 The marginal cost game

In this section we introduce the marginal cost game, which we use to analyse convex

congestion network situations. In order to determine the cost of coalition S ⊆ N one

generally adopts a pessimistic viewpoint. Therefore, for convex congestion network

situations one has to take account of the possibility that the players in N\S are

already using the network. However, this still leaves many options open. The
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most pessimistic view is that the remaining players will try to frustrate S as much

as possible. However, we think it is a fair reference point to assume that N\S
minimises its own cost. Note that this viewpoint implicitly assumes cooperation

between the players in N\S, but since full cooperation is to be expected in the

first place, this is not an unreasonable assumption in order to determine the cost of

coalition S. Since it is the objective of N\S to minimise its own cost a reasonable

approach is to assume that the members of N\S are willing to change their paths

to the source, as long as S compensates them for the additional costs. Note that

this approach incorporates the transferability of utility in the definition of the cost

game. Note also that if an allocation is stable under this approach, it is stable under

every less optimistic approach as well. This reasoning boils down to the idea that if

coalition S forms, it constructs a network that is feasible and optimal for the grand

coalition, and that the complementary coalition N\S pays cd(N\S) to make use of

the network. This idea is formalised by the marginal cost game (N, cGm) (or (N, cm)

if no confusion can occur), which is given by

cGm(S) = cGd (N) − cGd (N\S)

for all S ⊆ N . Note that the idea of duality as used here is well-imbedded in

the game theoretic literature; think, e.g., of bankruptcy games (O’Neill (1982) and

Thomson (2003)). Furthermore, the notion of a dual game is closely related to the

economic concept of subcontracting, as, e.g., discussed by Kamien et al. (1989) and

Spiegel (1993).

Example 4.4.1 We illustrate the idea of the marginal cost game by means of the

convex congestion network situation of Figure 4.2.1. We first consider this situation

without player 2. Hence, only the arcs between players 1 and 3 and the source are

present, and N = {1, 3}. Suppose we would like to determine the cost of coalition

{1} in this situation. We assume that player 3 has been optimally connected to the

source already, by the path ((3, 1), (1, 0)) with cost 2. Then player 1 could use the

direct link, resulting in a cost of 4, or connect himself via node 3, which also costs

4. In our setup coalition {1} has a third option. He can ask player 3 to link himself

directly to the source, making it possible for player 1 to form a less expensive direct

connection. This results in a cost of 1 for himself and a cost of 1 to compensate

player 3. It is straightforward to verify that this leads to a cost for coalition {1}
of cd({1, 3}) − cd({3}) = 4 − 2 = 2. Note that Algorithm 4.3.3 also follows this
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procedure to obtain an optimal network.

Let us now consider the entire situation of Figure 4.2.1, hence including player 2.

All coalitional costs for the direct and marginal cost game associated with this con-

gestion network situation are given in the next table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
cd(S) 1 3 2 5 4 6 10
cm(S) 4 6 5 8 7 9 10

We can determine the direct cost for each coalition by Algorithm 4.3.3. From those

costs the marginal cost game follows immediately. ⊳

Theorem 4.4.2 links the convexity of the congestion network situation to the concav-

ity of the corresponding marginal cost game (N, cm). A cost game (N, c) is concave

if c(S ∪ {i}) − c(S) ≥ c(T ∪ {i}) − c(T ) for all S ⊆ T ⊆ N\{i}. We introduce an

alternative way to denote a path from node i to j. A path from i to j can also be

given by a sequence of nodes, Q(i, j) = (i0, i1, . . . , ip), with i0 = i, ip = j and ir 6= is

for all r, s ∈ {0, . . . , p− 1}, r 6= s. By i ≺Q j we denote that node i is a predecessor

of node j on path Q.

Theorem 4.4.2 Let G = (N, 0, γ) be a convex congestion network situation. Then

the corresponding marginal cost game (N, cm) is concave.

Proof: We prove that (N, cm) is a concave game by showing that the game (N, cd)

is convex. Let S ⊆ N , |S| ≤ n− 2. Algorithm 4.3.3 finds an optimal network with

corresponding costs for a particular coalition by putting players one by one onto the

network. If we assume that the players of coalition S constructed f ∗
S, the next player

i ∈ N\S adds a cost which equals the length of path P ∗
S,i derived by the algorithm.

Let f ∗
S be an optimal network for S. Let i, j ∈ N\S and let T = S∪{i}, with optimal

network f ∗
T . By ℓf(P ) =

∑

a∈P ℓf(a) we denote the length of a path P , given network

f . We construct a path P̄ from j to 0 with the property that ℓf∗
T
(P ∗

T,j) ≥ ℓf∗
S
(P̄ ). As

ℓf∗
T
(P ∗

T,j) = cd(T ∪{j})−cd(T ) and ℓf∗
S
(P̄ ) ≥ ℓf∗

S
(P ∗

S,j) = cd(S∪{j})−cd(S), this re-

sult implies that cd(T ∪{j})−cd(T ) ≥ cd(S∪{j})−cd(S) for every S ⊆ T ⊆ N\{j},
and hence that (N, cd) is convex.
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Let us first assume that there does not exist an arc a ∈ P ∗
T,j such that a−1 ∈ P ∗

S,i.

Then f ∗
T (a) ≥ f ∗

S(a) for all a ∈ P ∗
T,j, which implies by the convexity of γa that

ℓf∗
T
(P ∗

T,j) ≥ ℓf∗
S
(P ∗

T,j). Hence, we can choose P̄ equal to P ∗
T,j.

Secondly, we assume that there does exist an arc a ∈ P ∗
T,j such that a−1 ∈ P ∗

S,i. Let

(k1, ℓ1) be the unique arc on P ∗
T,j with the property that the inverse arc (ℓ1, k1) ∈ P ∗

S,i

and a−1 /∈ P ∗
S,i for all a ≺P ∗

T,j
(k1, ℓ1). We define m1 ∈ Q∗

T,j ∩ Q∗
S,i as the first node

on path Q∗
T,j such that k1 ≺P ∗

T,j
m1 and k1 ≺P ∗

S,i
m1.

Take m1 as the new starting node. If there exist arcs on P ∗
T,j beyond node m1

used by P ∗
S,i in the opposite direction, the arc (k2, ℓ2) is defined similar to the way

we defined arc (k1, ℓ1). Moreover, all nodes kr and mr, r ∈ {1, . . . , R}, are sequen-

tially defined analogously to the definitions of k1 and m1. Note that node mr may

coincide with kr+1 and that mR may be equal to the source, 0. To get an idea how

P ∗
S,i and P ∗

T,j may relate, see Figure 4.4.1.

Define the generalised path2

P̄ = (P ∗
T,j(j, k1), P

∗
S,i(k1, m1), P

∗
T,j(m1, k2), . . . , P

∗
S,i(kR, mR), P ∗

T,j(mR, 0)),

where P (x, y) here specifically denotes the subpath of P from x to y. Let m0 = j,

kR+1 = 0, and let r ∈ {0, . . . , R}. As none of the arcs on P ∗
T,j(mr, kr+1) are taken

by player i in the reverse direction, f ∗
T (a) ≥ f ∗

S(a). Consequently, by the convexity

of γa and the fact that P̄ (mr, kr+1) = P ∗
T,j(mr, kr+1),

ℓf∗
T
(P ∗

T,j(mr, kr+1)) ≥ ℓf∗
S
(P̄ (mr, kr+1)). (4.5)

Now let r ∈ {1, . . . , R}. We show that ℓf∗
T
(P ∗

T,j(kr, mr)) ≥ ℓf∗
S
(P̄ (kr, mr)). None of

the arcs of P ∗
T,j(kr, mr), nor their reversed arcs, are used by player i when traversing

path P ∗
S,i after he arrives at node kr, i.e., {a, a−1} ∩ P ∗

S,i(kr, 0) = ∅ for all a ∈
P ∗

T,j(kr, mr). Hence, if player i would have used P ∗
T,j(kr, mr) to travel from kr to mr,

then the costs would have been exactly ℓf∗
T
(P ∗

T,j(kr, mr)). However, the fact that i

does not choose this option, but uses P ∗
S,i(kr, mr), which coincides with P̄ (kr, mr),

implies that

ℓf∗
T
(P ∗

T,j(kr, mr)) ≥ ℓf∗
S
(P̄ (kr, mr)). (4.6)

2A generalised path may, contrary to a path, contain a circuit.
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Figure 4.4.1: Paths P ∗
S,i (following the arrows) and P ∗

T,j (going in a straight line from
j to 0). Arcs belonging to path P̄ are labelled accordingly.

Combining (4.5) and (4.6) leads to

ℓf∗
T
(P ∗

T,j) ≥ ℓf∗
S
(P̄ ),

which completes the proof. �

4.5 Cost allocation

Since the marginal cost game (N, cm) is concave it has a non-empty core. In this

section we construct and analyse a core element in which players pay for each arc

proportionally to their average usage of the arc in an optimal network.

Let G = (N, 0, γ) be a convex congestion network situation and let S ⊆ N with

optimal network f ∗
S. Let DS = {DS(i)}i∈S be a decomposition of f ∗

S into |S| paths.

A decomposition of an optimal network f ∗
N is denoted by D.

Example 4.5.1 Consider the convex congestion network situation of Figure 4.2.1,

with optimal network f ∗
N given by f ∗

N (2, 3) = f ∗
N(3, 1) = f ∗

N(3, 0) = 1 and f ∗
N(1, 0) =

2. Then D(1) = ((1, 0)), D(2) = ((2, 3), (3, 0)), and D(3) = ((3, 1), (1, 0)) forms a

decomposition of f ∗
N . ⊳

The solution concept we introduce in this section is based upon the following equal

treatment principles:

• every player should only contribute to the cost of the arcs he uses,
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• two players whose paths share some arc should contribute an equal part of the

cost of this arc,

• if there are several path decompositions possible for an optimal network, the

average over all decompositions should be used to allocate the total cost.

The first two principles naturally lead to the idea that the contribution of each player

should only depend on the arcs used by him in an optimal network, and furthermore

that his contribution to the total cost of each arc is proportional to his usage of the

arc. These ideas result in the following cost allocation, given decomposition D of

optimal network f ∗
N :

ψi
D(N, 0, γ; f ∗

N) =
∑

a∈Af∗
N

fD(i)(a)

f ∗
N(a)

γa(f
∗
N (a)) (4.7)

for all i ∈ N . In the remainder we denote this allocation by ψi
D(f ∗

N).

Example 4.5.2 For decompositionD given in Example 4.5.1, ψD(f ∗
N) = (21

2
, 4, 31

2
).

⊳

Lemma 4.5.3 Let G = (N, 0, γ) be a convex congestion network situation with

corresponding marginal cost game (N, cm). Then ψD(f ∗
N) ∈ C(N, cm).

Proof: It follows from the definition that ψD(f ∗
N) is efficient. Let us therefore focus

on the stability constraints of the core. Let S ⊆ N and let f̄ =
∑

i∈S fD(i). Since f̄

is feasible for S we obtain

cd(S) ≤ γ(f̄)

=
∑

a∈Af̄

γa(
∑

i∈S

fD(i)(a))

≤
∑

a∈Af̄

∑

i∈S fD(i)(a)

f ∗
N(a)

γa(f
∗
N(a))

=
∑

i∈S

∑

a∈Af∗
N

fD(i)(a)

f ∗
N (a)

γa(f
∗
N(a))

=
∑

i∈S

ψi
D(f ∗

N ).
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The second inequality follows from the fact that f̄ is a feasible network for coalition

S and the convexity of the cost functions γa. The concluding argument is

∑

i∈S

ψi
D(f ∗

N) =
∑

i∈N

ψi
D(f ∗

N) −
∑

i∈N\S

ψi
D(f ∗

N)

≤ cd(N) − cd(N\S)

= cm(S).

�

Hence, a decomposition of an optimal network gives rise to a core element of the

marginal cost game. However, given an optimal network f ∗
S, the decomposition DS

need not be unique, in the sense that we cannot distinguish which arcs are used by

which players. This is only the case when digraph (N0, Af∗
S
) contains a cycle3.

Example 4.5.4 Let us reconsider the convex congestion network situation of Fi-

gure 4.2.1. Optimal network f ∗
N does not have a unique decomposition, because

this network can be decomposed into both D, which has been considered already

in Example 4.5.1, and D′, with D′(1) = ((1, 0)), D′(2) = ((2, 3), (3, 1), (1, 0)), and

D′(3) = ((3, 0)), resulting in allocation ψD′(f ∗
N) = (21

2
, 41

2
, 3). Note that D and D′

are the only possible decompositions. ⊳

The fact that allocation ψD(f ∗
N) depends on the decomposition chosen gives it a

flavour of arbitrariness. In order to overcome this drawback we use the third equal

treatment principle and introduce, given an optimal network f ∗
N , the allocation

ψ(N, 0, γ; f ∗
N) as the average over all allocations ψD(f ∗

N) that follow from each of

the possible decompositions:

ψ(N, 0, γ; f ∗
N) =

1

|D|
∑

D∈D

ψD(f ∗
N ), (4.8)

with D the set of all path decompositions of an optimal network f ∗
N . In the remainder

we denote this allocation by ψ(f ∗
N).

Theorem 4.5.5 Let G = (N, 0, γ) be a convex congestion network situation with

corresponding marginal cost game (N, cm). Then ψ(f ∗
N) ∈ C(N, cm).

3We say that the digraph (N, A) contains a cycle if the non-directed graph (N, E(A)), with
E(A) = {{i, j} | (i, j) ∈ A or (j, i) ∈ A} contains a cycle.
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Proof: As each allocation ψD(f ∗
N) is an element of the core (Lemma 4.5.3), the

convexity of the core yields that ψ(f ∗
N) is a core element as well. �

Each optimal network f ∗
N gives rise to a unique cost allocation ψ(f ∗

N). However, if a

convex congestion network situation has multiple optimal networks the correspon-

ding cost allocations need not be the same.

Example 4.5.6 Consider the convex congestion network situation of Figure 4.2.1.

For optimal network f ∗
N cost allocation ψ(f ∗

N) is given by ψ(f ∗
N) = 1

2
(21

2
, 4, 31

2
) +

1
2
(21

2
, 41

2
, 3) = (21

2
, 41

4
, 31

4
), and for optimal network f̄ ∗

N we obtain that ψ(f̄ ∗
N) =

(1, 6, 3). ⊳

Since the number of decompositions of an optimal network can grow exponentially,

ψ(f ∗
N) is not polynomially computable by means of its definition. However, ψ(f ∗

N)

can be computed by the following polynomial algorithm.

Algorithm 4.5.7
Input: a convex congestion network situation G = (N, 0, γ),

and an optimal network f ∗
N .

Output: cost allocation ψ(f ∗
N ).

1. Initialise K = N and for all i ∈ N , g(i, i) = 1.

2. Find a node k ∈ K such that
∑

i∈K\{k}

f ∗
N (i, k) = 0.

3. Define for all i ∈ N\K: g(i, k) =
∑

j:(j,k)∈Af∗
N

g(i, j) · f ∗
N (j, k)

outdegreef∗
N (j)

for all k ∈ K\{i}.

4. If K 6= ∅, set K = K\{j} and return to step 2.

5. For all i ∈ N , set ψi(f ∗
N ) =

∑

(j,k)∈Af∗
N

g(i, j) · γj,k(f
∗
N(j, k))

outdegreef∗
N (j)

.

The interpretation of g(i, k) is that it denotes the fraction of all decompositions of

f ∗
N in which agent i visits node k on his way to the root. The complexity of the

third and fifth step of the algorithm is of order O(n2). The complexity of the other

steps is of order O(n). Since steps 2 - 4 are repeated n times, the complexity of the

complete algorithm is of order O(n3).
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Example 4.5.8 We illustrate Algorithm 4.5.7 by the convex congestion network

situation of Figure 4.2.1 and optimal network f ∗
N(2, 3) = f ∗

N (3, 1) = f ∗
N(3, 0) = 1

and f ∗
N(1, 0) = 2.

We start by finding a node k with indegreef∗
N (k) = 0. The only node satisfying

this condition is node 2. The first time that the algorithm visits step 3, this step

is void, as N\K = ∅. We remove node 2 from K. Among all nodes in K node 3

is the only node k such that
∑

i∈K\{k} f
∗
N(i, k) = 0. This time step 2 sets g(2, 3)

to g(2,2)f∗
N (2,3)

outdegree
f∗
N (2)

= 1·1
1

= 1. Indeed, in all (both) decompositions of f ∗
N player 2

visits node 3. Now, node 3 is removed from K and the final visit of step 2 yields

g(2, 1) = g(3, 1) = 1·1
2

= 1
2
, which equals the fraction of decompositions in which

player 2 (3) visits node 1. Step 5 gives

ψ1(f ∗
N) =

g(1, 1) · γ1,0(f
∗
N(1, 0))

outdegreef∗
N (1)

=
1 · 5
2
,

ψ2(f ∗
N) =

g(2, 2) · γ2,3(f
∗
N(2, 3))

outdegreef∗
N (2)

+
g(2, 3) · γ3,1(f

∗
N(3, 1))

outdegreef∗
N (3)

+

+
g(2, 3) · γ3,0(f

∗
N(3, 0))

outdegreef∗
N (3)

+
g(2, 1) · γ1,0(f

∗
N (1, 0))

outdegreef∗
N (1)

=
1 · 1
1

+
1 · 1
2

+
1 · 3
2

+
1
2
· 5
2
,

ψ3(f ∗
N) =

g(3, 3) · γ3,0(f
∗
N(3, 0))

outdegreef∗
N (3)

+
g(3, 3) · γ3,1(f

∗
N(3, 1))

outdegreef∗
N (3)

+
g(3, 1) · γ1,0(f

∗
N(1, 0))

outdegreef∗
N (1)

=
1 · 3
2

+
1 · 1
2

+
1
2
· 5
2
,

which results in ψ(f ∗
N) = (21

2
, 41

4
, 31

4
). Note that this cost allocation coincides with

the allocation ψ(f ∗
N) derived from the definition of equation (4.8), which is a result

formalised in the following proposition. ⊳

Proposition 4.5.9 Let G = (N, 0, γ) be a convex congestion network situation with

optimal network f ∗
N . Then the output of Algorithm 4.5.7 is ψ(f ∗

N ).

Proof: Since f ∗
N is circuit-free, we can rename the players such that N = {1, . . . , n}

and, for all i, k ∈ N , f ∗
N(i, k) > 0 implies that i < k. Note that a decomposition
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D of f ∗
N can be seen as a description telling at each node which player uses which

arc. Consider the description to be decentralised in the sense that at each node j a

decision is made of the following form:

The lowest ranked player using node j is told to continue via some arc (j, k1) with

f ∗
N(j, k1) > 0, the second lowest ranked player is told to continue via arc (j, k2), and

so on. This is done in such a way that f ∗
N(j, k) ranks of players are pointed to arc

(j, k) for all k ∈ {0, j + 1, . . . , n}.

Since decisions in other nodes determine which players visit node j it is clear that

who will be sent from node j whereto does not only depend on decisions in node j.

Nevertheless, all local decisions can in the above way be made independently. As

a result each (global) decomposition determines a unique profile of local decisions

and vice versa. Therefore, the fraction of decompositions for which a player uses arc

(j, k) equals the fraction of decompositions that he visits node j times the fraction

of the visitors of node j that leave j via arc (j, k). Hence, by the third step of the

algorithm we obtain

g(i, k) =
∑

j:(j,k)∈Af∗
N

|{D | i uses arc (j, k)}|
|D|

=
∑

j:(j,k)∈Af∗
N

g(i, j) · f ∗
N(j, k)

outdegreef∗
N (j)

.

By step 5 it follows that

ψi(f ∗
N) =

1

|D|
∑

D∈D

ψD(f ∗
N)

=
∑

(j,k)∈Af∗
N

|{D | i uses arc (j, k)}|
|D| · {average costs of (j, k)}

=
∑

(j,k)∈Af∗
N

g(i, j) · f ∗
N(j, k)

outdegreef∗
N (j)

· γj,k(f
∗
N (j, k))

f ∗
N(j, k)

=
∑

(j,k)∈Af∗
N

g(i, j) · γj,k(f
∗
N (j, k))

outdegreef∗
N (j)

.

�
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4.6 Divisible congestion network situations

In the previous sections we have considered network situations in which players have

to be connected to the source by a single path. However, if we think in the context

of continuous streams of traffic (e.g., data traffic from terminals to a mainframe,

or road traffic from suppliers to a distribution center) a player can divide his unit

of traffic and use several paths to the source. As a consequence, the capacity and

usage of an arc need no longer be integer, and therefore we switch from discrete to

continuous cost functions.

Congestion network situations arising from this relaxed setting are called divisible

congestion network situations and are given by G = (N, 0, γ) in which γa : [0, n] →
R+ is a (weakly) increasing cost function for all a ∈ AN0 , with γa(0) = 0. The set

of all feasible networks for a coalition S ⊆ N is given by

FS =
{

f : AN0 → [0, n]
∣

∣

∣
netdegreef (i) = 1 for all i ∈ S,

netdegreef (i) = 0 for all i ∈ N\S,
f(a) ∈ [0, |S|] for all a ∈ AN0

}

.

Note that although each player has the possibility to use several paths the netdegree

of his node is still one in case he is connected to the source, and zero otherwise. The

corresponding direct divisible network cost game is denoted by (N, cGd ), the marginal

cost game by (N, cGm).

In the remainder of this section we call the congestion network situations in which

players cannot divide their unit of traffic, as discussed in the previous sections,

indivisible congestion network situations. Given a divisible congestion network situ-

ation G = (N, 0, γ), one can find the related indivisible congestion network situation

by restricting the function γa to the domain {0, 1, . . . , n}. The congestion network

situation derived in this way is denoted by G(G).

Proposition 4.6.1 Let G = (N, 0, γ) be a divisible concave congestion network sit-

uation with corresponding indivisible concave congestion network situation G(G).

Then (N, cGd ) = (N, c
G(G)
d ).
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Proof: This result follows from Theorem 4.1 of Quant et al. (2006), stating that for

a indivisible concave congestion network situation4 there exists an optimal network

that is a tree. �

For convex congestion network situations the games (N, cGd ) and (N, c
G(G)
d ) do not

coincide, as is shown by the following example.

Example 4.6.2 Consider the symmetric divisible convex congestion network situ-

ation G of Figure 4.6.1, where x denotes the usage of an arc. The corresponding

1 2

0
source

9x2

3x2

2x2

Figure 4.6.1: A divisible convex congestion network situation

optimal network is given by f ∗
N (1, 0) = f ∗

N(1, 2) = 1
2

and f ∗
N(2, 0) = 3

2
, with a total

cost of 71
2
. However, an optimal network forG(G) is given by f ∗

N(1, 0) = f ∗
N(2, 0) = 1,

with a total cost of 11. ⊳

Since a divisible convex congestion network situation and the related indivisible

convex congestion network situation may have different optimal networks, we discuss

divisible convex congestion network situations in more detail and focus in particular

on the two main results of Sections 4.4 and 4.5.

First of all, we consider the solution concept discussed in Section 4.5. Analogous

to the indivisible setup, for the divisible framework ψD(f ∗
N) can be defined for each

decomposition by (4.7) of optimal network f ∗
N , with ψ(f ∗

N) as the average over all

(extreme) decompositions. However, once an optimal network f ∗
N has been found

we can directly calculate ψ(f ∗
N ) by means of Algorithm 4.5.7 as well.

Example 4.6.3 For the divisible convex congestion network situation of Fi-

gure 4.6.1 ψ(f ∗
N) is given by ψ(f ∗

N ) = (41
2
, 3). ⊳

4Quant et al. (2006) refer to divisible congestion network situations as relaxed congestion
network situations.
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Theorem 4.6.4 Let G = (N, 0, γ) be a divisible convex congestion network situa-

tion with corresponding marginal cost game (N, cGm). Then ψ(f ∗
N) ∈ C(N, cGm).

Proof: The proof of Theorem 4.5.5, stating that ψ(f ∗
N) ∈ C(N, cG), is also valid

to prove that ψ(f ∗
N) ∈ C(N, cG). Consequently, the allocation ψ(f ∗

N ) is situated in

the core of (N, cGm) for divisible convex congestion network situations. �

Note that Theorem 4.6.4 demonstrates the non-emptiness of C(N, cGm). A drawback

of the indivisible setup is that a situation may have multiple optimal networks, e.g.,

the indivisible convex congestion network situation of Figure 4.2.1 has two optimal

networks. As a consequence ψ(f ∗
N ) need not be unique, which implies that an in-

divisible congestion network situation gives in general rise to a set of allocations

ψ(f ∗
N). However, each divisible congestion network situation with strictly convex

cost functions is a strictly convex optimisation problem and therefore has a single

optimal network. As a result ψ(f ∗
N) is unique.

The content of the following theorem is that the marginal cost game associated

with a divisible convex congestion network situation is concave. Its proof is con-

structive in the sense that it provides an algorithm for approximating an optimal

network for divisible convex congestion network situations with arbitrary precision.

The idea is to approximate the situation by an indivisible situation where a player

can send his unit of traffic into z packages of size 1
z
, in which z is considered to

be a large natural number. In order to translate the situation into the settings of

Section 4.4, we regard a player as a group of z agents, each having a whole unit of

traffic, and scale the cost functions accordingly. Theorem 4.4.2 can be applied to

show the concavity of the approximated marginal cost game. By letting z go to infi-

nity we obtain a divisible convex congestion network situation with a corresponding

marginal cost game, which is also concave.

Lemma 4.6.5 Let (N, c) be a concave game. Define (N̄ , c̄), with N̄ = (N\K)∪{∗},
for some K ⊆ N , and

c̄(S) =

{

c(S) if ∗ /∈ S,
c((S\{∗}) ∪K) if ∗ ∈ S.

Then (N̄ , c̄) is concave.
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Proof: Note that (N̄ , c̄) is derived from (N, c) by assuming that coalition K acts

as a single player. The concavity of the game (N, c) implies the concavity of the

game (N̄ , c̄) as for the latter property only a subset of the constraints of the first

has to be satisfied. �

Theorem 4.6.6 Let G = (N, 0, γ) be a divisible convex congestion network situa-

tion. Then the corresponding marginal cost game (N, cGm) is concave.

Proof: The marginal cost game corresponding to G = (N, 0, γ) is given by (N, cGm).

Based on this divisible convex congestion network situation we define a special type

of indivisible convex congestion situation: Gz = (Nz, 0, γ
z), with Nz = {1, . . . , |Nz|}

the finite player set. In this situation there are n regular nodes, forming the set N ,

and for each regular node i ∈ N we add z − 1 nodes, which we call friends of i. We

define Zi = {i}∪ {j | j is a friend of i}. Furthermore, for fixed z, cost function γz
a is

defined such that γz
i,j(r) = γi,j(

r
z
), with i, j ∈ N0, r ∈ {0, . . . , |Nz|}. For each friend

j of a regular node i we define γz
i,j(r) = γz

j,i(r) = 0, and γz
j,k(r) = γz

k,j(r) = r ·M for

all r ∈ {1, . . . , |Nz|} and all k ∈ N0
z \{i, j}, with M sufficiently large.

Due to this construction friend j of regular node i uses a path towards the source

that starts with arc (j, i). From node i, each friend may use a different path, but

note that such a path only visits regular nodes. Let (Nz, c
Gz
m ) be the marginal cost

game corresponding to Gz. By Theorem 4.4.2, for fixed z the game (Nz, c
Gz
m ) is

concave.

By Lemma 4.6.5, the game (N, czm) defined by czm(S) = cGz(
⋃

i∈S Zi), S ⊆ N , is

also concave. Finally, for every S ⊆ N , cGm(S) = limz→∞ czm(S), which implies that

(N, cGm) is concave as well. �



Chapter 5

Cooperative situations:

games and cost allocations

There’s no right, there’s no wrong,
there’s only popular opinion.

Jeffrey Goines, Twelve Monkeys (1995)

5.1 Introduction

In this chapter we discuss several classes of cooperative situations. A cooperative

situation typically involves a group of players that can choose from a set of al-

ternatives, where each alternative results in a cost for the (group of) players. A

cooperative situation gives rise to two main questions; which alternative should be

realised and how should the costs of this alternative be divided? In this chapter we

focus on the latter question. We assume that there is a general consensus that in

principle total costs should be minimised and therefore, transferable utility games

might help to solve this question. However, in general it is not obvious which trans-

ferable utility game best fits the situation. It is clear what the cost of the grand

coalition should be; simply the total costs of the cheapest alternative. The worth

of a proper subcoalition should somehow reflect its costs when its members would

separate from the grand coalition and decide not to cooperate with players outside

the coalition. But how will the other players (re)act? Should they be treated as if

they were not there? Should the subcoalition fear the worst-case scenario in which

the outsiders act as unfavorably as possible? Or can the subcoalition expect that

the complementary coalition just ignores them and simply minimises their own costs?

97
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In this chapter we present a general model that can be used as a guidance to obtain

an appropriate transferable utility game for several classes of cooperative situations.

This approach is based upon the idea that a cooperative situation can be represented

by a corresponding order problem. An order problem consists of three elements: the

player set of the underlying cooperative situation, the set of all possible orderings of

the player set and an individualised cost function that describes for each ordering

of the player set the corresponding cost for every player.

We discuss two types of order problems. In a positive externality order problem

the minimum cost for each group of players is obtained for an ordering in which

the group is “served” last. In an order problem we say that a player is “served” if

it is his turn to act, e.g., make a connection or choose a machine. In a negative

externality order problem the minimum cost for each group of players obtained for

an ordering in which they are served first. We argue that each positive externality

order problem is appropriately modelled by the so called direct cost game in which

the players of a coalition are served first. Furthermore, we argue that each negative

externality order problem is appropriately modelled by the dual of the direct cost

game, called the marginal cost game.

Hence, whenever the descriptions of a cooperative situation and the correspon-

ding order problem are closely related, the game by which this order problem is

appropriately modelled seems a good fit for the cooperative situation itself. Since

the representation of a cooperative situation is a modelling decision, it may depend

on one’s personal view whether the cooperative situation and the corresponding

order problem essentially describe the same cost allocation problem. We provide

examples of several classes of cooperative situations in which we think our model is

adequate. We also discuss why for some classes of cooperative situations the order

problem framework does not give an appropriate transferable utility game.

Besides presenting a model that can be used to find appropriate transferable utility

games for cooperative situations, we also focus on finding core elements of these

transferable utility games. For this we also associate each order problem with a

minimal and a maximal cost game. In the minimal cost game the cost of a coali-

tion equals the cost corresponding to the cheapest ordering for the players of that

coalition according to the individualised cost function of the associated order prob-

lem. The maximal cost game is the dual of the minimal cost game. Furthermore,

we associate with each order problem a generalised Bird solution that is inspired
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by Bird’s tree solution (Bird (1976)) for the class of minimum cost spanning tree

situations (Claus and Kleitman (1973) and Bird (1976)), in the sense that each

player contributes his individual cost in the optimal ordering for the grand coali-

tion. We show that for each order problem the associated generalised Bird solution

is an element of the core of the associated maximal cost game. This result is useful

in several instances, e.g., for providing an alternative proof of the result that the

P -value (Branzei et al. (2004)) is an element of the core of the cost game proposed

by Bird (1976) for the class of minimum cost spanning tree situations.

Moreover, it can be used to show that for each negative externality order prob-

lem the associated generalised Bird solution is in the core of the associated marginal

cost game. And for each positive externality order problem that satisfies predecessor

order independence, which means that individual costs only depend on the set of

predecessors and not on their exact ordering, the associated generalised Bird solu-

tion is an element of the core of the associated direct cost game.

We also show that a cooperative situation cannot only be represented by an or-

der problem, but also by an alternative problem. An alternative problem consists

of three elements: the player set of the underlying cooperative situation, a set of

alternatives and an individualised cost function that describes for each alternative

the corresponding cost for every player. The alternative problem framework is not

used to find appropriate transferable utility games for the underlying cooperative

situation, but only to generalise the minimal and maximal cost game, as well as

the generalised Bird solution to this framework. We show that for each alternative

problem the associated generalised Bird solution is an element of the core of the as-

sociated maximal cost game. This result is useful, e.g., for providing an alternative

proof of the result that Bird’s tree solution is in the core of the cost game proposed

by Bird for the class of minimum cost spanning tree situations.

We apply our findings to several classes of cooperative situations. We first discuss

the class of sequencing situations without initial order (Klijn and Sánchez (2006)).

By the order problem framework we introduce an appropriate transferable utility

game for such situations. Moreover, we show that the generalised Bird solution is

a core element of this game. We also show that the core of our transferable utility

game is a subset of the core of the two games proposed by Klijn and Sánchez (2006).

After that we consider the class of minimum cost spanning tree situations. We
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provide alternative proofs of the results that Bird’s tree solution and the P -value

are in the core of the associated cost game proposed by Bird. Moreover, the order

problem framework supports the use of this game to model minimum cost spanning

tree situations.

Then we introduce and discuss the class of permutation situations without initial

order. Permutation situations are introduced by Tijs et al. (1984), who assume that

there is an initial allocation of machines to players and that a coalition of players

can interchange their machines between them. We assume on the contrary that

there is no initial allocation of machinery. For this class of cooperative situations

we propose a suitable transferable utility game and show that the generalised Bird

solution is an element in the core of this game.

At that point we reconsider the public congestion network situations, discussed

in Chapter 4. In Chapter 4 we associated with each congestion network situation a

direct and a marginal cost game. To distinguish between these two games and the

notions of direct and marginal cost games we discuss in this chapter, the direct and

marginal cost game associated with a congestion network situation are in this chap-

ter called the direct congestion cost game and the marginal congestion cost game.

For public congestion network situations with convex cost functions we provide an

alternative proof to show that the solution concept ψ(f ∗
N) as defined in Chapter 4 is

an element of the core of the associated marginal congestion cost game. Secondly, we

use the order problem framework to show that the Shapley value (Shapley (1953))

is also in the core of this cost game. Finally, it is seen that the order problem frame-

work supports the use of the marginal congestion cost game for convex congestion

network situations.

For the class of public congestion network situations with concave cost functions

we argue that there is no order problem that suits this situation. Consequently, the

order problem framework does not help to find an appropriate transferable utility

game for this class of cooperative situations. A different type of modelling problem

arises for the class of travelling salesman problems (Potters et al. (1992)), where

potentially suitable order problems are shown to be neither positive nor negative

externality order problems. The same problem arises even more prominently for the

closely related class of shared taxi problems, a new class of cooperative situations

introduced in this chapter.

Finally, we discuss the class of travelling repairman problems. These problems

are considered by Afrati et al. (1986), but we introduce the associated cost allo-
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cation problem. In a travelling repairman problem the objective is to find a tour

visiting all players such that the total waiting time of the players is minimised. We

argue by the use of the order problem framework to model these situations by the

associated marginal cost game of which we discuss several properties. Furthermore,

we also introduce two context-specific single-valued solution concepts and discuss

their properties.

The structure of this chapter is as follows. In Section 5.2 we present the order

problem framework that can be used as a guidance to obtain appropriate transfer-

able utility games for classes of cooperative situations. For this we associate with

each order problem a direct and a marginal cost game. Moreover, we introduce for

each order and alternative problem the generalised Bird solution and show that it

is an element of the core of the associated maximal cost game, the dual of the min-

imal cost game. In the remainder of this chapter we apply both the order problem

framework and the results with respect to the generalised Bird solution to several

classes of cooperative situations, being sequencing situations without initial order

(Section 5.3), minimum cost spanning tree situations (Section 5.4), permutation si-

tuations without initial allocation (Section 5.5), convex public congestion network

situations (Section 5.6), concave public congestion network situations (Section 5.7),

travelling salesman problems (Section 5.8), shared taxi problems (Section 5.9) and

travelling repairman problems (Section 5.10).

5.2 A general model

5.2.1 Appropriate TU-games

In this section we present a model that can be used as a guidance to find appro-

priate TU-games for several classes of cooperative situations. Generally speaking,

a cooperative situation consists of an operations research problem in which various

decision makers (players) are involved in a joint cost minimisation problem. Well-

known examples of cooperative situations are, e.g., a travelling salesman problem

or a minimum cost spanning tree situation.

Such a cooperative situation, which we in general denote by Υ, can often be rep-

resented by an order problem. An order problem ΩΥ representing a cooperative sit-

uation Υ is given by ΩΥ = (N,Π, k), with N the finite player set (of the cooperative

situation Υ), and Π the set of orderings of the player set, with π : {1, . . . , n} → N
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an ordering. Further, k : Π → RN is an individualised cost function, denoting for

each player i ∈ N an individual cost ki(π) for each ordering π ∈ Π.

The idea is to represent Υ in such a way by ΩΥ that the underlying costs are

reflected by cost function k, while this cost function is based upon orderings of the

player set. Note that an order problem ΩΥ is a stylised representation of a coopera-

tive situation Υ and that choosing this representation is a modelling decision.

The choice of the individualised cost function plays a fundamental role in this rep-

resentation. In theory this function does not have to fulfill any requirements, but

in this thesis we only define individualised cost functions for which the sum of the

individualised costs associated with an ordering equals the total cost of the resulting

alternative.

Furthermore, our idea is that an order problem can only adequately represent the

underlying cooperative situation if the individualised cost function does not involve

cooperation or reallocation of costs. By this we mean that whenever it is a player’s

turn to act he, first of all, cannot change anything “created” by his predecessors, and

secondly, he should act like he has no followers, which implies that he must create a

feasible solution for the group of players consisting of himself and his predecessors.

Consequently, each player acts as an individual.

Of course it depends on the cooperative situation under consideration what the

exact implication of this idea is. In the context of minimum cost spanning tree this

implies, e.g., that a player cannot change the tree created by his predecessors, but

also that he has to connect himself to the source (possibly using the already created

tree), as he cannot act on followers eventually connecting him to the source.

Recall that ΠS ⊆ Π denotes the set of all orderings π ∈ Π such that the play-

ers in S ⊆ N are placed on the first |S| positions. For order problem ΩΥ = (N,Π, k)

we define the associated direct cost game (N, cΥd ) by

cΥd (S) = min
π∈ΠS

∑

i∈S

ki(π) (5.1)

for all S ⊆ N . Hence, in the direct cost game a coalition that is formed is “served”

first. It can optimise their sequence in the first |S| positions of the ordering, but

cannot use the positions in the last part of the ordering. Furthermore, we define the

associated marginal cost game (N, cΥm) as the dual of the direct cost game, i.e.,

cΥm(S) = cΥd (N) − cΥd (N\S) (5.2)
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for all S ⊆ N . The cost of coalition S in the marginal cost game reflects the addi-

tional or marginal cost it causes the grand coalition by its presence.

Given a cooperative situation Υ the coalitional costs of an associated TU-game

should be based on what a group of players, S ⊆ N , can guarantee itself when its

members would separate from the grand coalition and decide not to cooperate with

players outside the coalition, N\S. In this section we discuss two classes of order

problems and argue that one class is appropriately modelled by the direct cost game,

while the other is suited for the marginal cost game.

Given an order problem ΩΥ = (N,Π, k) we denote by π∗
S ∈ arg minπ∈Π

∑

i∈S k
i(π)

a cheapest or optimal ordering1 for coalition S ⊆ N .

Definition Order problem ΩΥ = (N,Π, k) is a negative externality order problem

(neop) if for all S ⊆ N there exists a

π∗
S ∈ ΠS. (5.3)

Order problem ΩΥ = (N,Π, k) is a positive externality order problem (peop) if for

all S ⊆ N there exists a

π∗
S ∈ ΠN\S. (5.4)

Hence, in a neop each group of players prefers to be served first, while for a peop

each group of players wants to be served last.

Since in a peop each group of players prefers to be served last, the cost of coali-

tion S is minimal for an order in which all players in N\S are served before all

players in S. As it is reasonable to assume that a coalition formed does not benefit

from the presence of other players we suggest to model any peop by the direct cost

game, because in that game the players in S are served first.

Next we consider how to define the cost of coalition S ⊆ N for a neop. In that

case each group of players, and hence also N\S, prefers to be served first. Therefore,

the direct cost game, in which the players in S are served first, is in our opinion not

1Given an order problem ΩΥ = (N, Π, k) an optimal ordering π∗

S for coalition S ⊆ N need not
be unique. However, for expositional purposes we assume in this chapter that π∗

S is unique unless
mentioned otherwise. All results are valid if optimal orderings are not unique.
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suitable for such order problems, as it does not reflect what S can guarantee itself.

It even leads to the minimal attainable cost for S. Hence, for a neop one has to

take account of the possibility that the players in N\S are served first. However,

this still leaves many options open. The most pessimistic view is that N\S will try

to frustrate S as much as possible. However, we think it is a fair reference point

to assume that N\S minimises its own cost. Note that this viewpoint implicitly

assumes cooperation between the players in N\S, but since full cooperation is to

be expected in the first place, this is not an unreasonable assumption in order

to determine the cost of coalition S. The notion that the objective of N\S is to

minimise its cost further leads to the idea that the players in S can alter the ordering

preferred by N\S as long as S compensates N\S for additional costs incurred due

to the deviation from their optimal ordering. Based on this insight coalition S has

to decide on an ordering that minimises the sum of the cost of its own players plus

the compensation for the players in N\S. This idea boils down to the marginal cost

game.

Note that a TU-game is used as a reference point for dividing the worth of the

grand coalition among the players of the game. Therefore, we claim that the explicit

use of transferable utility in the definition of a TU-game itself is justified.

5.2.2 Core elements

Order problems

For the purpose of finding core elements of the appropriate TU-games of a co-

operative situation we introduce two additional TU-games. For order problem

ΩΥ = (N,Π, k) we define the associated minimal cost game (N, cΥ−) by

cΥ−(S) = min
π∈Π

∑

i∈S

ki(π) (5.5)

for all S ⊆ N . Hence, for each coalition, S ⊆ N , the minimal cost game denotes the

sum of the individual cost of the players in S in the cheapest ordering π ∈ Π for S.

Therefore, cΥ−(S) =
∑

i∈S k
i(π∗

S) for all S ⊆ N . For order problem ΩΥ = (N,Π, k)

the associated maximal cost game (N, cΥ+) is defined as the dual of the minimal cost

game, i.e.,

cΥ+(S) = cΥ−(N) − cΥ−(N\S) (5.6)

for all S ⊆ N .
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Remark 5.2.1 Let ΩΥ = (N,Π, k) be a neop. Then the associated direct cost

game (N, cΥd ) and minimal cost game (N, cΥ−) coincide. As a consequence, also the

associated marginal cost game (N, cΥm) and maximal cost game (N, cΥ+) coincide.

We define the generalised Bird solution β associated with order problem ΩΥ such

that each player contributes his individual cost according to the optimal alternative

for the grand coalition. Hence, this solution is defined by

βi = ki(π∗
N ) (5.7)

for all i ∈ N . The solution β is called the generalised Bird solution, because it

is a generalisation of the Bird solution (Bird (1976)) as defined for minimal cost

spanning tree situations. These situations are extensively discussed in Section 5.4.

Theorem 5.2.2 Let ΩΥ = (N,Π, k) be an order problem with associated maximal

cost game (N, cΥ+). Then β ∈ C(N, cΥ+).

Proof: By definition β is efficient. Furthermore,

cΥ+(S) = cΥ−(N) − cΥ−(N\S)

=
∑

i∈N

ki(π∗
N ) −

∑

i∈N\S

ki(π∗
N\S)

≥
∑

i∈N

ki(π∗
N ) −

∑

i∈N\S

ki(π∗
N )

=
∑

i∈S

ki(π∗
N )

=
∑

i∈S

βi.

�

By Remark 5.2.1, we immediately obtain the next result.

Corollary 5.2.3 Let ΩΥ = (N,Π, k) be a neop with associated marginal cost game

(N, cΥm). Then β ∈ C(N, cΥm).

Hence, for each neop the associated generalised Bird solution is an element of the

core of the associated marginal cost game. Since we propose to model neops by
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the marginal cost game, β is a reasonable single-valued solution concept for such

order problems. A similar result, placing the generalised Bird solution in the core of

the direct cost game associated with a peop, requires an additional condition. This

condition, which is called predecessor order independence, boils down to the idea

that the ordering of the predecessors of each player is irrelevant for his individual

cost. Let ΩΥ = (N,Π, k) be an order problem and let V i(π) = {j ∈ N |π−1(j) <

π−1(i)} denote the set of predecessors of player i given ordering π ∈ Π. Then

ΩΥ = (N,Π, k) satisfies predecessor order independence (poi) if, for all i ∈ N ,

ki(π) = ki(π̄) (5.8)

for all π, π̄ ∈ Π such that V i(π) = V i(π̄).2

Theorem 5.2.4 Let ΩΥ = (N,Π, k) be a peop that satisfies poi and let (N, cΥd ) be

the associated direct cost game. Then β ∈ C(N, cΥd ).

Proof: From the definition it follows that β is efficient. Let S ⊆ N and let

π̂∗
S = arg minπ∈ΠS

∑

i∈S k
i(π). We define π̃N such that π̃N (t) = π̂∗

S(t) for all t ∈
{1, . . . , |S|} and π̃N(t) = π∗

N\S(t) for all t ∈ {|S| + 1, . . . , n}. Note that since

ΩΥ = (N,Π, k) is a peop that satisfies poi such an ordering exists. Then,

cΥd (S) =
∑

i∈S

ki(π̂∗
S)

≥
∑

i∈S

ki(π̂∗
S) +

∑

i∈N\S

ki(π∗
N\S) −

∑

i∈N\S

ki(π∗
N)

=
∑

i∈N

ki(π̃N) −
∑

i∈N\S

ki(π∗
N)

≥
∑

i∈N

ki(π∗
N) −

∑

i∈N\S

ki(π∗
N)

=
∑

i∈S

ki(π∗
N)

=
∑

i∈S

βi.

�

2Note that predecessor order independence implies that the cost of a player is also not influenced
by the order of his followers. Although this is no formal requirement of an individualised cost
function in this thesis we only use individualised cost functions for which this is satisfied. Therefore,
the focus of this property is on the independence of the individualised costs on the ordering of the
predecessors of a player.
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Alternative problems

Let Υ be a cooperative situation. An alternative problem ΛΥ representing coope-

rative situation Υ is given by ΛΥ = (N,A, k), with N the finite player set (of the

underlying cooperative situation), A a finite set of alternatives and k : A → RN

an individualised cost function denoting for each alternative α ∈ A a corresponding

cost ki(α) for every player i ∈ N . Note that with A = Π we return to the or-

der problem framework. The main difference between these two types of problems

is that for the order problem framework an alternative is the result of a sequence

of individual choices, while in the alternative problem framework an alternative is

immediately chosen. The definitions of a neop and peop, as well as the definition

of the direct and marginal cost game are based upon orderings of the player set

and can therefore not be used in this framework. Consequently, we do not use this

framework to find appropriate TU-games. However, the minimal and maximal cost

game, as well as the generalised Bird solution are straightforwardly generalised to

the alternative problem framework, which implies that this framework can be used

to find core elements of (these) TU-games.

For alternative problem ΛΥ = (N,A, k) we define the associated minimal cost

game (N, cΥ−) by

cΥ−(S) = min
α∈A

∑

i∈S

ki(α) (5.9)

for all S ⊆ N . The associated maximal cost game (N, cΥ+) is defined as the dual of

the minimal cost game, i.e.,

cΥ+(S) = cΥ−(N) − cΥ−(N\S) (5.10)

for all S ⊆ N . By α∗
S ∈ arg minα∈A

∑

i∈S k
i(π) we denote a cheapest or optimal

alternative3 for coalition S ⊆ N . Hence, the generalised Bird solution is defined by

βi = ki(α∗
N) (5.11)

for all i ∈ N .

3Given an alternative problem ΛΥ = (N,A, k) an optimal alternative α∗

S for coalition S ⊆ N

need not be unique. However, for expositional purposes we assume in this chapter that α∗

S is
unique unless mentioned otherwise. All results are valid if optimal alternatives are not unique.
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Theorem 5.2.5 Let ΛΥ = (N,A, k) be an alternative problem with associated

maximal cost game (N, cΥ+). Then β ∈ C(N, cΥ+).

Proof: By definition β is efficient. Furthermore,

cΥ+(S) = cΥ−(N) − cΥ−(N\S)

=
∑

i∈N

ki(α∗
N) −

∑

i∈N\S

ki(α∗
N\S)

≥
∑

i∈N

ki(α∗
N) −

∑

i∈N\S

ki(α∗
N)

=
∑

i∈S

ki(α∗
N)

=
∑

i∈S

βi.

�

5.3 Sequencing situations without initial order

The first class of cooperative situations we consider in this chapter is the class of se-

quencing situations without initial order. Sequencing situations are, e.g., discussed

in Smith (1956). The cost allocation problem associated with sequencing situations

(with initial order) has been introduced by Curiel et al. (1989), but the cost alloca-

tion problem of the current class is first discussed in a more recent paper by Klijn

and Sánchez (2006). We provide a natural way to represent a sequencing situation

without initial order by a corresponding order problem, which is in our opinion a

good representation of the underlying class of cooperative situations. We show that

this order problem is a neop and use this result to argue to model this class of co-

operative situations by the marginal cost game associated with the order problem.

Furthermore, we observe by the use of Corollary 5.2.3 that the generalised Bird

solution associated with the order problem is an element of the core of this game,

and compare the marginal cost game with the cost games proposed by Klijn and

Sánchez (2006).

A sequencing situation without initial order is given by a triple4 Q = (N, p, δ),

4Klijn and Sánchez (2006) use the notation (N, p, α).
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with N the finite set of players. Each player i ∈ N owns one job that has to be

processed on a single machine. The job of player i is with slight abuse of notation

also denoted by i. The processing times of the jobs are given by p = (pi)i∈N with

pi > 0 for all i ∈ N . Furthermore, each player has a cost function ci : [0,∞) → R
given by ci(t) = δit, t ∈ [0,∞), where δi > 0. The expression ci(t) is interpreted as

the cost incurred by agent i if his job is completed at time t. The optimal ordering

of jobs for the grand coalition is obtained by putting them in non-decreasing order

of their urgency indices (Smith (1956)), which are defined as ui = δi

pi for all i ∈ N .

Next we represent a sequencing situation without initial order by a corresponding

order problem. Under the assumption that only active schedules are considered,

meaning that the jobs are processed without any breaks in between, the cost of

player i is completely determined by an ordering of the player set π ∈ Π. Therefore,

the natural cost function c can alternatively be given by ci(π) = δi
∑

j∈V i(π)∪{i} p
j

for all i ∈ N and all π ∈ Π. Consequently, a sequencing situation without initial

order Q = (N, p, δ) can be represented by order problem ΩQ = (N,Π, c), with N

the finite player set, Π the set of orderings of the player set and c : Π → RN , with

ci(π) = δi
∑

j∈V i(π)∪{i} p
j for all i ∈ N and all π ∈ Π. Note that all information

contained in cooperative situation Q = (N, p, δ) is also contained in order problem

ΩQ = (N,Π, c), and that they describe the same cost allocation problem. The di-

rect (N, cQd ) and marginal cost game (N, cQm), as well generalised Bird solution β are

straightforwardly given by (5.1), (5.2) and (5.7), respectively. Since each coalition

has the lowest cost when served first we obtain the following proposition.

Proposition 5.3.1 Order problem ΩQ = (N,Π, c) is a neop.

Hence, order problem ΩQ = (N,Π, c) is appropriately modelled by the associated

marginal cost game (N, cQm). And since this order problem suits a sequencing situa-

tions without initial orderQ = (N, p, δ), we suggest to model this class of cooperative

situations by this marginal cost game. Since ΩQ is a neop (Proposition 5.3.1) the

following result follows by Corollary 5.2.3.

Proposition 5.3.2 Let ΩQ = (N,Π, c) be the order problem corresponding to se-

quencing situation without initial order Q = (N, p, δ) and let (N, cQm) be the associ-

ated marginal cost game. Then β ∈ C(N, cQm).
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Next we compare the marginal cost game to the cost games proposed by Klijn and

Sánchez (2006) to model sequencing situations without initial order. In the tail

game (N, cQtail) it is assumed that the players in N\S are served first and then the

players in S can optimise their sequence in the tail of the ordering. This game is,

given our formulation, defined by

cQtail(S) = min
π∈ΠN\S

∑

i∈S

ci(π)

for all S ⊆ N .

Proposition 5.3.3 Let Q = (N, p, δ) be a sequencing situation without initial order,

with corresponding tail game (N, cQtail). Let ΩQ = (N,Π, c) be the corresponding order

problem with associated marginal cost game (N, cQm). Then C(N, cQm) ⊆ C(N, cQtail).

Proof: Since a coalition S ⊆ N has the option to also use the first part of the

sequence in the marginal cost game, it follows that cQm(S) ≤ cQtail(S) for all S ⊆ N ,

with equality for S = N , which shows that C(N, cQm) ⊆ C(N, cQtail). �

Klijn and Sánchez (2006) also introduce a pessimistic game (N, cQpess) of which they

show in Proposition 3.3 of their paper that C(N, cQtail) ⊆ C(N, cQpess) for each se-

quencing situation without initial order. Therefore, the core of the marginal cost

game is also a subset of the core of the pessimistic game. This implies that any

allocation stable under the marginal cost game approach is also stable under the

two approaches of Klijn and Sánchez (2006). Moreover, since the generalised Bird

solution is an element of the core of the marginal cost game (Proposition 5.3.2),

such a stable allocation exists.

5.4 Minimum cost spanning tree situations

In this section we consider minimum cost spanning tree, or mcst, situations (Claus

and Kleitman (1973) and Bird (1976)). By the use of the order and alternative prob-

lem formulation and Theorems 5.2.2, 5.2.4 and 5.2.5 we provide alternative proofs

of the results that the Bird solution and the P -value are in the core of the cost game

proposed by Bird. Furthermore, the order problem formulation supports the use of

this game for mcst situations.
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Formally, a minimum cost spanning tree situation is a triple5 M = (N, 0, γ), with N

the finite player set, 0 the source, and γ : EN0 → R+ a non-negative cost function

specifying the cost to construct edge e ∈ EN0 . An edge is also denoted by (j, ℓ),

with j, ℓ ∈ N0. Bird (1976) associates with each mcst situation M = (N, 0, γ) co-

operative cost game (N, cM), where cM(S), S ⊆ N , represents the minimal cost of

a tree on S ∪ {0}:

cM(S) = min{
∑

e∈R

γ(e) |R ⊆ ES∪{0} and (S ∪ {0}, R) is a tree}

for all S ⊆ N .

Let the minimum cost spanning tree for the grand coalition N be given by

(N ∪ {0}, R∗) and let ei, for all i ∈ N , be the first edge on the unique path in

(N ∪ {0}, R∗) from player i to the source. Then Bird’s tree solution6 β̇ is obtained

by assigning to each player i ∈ N the cost of ei, hence

β̇i = γ(ei)

for all i ∈ N .

5.4.1 Alternative problem

Since orderings of the player set are not explicitly or implicitly included in the de-

scription of an mcst situation it is not straightforward to represent an mcst situation

by an order problem. More natural is it to represent mcst situation M = (N, 0, γ)

by alternative problem ΛM = (N,A, k), with N the finite player set and A the

set of all spanning trees on N0. Further, we define the individualised cost function

k : A → RN by ki(α) = γ(ei(α)), where ei(α) denotes the first edge on the unique

path in spanning tree α ∈ A from player i to the source.

The minimal (N, cM− ) and maximal cost game (N, cM+ ), as well as the generalised

Bird solution β are straightforwardly given by (5.9), (5.10) and (5.11), respectively.

A careful inspection leads to the conclusion that the coalitional costs for S ⊆ N

according to the minimal cost game equal the additional costs for coalition S to

build a tree on N0, given that the players in N\S constructed a tree on N0\S.

5Usually, the notation (N, 0, t) is used.
6We denote this solution by β̇ instead of β to distinguish between this solution concept and the

generalised Bird solution defined in Section 5.2.
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Therefore (N, cM− ) is equivalent to the ‘optimistic TU-game’ of Bergantiños and

Vidal-Puga (2007).

Lemma 5.4.1 Let M = (N, 0, γ) be an mcst situation with corresponding alterna-

tive problem ΛM = (N,A, k). Then β̇ = β.

Proof: Let α∗
N be a minimum cost spanning tree. Then

β̇i = γi(ei(α∗
N))

= ki(α∗
N)

= βi

for all i ∈ N . �

Note that both β and β̇ depend on the minimum cost spanning tree under conside-

ration.

Example 5.4.2 Consider the mcst situation of Figure 5.4.1.

1 3

2

0
source

4

5

3

2

6

1

Figure 5.4.1: A minimal cost spanning tree situation
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The coalitional costs for the games (N, cM), (N, cM− ) and (N, cM+ ) are given in the

table below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
cM(S) 4 5 6 5 6 8 7
cM− (S) 1 1 2 3 3 3 7
cM+ (S) 4 4 4 5 6 6 7

Note once more that cM(S) denotes the cost to form a tree on S ∪ {0}. Hence,

cM({1, 2}) = 5, because coalition {1, 2} can use the edges (1, 0) and (2, 1) to form

a tree on {0, 1, 2}. The cost for coalition S according to the minimal cost game

reflects the cost to build a tree on N0, given that there is a tree on N0\S. Hence,

coalition {1, 2} only has a cost of 3 to connect itself to the nodes of the set {0, 3},
as players 1 and 2 can use the edges (2, 1) and (1, 3) for this. The individual costs

for the corresponding tree α ∈ A are given by k(α) = (2, 1, 6).

The minimum cost spanning tree, α∗
N ∈ A, consists of the edges (1, 0), (2, 1) and

(3, 1), which leads to β = (4, 1, 2). ⊳

Lemma 5.4.3 Let M = (N, 0, γ) be an mcst situation with associated cost game

(N, cM). Let ΛM = (N,A, k) be the corresponding alternative problem with associ-

ated maximal cost game (N, cM+ ). Then C(N, cM+ ) ⊆ C(N, cM).

Proof: Since
∑

i∈N k
i(α∗

N) is the cost of the minimum cost spanning tree it is clear

that cM(N) = cM+ (N). Hence, it remains to be shown that cM+ (S) ≤ cM(S) for all

S ⊆ N . Let S ⊆ N . Then

cM+ (S) = cM− (N) − cM− (N\S)

≤ min
α∈A

{
∑

i∈N

ki(α) | (S ∪ {0},
⋃

i∈S

ei(α)) is a tree} − cM− (N\S)

= cM(S) + cM− (N\S) − cM− (N\S)

= cM(S),

where the second equality follows from the fact that minα∈A{
∑

i∈N k
i(α) | (S ∪

{0},⋃i∈S e
i(α)) is a tree} equals the minimum cost to build a tree on S∪{0} (cM(S))

plus the minimum cost to build a tree on N0 given that there is a tree on S ∪ {0}
(cM− (N\S)). �
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We are now ready to provide an alternative proof of the result that Bird’s tree

solution is in the core of the game (N, cM). The original result is due to Bird

(1976).

Theorem 5.4.4 Let M = (N, 0, γ) be an mcst situation with associated cost game

(N, cM). Then β̇ ∈ C(N, cM).

Proof: Let ΛM = (N,A, k) be the alternative problem corresponding to M =

(N, 0, γ). By Lemma 5.4.1, β̇ = β. Further, by Theorem 5.2.5, β̇ ∈ C(N, cM+ ).

Finally, by Lemma 5.4.3, β̇ ∈ C(N, cM). �

5.4.2 Order problem 1

Since the cost function of an alternative problem is not based upon orderings of

the player set conditions (5.3) and (5.4) cannot be used to obtain an appropriate

TU-game to model alternative problem ΛM , and therefore also no suggestion can

be given for the use of a TU-game for the underlying mcst situation. For this we

require an order problem formulation. Since orderings are not part of the underlying

cooperative situation an algorithm based upon such orderings is necessary for this

representation.

Let M = (N, 0, γ) be an mcst situation. We represent M = (N, 0, γ) by order

problem Ω̃M = (N,Π, k̃), with N the finite player set, Π the set of orderings of N

and k̃ : Π → RN such that it represents the minimal cost for a player to connect

his node to the source (possibly via other nodes) given the tree constructed by his

predecessors. Formally, k̃i(π) = min(i,j)∈E
N0

{

γ(i, j)
∣

∣

∣
j ∈ {V i(π) ∪ {0}}

}

for all

i ∈ N and π ∈ Π. Note that this procedure is based upon Prim’s algorithm (Prim

(1957)) to obtain a minimum cost spanning tree.

The associated direct (N, c̃Md ), minimal (N, c̃M− ) and maximal cost game (N, c̃M+ ),

as well as the generalised Bird solution β̃ are given by (5.1), (5.5), (5.6) and (5.7),

respectively.

Lemma 5.4.5 Let M = (N, 0, γ) be an mcst situation with corresponding order

problem Ω̃M = (N,Π, k̃). Then β̇ = β̃.

Proof: Let ΛM = (N,A, k) be the alternative problem corresponding to M =

(N, 0, γ).
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Then

βi = ki(α∗
N)

= k̃i(π∗
N )

= β̃i

for all i ∈ N . Hence, β = β̃. By Lemma 5.4.1, β̇ = β, which completes the proof. �

Lemma 5.4.6 Order problem Ω̃M = (N,Π, k̃) satisfies poi.

Proof: Let i ∈ N and π ∈ Π. Since k̃i(π) is only based upon the set of predecessors

of player i, V i(π), and not on their ordering, k̃ satisfies equality (5.8). Hence,

Ω̃M = (N,Π, k̃) satisfies poi. �

Proposition 5.4.7 Order problem Ω̃M = (N,Π, k̃) is a peop.

Proof: Let i ∈ N . Since k̃i(π) = min(i,j)∈E
N0

{

γ(i, j)
∣

∣

∣
j ∈ {V i(π) ∪ {0}

}

for

all π ∈ Π it follows that the later player i is served, the more choice he has and

therefore, the lower his individual cost. Combined with Lemma 5.4.6 gives that

condition (5.4) is satisfied, which implies that Ω̃M = (N,Π, k̃) is a peop. �

In our opinion order problem Ω̃M = (N,Π, k̃) gives an appropriate description of

mcst situation M = (N, 0, γ). In particular, individualised cost function k̃ is a fair

representation of individual costs. Hence, since this order problem is a peop we

suggest to model mcst situations by the associated direct cost game (N, c̃Md ). This

game coincides with the TU-game (N, cM) proposed by Bird.

Proposition 5.4.8 Let M = (N, 0, γ) be an mcst situation with associated cost

game (N, cM). Let Ω̃M = (N,Π, k̃) be the corresponding order problem with associ-

ated direct cost game (N, c̃Md ). Then (N, cM) = (N, c̃Md ).

Proof: Let S ⊆ N . The coalitional cost for S according to (N, cM) denotes the cost

of the cheapest tree on S∪{0}. Consider Prim’s algorithm to obtain such a minimum

cost spanning tree on S ∪ {0} and let π be the ordering in which the players make
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their connection according to this algorithm. Then cM(S) =
∑

i∈S k̃
i(π) = c̃Md (S).

�

Proposition 5.4.8, combined with the fact that Ω̃M = (N,Π, k̃) is a peop, supports

the use of TU-game (N, cM) to model mcst situations. Next we provide a second

alternative proof of the result that Bird’s tree solution β̇ is in the core of this game.

The following theorem is originally due to Bird (1976).

Theorem 5.4.9 Let M = (N, 0, γ) be an mcst situation with associated cost game

(N, cM). Then β̇ ∈ C(N, cM).

Proof: Let Ω̃M = (N,Π, k̃) be the order problem corresponding to mcst situation

M = (N, 0, γ), with associated direct cost game (N, c̃Md ) and generalised Bird so-

lution β̃. Since Ω̃M = (N,Π, k̃) is a peop (Proposition 5.4.7) and Ω̃M = (N,Π, k̃)

satisfies poi (Lemma 5.4.6) we obtain by Theorem 5.2.4 that β̃ ∈ C(N, c̃Md ). By

Lemma 5.4.5, β̇ ∈ C(N, c̃Md ). Finally, by Proposition 5.4.8, β̇ ∈ C(N, cM). �

5.4.3 Order problem 2

The representation of mcst situation M = (N, 0, γ) by an order problem can be

done in yet another way. By using a different underlying algorithm based upon

orderings of the player set we obtain a different order problem. We illustrate this

by representing mcst situation M = (N, 0, γ) by order problem Ω̄M = (N,Π, k̄),

with N the finite player set and Π the set of orderings of N . A component of

player i ∈ N is defined as the maximal set of players in N0, which includes i,

that forms a tree. The individualised cost function k̄ : Π → RN is based upon

the following algorithm. Let π ∈ Π. At his turn in π player i has to connect his

component in the cheapest way to another component. The component of player i

given that the first t players of ordering π made a connection is denoted by T i
t (π).

Hence, the individualised cost function k̄ : Π → RN is formally defined by k̄i(π) =

min(j,ℓ)∈E
N0

{

γ(j, ℓ)
∣

∣

∣
|T i

π−1(i)(π)| > |T i
π−1(i)−1(π)|

}

for all i ∈ N and all π ∈ Π. Since

a player might depend on his followers to get connectd to the source this order

problem is not an adequate representation of an mcst situation. However, we use it

to give an alternative proof of the result that the P -value is in the core of the game

(N, cM).
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The associated direct (N, c̄Md ), marginal (N, c̄Mm ), minimal (N, c̄M− ) and maximal

cost game (N, c̄M+ ), as well as the generalised Bird solution β̄ are given by (5.1),

(5.2), (5.5), (5.6) and (5.7), respectively.

Example 5.4.10 We illustrate the described procedure by the mcst situation of

Figure 5.4.1. For π = (1, 2, 3) player 1 starts by connecting T 1
0 (π) with T 2

0 (π). After

that, player 2 connects T 2
1 (π) with T 3

1 (π), and finally, player 3 uses edge (1, 0) to

connect T 3
2 (π) with the source. The corresponding costs are given by k̄(π) = (1, 2, 4).

Note that k̄(π) is efficient, which is a general result we obtain in Proposition 5.4.11.

The table below provides all the coalitional costs according to the associated direct

and marginal cost game.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
c̄Md (S) 1 1 2 3 3 3 7
c̄Mm (S) 4 4 4 5 6 6 7

The cost for coalition {1, 2} in the direct cost game is determined by ordering

π = (1, 2, 3) and is therefore equal to k̄1(π) + k̄2(π) = 3. ⊳

The procedure described above to define cost function k̄ is equal to the V -algorithm

of Çiftçi and Tijs (2007). In Theorem 3.1 of that paper it is shown that for each

ordering π ∈ Π this algorithm leads to a minimum cost spanning tree. We restate

this theorem.

Proposition 5.4.11 Let M = (N, 0, γ) be an mcst situation with associated cost

game (N, cM). Let Ω̄M = (N,Π, k̄) be the corresponding order problem. Then
∑

i∈N k̄
i(π) = cM(N) for all π ∈ Π.

Since each ordering π ∈ Π results in an optimal allocation a more interesting solution

concept than β̄ itself would therefore be to take the average over all these allocations.

We define β̄∗ such that β̄∗ = 1
n!

∑

π∈Π k̄(π). It follows immediately that β̄∗ equals

the V -value, V , of Çiftçi and Tijs (2007).

Proposition 5.4.12 Let M = (N, 0, γ) be an mcst situation with corresponding

order problem Ω̄M = (N,Π, k̄). Then β̄∗ = V .
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Çiftçi and Tijs (2007) show in Theorem 4.1 of their paper that the V -value coincides

with the P -value (Branzei et al. (2004)), which in its turn equals the ERO-value

of Feltkamp et al. (1994). The P -value is known to be an element of the core of

(N, cM). In the remainder of this section we provide an alternative proof of this

result, which makes use of the framework of Section 5.2.

Lemma 5.4.13 Order problem Ω̄M = (N,Π, k̄) satisfies poi.

Proof: Let π̂ ∈ Π with π̂−1(j) = t, π̂−1(ℓ) = t+ 1 and π̂−1(i) ≥ t+ 2 and define π̄

such that π̄−1(r) = π̂−1(r) for all r ∈ N\{j, ℓ}, π̄−1(j) = π̂−1(ℓ) and π̄−1(ℓ) = π̂−1(j).

We show that T r
t+1(π̂) = T r

t+1(π̄) for all r ∈ N , which completes the proof.

Note first of all that |T r
t (π)| = |{s ∈ T r

t (π) : π−1(s) ≤ t}| + 1 for all r ∈ N .

Therefore, T j
t−1(π̄) = T j

t−1(π̂) 6= T ℓ
t−1(π̂) = T ℓ

t−1(π̄).

We first assume that in π̂ player j does not connect T j
t−1(π̂) with T ℓ

t−1(π̂). This

implies that player ℓ’s choices according to π̄ are the same as under π̂. Conse-

quently, player ℓ will do the same as under π̂. The choices of player j according π̄

are then the same as under π̂ with the possible exception of connecting his com-

ponent to that of player ℓ, but since this was not his choice under π̂ this has no

affect. Consequently, also player j makes the same choice under π̂ as under π̄, which

implies that T r
t+1(π̂) = T r

t+1(π̄) for all r ∈ N .

Secondly we assume that in π̂ player j connects T j
t−1(π̂) with T ℓ

t−1(π̂). This

implies that player ℓ’s choices according to π̄ are extended with the possibil-

ity to connect T j
t−1(π̄) with T ℓ

t−1(π̄), but no longer contain connecting T j
t−1(π̄)

to a component unequal to T ℓ
t−1(π). If player ℓ connects T j

t−1(π̄) with T ℓ
t−1(π̄)

then player j’s choices under π̂ are the same as player ℓ’s choices under π̄, i.e.,

T j
t (π̂) = T ℓ

t (π̂) = T j
t (π̄) = T ℓ

t (π̄), which implies that player j will do under π̄ exactly

what player ℓ does under π̂. As a consequence, T r
t+1(π̂) = T r

t+1(π̄) for all r ∈ N .

If player ℓ does not connect T j
t−1(π̄) with T ℓ

t−1(π̄) then he makes the same choice

under π̄ as under π̂, because connecting T j
t−1(π̄) with T ℓ

t−1(π̄) is cheaper than any

other connection from T j
t−1(π̄). (This follows from the fact that player j connects

T j
t−1(π̂) with T ℓ

t−1(π̂)). As player ℓmakes the same choice under π̄ as under π̂ player j
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connects T j
t (π̄) with T ℓ

t (π̄), which leads to the result that T r
t+1(π̂) = T r

t+1(π̄) for all

r ∈ N . �

Lemma 5.4.14 Order problem Ω̄M = (N,Π, k̄) is a neop.

Proof: Let π̂ ∈ Π with π̂−1(j) = t, π̂−1(ℓ) = t + 1 and define π̄ such that

π̄−1(r) = π̂−1(r) for all r ∈ N\{j, ℓ}, π̄−1(j) = π̂−1(ℓ) and π̄−1(ℓ) = π̂−1(j). We

show that k̄ℓ(π̄) ≤ k̄ℓ(π̂), which completes the proof.

Note first of all that |T r
t (π)| = |{s ∈ T r

t (π) : π−1(s) ≤ t}| + 1 for all r ∈ N .

Therefore, T j
t−1(π̄) = T j

t−1(π̂) 6= T ℓ
t−1(π̂) = T ℓ

t−1(π̄).

We first assume that in π̂ player j does not connect T j
t−1(π̂) with T ℓ

t−1(π̂). This

implies that player ℓ’s choices according to π̄ are the same as under π̂. Conse-

quently, k̄ℓ(π̄) = k̄ℓ(π̂).

Secondly we assume that in π̂ player j connects T j
t−1(π̂) with T ℓ

t−1(π̂). This im-

plies that player ℓ’s choices according to π̄ are extended with the possibility to

connect T j
t−1(π̄) with T ℓ

t−1(π̄), but no longer contain connecting T j
t−1(π̄) to a com-

ponent unequal to T ℓ
t−1(π). However, since player j chose to connect T j

t−1(π̂) with

T ℓ
t−1(π̂) the latter options are worse than connecting T j

t−1(π̄) with T ℓ
t−1(π̄) and hence,

k̄ℓ(π̄) ≤ k̄ℓ(π̂). �

Proposition 5.4.15 Let ΛM = (N,A, k) and Ω̄M = (N,Π, k̄) be the alternative

and order problem corresponding to mcst situation M = (N, 0, γ) with associated

minimal cost games (N, cM− ) and (N, c̄M− ). Then (N, cM− ) = (N, c̄M− )

Proof: Let S ⊆ N and let (N, c̄Md ) be the direct cost game associated with

order problem Ω̄M = (N,Π, k̄). By Lemma 5.4.14 and Remark 5.2.1, c̄M− (S) =

c̄Md (S) =
∑

i∈S k̄
i(π) for some π ∈ ΠS. By this ordering π we connect in each stage

t ∈ {0, . . . , |S| − 1} the component of player π(t) ∈ S to another component in the

cheapest way possible. Note that only players of coalition S are allowed to connect

components, and therefore |T i
|S|(π)| = |T i

|S|(π) ∩ S| + 1 for all i ∈ S. Consequently,

after player π(|S|) has made his connection we obtain the cheapest network con-

sisting of |S| edges out of EN0 such that each component T i
|S|(π), with i ∈ S, is
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connected to the set N0\S with a single edge. Hence, this equals the cheapest way

to build a tree on N0, given a tree on N0\S, which corresponds to the cost cM− (S).

�

We are now ready to provide the alternative proof of the result that the P -value,

P , is an element of the core of the TU-game (N, cM). The original result is due to

Branzei et al. (2004).

Theorem 5.4.16 Let M = (N, 0, γ) be an mcst situation. Then P ∈ C(N, cM).

Proof: Let ΛM = (N,A, k) and Ω̄M = (N,Π, k̄) be the alternative and order prob-

lem corresponding to mcst situation M = (N, 0, γ) with associated maximal cost

games (N, cM+ ) and (N, c̄M+ ).

By Theorem 5.2.2, β̄∗ ∈ C(N, c̄M+ ). Then by Proposition 5.4.15, β̄∗ ∈ C(N, cM+ ) and

by Lemma 5.4.3, β̄∗ ∈ C(N, cM). Finally, by the equivalence of β̄∗ to the V -value

(Proposition 5.4.12) and the equivalence of the V -value to the P -value (Theorem

4.1 in Çiftçi and Tijs (2007)) we obtain the desired result. �

5.5 Permutation situations without initial alloca-

tion

In this section we introduce the class of permutation situations without initial allo-

cation. Permutation situations are introduced by Tijs et al. (1984). A permutation

situation without initial allocation is given by a triple P = (N,Θ,Γ), with N the

finite set of players, Θ = {1, . . . , n} the set of machines and Γ an n× n cost matrix.

Element Γij of this matrix denotes the cost for the use of machine j ∈ Θ by player

i ∈ N . The objective is to allocate each machine to a different player with minimal

total cost. This problem can be solved by the Hungarian method (Kuhn (1955)).

In the paper by Tijs et al. (1984) it is assumed that there is an initial allocation of

machines to players and that a coalition of players can interchange their machines

between them. On the contrary we assume here that there is no initial allocation.

We represent a permutation situation without initial allocation P = (N,Θ,Γ)

by order problem ΩP = (N,Π, k), with N the finite player set and Π the set of

orderings of N . We define the individualised cost function k : Π → RN such that
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ki(π) denotes the cost of the cheapest possible machine player i can choose at his

turn in π. Hence, let Θt(π) denote the set of available machines given that the first t

players of π have made their choice. Then ki(π) = minj∈Θ
π−1(i)−1(π) Γij for all i ∈ N

and π ∈ Π. Since there are more options for any coalition that is served first it

follows that order problem ΩP = (N,Π, k) is a neop

Proposition 5.5.1 Order problem ΩP = (N,Π, k) is a neop.

Based on the fact that order problem ΩP = (N,Π, k) adequately represents a permu-

tation situation without initial order and is a neop we suggest to model this class of

cooperative situations by the marginal cost game (N, cPm), which is defined following

(5.1) and (5.2). The associated generalised Bird solution is defined by (5.7).

Proposition 5.5.2 Let P = (N,Θ,Γ) be a permutation situation without initial

allocation. Let (N, cPm) be the marginal cost game associated with the corresponding

order problem ΩP = (N,Π, k). Then β ∈ C(N, cPm).

Proof: By Proposition 5.5.1, ΩΥ = (N,Π, k) is a neop. Hence, by Corollary 5.2.3,

β ∈ C(N, cPm) �

5.6 Convex public congestion network situations

In this section we consider public congestion network situations with convex cost

functions, as discussed in Chapter 4. We focus on indivisible networks. In the

remainder of this section we call these situations, just as in (the main part of)

Chapter 4, convex congestion network situations. In Chapter 4 we associate with

each congestion network situation a direct and a marginal cost game. To distinguish

between these two games and the games defined in Section 5.2 of this chapter, the

direct and marginal cost game associated with a convex congestion network situation

G are in this chapter called the direct congestion cost game, denoted by (N, cGdG),

and the marginal congestion cost game, denoted by (N, cGmG). Note that the idea

behind the direct and marginal cost game and the direct congestion and marginal

congestion cost game is similar, and also the argumentation for the use of one or

the other is closely related. However, the translation of the underlying idea into

a TU-game is different. In the direct congestion cost game it is assumed that a
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coalition S ⊆ N constructs a network while the non-members are absent, while in

the direct cost game N\S is present, but served after coalition S.

In this section we provide by the order and alternative problem framework and

Corollary 5.2.3 and Theorem 5.2.5 an (alternative) proof of the results that cost

allocation ψ(f ∗
N), defined in Chapter 4, and the Shapley value of the marginal con-

gestion cost game are in the core of the marginal congestion cost game associated

with a convex congestion network situation. Furthermore, the order problem frame-

work supports the use of this game to model convex congestion network situations.

5.6.1 Alternative problem

Since orderings of the player set are not explicitly or implicitly included in the de-

scription of a convex congestion network situation, representing such a situation by

an order problem is not straightforward. More natural is it to represent a convex con-

gestion network situation G = (N, 0, γ) by an alternative problem ΛG = (N,A, k),
with N the finite player set, A the set of all feasible networks on N0 and individu-

alised cost function k : A → N such that ki(α) = ψi(α) for all i ∈ N given feasible

network α ∈ A. Note that in Chapter 4 we only define cost allocation ψ for an opti-

mal network. However, we could equivalently define this allocation for any feasible

network, with ψ(f ∗
N) = ψ(α∗

N) the originally defined allocation.

The associated minimal (N, cG−) and maximal cost game (N, cG+), as well as the

generalised Bird solution β are straightforwardly given by (5.9), (5.10) and (5.11),

respectively.

Lemma 5.6.1 Let G = (N, 0, γ) be a convex congestion network situation with

corresponding alternative problem ΛG = (N,A, k). Then β = ψ(f ∗
N).

Lemma 5.6.2 Let G = (N, 0, γ) be a convex congestion network situation with

associated direct congestion cost game (N, cGdG). Let ΛG = (N,A, k) be the cor-

responding alternative problem with associated minimal cost game (N, cG−). Then

(N, cGdG) = (N, cG−).

Proof: Let S ⊆ N . The coalitional cost for S according to the direct congestion

cost game corresponds to the cost of the cheapest feasible network for S in absence
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of the players in N\S. This network is denoted by f ∗
S. Since we only consider

complete, publicly available networks there always exists a feasible network for N ,

denoted by fN , such that fN(a) = f ∗
S(a) for all a ∈ AN0 with f ∗

S(a) > 0. Due to

the convexity of the cost function γ such an alternative fN is optimal for S, hence

fN = α∗
S. Then, since cG−(S) =

∑

i∈S k
i(α∗

S) the direct congestion cost game and

minimal cost game coincide. �

We now provide an alternative proof of Theorem 4.5.5 of Chapter 4.

Proposition 5.6.3 Let G = (N, 0, γ) be a convex congestion network situation with

associated marginal congestion cost game (N, cGmG). Then ψ(f ∗
N) ∈ C(N, cGmG).

Proof: Let (N, cG+) be the maximal cost game associated with alternative problem

ΛG = (N,A, k) corresponding to convex congestion network situation G = (N, 0, γ).

By Theorem 5.2.5, β ∈ C(N, cG+). By Lemma 5.6.2, β ∈ C(N, cGmG). Finally, by

Lemma 5.6.1 ψ(f ∗
N ) ∈ C(N, cGmG). �

5.6.2 Order problem 1

In order to represent a convex congestion network situation by an order problem

we need an algorithm based upon orderings of the player set. In Chapter 4 such an

algorithm is provided, Algorithm 4.3.3. Let G = (N, 0, γ) be a convex congestion

network situation. We represent G = (N, 0, γ) by order problem Ω̄G = (N,Π, k̄),

with N the finite player set and Π the set of orderings of N . The individualised

cost function k̄ : Π → RN is given by k̄i(π) =
∑

a∈P ∗
V i(π),i

ℓf∗
V i(π)

(a), which means

that k̄i(π) denotes the cost induced by player i according to Algorithm 4.3.3 given

an ordering π ∈ Π. Since this algorithm involves cooperation with predecessors

in the sense that links can be redirected, this order problem is not an adequate

representation of a convex congestion network situation.

The associated direct (N, c̄Gd ), marginal (N, c̄Gd ), minimal (N, c̄G−) and maximal

cost game (N, c̄G+), as well as the generalised Bird solution β̄ are straightforwardly

given by (5.1), (5.2), (5.5), (5.6) and (5.7), respectively.

By Theorem 4.3.4 we obtain that k̄ is efficient for each ordering π ∈ Π. There-

fore, we define, equivalent to the concept used for the class of mcst situations (see

Section 5.4), β̄∗ = 1
n!

∑

π∈Π k̄(π) as the average over all possible outcomes β̄.



124 Chapter 5. Cooperative situations: games and cost allocations

Example 5.6.4 Reconsider the convex congestion network situation of Figure 4.2.1.

The next table gives for each ordering π ∈ Π the corresponding cost allocation

k̄(π) = β̄.

π k̄1(π) k̄2(π) k̄3(π)
(1, 2, 3) 1 4 5
(1, 3, 2) 1 6 3
(2, 1, 3) 2 3 5
(2, 3, 1) 4 3 3
(3, 1, 2) 2 6 2
(3, 2, 1) 4 4 2

This results in cost allocation β̄∗ = (21
3
, 41

3
, 31

3
). ⊳

From the definition of cost function k we immediately obtain the next lemma.

Lemma 5.6.5 Let G = (N, 0, γ) be a convex congestion network situation with asso-

ciated direct congestion cost game (N, cGdG). Let Ω̄G = (N,Π, k̄) be the corresponding

order problem with associated direct cost game (N, c̄Gd ). Then (N, cGdG) = (N, c̄Gd ).

The Shapley value of a cost game (N, c) is denoted by Φ(N, c).

Proposition 5.6.6 Let G = (N, 0, γ) be a convex congestion network situation with

associated marginal congestion cost game (N, cGmG). Let Ω̄G = (N,Π, k̄) be the cor-

responding order problem. Then β̄∗ = Φ(N, cGmG).

Proof: Note that Algorithm 4.3.3 provides an optimal network for any coalition

{π(1), . . . , π(t)}, with t ∈ {1, . . . , n} given π ∈ Π. Therefore, each k̄(π) corresponds

to a marginal vector of the direct cost game (N, c̄Gd ). Hence, β̄∗ = Φ(N, c̄Gd ) and by

Lemma 5.6.5, β̄∗ = Φ(N, cGdG). Since the Shapley value of a game is equal to the

Shapley value of its dual game, β̄∗ = Φ(N, cGmG). �

Proposition 5.6.7 Order problem Ω̄G = (N,Π, k̄) is a neop.

Proof: It follows from (the proof of) Theorem 4.4.2 in Chapter 4 that condi-

tion (5.3) is satisfied. Consequently, Ω̄G = (N,Π, k̄) is a neop. �
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Since the marginal congestion cost game is concave (Theorem 4.4.2) the Shapley

value of this game is an element of its core. However, by the order problem formu-

lation we also obtain an alternative way to prove this result.

Proposition 5.6.8 Let G = (N, 0, γ) be a convex congestion network situation with

associated marginal congestion cost game (N, cGmG). Then Φ(N, cGmG) ∈ C(N, cGmG).

Proof: Let Ω̄G = (N,Π, k̄) be the corresponding order problem. Since Ω̄G =

(N,Π, k̄) is a neop (Proposition 5.6.7) we obtain by Corollary 5.2.3 that β̄∗ ∈
C(N, cGmG). Hence, by Proposition 5.6.6, Φ(N, cGmG) ∈ C(N, cGmG). �

5.6.3 Order problem 2

In the previous two subsections we used the alternative and order problem formu-

lation to show that ψ(f ∗
N ) and Φ(N, cGmg) are elements of the core of the marginal

congestion cost game associated with a convex congestion network situation. In this

subsection we use the order problem framework to support the use of the marginal

congestion cost game to model convex congestion network situations.

We argue that the individualised cost functions k, associated with alternative

problem ΛG = (NA, k), and k̄, associated with order problem Ω̄G = (N,Π, k̄),

cannot be seen as representative or fair individualised cost functions for convex

congestion network situations, as both involve cooperation and reallocation of costs.

As a result the cost allocation problem of a convex congestion network situation G

is not appropriately described by either alternative problem ΛG or order problem

Ω̄G.

Therefore, we now consider a third approach. Let G = (N, 0, γ) be a convex

congestion network situation. We represent G = (N, 0, γ) by order problem Ω̃G =

(N,Π, k̃), with N the finite player set and Π the set of orderings of N . We denote

by P i the set of all paths from player i to the source. Let f t be a feasible network

constructed by players π(1), . . . , π(t) given π ∈ Π. We define individual costs by

k̃i(π) = minP i∈Pi

∑

a∈P i γa(f
π−1(i)(a))− γa(f

π−1(i)−1(a)) for all i ∈ N and all π ∈ Π,

i.e., the individual cost denotes the minimum additional cost of player i when he

enters the situation given the network constructed by his predecessors. In particular,

player i is not allowed to alter paths constructed by his predecessors, like in the

procedure of Algorithm 4.3.3. This means that the order in which the players enter
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the situation determines the final network constructed and consequently, not all

orderings lead to an optimal network.

The associated direct (N, c̃Gd ), marginal (N, c̃Gm), minimal (N, c̃G−) and maximal

cost game (N, c̃G+), as well as the generalised Bird solution β̃ are straightforwardly

given by (5.1), (5.2), (5.5), (5.6) and (5.7), respectively.

Example 5.6.9 Reconsider the convex congestion network situation of Figure 4.2.1.

The next table7 gives for each ordering π ∈ Π the corresponding cost allocation k̃(π).

π k̃1(π) k̃2(π) k̃3(π)
(1, 2, 3) 1 4 5
(1, 3, 2) 1 6 3
(2, 1, 3) 4 3 3
(2, 3, 1) 4 3 3
(3, 1, 2) 4 4 2
(3, 2, 1) 4 4 2

Note that the cost allocations k̃(π) differ from the cost allocations k̄(π) of Ex-

ample 5.6.4. In this example k̃(π) is efficient for all π ∈ Π, i.e., each ordering leads

to an optimal network. This is, however, generally not the case. Consider, e.g.,

the situation without player 2, which means that only the arcs between the players

1 and 3 and source are present and N = {1, 3}. In that case ordering π = (3, 1)

leads to a network f with f(1, 0) = 2 and f(3, 1) = 1, with a cost of 6, which is not

optimal. ⊳

Convexity of the congestion network situation implies the following proposition.

Proposition 5.6.10 Order problem Ω̃G = (N,Π, k̃) is a neop.

Given the discussion in Section 5.2 order problem Ω̃G = (N,Π, k̃) is appropriately

modelled by the associated marginal cost game. Furthermore, we think of Ω̃G as

an adequate representation of a convex congestion network situation. We show in

Proposition 5.6.11 that the marginal cost game (N, c̃Gm) coincides with the marginal

congestion cost game (N, cGmG), used in Chapter 4 to model these situations.

7The cost allocations for the orderings (2, 1, 3) and (3, 1, 2) are not uniquely defined in this
situation. Depending on the choice of player 1 these cost allocations can also be given by (4, 3, 6)
and (4, 6, 2), respectively.
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Proposition 5.6.11 Let G = (N, 0, γ) be a convex public congestion network situa-

tion with associated marginal congestion cost game (N, cGmG). Let Ω̃G = (N,Π, k̃) be

the corresponding order problem with associated marginal cost game (N, c̃Gm). Then

(N, cGmG) = (N, c̃Gm).

Proof: The direct congestion cost game associated with G = (N, 0, γ) is given by

(N, cGdG). The direct cost game associated with Ω̃G = (N,Π, k̃) is given by (N, c̃Gd ).

We show that (N, cGdG) = (N, c̃Gd ), which completes the proof.

Let S ⊆ N . It is clear that c̃Gd (S) ≥ cGdG(S). Hence, it suffices to prove that

there exists a π ∈ ΠS such that
∑

i∈S k̃
i(π) = cGdG(S). Let f ∗

S be an optimal net-

work obtained by Algorithm 4.3.3. Initially, let j be the last added player. Then

f ∗
S = f ∗

S\{j} ⊕ fP ∗
S\{j},j

.

Define player ℓ ∈ S such that:

• f ∗
S(r, s) > f ∗

S\{j}(r, s) for all r, s ∈ N0 such that ℓ ≺Q∗
S\{j},j

s and (r, s) ∈
P ∗

S\{j},j,

• f ∗
S(b, ℓ) ≯ f ∗

S\{j}(b, ℓ) for some b ∈ Q∗
S\{j},j.

Note that such a player ℓ exists and that it could be player j.

Define P ′
ℓ = ((i0, i1), (i1, i2), . . . , (ip−1, ip)), with i0 = ℓ, ip = 0 and (ir, ir+1) ∈ P ∗

S\{j},j

for all r ∈ {0, . . . , p − 1}. Hence, P ′
ℓ is the last part of the path P ∗

S\{j},j starting

from ℓ. Then f ∗
S = f ∗

S\{ℓ} ⊕ fP ′
ℓ

and f ∗
S(a) > f ∗

S\{ℓ}(a) for all a ∈ P ′
ℓ . Consequently,

P ′
ℓ = P ∗

S\{ℓ},ℓ. Let π(|S|) = ℓ.

Proceed with P ∗
S\{ℓ},ℓ to find the player on position π(|S| − 1). If ℓ 6= j proceed

as above. If ℓ = j, then consider as the new player j the player added before player

j according to Algorithm 4.3.3. In the end we obtain the complete ordering π ∈ ΠS

which gives c̃Gd (S) = cGdG(S). �

Note that this proof is constructive in the sense that it shows for each S ⊆ N how

to obtain an ordering π ∈ ΠS such that
∑

i∈S k̃
i(π) = c̃Gd (S).

Proposition 5.6.12 Let G = (N, 0, γ) be a convex public congestion network situa-

tion with associated marginal congestion cost game (N, cGmG). Then β̃ ∈ C(N, cGmG).
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Proof: Let Ω̃G = (N,Π, k̃) be the corresponding order problem with associated

marginal cost game (N, c̃Gm). By Proposition 5.6.11, (N, cGmG) = (N, c̃Gm). Hence,

since Ω̃ = (N,Π, k̃) is a neop (Proposition 5.6.10), by Corollary 5.2.3, β̃ ∈ C(N, cGmG).

�

5.7 Concave public congestion network situations

In this section we consider public congestion network situations with concave cost

functions, as briefly discussed in Chapter 4. We focus on indivisible networks. In

this section we call these situations, just as in Chapter 4, concave congestion net-

work situations. In Chapter 4 we associate with each congestion network situation

a direct and a marginal cost game. To distinguish between these two games and

the games defined in Section 5.2 of this chapter, the direct and marginal cost game

associated with a concave8 congestion network situation G′ are in this chapter called

the direct congestion cost game, denoted by (N, cG
′

dG′), and the marginal congestion

cost game, denoted by (N, cG
′

mG′). In this section we illustrate that the order problem

framework cannot always be used to obtain an appropriate TU-game for a class of

cooperative situations.

Let G′ = (N, 0, γ) be a concave congestion network situation. We represent G′ by or-

der problem ΩG′
= (N,Π, k), with N the finite player set, Π the set of orderings ofN ,

and k : Π → RN defined by ki(π) = minP i∈Pi

∑

a∈P i γa(f
π−1(i)(a))− γa(f

π−1(i)−1(a))

for all i ∈ N and all π ∈ Π. Consequently, the individual costs in this setup de-

note the additional cost of player i when he enters the situation given the network

constructed by his predecessors. Note that order problem ΩG′
= (N,Π, k) is similar

to the order problem Ω̃G = (N,Π, k̃) for the class of convex congestion network

situations. By concavity of the congestion network situation we obtain the next

proposition.

Proposition 5.7.1 Order problem ΩG′
= (N,Π, k) is a peop.

The representation of concave congestion network situation G′ = (N, 0, γ) by order

problem ΩG′
= (N,Π, k) seems straightforward and since k does not require coope-

8We denote concave congestion network situations by G′ to distinguish between concave and
convex congestion network situations that are denoted by G.
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ration or the reallocation of costs one might think of k as a fair individualised cost

function. However, k is not efficient, in the sense that for some concave congestion

network situations there exists no ordering π ∈ Π such that
∑

i∈N k
i(π) = cG

′

dG′(N).

This is illustrated in the next example.

Example 5.7.2 Consider the symmetric concave congestion network situation G′ =

(N, 0, γ) of Figure 5.7.1. The optimal network f ∗
N is given by f ∗

N(1, 2) = 1 and

1 2

0
source

(3, 6)

(1, 1)

(5, 5)

Figure 5.7.1: A concave congestion network situation

f ∗
N (2, 0) = 2, with a cost of 6. However, both orderings (1, 2) and (2, 1) result in

network fN given by fN (2, 1) = 1 and fN(1, 0) = 2, with a cost of 7. ⊳

Since cost function k is not efficient, concave congestion network situation G′ =

(N, 0, γ) and corresponding order problem ΩG′
= (N,Π, k) do not describe the same

cost allocation problem. Hence, although a similar representation results for convex

congestion network situations in an appropriate order problem, the representation

of G′ = (N, 0, γ) by ΩG′
= (N,Π, k) does not help to find a reasonable TU-game for

the class of concave congestion network situations. Moreover, since any other order

problem would involve an individualised cost function that would require coopera-

tion and/or reallocation of costs, the order problem framework does not seem to fit

the class of concave congestion network situations at all.

5.8 Travelling salesman problems

In this section we consider the well-known class of travelling salesman problems

(Potters et al. (1992)). In a travelling salesman problem, or tsp, a single salesman

has to visit a group of players. Formally, a travelling salesman problem can be given

by a triple9 L = (N, 0, γ), with N the finite set of players that has to be visited by

9Potters et al. (1992) use N0 to indicate the player set including home. Furthermore, they
denote the (n + 1) × (n + 1) cost matrix by K.
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the salesman. He starts at node 0, called home. The function γ : EN0 → R+ is a

non-negative cost function, which can be viewed as the travel time of the salesman

from one node to another. The objective is to find the shortest tour starting and

ending in the node of the salesman in such a way that all players are visited. It

is well-known that this problem is NP-hard. In one of the TU-games introduced

by Potters et al. (1992) to analyse the associated cost allocation problem the cost

of a coalition S ⊆ N is defined as the cost of the optimal tour on the nodes of

the players in S and 0, hence the cost of the optimal tour in absence of the play-

ers in N\S. This game, denoted by (N, cL), has become the standard for modelling

tsps. Note that Tamir (1989) shows that the core of this game can be empty if n ≥ 6.

Consider the tsp of Figure 5.8.1 with three players, denoted by 1, 2 and 3, and

home, given by 0. The numbers on the edges denote the travelling time for the

salesman from one node to another. The optimal tour is given by either (2, 3, 1) or

1 3

2

0

home

1

2

3

4

5

2

Figure 5.8.1: A travelling salesman problem

(1, 3, 2) leading to a cost of 10 for the salesman.

We mainly use this particular tsp to illustrate the problem of representing a tsp

L = (N, 0, γ) by an appropriate order problem ΩL = (N,Π, k). Since the salesman

has to make a tour visiting all players, orderings of the player set are implicitly

included in the description of a tsp. The definition of an individualised cost function

is however far from obvious, because the costs of a tour are essentially incurred by

the salesman and not by the players. Furthermore, the cost of n+ 1 edges must be
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divided over n players.

Consider, e.g., the tour that visits the players in order (1, 2, 3). We could argue

that each player should pay the cost of the edge used to travel to him, which would

lead to player 1 contributing 1, player 2 contributing 2 and player 3 contributing

3. In that case, however, the cost of the edge used by the salesman to return home

is not paid for by anyone. Options for appointing this cost are to transfer it either

to the final player or to divide it equally among all players. Note that the latter

requires the reallocation of costs and is therefore not suitable as an individualised

cost function of an adequate order problem. Hence, we discard this option from the

outset.

We consider the first option instead. We represent a tsp L = (N, 0, γ) by order

problem ΩL = (N,Π, k), with N the finite player set, Π the set of orderings of N

and ki(π) = γ(π−1(i) − 1, i) for all i 6= π(n) and ki(π) = γ(π−1(i) − 1, i) + γ(i, 0)

for i = π(n). The next example illustrates that this order problem is neither a neop

nor a peop.

Example 5.8.1 The individual costs for a given ordering according order problem

ΩL = (N,Π, k) corresponding to the tsp of Figure 5.8.1 are given in the next table.

π k1(π) k2(π) k3(π)
(1, 2, 3) 1 2 8
(1, 3, 2) 1 5 4
(2, 1, 3) 2 2 9
(2, 3, 1) 5 2 3
(3, 1, 2) 4 4 5
(3, 2, 1) 3 3 5

The costs for ordering (1, 2, 3) result from the fact that both players 1 and 2 pay for

the cost of the edge used by the salesman to reach them, while player 3 pays this

cost plus the cost of the salesman’s return home. Since π∗
{3} = (2, 3, 1) we obtain

that ΩL = (N,Π, k) is neither a peop nor a neop. ⊳

Another reasonable possibility to define an individualised cost function given a tour

is to let each player pay for the additional costs incurred by him given the actions of

his predecessors in establishing a subtour. In that case tour (1, 2, 3) leads to a cost

for player 1 of 2, because if there are no other players present, then the salesman

should only visit him, but return home as well. The additional cost player 2 incurs
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equals 5 (the cost of the tour (1, 2)) minus 2 (the cost of a tour on player 1),

which makes 3. Finally, player 3 contributes 6. This cost function requires neither

cooperation nor reallocation of costs and is efficient. Formally, we can represent

tsp L = (N, 0, γ) by Ω̄L = (N,Π, k̄), with N the finite player set and Π the set of

orderings of N . The individualised cost function k̄ : Π → RN is given by k̄i(π) =

γ(π−1(i)−1, i)+γ(i, 0)−γ(π−1(i)−1, 0) for all i ∈ N and all π ∈ Π. The associated

direct cost game (N, c̄Ld ) is given by (5.1).

Proposition 5.8.2 Let L = (N, 0, γ) be a tsp with associated cost game (N, cL).

Let Ω̄L = (N,Π, k̄) be the corresponding order problem with associated direct cost

game (N, c̄Ld ). Then (N, cL) = (N, c̄Ld ).

Proof: This result follows since c̄Ld (S) denotes for all S ⊆ N the cost of an optimal

tour on S ∪ {0}. �

The next two examples show that order problem Ω̄L = (N,Π, k̄) is neither a neop

nor a peop.

Example 5.8.3 The individual costs according to k̄ for a given ordering accor-

ding to order problem Ω̄L = (N,Π, k̄) corresponding to the tsp L = (N, 0, γ) of

Figure 5.8.1 are given in the table below.

π k̄1(π) k̄2(π) k̄3(π)
(1, 2, 3) 2 3 6
(1, 3, 2) 2 0 8
(2, 1, 3) 1 4 6
(2, 3, 1) 0 4 6
(3, 1, 2) 0 1 10
(3, 2, 1) 1 0 10

Since π∗
{1} = (2, 3, 1) or π∗

{1} = (3, 1, 2) it follows that Ω̄L = (N,Π, k̄) is not a

neop. Since it is (due to the triangle inequality) never optimal to be the first player

and costs only depend on a player’s direct predecessor we need a four-player example

to show that Ω̄L = (N,Π, k̄) is a peop neither. ⊳

Example 5.8.4 Consider the four-player tsp of Figure 5.8.2. One finds that π∗
{1,3} =

(2, 1, 4, 3), with k1(2, 1, 4, 3) + k3(2, 1, 4, 3) = 0, while in any ordering in which
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Figure 5.8.2: A travelling repairman problem

players 1 and 3 are on the last two positions their total costs are at least 2. Hence,

Ω̄L = (N,Π, k̄) is not a peop. ⊳

Since both discussed order problems are neither a neop nor a peop there is no clear-

cut TU-game that fits these order problems. Moreover, it is unclear which order

problem is an appropriate substitute for the original problem, if any. Consequently,

the order problem framework does not result in an appropriate TU-game for the

class of tsps. In particular, our framework does not support the use of the game

(N, cL), proposed by Potters et al. (1992).

5.9 Shared taxi problems

The class of cooperative situations we consider in this section is not previously

discussed in literature, but is closely related to the class of tsps. Consider a situation

in which a group of players at a particular location wants to share a taxi in order

to reach their individual destinations. The objective is to find the cheapest way

to bring everyone to their individual destinations, while the cost of the taxi only

depends on the distance from the starting point to the final destination. We call

this problem a shared taxi problem, or stp, and it is given by a triple H = (N, 0, γ),

where N is the finite set of players that shares the taxi, which starts at node 0, called

home. The function γ : EN0 → R+ is a non-negative cost function, which can be
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viewed as the taxi cost from one node to another. An edge e ∈ EN0 is alternatively

denoted by (i, j) ∈ EN0 , with i, j ∈ N0.

In an stp the single taxi has to drop off all players. We consider publicly avail-

able networks, which implies that the taxi is able to use the edge between any two

nodes of the network. As a result, we can impose without loss of generality that

the function γ satisfies the triangle inequality, i.e., γ(i, j) + γ(j, k) ≥ γ(i, k) for all

i, j, k ∈ N0. Consequently, we assume that the taxi makes a tour10 in which he

drops off all players in some ordering π ∈ Π. The total cost for a group of players

S ⊆ N to use the taxi equals γ(0, π(1))) +
∑π(|S|)

t=2 γ(π(t − 1), π(t)), with π ∈ ΠS.

The objective is to find the tour π ∈ Π that minimises the total cost. Note that the

only difference with a tsp is that for an stp the link from the last player back to the

source is excluded.

We analyse the associated cost allocation problem by the use of the order prob-

lem framework. Note that orderings of the player set are implicitly part of an stp.

Furthermore, since costs do not depend on the return of the taxi home the definition

of an adequate individualised cost function seems straightforward. Let H = (N, 0, γ)

be an stp. The corresponding order problem ΩH is given by ΩH = (N,Π, k), with N

the finite player set and Π the set of orderings of N . We define the individual cost

of a player as the cost to travel from the node of his direct predecessor to his own

node, hence ki(π) = γ(π−1(i) − 1, π−1(i)) for all i ∈ N and π ∈ Π.

Example 5.9.1 Reconsider Figure 5.8.1, to illustrate an stp. The individual costs

for a given order according to order problem ΩH = (N,Π, k) corresponding to the

stp H = (N, 0, γ) of Figure 5.8.1 are given in the next table.

π k1(π) k2(π) k3(π)
(1, 2, 3) 1 2 3
(1, 3, 2) 1 3 4
(2, 1, 3) 2 2 4
(2, 3, 1) 4 2 3
(3, 1, 2) 4 2 5
(3, 2, 1) 2 3 5

Each player pays for the edge directly leading to him. Therefore, π = (1, 2, 3) leads to

10In the context of stps we use the term tour for a path from node 0 to a node i ∈ N such that
all players are visited exactly once.



5.10. Travelling repairman problems 135

the individualised costs k1(π) = 1, k2(π) = 2 and k3(π) = 3. Since π∗
{3} = (1, 2, 3) or

π∗
{3} = (2, 3, 1) order problem ΩH = (N,Π, k) is no neop. Further, as π∗

{1} = (1, 2, 3)

or π∗
{1} = (1, 3, 2) order problem is a peop neither. ⊳

Example 5.9.1 demonstrates that order problem ΩH = (N,Π, k) is neither a neop

nor a peop, which implies that we cannot argue in favour of either the marginal or

direct cost game for this order problem and the underlying stp. Note that this shows

that the fact that the order problem framework does not seem to fit the class of tsps

is not (only) due to the fact that the costs of n + 1 edges are to be divided over n

players.

5.10 Travelling repairman problems

5.10.1 Introduction

In this final section we consider situations in which several players need to be visited

by a repairman. These players, as well as the single repairman, are not located at

the same place and therefore, the repairman has to decide on a specific tour to visit

all players. The cost of each player depends on the time he has to wait for the

arrival of the repairman. As a result we obtain the problem of finding a tour that

minimises the total waiting time of the players. This operations research problem

is known as a travelling repairman problem (Afrati et al. (1986)).

A natural example of the above situation is to think of the players as factories

with broken machinery that needs to be repaired. In this case costs reflect oppor-

tunity costs of production. Equivalently we could think of the following situation.

Consider several players at one location who use a single vehicle of transportation

to jointly bring all of them to their individual destinations. If we assume that each

player’s objective is to get to his individual destination as soon as possible we also

end up with the problem of finding a tour that visits all players in such a way the

total waiting time of the players is minimised.

The class of travelling repairman problems is related to other classes of coopera-

tive situations. First of all, a travelling repairman problem can be seen as a special

type of sequencing situation (see Section 5.3) in which the processing time of a

player depends on his predecessor, e.g., due to changeover costs. Furthermore, the
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class of travelling repairman problems is also related to the class of travelling sales-

man problems, discussed in Section 5.8 and even closer to the class of shared taxi

problems, discussed in Section 5.9. However, in those two classes the objective is

to minimise the travel time of the salesman or taxi, while in the class of travelling

repairman problems the players’ waiting time is minimised.

Example 5.10.1 Reconsider the graph of Figure 5.8.1 to illustrate a travelling

repairman problem. The optimal ordering for the grand coalition is (1, 2, 3), which

leads to a total cost of 1 + 3 + 6 = 10. ⊳

In this section we discuss the cost allocation problem that is associated with a

travelling repairman problem. For this we assume that the edges in a network are

public, which means that the repairman can use the edge between any two players.

In order to find a suitable TU-game we start by considering cost games based

upon analogous cost games for other cooperative situations discussed in the litera-

ture. We also apply the order problem formulation. This framework suggests the

marginal cost game. We show that this game has several interesting properties.

Furthermore, we also introduce two single-valued solution concepts, among which is

the associated generalised Bird solution, and discuss some of their properties.

The structure of this section is as follows. In Subsection 5.10.2 we formally introduce

the class of travelling repairman problems and fix notation. In Subsection 5.10.3 we

discuss several ways of modelling a trp as a TU-game. We represent a trp by a

corresponding order problem, show that this order problem is a neop and discuss

properties of the associated marginal cost game. Finally, in Subsection 5.10.4 we

discuss the properties of the generalised Bird solution and a context-specific single-

valued solution concept.

5.10.2 Travelling repairman problems

Formally, a travelling repairman problem, or trp, is given by a triple T = (N, 0, γ),

where N is the finite set of players (nodes) that has to be visited by the repairman.

He starts at node 0, called home. The function γ : EN0 → R+ is a non-negative cost

function, which can be viewed as the travel time of the repairman from one node to

another. An edge e ∈ EN0 is alternatively denoted by (i, j) ∈ EN0 , with i, j ∈ N0.
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Let i, j ∈ N . If γ(i, k) ≥ γ(j, k) for all k ∈ N0\{i, j} we say that player j is more

desirable than player i.

In a trp the single repairman has to visit all players. We consider publicly avail-

able networks, which means that the repairman is able to use the edge between any

two nodes of the network. As a result, we can impose without loss of generality

that the function γ satisfies the triangle inequality. Consequently, the optimal way

to visit all players for the repairman is to make a tour11 in which he visits all the

players according to some ordering π ∈ Π. The individual cost of a player i for a

particular ordering π equals the total waiting time of this player, and is given by

ki(π) = γ(0, π(1)) +
∑π−1(i)

t=2 γ(π(t − 1), π(t)). The operations research problem is

to find an ordering π∗
N ∈ Π that minimises the total waiting time of the players,

i.e.,
∑

i∈N k
i(π∗

N ) = minπ∈Π

∑

i∈N k
i(π). Note that an optimal ordering need not be

unique. Further, Afrati et al. (1986) show that the problem of finding an optimal

tour is NP-hard.

5.10.3 The marginal cost game

In this subsection the aim is to find an appropriate TU-game to model trps. We start

with some straightforward attempts, based on cost games defined in the literature

for other cooperative situations. In the first one we take as a reference point for

determining the cost of a subcoalition S ⊆ N the situation in which the players

outside S are not present. Note that analogous games are used to model, e.g.,

both mcst situations (Bird (1976)) and tsps (Potters et al. (1992)). We call this the

standard cost game (N, cTstan) and, since the waiting time of a player is not influenced

by his successors, it can be defined by

cTstan(S) = min
π∈ΠS

∑

i∈S

ki(π)

for all S ⊆ N . Consider the trp of Figure 5.8.1. Recall that the optimal ordering

for the grand coalition, π∗
N = (1, 2, 3), leads to a total cost of 10. The coalitional

costs of the standard cost game associated with this trp are given in the table below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
cTstan(S) 1 2 5 4 6 7 10

11In the context of trps we use the term tour for a path from node 0 to a node i ∈ N such that
all players are visited exactly once.
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The costs for coalition {1, 3} are the result of ordering π = (1, 3, 2) with k1(π) = 1

and k3(π) = 5. This game is far too optimistic, as, e.g., coalition {2} cannot guaran-

tee itself a cost of 2. Only a tour in which player 2 is visited first results in this cost,

and there is no reason to assume that players 1 and 3 agree with such a tour as it

increases their costs. Furthermore, this game has an empty core.

The cost which the players in S can guarantee themselves is the cost of the worst-

case scenario. This is a tour in which the players in N\S are all visited first. Since

the players in S cooperate they can choose the last part of the tour optimally, but

without cooperation with N\S we can assume that the players in S can not influence

the order in which the players in N\S are visited. Therefore, the most pessimistic

viewpoint is to assume that S is faced with the worst possible ordering for S on

the players of the set N\S. We call the game modelled in this way the worst-case

game (N, cTwc). Note that an analogous game (the tail game) is used for modelling

sequencing situations without initial allocation by Klijn and Sánchez (2006).

Let π(t,s) be the restriction of ordering π ∈ Π from position t to s, hence if

π = (π(1), . . . , π(t), . . . , π(s), . . . , π(n)) then π(t,s) = (π(t), . . . , π(s)). The worst-

case game is defined by

cTwc(S) = max
π(1,|N\S|)∈ΠN\S

min
π(|N\S|+1,n)∈ΠN\S

∑

i∈S

ki(π)

for all S ⊆ N . The coalitional costs for the trp of Figure 5.8.1 according to this

game are given in the next table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
cTwc(S) 10 11 8 18 12 9 10

The costs for coalition {2} are the result of ordering π = (3, 1, 2), the worst players

1 and 3 can decide on for player 2. Note that several coalitional costs exceed the

cost of the grand coalition. As a result, this game is not monotonic.

More important is that the coalitional costs of this game are based upon unrealis-

tic tours. Consider, e.g., the cost of coalition {2}. In this tour the total waiting time

for players 1 and 3 together is 14. However, this group of players obtains a lower

total cost in any other possible tour. Therefore, we argue that it is unreasonable

to assume that these players decide on this tour, which leads to the cost of 11 for

coalition {2}.
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The most important drawback of this game is, however, that it does not correctly

reflect the power of the (coalitions of) players in the trp itself. In any reasonable

cost allocation based upon this cost game player 3 should contribute less than any

other player to the total cost of the grand coalition. However, both players 1 and 2

are more desirable than player 3. Therefore, based on his position in the trp player 3

should contribute more than the other two players. Hence, the trp is not appropri-

ately described by the associated TU-game (N, cTwc).

Next we consider a setup in which the players in N\S try to minimise their own

waiting time. We call the game set up in this way the pessimistic game (N, cTpess).

We define Π∗
R ⊆ Π as the set of orderings of N which are optimal for R ⊆ N . Then

(N, cTpess) can formally be defined by

cTpess(S) = min
π∈Π∗

N\S

∑

i∈S

ki(π)

for all S ⊆ N . For the trp of Figure 5.8.1 this approach leads to the coalitional costs

in the next table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
cTpess(S) 9 8 6 18 12 9 10

The costs for coalition {2} are the result of ordering π = (1, 3, 2), the best players

1 and 3 can decide on for themselves. Although N\S minimises its own cost, seve-

ral coalitional costs still exceed the cost of the grand coalition in this game, which

implies that also this game is not monotonic. More importantly, player 3’s weak

position in the trp is not reflected by the coalitional costs of this game either. As a

consequence, also this pessimistic game provides in our opinion no appropriate way

to model trps.

Hence, the conventional methods to define an appropriate TU-game for the class

of trps seem to fail. Next we apply the order problem framework to this class of

cooperative situations. The representation of a trp by a corresponding order prob-

lem is straightforward for two reasons. First of all, orderings of the player set are

part of a trp. Secondly, a trp already includes an individualised cost function based

upon these orderings. Let T = (N, 0, γ) be a trp. We represent this trp by the order

problem given by ΩT = (N,Π, k), with N the finite player set, Π the set of orderings

of N and k : Π → RN given by ki(π) = γ(0, π(1)) +
∑π−1(i)

t=2 γ(π(t− 1), π(t)) for all
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i ∈ N and π ∈ Π. The corresponding direct (N, cTd ) and marginal (N, cTm) cost game

are given by (5.1) and (5.2), respectively. Note that the direct cost game coincides

with the standard cost game (N, cTstan). Since any additional predecessor increases

the costs for all followers, ΩT = (N,Π, k) is a neop.

Proposition 5.10.2 Order problem ΩT = (N,Π, k) is a neop.

Since ΩT is a neop we suggest to model trps by the marginal cost game (N, cTm). In

the remainder of this subsection we discuss some properties of the marginal cost game

associated with order problem ΩT = (N,Π, k) corresponding to trp T = (N, 0, γ).

Proposition 5.10.3 Let T = (N, 0, γ) be a trp with corresponding order problem

ΩT = (N,Π, k) with associated marginal cost game (N, cTm). Then (N, cTm) is mono-

tonic.

Proof: Let (N, cTd ) be the associated direct cost game. Since ΩT = (N,Π, k) is a

neop (Proposition 5.10.2), cTd (S) ≤ cTd (R) for all S ⊆ R ⊆ N , which implies that

(N, cTd ) is monotonic. Since (N, cTm) is the dual of (N, cTd ), (N, cTm) is monotonic as

well. �

A TU-game (N, cT ) associated with a trp T = (N, 0, γ) satisfies trp desirability if

whenever player j is more desirable than player i, then cT (S ∪ {i}) ≥ cT (S ∪ {j})
for all S ⊆ N\{i, j}.

Proposition 5.10.4 Let T = (N, 0, γ) be a trp with corresponding order problem

ΩT = (N,Π, k) with associated marginal cost game (N, cTm). Then (N, cTm) satisfies

trp desirability.

Proof: Let (N, cTd ) be the associated direct cost game. Let player j be more

desirable than player i and let S ⊆ N\{i, j}. Then

cTm(S ∪ {i}) = cTd (N) − cTd (N\(S ∪ {i}))
≥ cTd (N) − cTd (N\(S ∪ {j}))
= cTm(S ∪ {j}).

�
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Proposition 5.10.5 Let T = (N, 0, γ) be a trp with associated cost games (N, cTwc)

and (N, cTpess). The corresponding order problem is given by ΩT = (N,Π, k) with

associated marginal cost game (N, cTm). Then C(N, cTm) ⊆ C(N, cTpess) ⊆ C(N, cTwc).

Proof: Clearly, cTm(N) = cTwc(N) = cTpess(N). Let S ⊆ N . Let π ∈ Π∗
N\S be such

that cTpess(S) =
∑

i∈S k
i(π). Then

cTm(S) =
∑

i∈N

ki(π∗
N) −

∑

i∈N\S

ki(π∗
N\S)

≤
∑

i∈N

ki(π) −
∑

i∈N\S

ki(π∗
N\S)

=
∑

i∈N\S

ki(π) +
∑

i∈S

ki(π) −
∑

i∈N\S

ki(π∗
N\S)

=
∑

i∈N\S

ki(π∗
N\S) + cTpess(S) −

∑

i∈N\S

ki(π∗
N\S)

= cTpess(S)

for all S ⊆ N , which proves that C(N, cTm) ⊆ C(N, cTpess). Since it follows immedi-

ately that C(N, cTpess) ⊆ C(N, cTwc) this completes the proof. �

5.10.4 Cost allocation

In this subsection we discuss two single-valued solution concepts for trps. A single-

valued solution σ on the set of all trps associates with each trp T = (N, 0, γ) an

efficient12 vector σ(T ) ∈ RN . For a trp T = (N, 0, γ) and corresponding order

problem ΩT = (N,Π, k) the generalised Bird solution β is given by (5.7).

Proposition 5.10.6 Let ΩT = (N,Π, k) be the order problem corresponding to trp

T = (N, 0, γ) and let (N, cTm) be the corresponding marginal cost game. Then β ∈
C(N, cTm).

Proof: Since ΩT = (N,Π, k) is a neop (Proposition 5.10.2) the result follows by

Corollary 5.2.3. �

12A vector σ(T ) is called efficient if
∑

i∈N σi(T ) equals the cost of an optimal tour for trp

T = (N, 0, γ).
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Let T = (N, 0, γT ) and T ′ = (N, 0, γT ′
) be a two trps and let σ be a solution. Let

T have a unique optimal tour and let edge (i, j) not be part of it. Further, let

γT ′
(i, j) > γT (i, j) and γT ′

(e) = γT (e) for all e ∈ EN0\{(i, j)}. Then σ satisfies edge

monotonicity if σk(T ′) ≤ σk(T ′) for all k ∈ N\{i, j}. If an allocation satisfies edge

monotonicity players do not suffer from increasing costs of edges to which they are

not adjacent.

Proposition 5.10.7 The generalised Bird solution β satisfies edge monotonicity.

Proof: Since β only depends on the optimal tour it gives the same allocation for any

two trps with the same optimal tour. Consequently, β satisfies edge monotonicity.

�

The following property provides a lower-bound for the contribution of a player. Let

T = (N, 0, γ) be a trp and let σ be a solution. Then σ satisfies the individual cost

property if σi(T ) ≥ γ(0, i) for all i ∈ N .

Proposition 5.10.8 The generalised Bird solution β satisfies the individual cost

property.

Proof: It follows from the definition that βi ≥ minπ∈Π k
i(π) = γ(0, i) for all i ∈ N ,

which implies that β satisfies the individual cost property. �

The final property we consider requires that more desirable players contribute less.

Let T = (N, 0, γ) be a trp and let σ be a solution. If player j is more desirable than

player i, then σ satisfies the trp desirability property if σi(T ) ≥ σj(T ). The next

example illustrates that β does not satisfy the trp desirability property.

Example 5.10.9 Consider the four-player trp of Figure 5.10.1. The optimal tour

is given by π∗
N = (1, 2, 3, 4), with a cost of 10. Consequently, the generalised Bird

solution is given by β = (1, 2, 3, 4). However, player 3 is more desirable than player 1,

which implies that β does not satisfy the trp desirability property. ⊳
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Figure 5.10.1: A travelling repairman problem

Next we introduce a kind of compromise solution based on reasonable upper and

lower bounds. Given a trp the vectors χ, χ̄ ∈ RN are defined such that

χi = cTd ({i}),
χ̄i = cTm({i}),

for all i ∈ N . Then allocation χ ∈ RN is defined by

αχ+ (1 − α)χ̄,

with α ∈ [0, 1] such that
∑

i∈N χ
i = cd(N). Since cost function k satisfies con-

dition (5.3), cTd ({i}) ≤ cTm({i}) for all i ∈ N and
∑

i∈N c
T
d ({i}) ≤ cTd (N) ≤

∑

i∈N c
T
m({i}), which implies that this solution concept exists for all trps. Fur-

thermore, it is also single-valued.

The minimal rights vector of a cost game (N, c) is given by mc and the utopia

vector by Mc. Game (N, c) is called compromise admissible if mc ≥ Mc and
∑

i∈N m
i
c ≥ c(N) ≥ ∑

i∈N M
i
c . The compromise value τ , defined in Tijs (1981)

for revenue instead of cost games, of a compromise admissible cost game is de-

fined by τ(N, c) = αMc + (1 − α)mc, with α the unique element in [0, 1] such that
∑

i∈N τ
i(N, c) = c(N).
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Theorem 5.10.10 Let T = (N, 0, γ) be a trp with corresponding order problem

ΩT = (N,Π, k) and associated marginal cost game (N, cTm). Then χ = τ(N, cTm).

Proof: It suffices to show that χ is equal to the utopia vector McT
m

and that χ̄ is

equal to the minimal rights vector mcT
m
. Let i ∈ N . First of all,

χi = cTd ({i})
= cTm(N) − cTm(N\{i})
= M i

cT
m
.

It remains to show that χ̄i = mi
cT
m
. Hence, by the definition of the minimal rights

vector it suffices to show that χ̄i ≤ cTm(S ∪ {i})−∑

j∈S M
j

cT
m

for all S ⊆ N\{i}. Let

S ⊆ N\{i}. Then

χ̄i = cTm({i})
= cTd (N) − cd(N\{i})
≤ cTd (N) − cTd (N\(S ∪ {i})) −

∑

j∈S

cTd ({j})

= cTm(S ∪ {i}) −
∑

j∈S

cTd ({j})

= cTm(S ∪ {i}) −
∑

j∈S

M j

cT
m
,

where the inequality follows from the superadditivity of (N, cTd ). �

Solution χ also satisfies several attractive properties with respect to the underlying

trp.

Proposition 5.10.11 χ satisfies edge monotonicity.

Proof: Let T = (N, 0, γT ) and T ′ = (N, 0, γT ′
) be a two trps. Let edge (i, j) not

be part of the optimal tour for T and let γT ′
(i, j) > γT (i, j) and γT ′

(e) = γT (e)

for all e ∈ EN0\{(i, j)}. Note that cTd (N) = cT
′

d (N), and cT
′

d ({ℓ}) ≥ cTd ({ℓ}) and

cT
′

d (N\{ℓ}) = cTd (N\{ℓ}) for all ℓ ∈ {i, j}. Therefore, it suffices to show that

cT
′

d ({k}) = cTd ({k}) and cT
′

m ({k}) ≤ cTm({k}) for all k ∈ N\{i, j}.

Let k ∈ N\{i, j}. It immediately follows that cT
′

d ({k}) = cTd ({k}). Furthermore,



5.10. Travelling repairman problems 145

since cT
′

d (N) = cTd (N) and γT ′
(i, j) ≥ γT (i, j) we obtain cT

′

d (N\{k}) ≥ cTd (N\{k}).
Consequently,

cT
′

m ({k}) = cT
′

d (N) − cT
′

d (N\{k})
≤ cTd (N) − cTd (N\{k})
= cTm({k}).

�

Proposition 5.10.12 χ satisfies the individual cost property.

Proof: Since χi ≥ cTd ({i}) = γ(i, 0) for all i ∈ N , χ satisfies the individual cost

property. �

Proposition 5.10.13 χ satisfies the trp desirability property.

Proof: Let T = (N, 0, γ) be a trp and let i, j ∈ N be such that j is more desirable

than i. Then γ(i, 0) ≥ γ(j, 0), which implies that χi ≥ χj . Furthermore, it follows

that cTd (N\{i}) ≥ cTd (N\{j}), which implies that χ̄i ≥ χ̄j . �

A drawback of χ is that it is not always an element of the core of the marginal cost

game.

Example 5.10.14 Reconsider the trp of Figure 5.10.1. Since χ = (1, 2, 1, 2) and

χ̄ = (3, 3, 3, 4), the solution χ is given by χ = (21
7
, 24

7
, 21

7
, 31

7
). Further, cTd ({2, 4}) =

6, so cTm({1, 3}) = 4, and as χ1 + χ3 = 42
7

this implies that χ /∈ C(N, cTm). ⊳





Chapter 6

Transfers, contracts and

strategic games

It’s a zero sum game, somebody wins,
somebody loses. Money itself isn’t lost or
made, it’s simply transferred from one
perception to another.

Gordon Gekko, Wall Street (1987)

6.1 Introduction

This chapter, which is based on Kleppe et al. (2007), investigates the role of allowing

certain aspects of commitment and cooperation within the framework of strategic

form games. More in particular, it focuses on the explicit strategic option of costless

contracting on monetary transfer schemes with respect to particular outcomes.

Closely related to this chapter are the papers of Jackson and Wilkie (2005) and

Yamada (2003). Basically both of these papers allow for a rather broad type of

contracts within a setting of mixed extensions of finite strategic form games. In

this setting contracts on transfer payments are contingent on the actual choice of

specific strategies. Jackson and Wilkie (2005) illustrate that this type of costless

contracting does not necessarily lead to efficiency, i.e., maximal total payoff. Ya-

mada (2003) explicitly models the described format of contracting as a strategic

option in a two-stage extensive form game and derives a kind a Folk theorem: the

payoff configurations supported by subgame perfect Nash equilibria of this two-stage

contract game are characterised.

147
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The objective of this chapter is to analyse contracts on transfer payments of only

the simplest form. The contracting will be contingent on the actual occurrence of

outcomes, so only on the realisation of strategy combinations and not on the actual

choice of individual strategies. This lowers the degree of sophistication required in

the cooperative commitments. In particular, it avoids intrinsic problems regarding

the non-perceptibility of mixed strategies. Moreover, the two-stage contract game

in this chapter allows only for a unanimity type of contracting on sets of outcomes.

By restricting to this type of basic contracting and combining this with the more

appropriate concept of virtual subgame perfection as introduced by García-Jurado

and González-Díaz (2006), Yamada’s Folk theorem is recovered.

Although the concepts and results in this chapter can be readily extended to

games with more players, we restrict our attention to two-player games for exposi-

tional purposes.

The first part of the chapter deals with the possibility of making a specific stra-

tegy combination individually stable by having a simple monetary transfer scheme

contingent on the actual realisation of the corresponding outcome. Such a strategy

combination is called a transfer equilibrium. Under standard regularity conditions

however (e.g., satisfied for any mixed extension of a finite game) it turns out that

the set of transfer equilibria coincides with the set of Nash equilibria. For finite

games without the possibility of randomisation, the set of Nash equilibria can be a

strict subset of the set of transfer equilibria. This particular subclass is analysed in

some detail.

The second and larger part of this chapter models contracting on monetary trans-

fers as an explicit strategic option within a two-stage extensive form setting. The

first stage consists of the contracting stage where both players can propose trans-

fer schemes as before but now possibly on multiple outcomes simultaneously. Only

if both players fully agree on all transfer proposals (“give or take”), the payoffs of

the original game are modified accordingly and the modified game is played in the

second stage. We have chosen for this approach, because the preference of a player

for a set of contracts does not automatically imply that he is also interested in any

subset of these contracts. As a result, both the type of contract proposals and the

subsequent implementation mechanism of the proposals are as simple as possible. It

is important to note that in this setting implemented contracts on transfer schemes
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with respect to certain outcomes may lead to the rise of equilibria at outcomes that

are not specified in the contracts.

The first main result is a full characterisation of all equilibrium payoff vectors in

the same spirit as the well-known Folk theorems in the context of repeated games.

It turns out that exactly those payoff vectors that are bounded from below by the

individual minimax payoffs and for which the total sum of the payoffs is bounded

from above by the maximum of the total payoffs over all outcomes, correspond to

Nash equilibria of the two-stage contract game. After arguing that the set of sub-

game perfect equilibria (Selten (1965)) of the contract game is empty because of the

non-existence of equilibria in seemingly irrelevant subgames, we focus attention on

the notion of virtual subgame perfect equilibrium. This notion seems especially rele-

vant and suitable in our framework. Roughly speaking, virtual subgame perfection

requires players to play best responses only in subgames close to the equilibrium

path. The second main result states that exactly those payoff vectors that are indi-

vidually bounded from below by some equilibrium payoff, and for which there is a

similar upper bound as in the case of Nash equilibria, correspond to virtual subgame

perfect equilibria of the contract game.

The outline of this chapter is as follows. Section 6.2 analyses the possibility of

contracting on a monetary transfer with respect to one particular outcome and

investigates the corresponding notion of transfer equilibrium. In Section 6.3 the

two-stage contract game that allows for strategic contracting on sets of outcomes is

formally introduced and explained. Furthermore, it states and proves the Folk-like

theorems with respect to Nash equilibria and virtual subgame perfect equilibria of

the contract game.

6.2 Transfer equilibrium

A two-player strategic game is given by G = ({1, 2}, {X i}i∈{1,2}, {πi}i∈{1,2}), with

{1, 2} the player set, X i the strategy set of player i ∈ {1, 2} and πi : X → R
his payoff function, assigning to each strategy profile x = (x1, x2) ∈ X (with X =

X1 ×X2) a payoff πi(x). In this framework we allow for certain transfers of payoff

from one player to the other, so we assume the payoffs to be monetary.

A strategy profile x̂ is a Nash equilibrium (Nash (1951)) of G, denoted by

x̂ ∈ NE(G), if πi(x̂) ≥ πi(xi, x̂−i) for all xi ∈ X i and all i ∈ {1, 2}. Here x−i
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is the frequently used shorthand notation for (xj)j 6=i. A Nash equilibrium is usu-

ally predicted as the outcome of a game when players are not able to make binding

agreements on their strategy choices, but are allowed to communicate before play

starts.

In this chapter, we allow the players to cooperate in a limited way. We assume

that they have a mechanism which allows them to make an enforceable commitment

before play starts on a transfer of money after both players have chosen their pre-

specified strategy. So, players can agree to commit themselves to any reallocation

of π1(x) + π2(x), conditional on the outcome x ∈ X.

Both players also have the option not to cooperate in this way. (Note that if there

are more players, we should also allow for partial cooperation, which naturally leads

to a partition of the player set into cooperating components.) So, we have to make

a distinction between the two possible partitions of the player set. This collection

of partitions is denoted by P = {{{1}, {2}} , {{1, 2}}}.

Definition Let G = ({1, 2}, {X i}i∈{1,2}, {πi}i∈{1,2}) be a two-player strategic game.

Then x̂ ∈ X is a transfer equilibrium of G if there exist a (q, P ) ∈ R2 ×P such that

(i)
∑

i∈S

qi =
∑

i∈S

πi(x̂) for all S ∈ P, (6.1)

(ii) qi ≥ πi(xi, x̂−i) for all xi ∈ X i \ {x̂i} and all i ∈ {1, 2}. (6.2)

The concept of transfer equilibrium is a generalisation of the concept of Nash equi-

librium, as is stated in the following lemma.

Lemma 6.2.1 Each Nash equilibrium is a transfer equilibrium.

Obviously, any transfer equilibrium x that is supported by (q, P ) =

(π(x), {{1}, {2}}) is a Nash equilibrium as well. In general, however, a transfer

equilibrium need not be a Nash equilibrium, as is illustrated by several examples

later on.

The following proposition shows that if G satisfies some regularity conditions, all

transfer equilibria correspond to Nash equilibria.
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Proposition 6.2.2 Let G = ({1, 2}, {X i}i∈{1,2}, {πi}i∈{1,2}) be a two-player strate-

gic game, with X i a convex subset of a finite-dimensional Euclidean space and πi

continuous for all i ∈ {1, 2}. Then x̂ is a Nash equilibrium of G if and only if x̂ is

a transfer equilibrium of G.

Proof: In view of Lemma 6.2.1, we only have to show the “if” part. Assume that

x̂ is a transfer equilibrium and assume that both X1 and X2 have more than one

element (otherwise the proof is straightforward). Let i ∈ {1, 2} and let ε > 0. Let

xi ∈ X i \ {x̂i} be such that |πi(x̂) − πi(xi, x̂−i)| < ε. Note that such an xi always

exists because X i is a convex subset of an Euclidean space and πi is continuous.

Then (6.2) implies that qi ≥ πi(x̂) − ε for all i ∈ {1, 2}, and hence by (6.1),

−ε ≤ q2 − π2(x̂) = π1(x̂) − q1 ≤ ε.

Since this holds for every ε > 0 and πi is continuous, we obtain qi = πi(x̂) for all

i ∈ {1, 2}. Thus (6.2) implies that x̂ is a Nash equilibrium of G. �

Given Proposition 6.2.2, we restrict our attention to games that do not satisfy

the regularity conditions mentioned there. In particular, we consider games

with a finite number of strategies. A finite two-player game is given by G =

({1, 2}, {M i}i∈{1,2}, {πi}i∈{1,2}), where M i = {1, . . . , mi} is the strategy set of player

i ∈ {1, 2}. A typical element of M i is alternatively denoted by xi. The set of all

strategy profiles is given by M = M1 ×M2, a typical element of M by x.

The following examples illustrate the concept of transfer equilibrium for finite

two-player games. The first example is a prisoners’ dilemma and shows that in

such a game, the set of transfer equilibria may contain elements that are not Nash

equilibria.

Example 6.2.3 Consider the next finite two-player game.

L R
T 3, 3 0, 5
B 5, 0 1, 1

Both players have two pure strategies: T and B for player 1 and L and R for

player 2. If player 1 plays T and player 2 plays R, the payoff equals 0 to the former

and 5 to the latter.
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Because x = (B,R) is a Nash equilibrium, it is immediately clear using

Lemma 6.2.1 that it is a transfer equilibrium as well (with q = π(x) and P =

{{1}, {2}}). Furthermore, (B,R) is also supported as a transfer equilibrium by

{((δ, 2 − δ), {{1, 2}}) | δ ∈ [0, 2]}. The other transfer equilibria are (B,L), sup-

ported by {((δ, 5 − δ), {{1, 2}}) | δ ∈ [3, 4]}, and the mirror image (T,R), supported

by {((δ, 5 − δ), {{1, 2}}) | δ ∈ [1, 2]}.
Note that the concept of transfer equilibrium is different from full cooperation,

as in that case the players would play (T, L) and divide a total amount of 6 between

them. This is, however, impossible as for any transfer of money in that cell, at least

one player has an incentive to deviate. ⊳

In the approach of Jackson and Wilkie (2005), the game in Example 6.2.3 does not

have an equilibrium (not even (B,R)). Because of the way they set up their transfer

proposals, mixing has to be allowed to sustain any equilibrium in this particular

game.

The next example, known as matching pennies, demonstrates that the set of

transfer equilibria can be non-empty even when there are no Nash equilibria.

Example 6.2.4 Consider the next finite two-player game.

L R
T 2, 0 0, 2
B 0, 2 2, 0

It is obvious that the set of Nash equilibria of this game is empty. However, (T, L)

supported by ((0, 2), {{1, 2}}) is a transfer equilibrium. In fact any combination of

strategies gives rise to a transfer equilibrium in an analogous way. ⊳

Although the set of transfer equilibria is an extension of the set of Nash equilibria,

not all games have transfer equilibria.

Example 6.2.5 Consider the next finite two-player game.

L R
T 6, 6 1, 9
M 4, 7 6, 6
B 4, 5 6, 4
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For none of the strategy profiles it is possible to transfer money in such a way that

both players have no incentive to deviate. Therefore, this game has no transfer

equilibria. ⊳

Non-existence of a transfer equilibrium in Example 6.2.5 follows from the follow-

ing proposition, which provides a necessary and sufficient condition for a transfer

equilibrium in a finite two-player game to exist.

Proposition 6.2.6 Let G = ({1, 2}, {M i}i∈{1,2}, {πi}i∈{1,2}) be a finite two-player

game. Strategy profile x̂ ∈ M is a transfer equilibrium of G if and only if

π1(x̂) + π2(x̂) ≥ π̄1(x̂) + π̄2(x̂), (6.3)

where π̄i(x̂) = maxxi∈M i\{x̂i} π
i(xi, x̂−i).

Proof: We first prove the “if” part. Let x̂ ∈M be such that (6.3) holds. If πi(x̂) ≥
π̄i(x̂) for all i ∈ {1, 2}, then x̂ ∈ NE(G) and the result follows from Lemma 6.2.1.

Otherwise, assume without loss of generality that π1(x̂) ≥ π̄1(x̂) and π2(x̂) < π̄2(x̂).

We show that x̂ is a transfer equilibrium supported by (q, P ), with q1 = π̄1(x̂),

q2 = π2(x̂) + π1(x̂) − π̄1(x̂) and P = {{1, 2}}. Clearly q1 + q2 = π1(x̂) + π2(x̂), so

(6.1) holds. For (6.2),

q1 = π̄1(x̂)

≥ π1(x1, x̂2)

for all x1 ∈M1\{x̂1}. And,

q2 = π2(x̂) + π1(x̂) − π̄1(x̂)

≥ π̄2(x̂) + π̄1(x̂) − π̄1(x̂)

= π̄2(x̂)

≥ π2(x̂1, x2)

for all x2 ∈M2\{x̂2}.

Secondly, we prove the “only if” statement. Let x̂ ∈M , supported by (q, P ) ∈ R2×P
be a transfer equilibrium of G. If x̂ ∈ NE(G) then πi(x̂) ≥ π̄i(x̂) for all
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i ∈ {1, 2}, from which the assertion follows immediately. If x̂ /∈ NE(G), then

P = {{1, 2}}, since otherwise (6.2) fails for at least one of the players. Then (6.1)

and (6.2) give q1 + q2 = π1(x̂) + π2(x̂) and qi ≥ π̄i(x̂) for all i ∈ {1, 2}. Hence,

π1(x̂) + π2(x̂) ≥ π̄1(x̂) + π̄2(x̂). �

One consequence of Proposition 6.2.6 is that for any game with mi ≤ 2 for all

i ∈ {1, 2}, the set of transfer equilibria is non-empty. Proposition 6.2.6 also implies

that if there exists a transfer equilibrium x̂ of G, then π1(x̂) is the maximum payoff

to player 1 against x̂2 or π2(x̂) is the maximum payoff to player 2 against x̂1. So,

when looking for a transfer equilibrium, only the cells containing those maxima

should be considered, which means that only m1 +m2 checks are needed.

6.3 Strategic transfer contracts

In the setup of transfer equilibrium as discussed in the previous section, the players

have a mechanism to enforce certain commitments between them. This mechanism

can be seen as a type of contract in order to transfer money between the players

that is executed in case a particular strategy profile is played. By looking at the

mechanism from that perspective one could however argue that the contracting

possibilities of the players are quite limited. First of all, players are only allowed to

sign a single contract and secondly, it is required that the combination of the contract

itself and the strategy profile on which it is enforced, constitutes an equilibrium.

In order to overcome these limitations we introduce for the class of finite two-

player games a different and more sophisticated contracting model in this section.

We assume that before playing the game, the players know which particular allo-

cations of earnings are available. Then each player proposes a set of contracts. A

single contract describes for one particular strategy combination a reallocation of the

corresponding payoffs. We specifically allow the players to propose contracts that

discard money. Only in case both players agree on the entire contract proposal, the

game is modified according to the contract conditions.

Definition Let G = ({1, 2}, {M i}i∈{1,2}, {πi}i∈{1,2}) be a finite two-player game. A

transfer contract is a pair (x̂, q) ∈M × R2 such that q1 + q2 ≤ π1(x̂) + π2(x̂).

Using these transfer contracts, the players play the two-stage contract game de-

scribed as follows.
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First stage. Each player i ∈ {1, 2} chooses a collection of transfer con-

tracts αi ⊆ M × R2, at most one for each strategy profile. The choices

are made simultaneously and independently. After both players have

made their choice, the proposed contracts are publicly announced.

Second stage. If both players have chosen the same set of transfer con-

tracts in the first stage, this set is adopted, the payoffs of the game are

modified accordingly and the players play this modified game. If the

proposed contracts in the first stage do not match, the original game G

is played.

We want to point out once more that contracts only come into effect in case both

sets of proposed contracts coincide completely. It is therefore not possible that

only part of the proposed contracts are enforced. This seems quite natural, as the

preference of a player for a set of contracts does not automatically imply that he is

also interested in any subset of these contracts.

The main difference between this model and the setup in Section 6.2 is that here

contracts are a strategic option, as they can be signed on every cell and are not

necessarily located at an equilibrium of the ensuing second stage. In particular, it

is possible that a contract on one cell results in an equilibrium at another cell.

The contract game as described above can be represented by an extensive form

game (as modelled in Kreps and Wilson (1982)), denoted by Γc(G). Its strategic

representation is given by Gc(G) = ({1, 2}, {X i}i∈{1,2}, {πi
c}i∈{1,2}), where for each

player i a strategy is a pair (αi, f i) ∈ X i
c with αi a collection of transfer contracts

and f i a map which assigns an action f i(ᾱ) ∈ X i to every pair ᾱ = (ᾱ1, ᾱ2) of

contract proposals. The payoff function for player i ∈ {1, 2} is given by

πi
c(α, f) =

{

qi if α1 = α2 and (f(α), q) ∈ αi,
πi(f(α)) otherwise.

Let us first consider the three examples discussed in Section 6.2. After that we pro-

vide necessary and sufficient conditions for a payoff vector to be the result of some

Nash equilibrium of this two-stage game. Moreover, we give a similar result for an

equilibrium refinement that appears natural in this context, called virtual subgame

perfect equilibrium.

For the prisoners’ dilemma of Example 6.2.3, the combination of strategies in which
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both players propose a set of contracts such that the cells (T,R) and (B,L) are

replaced by (0, 0) constitutes, in combination with player 1 (2) playing T (L) if both

players choose these contracts and B (R) otherwise, a Nash equilibrium of the game

Γc(G). Formally, this equilibrium strategy profile (α̂, f̂) is given by

α̂1 = α̂2 ={((T,R), (0, 0)), ((B,L), (0, 0))},

f̂ 1(α) =

{

T if α = α̂,
B otherwise,

f̂ 2(α) =

{

L if α = α̂,
R otherwise.

It is clear that unilaterally deviating will not lead to a higher payoff: player i’s best

response is to play according to f̂ i in the second stage in case both players have

played according to α̂ in the first stage, and in case player i has deviated in the

first stage. In the latter situation the second stage consists of the original prisoners’

dilemma game.

For the matching pennies in Example 6.2.4, we establish that, e.g., (T, L), sup-

ported by ((0, 2), {1, 2}), is a transfer equilibrium. However, Γc(G) does not have a

Nash equilibrium with associated payoff vector (0, 2), as this outcome is only reach-

able if both players agree on a set of contracts. In that case, however, player 1

will deviate from (α̂, f̂) by choosing α1 = ∅ in combination with a best response to

f 2(α1, α̂2), leading to a payoff equal to 2.

As a matter of fact, with a similar reasoning one can show that for matching

pennies the contract game has no Nash equilibria at all. This is not a consequence

of the game being constant-sum (as can be seen by replacing the (T, L) payoffs by

(3,0), in which case the same arguments hold), but relates to the minimax payoffs of

both players. In the formal analysis of transfer contracts in this section we elaborate

on this point.

The game of Example 6.2.5 does not have any transfer equilibria. The corresponding

contract game Γc(G), however, does possess a Nash equilibrium. Consider, e.g., the

strategy profile in which both players propose a set of contracts such that all payoffs

except at (T, L) are replaced by (0, 0). Furthermore, player 1 chooses T if this set

of contracts is executed and B otherwise, and player 2 plays L regardless of the

contract choice. Then unilaterally deviating will not lead to a higher payoff and

hence, this combination of strategies is a Nash equilibrium in the contract game.
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Let us now formally analyse the equilibrium payoffs of a contract game. Given

a finite two-player game G = ({1, 2}, {M i}i∈{1,2}, {πi}i∈{1,2}), the minimax payoff

vector v ∈ R2 is defined by

vi = min
x−i∈M−i

max
xi∈M i

πi(x)

for all i ∈ {1, 2}.

Theorem 6.3.1 Let G = ({1, 2}, {M i}i∈{1,2}, {πi}i∈{1,2}) be a finite two-player

game with minimax payoff vector v. For every r ∈ R2 with r ≥ v such that

r1 + r2 ≤ π1(x)+π2(x) for some x ∈M there exists a Nash equilibrium of the game

Gc(G) with corresponding payoff vector r.

Proof: Let r ≥ v and x̄ ∈ M be such that r1 + r2 ≤ π1(x̄) + π2(x̄). Let x̃ ∈ M be

such that

max
xi∈M i

πi(xi, x̃−i) = vi

for all i ∈ {1, 2}. We construct a Nash equilibrium (α̂, f̂) of the game Gc(G) as

follows. For each player i ∈ {1, 2}, the set of transfer contracts is given by

α̂i =

{

(x̄, r)

}

∪
{

(x, p)

∣

∣

∣

∣

x ∈M \ {x̄} , p < v, p1 + p2 ≤ π1(x) + π2(x) ∀x ∈M \ {x̄}
}

.

The strategies in the second stage are given for all α by

f̂ i(α) =

{

x̄i if α = α̂,
x̃i if α 6= α̂,

for all i ∈ {1, 2}. Clearly, π(α̂, f̂) = r. If player 1 chooses (α1, f 1), then his payoff

equals

π1((α1, α̂2), (f 1, f̂ 2)) =







r1 if α1 = α̂1, f 1(α1, α̂2) = x̄1,
p1 if α1 = α̂1, f 1(α1, α̂2) 6= x̄1,
π1(f 1(α1, α̂2), x̃2) if α1 6= α̂1.

Given the choice of p1 and x̃2,

π1((α1, α̂2), (f 1, f̂ 2)) ≤ r1

= π1(α̂, f̂).
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Similarly, player 2 has no incentive to deviate and (α̂, f̂) is a Nash equilibrium of

Gc(G). �

Note that the condition on the payoff vector r in Theorem 6.3.1 is not only sufficient,

but also necessary. If ri < vi for some player i ∈ {1, 2}, then r is not an equilibrium

payoff in the contract game, since player i will deviate by proposing no contract and

playing his minimax strategy in the second stage.

Theorem 6.3.1 states that every feasible payoff vector larger than the minimax pay-

off vector of G is supported as the payoff of some Nash equilibrium of the contract

game Γc(G). However, the equilibrium strategy profile constructed in the proof may

prescribe unreasonable strategy choices in subgames off the equilibrium path.

Consider, e.g., the game of Example 6.2.5, and the Nash equilibrium (α̂, f̂) of

the corresponding contract game Γc(G) presented earlier in this section. In this

game, v = (6, 5) and (α̂, f̂) is one of the Nash equilibria constructed in the proof

of Theorem 6.3.1 with x̄ = (T, L), r = (6, 6), p = (0, 0), x̃1 = B and x̃2 = L. The

problem with this Nash equilibrium is that after any unilateral deviation from the

proposed contract set the players end up in a subgame in which the original game

G is played in the second stage, and in that game B is not a best response to L.

In order to deal with this shortcoming, one might consider subgame perfect equi-

libria of Γc(G) (Selten (1965)). A Nash equilibrium is called subgame perfect if it

prescribes a Nash equilibrium in every subgame.

However, the set of subgame perfect equilibria in the contract game is always

empty (ifmi ≥ 2 for all i ∈ {1, 2}). Consider the subgame starting at the node where

both players have proposed the same collection of contracts in such a way that the

modified game in the second stage possesses no Nash equilibrium (notice that this

can easily be done). Clearly, any proposed strategy in Γc(G) does not prescribe a

Nash equilibrium in this subgame and hence, no subgame perfect equilibrium exists.

The problem with the concept of subgame perfection in this particular model

is that the game has too many subgames, some of which seem not particularly

relevant. To tackle this problem, García-Jurado and González-Díaz (2006) introduce

the concept of virtually subgame perfect equilibrium. For a strategy profile σ in

an extensive form game Γ to be a virtually subgame perfect equilibrium, it must

prescribe a Nash equilibrium in the σ-relevant subgames of Γ. A subgame of Γ is

called σ-relevant if it is Γ itself or if it starts at a node that can be reached from a

σ-relevant subgame by at most one unilateral deviation from σ.
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Let us once more consider the contract game corresponding to the game of Exam-

ple 6.2.5. In the Nash equilibrium presented before, both players propose a set of

contracts in which all payoffs except at (T, L) are replaced by (0, 0). Then given

these contract choices, all σ-relevant subgames correspond to the second stage play

of either the game in which all these contracts are executed, or the original game G.

This is due to the fact that if only one player deviates from his contract proposal the

sets of proposed contracts do not match, in which case the original game G is played

in the second stage. In order to end up in a different game in the second stage, both

players have to deviate from the equilibrium strategy profile, which means that such

a subgame is not σ-relevant.

Hence, a particular strategy profile can only be a virtually subgame perfect equi-

librium if it results in a Nash equilibrium in the original game G for each subgame

in which the players are called to play this game. Such a strategy profile obviously

does not exist in the game of Example 6.2.5 as the subgames in which G is played

in the second stage do not possess a Nash equilibrium.

Next, consider the prisoners’ dilemma in Example 6.2.3 and the equilibrium stra-

tegy profile proposed in this section for the corresponding contract game. Then we

see that this strategy profile leads to a Nash equilibrium in all subgames in which

G is played. Furthermore, it also constitutes a Nash equilibrium in the subgame in

which the proposed contract set comes into effect. Therefore, this strategy profile is

a virtually subgame perfect equilibrium.

These two examples indicate that there is a strong relation between the existence

of Nash equilibria in the game G on the one hand and the existence of virtually

subgame perfect equilibria in the contract game Γc(G) on the other. The next

theorem formalises this result.

Theorem 6.3.2 Let G = ({1, 2}, {M i}i∈{1,2}, {πi}i∈{1,2}) be a finite two-player

game. For every r ∈ R2 such that for every i ∈ {1, 2} there exists a Nash equi-

librium x̂(i) of G with ri ≥ πi(x̂(i)) and such that r1 + r2 ≤ π1(x) + π2(x) for

some x ∈ M , there exists a virtually subgame perfect equilibrium of Γc(G) with

corresponding payoff vector r.

Proof: Let r, x̂(1) and x̂(2) be as stated in the theorem and let x̄ ∈ M be such

that r1 + r2 ≤ π1(x̄) + π2(x̄). Define the strategy profile (α̂, f̂) as follows.
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For each i ∈ {1, 2},

αi = {(x̄, r)}∪
{

(x, p)

∣

∣

∣

∣

x ∈ M \ {x̄} , p < v, p1 + p2 ≤ π1(x) + π2(x)∀x ∈M\{x̄}
}

.

The strategies in the second stage are given for all α by

f̂(α) =















x̄ if α = α̂,
x̂(1) if α1 6= α̂1, α2 = α̂2,
x̂(2) if α1 = α̂1, α2 6= α̂2,
x∗ otherwise,

where x∗ is an arbitrary strategy profile of G.

Obviously, π(α̂, f̂) = r. We check that (α̂, f̂) is a virtually subgame perfect equili-

brium of Γc(G). First, in a similar way as in the proof of Theorem 6.3.1, one can

show that (α̂, f̂) is a Nash equilibrium of Gc(G).

The nodes which define a subgame (apart from the root) are the nodes corres-

ponding to each profile of transfer contract collections (α1, α2). Of these, only the

profiles reachable from unilateral deviations in the first stage, (α̂1, α2) and (α1, α̂2),

give rise to (α̂, f̂)-relevant subgames. Consider the subgame in which player 1 has

chosen α1 6= α̂1 in the first stage. In this subgame, f̂ prescribes x̂(1), which is a Nash

equilibrium in this subgame, because no contract is enforced. Similarly, f̂ prescribes

a Nash equilibrium in every (α̂, f̂)-relevant subgame in which player 2 has deviated.

Hence, (α̂, f̂) is a virtually subgame perfect equilibrium. �

Again, the conditions on the payoff vector r are necessary. For a strategy profile of

Γc(G) to be virtually subgame perfect, it has to prescribe a Nash equilibrium in the

second stage in which the original game G is played, since this is always a relevant

subgame. If, say, π1(x) > r1 for all x ∈ NE(G) of G, then player 1 has an incentive

to deviate and propose no contract.



Chapter 7

Fall back equilibrium

Life will not bear refinement. You must do as
other people do.

Samuel Johnson (1709 - 1784)

7.1 Introduction

The notion of equilibrium for strategic games, introduced by Nash (1951), is the

fundamental concept in non-cooperative game theory. The set of Nash equilibria,

however, may be very large and can contain counterintuitive outcomes. In order

to overcome these drawbacks Selten (1975) developed the concept of perfectness as

a refinement of the Nash equilibrium concept. In the thought experiment underly-

ing perfectness all players make mistakes in such a way that each action is played

with positive probability. The notions of properness (Myerson (1978)), robustness

(Okada (1983)), strict perfectness (Okada (1984)) and many others originated from

Selten’s work. Although these refinements differ in their exact concept, the com-

mon underlying idea is that an equilibrium should be stable against perturbations

in the strategies due to mistakes made by the players of the game. This line of

research culminated into the concept of stable sets (Kohlberg and Mertens (1986)

and Mertens (1989 and 1991)). A partial overview of this literature can be found in

Van Damme (1991).

In this chapter, which is based on Kleppe et al. (2008), we introduce a new equi-

librium concept in which the strategy perturbations are based on another type of

thought experiment. The idea is that each player faces a small but positive proba-
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bility that, after all players decided on their action, the action chosen by him is

blocked. Therefore, each player has to choose beforehand a back-up action, which

he plays in case his first choice action, called primary action, is blocked.

The probability with which a player is unable to play his primary action and has

to rely on his back-up is assumed to be independent of the particular choice he makes.

This probability may, however, vary between the players. It is important to notice

that, contrary to the perfectness concept in which players randomly play all other

actions by mistake, in our setting players choose their back-up action strategically.

Example 7.1.1 Consider the next 2 × 4 bimatrix game G, where both players are

allowed to randomise between their actions.

e21 e22 e23 e24
e11 1, 7 0, 0 1, 5 1, 6
e12 1, 7 1, 6 1, 5 0, 2

Following Borm (1992) we analyse this game graphically in Figure 7.1.1. In this

0

2

4

6

8

e12 e11
1
6

2
5

3
4

[12]1
[2]2 [1]4

[12]3

Figure 7.1.1: Graphical representation of G

figure the horizontal axis represents the strategy space of player 1, and each line

describes player 2’s payoff function corresponding to a particular action (indicated

by the subindex). Each label displays player 1’s set of pure best replies (either action

1, 2, or both) against the corresponding action of player 2.

In addition to the two proper equilibria on the boundaries of player 1’s strategy

space, there is a third proper equilibrium (2
5
e11 + 3

5
e12, e

2
1). Here player 1’s strategy is
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the unique strategy for which player 2 is indifferent between his second and fourth

action. Hence, although these actions are dominated by both e21 and e23 if player 1

plays (a strategy in the neighbourhood of) 2
5
e11 + 3

5
e12, the coordination point of these

two actions determines a proper equilibrium. The reason is that the concept of

proper equilibrium, like many other concepts, assumes full rationality of all players,

which in this particular example implies that player 1 has to anticipate the possibility

that player 2 makes the mistake of playing 1
2
e22 + 1

2
e24. Clearly, such an analysis

requires a high level of rationality by the players on less relevant payoff levels in the

game.

We instead assume that players are boundedly rational in the sense that they

only take into account the possibility of a single back-up for each player. This is

modelled by only allowing the primary action of a player to be blocked, and not

also his back-up action. The set of fall back equilibria of this game is given by

{(e11, e21)} ∪ {(e12, e21)} ∪ conv({1
6
e11 + 5

6
e12,

3
4
e11 + 1

4
e12}) × {e22}. ⊳

The idea behind fall back equilibrium can also be applied to extensive form games.

In that framework one has to make a distinction between the setup with mixed

strategies and the setup with behavioural strategies. In the first one players decide on

all their (possible) actions beforehand, whereas in the second setup players determine

each choice at the moment they actually have to make it. In games with perfect

recall, this distinction has no effect on the set of Nash equilibria (Kuhn (1953)).

However, for the notion of fall back equilibrium it does matter whether a player

faces the possibility of blocked actions once at the beginning of the game, or at each

choice moment separately. For a brief discussion on this topic we refer to the end of

Section 7.2.

In this chapter, however, we have chosen to focus on mixed extensions of finite

non-cooperative games in strategic form. In the thought experiment players act by

choosing both a primary and a back-up strategy. These strategies together define a

strategy in the fall back game. Given that a player can choose between m actions in

the original game, the fall back game has m(m−1) actions to choose from, as players

are not allowed to choose the same action both as primary and as back-up. The

payoffs in the fall back game are the expected payoffs in the original game given the

blocking probabilities. In the fall back game players are also allowed to use mixed

strategies.
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Example 7.1.2 Consider the 3 × 3 bimatrix game G, which is due to Myerson

(1978), depicted below.

e21 e22 e23
e11 1, 1 0, 0 −9,−9
e12 0, 0 0, 0 −7,−7
e13 −9,−9 −7,−7 −7,−7

Out of the three Nash equilibria of this game, (e11, e
2
1), (e12, e

2
2) and (e13, e

2
3), only

the last one is not a perfect equilibrium. The focal point of this game is (e11, e
2
1),

and this strategy profile is also the unique proper equilibrium, as the probability

that players play the third row/column by mistake is significantly smaller than the

probability of making any other mistake.

The strategy profile (e11, e
2
1) is also the unique fall back equilibrium of G. In

our framework, however, this is due to the fact that back-up actions are chosen

strategically. Therefore, the strategy profile in which both players choose their first

action as primary strategy and their second action as back-up strategy forms the

unique equilibrium in the fall back game, which supports (e11, e
2
1) as the unique fall

back equilibrium. ⊳

In the thought experiment we introduce for the concept of fall back equilibrium we

explicitly allow for strategic choices, as each player himself determines which alter-

native(s) to play in case the strategy he intended to play is unavailable. This is

contrary to the thought experiment underlying proper equilibrium in which players

cannot make these decisions as alternatives are ordered (exogenously) based upon

the corresponding payoffs (given the opponents’ actions). As it turns out, our line

of thought culminates for bimatrix games in an alternative and strategic charac-

terisation of proper equilibrium, as opposed to the non-strategic characterisation of

properness by Blume et al. (1991) based on lexicographic belief systems.

The first result we obtain in this chapter is that the set of fall back equilibria is

a non-empty and closed subset of the set of Nash equilibria. We also analyse the

relations between fall back equilibrium on one hand and the equilibrium concepts

of perfect, proper, strictly perfect and robust on the other. We prove that each

robust equilibrium is a fall back equilibrium. Furthermore, for bimatrix games also

each proper equilibrium is a fall back equilibrium, and consequently the intersec-



7.1. Introduction 165

tion between the sets of fall back and perfect equilibria is non-empty. For games

with more players this relation between proper and fall back equilibrium does not

hold. The relation between the sets of fall back and strictly perfect equilibria is

restricted to 2×2 bimatrix games. For these games the two sets coincide, otherwise

the intersection can be empty, even if the set of strictly perfect equilibria itself is

not.

Similar to the way Okada (1984) refines perfectness in strict perfectness we define

the concept of strictly fall back equilibrium. It turns out that the sets of fall back

and strictly fall back equilibria coincide for bimatrix games. However, for games

with more than two players the set of strictly fall back equilibria can be empty.

For bimatrix games also the structure of the set of fall back equilibria is analysed.

The main result is that the set of fall back equilibria is the union of finitely many

polytopes.

In the thought experiment underlying fall back equilibrium we assume that only

one action of each player can be blocked. We also consider two modifications of

this concept. We first of all analyse the equilibrium concept that emerges when we

allow multiple actions of each player to be blocked. The first main result provided

for this concept, called complete fall back equilibrium, is that the set of complete

fall back equilibria is a non-empty and closed subset of the set of proper equilibria.

Secondly, for bimatrix games the sets of complete fall back and proper equilibria co-

incide, which means that the concept of complete fall back equilibrium is a strategic

characterisation of proper equilibrium.

In the second modification we consider there can only be one blocked action in

total. As a result the events of two players being blocked are no longer independent

and therefore this equilibrium concept is called dependent fall back equilibrium. We

show that for 2 × 2 bimatrix games the sets of dependent fall back and perfect

equilibria coincide, but for bimatrix games in general the intersection between the

two sets can be empty.

In the final section of this chapter we discuss bimatrix games in which at least

one of the players only has two pure strategies, and for these type of games we cha-

racterise the sets of fall back, complete fall back and dependent fall back equilibria.

This chapter is organised as follows. In Section 7.2 we set up notation, formally

introduce and characterise the concept of fall back equilibrium for strategic games,

and present some basic results. In Section 7.3 we discuss the concept of strictly fall
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back equilibrium, while in Section 7.4 we consider the relations between fall back

equilibrium and other equilibrium concepts. In Section 7.5 we discuss the structure

of the set of fall back equilibria for bimatrix games. Section 7.6 covers the analysis

of the concept of complete fall back equilibrium, and in Section 7.7 we consider

dependent fall back equilibrium. At the end of the latter section we also provide an

overview of the relations between all equilibrium concepts discussed in this chapter,

both for n-player strategic games and for bimatrix games. Section 7.8 is devoted to

the analysis of fall back equilibrium and its related concepts in bimatrix games in

which at least one of the players has two pure strategies. We conclude this section

with an overview of the relations between all discussed equilibrium concepts, for this

type of games.

7.2 Fall back equilibrium

A non-cooperative game in strategic form is given by G = (N, {∆M i}i∈N , {πi}i∈N),

with N = {1, . . . , n} the player set, ∆M i the mixed strategy space of player i ∈ N ,

with M i = {1, . . . , mi} the set of pure strategies, and πi :
∏

j∈N ∆Mj → R the Von

Neumann Morgenstern expected payoff function of player i. A pure strategy k ∈M i

of player i is alternatively denoted by ei
k, a typical element of ∆M i by xi. We denote

the probability which xi assigns to pure strategy (action) k by xi
k. The set of all

strategy profiles is given by ∆ =
∏

i∈N ∆M i , a typical element of ∆ by x.

A strategy profile x̂ is a Nash equilibrium (Nash (1951)) of G, denoted

by x̂ ∈ NE(G), if πi(x̂) ≥ πi(xi, x̂−i) for all xi ∈ ∆M i and all i ∈ N .

Here (xi, x̂−i) is the frequently used shorthand notation for the strategy profile

(x̂1, . . . , x̂i−1, xi, x̂i+1, . . . , x̂n).

The carrier of a strategy xi is given by C(xi) = {k ∈ M i |xi
k > 0}, the

pure best reply correspondence of player i by PBi(x−i) = {k ∈ M i |πi(ei
k, x

−i) ≥
πi(ei

ℓ, x
−i) for all ℓ ∈M i}. Clearly, x̂ ∈ NE(G) if and only if C(x̂i) ⊆ PBi(x̂−i) for

all i ∈ N .

Next we formalise the thought experiment as described in the introduction of this

chapter. The action set for player i in the associated fall back game (only defined

if mj ≥ 2 for all j ∈ N) is given by M̃ i = {(k, ℓ) ∈ M i × M i | k 6= ℓ}. Hence,

the total number of actions in the fall back game for player i is m̃i = mi(mi − 1).

An action (k, ℓ) ∈ M̃ i consists of a primary action k and a back-up action ℓ. Let
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ε = (ε1, . . . , εn) be an n-tuple of (small) non-negative probabilities. The interpreta-

tion of player i’s action (k, ℓ) in the fall back game is that he plays in the original

game with probability 1−εi primary action k and with probability εi back-up action

ℓ.

The fall back game G̃(ε) is given by G̃(ε) = (N, {∆M̃ i}i∈N , {πi
ε}i∈N), with πi

ε :
∏

j∈N ∆M̃j → R the extended expected payoff function of player i. The pure strategy

(k, ℓ) ∈ M̃ i is alternatively denoted by ei
kℓ. The payoff function πi

ε is for pure strategy

combinations formally defined by

πi
ε((e

j

kjℓj )j∈N) =
∑

S⊆N

(
∏

j∈S

(1 − εj)
∏

j∈N\S

εj)πi((ej

kj)j∈S, (e
j

ℓj )j∈N\S).

A typical element of ∆M̃ i is denoted by ρi, where ρi
kℓ is the probability which ρi

assigns to pure strategy (k, ℓ). Note that ρi assigns probabilities to pure strategies

(k, ℓ) of the fall back game, not to primary and back-up actions separately. The set

of all strategy profiles is given by ∆̃ =
∏

i∈N ∆M̃ i , an element of ∆̃ will be denoted

by ρ.

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A

strategy profile x ∈ ∆ is a fall back equilibrium of G if there exists a sequence {εt}t∈N

of n-tuples of positive real numbers converging to zero, and a sequence {ρt}t∈N such

that ρt ∈ NE(G̃(εt)) for all t ∈ N, converging to ρ ∈ ∆̃, with xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ

for all k ∈ M i and all i ∈ N . The set of fall back equilibria of G is denoted by

FBE(G).

In the thought experiment underlying the concept of fall back equilibrium each

player faces the small but positive probability that, after all players decided on their

action, the action chosen by him is blocked. In that case the player plays the back-

up action he chose beforehand. This is modelled by letting players play the fall back

game in which each action consists of a primary action, played with a probability

close to one, and a back-up action, played with the remaining probability. A fall

back equilibrium of the original game is then deduced from the limit point of a

sequence of Nash equilibria of the corresponding fall back games when the blocking

probabilities converge to zero.

Theorem 7.2.1 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game.

Then the set of fall back equilibria of G is a non-empty and closed subset of the set

of Nash equilibria of G.
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Proof: We first show non-emptiness. Let {εt}t∈N be a sequence of n-tuples

of positive real numbers converging to zero. Take a sequence {ρt}t∈N such that

ρt ∈ NE(G̃(εt)) for all t ∈ N. Because the strategy spaces are compact there

exists a subsequence of {ρt}t∈N converging to, say, ρ ∈ ∆̃. Define x ∈ ∆ by

xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ for all k ∈M i and all i ∈ N . By definition x ∈ FBE(G).

Next we prove that each fall back equilibrium is a Nash equilibrium. Take

x ∈ FBE(G). We prove that x ∈ NE(G) by showing that C(xi) ⊆ PBi(x−i)

for all i ∈ N . Take a sequence {εt}t∈N of n-tuples of positive real numbers con-

verging to zero and a sequence {ρt}t∈N such that ρt ∈ NE(G̃(εt)) for all t ∈ N,

converging to ρ ∈ ∆̃, with xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ for all k ∈ M i and all i ∈ N . Let

i ∈ N and k ∈ C(xi). Then for sufficiently large t ∈ N we have that (k, ℓ) ∈ C(ρi
t)

for some ℓ ∈M i\{k}. Hence,

πi
εt

(ei
kℓ, ρ

−i
t ) ≥ πi

εt
(ei

rs, ρ
−i
t )

for every (r, s) ∈ M̃ i. Taking t to infinity, we find by continuity of πi
ε,

πi
0(e

i
kℓ, ρ

−i) ≥ πi
0(e

i
rs, ρ

−i)

for every (r, s) ∈ M̃ i. Since πi
0(e

i
kℓ, ρ

−i) = πi(ei
k, x

−i) and similarly πi
0(e

i
rs, ρ

−i) =

πi(ei
r, x

−i), it follows that

πi(ei
k, x

−i) ≥ πi(ei
r, x

−i)

for every r ∈M i and hence k ∈ PBi(x−i).

Finally we show that FBE(G) is closed. Take a converging sequence {xt}t∈N with

xt ∈ FBE(G) for all t ∈ N, with limit x ∈ ∆. For all t ∈ N there exists a sequence

{εtr}r∈N of n-tuples of positive real numbers converging to zero and a sequence

{ρtr}r∈N converging to ρt ∈ ∆̃, with xi
t,k =

∑

ℓ∈M i\{k} ρ
i
t,kℓ for all k ∈ M i and all

i ∈ N , such that

xtr ∈ NE(G̃(εtr))

for all r ∈ N. Considering the sequences {εtt}t∈N and {xtt}t∈N one readily establishes

that x ∈ FBE(G). �
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Although the definition of fall back equilibrium is natural in its interpretation, the

fact that the size of the payoff matrices is larger in the fall back game than in the

original game makes further analysis complicated. Therefore, we now provide an

alternative characterisation of fall back equilibrium.

For a (sufficiently small) blocking vector δ ∈ RN
+ , the blocking game G(δ) =

(N, {∆M i(δi)}i∈N , {πi}i∈N) is defined to be the game which only differs from

G = (N, {∆M i}i∈N , {πi}i∈N) in the sense that the strategy spaces are restricted

to

∆M i(δi) = {xi ∈ ∆M i | xi
k ≤ 1 − δi for all k ∈M i}

for all i ∈ N and the domains of the payoff functions are restricted accordingly.

Define the set of all strategy profiles of the blocking game by ∆(δ) =
∏

j∈N ∆Mj (δj).

Note that the strategy spaces of the blocking game, with δ > 0, restrict each

player to play at least two of his original actions with positive probability, but also

allow him to play some actions with zero probability.

Lemma 7.2.2 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. Let

{εt}t∈N and {δt}t∈N be sequences of n-tuples of positive real numbers converging to

zero such that εt = δt for all t ∈ N, with corresponding fall back and blocking

games G̃(εt) = (N, {∆M̃ i}i∈N , {πi
εt
}i∈N ) and G(δt) = (N, {∆M i(δi

t)}i∈N , {πi}i∈N )

respectively.

Then for each sequence {ρt}t∈N converging to ρ, with ρt ∈ ∆̃ for all t ∈ N, there

exists a sequence {xt}t∈N converging to x, with xt ∈ ∆(δt) for all t ∈ N, such that

xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ for all k ∈ M i and all i ∈ N , and πi(xt) = πi

εt
(ρt) for all i ∈ N

and all t ∈ N.

Conversely, for each sequence {xt}t∈N converging to x, with xt ∈ ∆(δt) for all

t ∈ N, there exists a sequence {ρt}t∈N converging to ρ, with ρt ∈ ∆̃ for all t ∈ N,

such that xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ for all k ∈ M i and all i ∈ N , and πi

εt
(ρt) = πi(xt) for

all i ∈ N and all t ∈ N.

Proof: Let {ρt}t∈N be a sequence converging to ρ ∈ ∆̃, with ρt ∈ ∆̃ for all t ∈ N.

We define the sequence {xt}t∈N such that for all t ∈ N

xi
t,k = (1 − δi

t)
∑

ℓ∈M i\{k}

ρi
t,kℓ + δi

t

∑

ℓ∈M i\{k}

ρi
t,ℓk (7.1)
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for all k ∈ M i and all i ∈ N . Then xt ∈ ∆(δt) for all t ∈ N and {xt}t∈N converges

to x, with xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ for all k ∈ M i and all i ∈ N . Furthermore, because

εt = δt for all t ∈ N the strategy profile xt puts the same probabilities on the actions

of the game G as ρt for all t ∈ N. Therefore, πi(xt) = πi
εt

(ρt) for all i ∈ N and all

t ∈ N.

The reverse statement is shown similarly, with the sequence {ρt}t∈N defined in such

a way that equation (7.1) is satisfied. Note that since xt ∈ ∆(δt) and εt = δt for

all t ∈ N, and therefore at least two actions of each player i of game G are played

with a probability of at least εi
t, it is always possible to construct such a sequence

{ρt}t∈N. �

Note that the restrictions with respect to strategies of the original game are the

same in the blocking game as in the fall back game (if δ = ε). As a consequence of

Lemma 7.2.2, a fall back equilibrium can also be defined in terms of Nash equilibria

of blocking games.

Theorem 7.2.3 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game.

Then a strategy profile x ∈ ∆ is a fall back equilibrium of G if and only if there

exists a sequence {δt}t∈N of blocking vectors of positive real numbers converging to

zero and a sequence {xt}t∈N converging to x such that xt ∈ NE(G(δt)) for all t ∈ N.

Proof: We just prove the “only if” part, the reverse statement can be shown ana-

logously. Assume x̂ ∈ FBE(G). Then by definition there exists a sequence {εt}t∈N

of n-tuples of positive real numbers converging to zero, and a sequence {ρ̂t}t∈N con-

verging to ρ̂ ∈ ∆̃, with x̂i
k =

∑

ℓ∈M i\{k} ρ̂
i
kℓ for every k ∈ M i and all i ∈ N , such

that ρ̂t ∈ NE(G̃(εt)) for all t ∈ N. By Lemma 7.2.2 there exists a sequence {x̂t}t∈N

converging to x̂ ∈ ∆, with x̂t ∈ ∆(δt) for all t ∈ N, such that πi(x̂t) = πi
εt

(ρ̂t) for all

i ∈ N and all t ∈ N.

Let i ∈ N . We show that πi(x̂t) ≥ πi(xi
t, x̂

−i
t ) for all xi

t ∈ ∆M i(δi
t) and all t ∈ N,

which proves that x̂t ∈ NE(G(δt)) for all t ∈ N and therefore completes the proof.

Let t ∈ N and let (xi
t, x̂

−i
t ) ∈ ∆(δt). Then by Lemma 7.2.2 we can take a strategy

(ρi
t, ρ̂

−i
t ) ∈ ∆̃ such that πi

εt
(ρi

t, ρ̂
−i
t ) = πi(xi

t, x̂
−i
t ).
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Since ρ̂t ∈ NE(G̃(εt)) we obtain

πi(xi
t, x̂

−i
t ) = πi

εt
(ρi

t, ρ̂
−i
t )

≤ πi
εt

(ρ̂t)

= πi(x̂t).

Consequently, πi(x̂t) ≥ πi(xi
t, x̂

−i
t ) for all xi

t ∈ ∆M i(δi
t) and all t ∈ N. �

Since a blocking game with δ > 0 only excludes the possibility for any player to play

an original action with probability one, we obtain the following proposition.

Proposition 7.2.4 Let G = (N, {∆M i}i∈N , {πi}i∈N ) be an n-player strategic game

and let x ∈ ∆ be such that |C(xi)| > 1 for all i ∈ N . Then x is a fall back equilibrium

of G if and only if x is a Nash equilibrium of G.

In the thought experiment underlying perfectness (Selten (1975)) players also play a

perturbed game. Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A

pertubation vector for player i ∈ N is given by εi ∈ RM i

, with εi
k > 0 for all k ∈ M i

and
∑

k∈M i εi
k ≤ 1. Then the ε-perturbed game H(ε) = (N, {∆M i(εi)}i∈N , {πi}i∈N )

is defined to be the game which only differs from G in the sense that the strategy

spaces are restricted to

∆M i(εi) = {xi ∈ ∆M i |xi
k ≥ εi

k for all k ∈M i}

for all i ∈ N and the domains of the payoff functions are restricted accordingly. De-

fine the set of all strategy profiles of the ε-perturbed game by ∆(ε) =
∏

j∈N ∆Mj(εj).

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A stra-

tegy profile x ∈ ∆ is a perfect equilibrium of G if there exists a sequence {εt}t∈N

of pertubation vectors converging to zero, and a sequence {xt}t∈N converging to x,

such that xt ∈ NE(H(εt)) for all t ∈ N. The set of perfect equilibria of G is denoted

by PE(G).

Apparently, an important difference between fall back and perfect equilibrium is that

in the thought experiment underlying perfectness all actions have to be played with

positive probability and for fall back equilibrium only at least two. This observation

leads to the following proposition.
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Proposition 7.2.5 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game

such that mi = 2 for all i ∈ N . Then the sets of fall back and perfect equilibria of

G coincide.

We conclude this section with an example in which we show that the idea behind

fall back equilibrium can also be applied to extensive form games, but that in the

setup with mixed strategies this leads to a different concept as in the setup with

behavioural strategies. Moreover, the two concepts may support different leaves of

the extensive form game as a fall back equilibrium

Example 7.2.6 Consider the extensive form game Γ depicted in Figure 7.2.1. Note

that in the corresponding normal form game player 1 has eight actions. Since only

one of player 1’s actions can be blocked he is always able to play A followed by

C by choosing ACE as primary and ACF as back-up strategy. Consequently, the

strategy profile in which player 1 plays ACE and player 2 plays x constitutes a fall

back equilibrium, with outcome (3, 1).

In the setup with behavioural strategies players determine their choice at the

moment they actually have to make it. Hence, when we apply the notion of fall

back equilibrium, given this setup, to the extensive form game of Figure 7.2.1, it

follows that when player 1 chooses C (at the node after his play of A and player 2’s

choice of x) there is a positive probability that C is blocked. Consequently, where in

the setup with mixed strategies player 1 was able to play C with probability one, this

is not possible in the setup with behavioural strategies. As a result, after playing

A, there always is a positive probability that player 1 plays D if player 2 chooses

x. Therefore, player 2 will always choose y as primary strategy, which implies that

outcome (3, 1) cannot be supported as a fall back equilibrium in this setup. ⊳

7.3 Strictly fall back equilibrium

Okada (1984) refines the perfectness concept to strict perfectness by requiring that

for every sequence {εt}t∈N of pertubation vectors converging to zero there exists a

sequence {xt}t∈N of strategy profiles converging to x such that xt ∈ NE(G(εt)) for

all t ∈ N. In a similar way we introduce the concept of strictly fall back equilibrium.

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A
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Figure 7.2.1: Extensive form game Γ

strategy profile x ∈ ∆ is a strictly fall back equilibrium of G if for every sequence

{εt}t∈N of n-tuples of positive real numbers converging to zero there exists a se-

quence {ρt}t∈N such that ρt ∈ NE(G̃(εt)) for all t ∈ N, converging to ρ ∈ ∆̃, with

xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ for all k ∈ M i and all i ∈ N . The set of strictly fall back

equilibria of G is denoted by SFBE(G).

Note that if we impose in Theorem 7.2.3 the requirement for every sequence {δt}t∈N

of blocking vectors of positive real numbers converging to zero, we get in the same

way an equivalent characterisation of strictly fall back equilibrium in terms of

blocking vectors.

Since the sets of fall back and perfect equilibria are refined to a strict concept

in a similar way, we obtain the following corollary.

Corollary 7.3.1 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game,

with mi = 2 for all i ∈ N . Then the sets of strictly fall back and strictly perfect

equilibria of G coincide.

Since the set of strictly perfect equilibria can be empty for three-player games with

action sets of size two for all players, also the set of strictly fall back equilibria can

be empty if the number of players is three.

However, for any strategic game with only two players, i.e. bimatrix games, the

set of strictly fall back equilibria is non-empty since in that case it coincides with

the non-empty set of fall back equilibria. Before we can prove this result we first

have to provide a second characterisation of fall back equilibrium, which can only be
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applied to bimatrix games. This characterisation is convenient as it does not make

use of perturbed games or converging sequences.

Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game and let x ∈ ∆.

Then, we first of all define the pure second best reply correspondence of player i by

PSBi(x−i) =
{

k ∈M i
∣

∣

∣
∃ ℓ ∈M i\{k} : πi(ei

ℓ, x
−i) ≥ πi(ei

k, x
−i),

πi(ei
k, x

−i) ≥ πi(ei
r, x

−i) ∀r ∈ M i\{ℓ}
}

.

Note that if |PBi(x−i)| > 1, then PBi(x−i) = PSBi(x−i). Also note that the cor-

respondences PBi and PSBi are upper-semi-continuous.

In the blocking game the strategy of each player is composed of primary and back-up

strategies. The preferences of player i over possible actions are independent of δi, as

they only depend on the strategies of the other players. Furthermore, if the proba-

bility on the back-up strategies, δ̄j , of player j 6= i in a blocking game corresponding

to a bimatrix game is sufficiently close to zero, the set of best replies for player i

in the fall back game is, by upper-semi-continuity of PBi and PSBi, the same for

all δj ∈ (0, δ̄j]. Consequently, the best replies of both players in a blocking game

corresponding to a bimatrix game are independent of the blocking vector δ ∈ R2
++

when δ is sufficiently close to zero.

Proposition 7.3.2 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a bimatrix game.

Then a strategy profile x = (x1, x2) ∈ ∆ is a fall back equilibrium of G if and only

if one of the following three statements is satisfied.

1. |C(x1)| > 1, |C(x2)| > 1 and x ∈ NE(G).

2. For i, j ∈ {1, 2}, i 6= j: |C(xi)| > 1, |C(xj)| = 1 and there exists a strategy x̄j ∈
∆Mj such that C(x̄j) ∩ C(xj) = ∅ and a blocking probability δ̄j > 0, such that

for all δj ∈ (0, δ̄j] the strategy profile x̂ = (xi, x̂j), with x̂j = (1− δj)xj + δjx̄j,

satisfies

C(xi) ⊆ PBi(x̂j),

C(xj) ⊆ PBj(xi),

C(x̄j) ⊆ PSBj(xi).
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3. |C(x1)| = |C(x2)| = 1 and there exists for all i ∈ {1, 2} a strategy x̄i ∈ ∆M i

such that C(x̄i)∩C(xi) = ∅ and a blocking probability δ̄i > 0, such that for all

δ ∈ R2
++, with δi ∈ (0, δ̄i] for all i ∈ {1, 2}, the strategy profile (x̂1, x̂2), with

x̂i = (1 − δi)xi + δix̄i for all i ∈ {1, 2}, satisfies

C(x1) ⊆ PB1(x̂2),

C(x2) ⊆ PB2(x̂1),

C(x̄1) ⊆ PSB1(x̂2),

C(x̄2) ⊆ PSB2(x̂1).

Proof: We first prove the “if” part. We do this by distinguishing between the

three cases. If the first statement is satisfied, the result follows immediately from

Proposition 7.2.4.

Next assume that the second statement is satisfied. Let {δt}t∈N be a sequence

of pairs of positive real numbers converging to zero. Define the sequence {x̂t}t∈N

such that

x̂i
t = xi,

x̂j
t = (1 − δj

t )x
j + δj

t x̄
j

for all t ∈ N. Then the sequence {x̂t}t∈N converges to x and x̂t ∈ ∆(δt) for all t ∈ N.

Let t ∈ N be such that δj
t ≤ δ̄j. We prove that x̂t ∈ NE(G(δt)) by showing that

both players play best replies in G(δt). Since C(xi) ⊆ PBi(x̂j) player i plays by

playing x̂i
t a best reply against x̂j

t in G(δt). Furthermore, since C(xj) ⊆ PBj(xi)

player j puts by playing x̂j
t maximal probability on best reply actions against x̂i

t,

and as C(x̄j) ⊆ PBj(x̂i) he puts the remaining probability on second best reply

actions against x̂i
t.

We finally assume that the third statement holds. Let {δt}t∈N be a sequence of

pairs of positive real numbers converging to zero.
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Define the sequence {x̂t}t∈N such that for all i ∈ {1, 2},

x̂i
t = (1 − δi

t)x
i + δi

tx̄
i

for all t ∈ N. Then the sequence {x̂t}t∈N converges to x and x̂t ∈ ∆(δt) for all t ∈ N.

Let t ∈ N be such that δi
t ≤ δ̄i for all i ∈ {1, 2}. We prove that x̂t ∈ NE(G(δt)) by

showing that player 1 plays a best reply in G(δt). Showing that player 2 plays a best

reply can be done analogously. Since, C(x1) ⊆ PB1(x̂2) player 1 puts by playing

x̂1
t maximal probability on best reply actions against x̂2

t , and as C(x̄1) ⊆ PB1(x̂2)

the remaining probability on second best reply actions against x̂2
t . Hence, player 1

plays a best reply in G(δt).

We now show the “only if” part. Let x ∈ FBE(G). If |C(x1)| > 1 and |C(x2)| > 1

it follows from Proposition 7.2.4 that the first statement is satisfied. Otherwise, by

Theorem 7.2.3 there exists a sequence of blocking vectors {δt}t∈N of positive real

numbers converging to zero and a sequence of strategy profiles {xt}t∈N converging

to x such that xt ∈ NE(G(δt)) for all t ∈ N.

Let i ∈ {1, 2}. Since xt ∈ ∆(δt) for all t ∈ N, if |C(xi)| = 1, then for all t ∈ N there

exists a strategy x̄i
t ∈ ∆M i , with C(x̄i

t)∩C(xi) = ∅, such that xi
t = (1− ξi

t)x
i + ξi

tx̄
i
t,

with ξi
t ≥ δi

t. Take t̂ ∈ N sufficiently large, and define

x̂i(ξi) = (1 − ξi)xi + ξix̄i
t̂
.

Then, by the upper-semi-continuity of PBj and PSBj, we obtain that PBj(x̂i(ξi)) =

PBj(x̂i(ξ̃i)) and PSBj(x̂i(ξi)) = PSBj(x̂i(ξ̃i)) for all ξi, ξ̃i ∈ (0, ξi
t̂
].

Take for all i ∈ {1, 2} some δi ∈ (0, ξi
t̂
] and define x̂ such that

x̂i =

{

xi if |C(xi)| > 1,
x̂i(δi) if |C(xi)| = 1

for all i ∈ {1, 2}. Then we show that either the second or the third statement is

satisfied.

Let us first assume that |C(xi)| > 1 and |C(xj)| = 1. We show that for stra-

tegy x̂ = (xi, x̂j(δj)) it holds that C(xi) ⊆ PBi(x̂j(δj)), C(xj) ⊆ PBi(xi) and
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C(x̄j

t̂
) ⊆ PSBj(xi). Note that xi

t̂
is a best reply against xj

t̂
in G(δt̂). Since xi

t̂
is

close to xi (as xi
t̂
converges to xi and t̂ was chosen sufficiently large) we obtain that

C(xi) ⊆ PBi(xj

t̂
). Because PBi(xj

t̂
) = PBi(x̂j(δj)) we obtain C(xi) ⊆ PBi(x̂j(δj)).

Then, x ∈ FBE(G) and therefore x ∈ NE(G), which immediately gives the

second result that C(xj) ⊆ PBj(xi). Furthermore, since xj

t̂
is a best reply against

xi
t̂

in G(δt̂), C(x̄j

t̂
) ⊆ PSBj(xi

t̂
), and as PSBj(xi

t̂
) = PSBj(xi) it follows that

C(x̄j

t̂
) ⊆ PSBj(xi).

We now consider the case |C(x1)| = |C(x2)| = 1. We show that for x̂ =

(x̂1(δ1), x̂2(δ2)) it holds that C(x1) ⊆ PB1(x̂2(δ2)) and C(x̄1) ⊆ PSB1(x̂2(δ2)).

Showing that C(x2) ⊆ PB2(x̂1(δ1)) and C(x̄2) ⊆ PSB2(x̂1(δ1)) can be done

analogously. Since x1
t̂

is a best reply against x2
t̂

in G(δt̂) it must hold (since t̂

was chosen sufficiently large) that C(x1) ⊆ PB1(x2
t̂
) and C(x̄1) ⊆ PSB1(x2

t̂
).

As PB1(x2
t̂
) = PB1(x̂2(δ2)) and PSB1(x2

t̂
) = PSB1(x̂2(δ2)) we obtain both

C(x1) ⊆ PB1(x̂2(δ2)) and C(x̄1) ⊆ PSB1(x̂2(δ2)). �

By the use of Proposition 7.3.2 we can prove the following theorem.

Theorem 7.3.3 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a bimatrix game.

Then the sets of fall back and strictly fall back equilibria of G coincide.

Proof: Since the set of strictly fall back equilibria refines the set of fall back

equilibria we only have to show that FBE(G) ⊆ SFBE(G). Let x ∈ FBE(G).

Then one of the three statements of Proposition 7.3.2 is satisfied. Let {δt}t∈N be

a sequence of blocking vectors of positive real numbers converging to zero and let

for all i ∈ {1, 2}, x̄i ∈ ∆M i be such that it fulfills all conditions of the satisfied

statement. We define the sequence {x̂t}t∈N such that for all t ∈ N

x̂i
t =

{

xi if |C(xi)| > 1,
(1 − δi

t)x
i + δi

tx̄
i if |C(xi)| = 1

for all i ∈ {1, 2}. Then the sequence {x̂t}t∈N converges to x, x̂t ∈ ∆(δt) for all t ∈ N
and for t ∈ N sufficiently large x̂t ∈ NE(G(δt)). Consequently, x ∈ SFBE(G). �

7.4 Relations to other refinements

In this section we discuss the relation of fall back equilibrium to the concepts of

perfect, proper, strictly perfect and robust equilibrium. We start with the relation
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between fall back and proper equilibrium (Myerson (1978)).

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A

strategy profile x ∈ ∆ is a proper equilibrium of G if there exists a sequence {εt}t∈N

of positive real numbers converging to zero, and a sequence {xt}t∈N of completely

mixed strategy profiles converging to x such that xt is εt-proper for all t ∈ N, i.e.,

πi(ei
k, x

−i
t ) < πi(ei

ℓ, x
−i
t ) ⇒ xi

t,k ≤ εtx
i
t,ℓ (7.2)

for all k, ℓ ∈ M i and all i ∈ N . The set of proper equilibria of G is denoted by

PR(G).

Note that by replacing εtx
i
t,ℓ on the right hand side of equation (7.2) by εt, one

obtains an alternative characterisation of perfect equilibrium.

The relation between fall back and proper equilibrium is such that for any bima-

trix game each proper equilibrium is a fall back equilibrium, which is illustrated by

Example 7.1.1. Only the sets of pure best and pure second best replies determine

whether a strategy profile is a fall back equilibrium, which can also be seen in the

bimatrix game characterisation of Proposition 7.3.2. In the concept of proper equi-

librium, however, all lower-level sets of best replies may be relevant as well. Hence,

for bimatrix games, any strategy profile that satisfies the conditions for proper equi-

librium also satisfies the conditions for fall back equilibrium.

Theorem 7.4.1 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a bimatrix game.

Then each proper equilibrium of G is a fall back equilibrium of G.

Proof: Let x ∈ ∆ be a proper equilibrium. Then by definition there exists a

sequence {εt}t∈N of positive real numbers converging to zero and a sequence {xt}t∈N

of completely mixed strategy profiles converging to x such that xt is εt-proper for

all t ∈ N, i.e.,

πi(ei
k, x

−i
t ) < πi(ei

ℓ, x
−i
t ) ⇒ xi

t,k ≤ εtx
i
t,ℓ

for all k, ℓ ∈M i and all i ∈ N .

We show that for this particular x one of the three statements of Proposition 7.3.2
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is satisfied and hence that x ∈ FBE(G). If |C(x1)| > 1 and |C(x2)| > 1, then the

fact that each proper equilibrium is a Nash equilibrium gives by Proposition 7.2.4

that statement 1 of Proposition 7.3.2 is fulfilled. Otherwise, take t̂ ∈ N sufficiently

large. Then, by upper-semi-continuity we obtain that PBi(x−i
t ) ⊆ PBi(x−i) and

PSBi(x−i
t ) ⊆ PSBi(x−i) for all i ∈ N and all t ≥ t̂.

In the remainder of this proof we make use of the following notation. Let i ∈ {1, 2}.
Then, for a given strategy xi ∈ ∆M i the vector xi(−k) is defined such that for all

ℓ ∈M i

xi
ℓ(−k) =

{

0 if ℓ = k,
xi

ℓ otherwise.

Note that xi(−k) is not necessarily a strategy, as the probabilities might not sum up

to 1. Moreover, if |C(xi)| = 1 for some i ∈ {1, 2} we assume in this proof without

loss of generality that xi = ei
1 and introduce the set Qi(t) = {ℓ ∈ M i\{1} | xi

t,ℓ >

εtx
i
t,r for all r ∈M i\{1}}. Let the strategy x̄i in that case be defined by

x̄i
ℓ =

{

xi
t̂,ℓ

P

r∈Qi(t̂)
xi

t̂,r

for all ℓ ∈ Qi(t̂),

0 otherwise.

Now consider the case that |C(xi)| > 1 and |C(xj)| = 1. Take δj > 0 sufficiently

small and define x̂ = (xi, x̂j), with x̂j = (1 − δj)ej
1 + δj x̄j . Then we show that

C(xi) ⊆ PBi(x̂j), C(xj) ⊆ PBj(xi) and C(x̄j) ⊆ PSBj(xi) as in statement 2 of

Proposition 7.3.2.

We first show that C(xi) ⊆ PBi(x̂j). Without loss of generality let 1 ∈ C(xi).

Since x ∈ NE(G)

πi(ei
1, e

j
1) ≥ πi(ei

k, e
j
1) (7.3)

for all k ∈ M i. Furthermore, since the sequence {xt}t∈N is εt-proper and converges

to x it holds that 1 ∈ PBi(xj

t̂
), which implies that

πi(ei
1, x

j

t̂
) ≥ πi(ei

k, x
j

t̂
)

for all k ∈ M i.
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Since xj

t̂
is sufficiently close to ej

1 we obtain that

πi(ei
1, x

j

t̂
(−1)) ≥ πi(ei

k, x
j

t̂
(−1))

for all k ∈ PBi(ej
1). Using the fact that xj

t̂,ℓ
> εt̂x

j

t̂,r
for all ℓ ∈ Qj(t̂), r /∈ Qj(t̂)∪{1}

this results in

πi(ei
1, x̄

j) ≥ πi(ei
k, x̄

j) (7.4)

for all k ∈ PBi(ej
1). Combining (7.3) and (7.4) we find

πi(ei
1, x̂

j) ≥ πi(ei
k, x̂

j)

for all k ∈M j . Hence, C(xi) ⊆ PBi(x̂j).

Since x ∈ NE(G) we immediately obtain that C(xj) ⊆ PBj(xi). It remains to

be shown that C(x̄j) ⊆ PSBj(xi). Properness of x implies that Qj(t̂) ⊆ PSBj(xi
t̂
)

and hence

C(x̄j) = Qj(t̂)

⊆ PSBj(xi
t̂
)

⊆ PSBj(xi).

Finally consider the case that |C(x1)| = |C(x2)| = 1. Take δi > 0, i ∈ {1, 2},
sufficiently small and define x̂ = (x̂1, x̂2), with x̂i = (1 − δi)ei

1 + δj x̄i for all i ∈
{1, 2}. We prove that statement 3 of Proposition 7.3.2 is satisfied by showing that

C(x1) ⊆ PB1(x̂2) and that C(x̄1) ⊆ PSB1(x̂2). Showing that C(x2) ⊆ PB2(x̂1)

and C(x̄2) ⊆ PSB2(x̂1) can be done analogously. The proof that C(x1) ⊆ PB1(x̂2)

is similar to the proof that C(xi) ⊆ PBi(x̂j) for the previous case with |C(xi)| > 1

and |C(xj)| = 1. Hence, we only have to show that C(x̄1) ⊆ PSB1(x̂2). Assume

without loss of generality that 2 ∈ C(x̄1). Since C(x̄1) = Q1(t̂) ⊆ PSB1(x2
t̂
), it

holds that 2 ∈ PSB1(x2
t̂
), which implies that

π1(e12, x
2
t̂
) ≥ π1(e1k, x

2
t̂
)

for all k ∈M1\{1}.
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Since x2
t̂

is close to e21

π1(e12, x
2
t̂
(−1)) ≥ π1(e1k, x

2
t̂
(−1))

for all k ∈ PSB1(e21)\{1}. Using the fact that x2
t̂,ℓ

> εt̂x
2
t̂,r

for all ℓ ∈ Q2(t̂),

r /∈ Q2(t̂) ∪ {1}, this results in

π1(e12, x̄
2) ≥ π1(e2k, x̄

2) (7.5)

for all k ∈ PSB1(e21)\{1}. Furthermore, since PSB1(x2
t̂
) ⊆ PSB1(e21), we know

that

π1(e12, e
2
1) ≥ π1(e1k, e

2
1) (7.6)

for all k ∈ M1\{1}. As a result of equations (7.5) and (7.6)

π1(e12, x̂
2) ≥ π1(e1k, x̂

2)

for all k ∈ M1\{1}, which implies that C(x̄1) ⊆ PSB1(x̂2). �

The following example shows that for games with three players the set of proper

equilibria need not be a subset of the set of fall back equilibria.

Example 7.4.2 Consider the following three-player game G in which the third

player chooses the left (e31) or the right (e32) matrix.

e21 e22 e23 e21 e22 e23
e11 10, 10, 1 5, 5, 1 0, 5, 1 0, 0, 0 0, 0, 0 0, 0, 0
e12 10, 0, 1 0, 0, 1 5, 0, 1 0, 0, 0 0, 0, 0 0, 10, 0
e13 0,−1, 1 5, 10, 1 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 0

The strategy profile x = (e11, e
2
1, e

3
1) is a proper equilibrium since for the sequence

{εt}t∈N, with εt = 2
t

for all t ∈ N, converging to zero the sequence {xt}t∈N converging

to x is εt-proper for all t ∈ N, with xt given by x1
t = (1 − 1

t
− 1

t2
)e11 + 1

t
e12 + 1

t2
e13,

x2
t = (1 − 1

t
− 1

t2
)e21 + 1

t
e22 + 1

t2
e23 and x3

t = (1 − 1
10t

)e31 + 1
10t
e32.

However, x is not a fall back equilibrium, which can be seen by considering

a corresponding blocking game G(δt). In such a game player 3 will always play

x3
t = (1 − δ3

t )e
3
1 + δ3

t e
3
2. Player 1, however, plays his third row with zero probability
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for any strategy combination close to x. Knowing this, player 2 always prefers e23 to

e22, due to the payoff of 10 in the second row of the right matrix. As a consequence,

player 1 prefers e12 to e11, which implies that for any sequence of blocking vectors

{δt}t∈N converging to zero there does not exist a sequence {xt}t∈N converging to x

such that xt ∈ NE(G(δt)) for all t ∈ N. Therefore, x is not a fall back equilibrium.

One of the fall back equilibria of this game is x′ = (e13, e
2
2, e

3
1), which requires

player 1 to play a weakly dominated strategy. So clearly, x′ is not a proper (or

perfect) equilibrium, as in the corresponding thought experiment all strategies are

played with strictly positive probability. In any corresponding blocking game how-

ever, player 2 plays e21 with zero probability for any strategy profile close to x′, and

consequently player 1 can maximise his profit by playing (1 − δ1
t )e

1
3 + δ1

t e
1
1 for all

t ∈ N.

In this game there are also some equilibria that are both proper and fall back,

e.g., (e12, e
2
1, e

3
1). The question whether in general the intersection between the sets

of fall back and proper equilibria can be empty is still open. ⊳

Next we consider the relations between the concepts of fall back equilibrium on

the one hand and perfect and strictly perfect equilibrium (Okada (1984)) on the

other. Note that since the set of proper equilibria refines the set of perfect equilibria

Theorem 7.4.1 implies that for all bimatrix games the intersection between the sets

of fall back and perfect equilibria is non-empty.

The intersection between the sets of fall back and strictly perfect equilibria, how-

ever, can be empty for bimatrix games. We first give the definition of strictly perfect

equilibrium and then provide an example in which we show that the intersection be-

tween the two sets is empty. This example is due to Vermeulen and Jansen (1996),

who use it to show that not each strictly perfect equilibrium is a proper equilibrium.

Reconsider the ε-perturbed game H(ε) = (N, {∆M i(εi)}i∈N , {πi}i∈N) introduced

in Section 7.2.

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A

strategy profile x ∈ ∆ is a strictly perfect equilibrium of G if for every sequence

{εt}t∈N of pertubation vectors converging to zero, there exists a sequence {xt}t∈N

converging to x, such that xt ∈ NE(H(εt)) for all t ∈ N. The set of strictly perfect

equilibria of G is denoted by SPE(G).
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Example 7.4.3 Consider the next 3 × 4 bimatrix game G.

e21 e22 e23 e24
e11 1, 3 0, 0 0, 2 0, 2
e12 7, 0 7, 0 −3, 0 0, 0
e13 0, 0 1, 3 0, 2 0, 2

In their paper Vermeulen and Jansen (1996) show that (e12, e
2
4) is a strictly per-

fect equilibrium. We demonstrate that there is no other strictly perfect equilibrium

and show that this strategy profile is not a fall back equilibrium. We start, however,

by repeating the argument given by Vermeulen and Jansen (1996) to show that

(e12, e
2
4) is indeed a strictly perfect equilibrium of G.

Let {εt}t∈N be a sequence of pertubation vectors converging to zero. Define

the sequence {xt}t∈N such that for all t ∈ N with ε1
t,1 ≥ ε1

t,3, xt is given by

x1
t = ε1

t,1e
1
1 + (1 − 3ε1

t,1)e
1
2 + 2ε1

t,1e
1
3 and x2

t = ε2
t,1e

2
1 + (7

6
ε2

t,1 + ε2
t,2 + ε2

3)e
2
2 + (14

3
ε2

t,1 +

2ε2
t,2 + 2ε2

t,3)e
2
3 + (1 − 41

6
ε2
1 − 3ε2

2 − 3ε2
3)e

2
4, and for all t ∈ N with ε1

t,1 < ε1
t,3, xt is

given by x1
t = 2ε1

t,3e
1
1 + (1− 3ε1

t,3)e
1
2 + ε1

t,3e
1
3 and x2

t = (ε2
t,1 + 7

6
ε2

t,2 + ε2
t,3)e

2
1 + ε2

t,2e
2
2 +

(2ε2
t,1 + 14

3
ε2

t,2 + 2ε2
t,3)e

2
3 + (1 − 3ε2

t,1 − 41
6
ε2

t,2 − 3ε2
t,3)e

2
4. Then xt ∈ NE(H(εt)) for all

t ∈ N, and the sequence {xt}t∈N converges to (e12, e
2
4), which implies that (e12, e

2
4) is

a strictly perfect equilibrium.

For player i the carrier of strategy xi in gameH(ε) is given by Cε(x
i) = {k |xi

k > εi
k}.

The set of Nash equilibria of G is given by {e12} × conv({e21, e22, 1
3
e21 + 2

3
e23,

1
3
e22 +

2
3
e23,

3
19
e21+

3
19
e22+

13
19
e23, e

2
4})∪conv({2

3
e11+

1
3
e13,

1
3
e11+

2
3
e13})×conv({e23, e24})∪conv({2

3
e11+

1
3
e13,

1
3
e11 + 2

3
e13, e

1
2}) × {e24}.

We first show that x ∈ conv({2
3
e11 + 1

3
e13,

1
3
e11 + 2

3
e13}) × conv({e23, e24}) ∪ conv({2

3
e11 +

1
3
e13,

1
3
e11 + 2

3
e13, e

1
2}) × {e24} is not a strictly perfect equilibrium. Let x1

1 ≥ x1
3 and

take ε > 0 such that ε2
1 > ε2

2, and assume that x(ε) ∈ NE(H(ε)). As a re-

sult player 2 plays a best reply in H(ε), implying that x2
2(ε) = ε2

2 and hence,

π1(e11, x
2(ε)) > π1(e13, x

2(ε)). Therefore, 3 /∈ PB1(x2(ε)), which implies that x(ε) is

not close to x. By symmetry we obtain the same result if x1
1 ≤ x1

3. Consequently,

there does not exist a sequence of equilibria in the ε-perturbed games converging to

x as in the definition of strictly perfect equilibrium, which implies that x is not a

strictly perfect equilibrium.
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Next x ∈ {e12} × conv({e21, e22, 1
3
e21 + 2

3
e23,

1
3
e22 + 2

3
e23,

3
19
e21 + 3

19
e22 + 13

19
e23, e

2
4}). Here x1

is fixed, but we distinguish between the strategies of player 2.

Consider first of all the case C(x2) = {1, 2, 3}. Take ε > 0 and assume x(ε) ∈
NE(H(ε)). Since player 2 plays a best reply in H(ε) it must hold that 3x1

1(ε) =

3x1
3(ε) = 2x1

1(ε) + 2x1
3(ε), which implies that x1

1(ε) = x1
3(ε) = 0. This means,

however, that x(ε) /∈ ∆(ε). Consequently, x is not a strictly perfect equilibrium.

We now consider the case in which C(x2) ⊆ {1, 2}. If x2
1 ≥ x2

2 we define ε > 0

such that ε1
3 > ε1

1 and let x(ε) ∈ NE(H(ε)). Since player 1 plays a best reply in

H(ε) we obtain x1(ε) = ε1
1e

1
1 + (1 − ε1

1 − ε1
3)e

1
2 + ε1

3e
1
3. Combining this with ε1

3 > ε1
1

gives x2
1(ε) = ε2

1, and as a result x(ε) is not close to x. By symmetry, the same

result can be obtained if x2
1 ≤ x2

2. Hence, x /∈ SPE(G).

Let the carrier of x2 equal {1, 3}, {1, 4} or {1, 3, 4}. Take ε > 0 such that ε1
2 > 2ε1

3

and assume x(ε) ∈ NE(H(ε)). Since player 1 plays a best reply in H(ε) we obtain

x1
3(ε) = ε1

3. However, since player 2 plays a best reply in H(ε) we get x1
1(ε) = 2x1

3(ε),

which implies that x1
1(ε) must equal 2ε1

3. Since ε1
1 > 2ε1

3 it follows that x(ε) /∈ ∆(ε)

and hence, that x is no strictly perfect equilibrium. By symmetry we can get the

same result if the carrier of x2 equals {2, 3}, {2, 4} or {2, 3, 4}. Hence, (e12, e
2
4) is the

unique strictly perfect equilibrium of this game.

Next we show by contradiction that (e12, e
2
4) /∈ FBE(G). Let us assume that

(e12, e
2
4) ∈ FBE(G). Then by statement 3 of Proposition 7.3.2 there exists an x̂ given

by x̂ = ((1−δ1)e12+δ
1x̄1, (1−δ2)e24+δ

2x̄2), with C(x̄1) ⊆ {1, 3} and C(x̄2) ⊆ {1, 2, 3},
and δ > 0, satisfying four properties. We show that not all four of them can hold

simultaneously, and as a consequence that (e12, e
2
4) /∈ FBE(G).

Let us first consider the case that x̂2
1 > x̂2

2. Then, since C(x̄1) ⊆ PSB1(x̂2) we

obtain that x̄1 = e11. However, then C(x2) * PB2(x̂1), which is a contradiction. By

symmetry we obtain the same result if x̂2
1 < x̂2

2. Hence, it must hold that x̂2
1 = x̂2

2.

If x̂2
1 = x̂2

2 = 0, then x̄ = e23, but then C(x1) * PB1(x̂2). Consequently, x̂2
1 = x̂2

2 >

0. In that case it follows from C(x̄2) ⊆ PSB2(x̂1) that 3x̂1
1 = 3x̂1

3. Furthermore,

C(x2) ⊆ PB2(x̂1) then implies that 3x̂1
1 = 3x̂1

3 ≤ 2x̂1
1 + 2x̂1

3. This is only possible if

x̂1
1 = x̂1

3 = 0, which is not allowed, as C(x̄1) ⊆ {1, 3}.

Hence, statement 3 of Proposition 7.3.2 can not be satisfied and hence, (e12, e
2
4) /∈

FBE(G). ⊳



7.4. Relations to other refinements 185

We now focus on the relation between fall back and robust equilibrium (Okada

(1983)).

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A

strategy profile x̂ ∈ ∆ is a robust equilibrium of G if for all j ∈ N there exists an

open neighbourhood U j(x̂j) of x̂j ∈ ∆Mj such that for all i ∈ N

πi(x̂i, x̌−i) ≥ πi(xi, x̌−i)

for all xi ∈ ∆M i and all x̌−i ∈ ∏

r∈N\{i} U
r(x̂r). The set of robust equilibria of G is

denoted by RB(G).

Theorem 7.4.4 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game.

Then each robust equilibrium of G is a strictly fall back equilibrium of G.

Proof: Let x̂ ∈ ∆ be a robust equilibrium. Then by definition for all j ∈ N there

exists an open neighbourhood U j(x̂j) of x̂j ∈ ∆Mj such that for all i ∈ N

πi(x̂i, x̌−i) ≥ πi(xi, x̌−i) (7.7)

for all xi ∈ ∆M i and all x̌−i ∈ ∏

r∈N\{i} U
r(x̂r).

Let {δt}t∈N be a sequence of blocking vectors of positive real numbers conver-

ging to zero, and let for all t ∈ N the blocking game be given by G(δt) =

(N, {∆M i(δt)}i∈N , {πi}i∈N). Then we construct a sequence {x̂t}t∈N converging to

x̂ such that x̂t ∈ NE(G(δt)) for all t ∈ N. This shows by Theorem 7.2.3 that x̂ is a

fall back equilibrium.

Define N∗ =
{

i ∈ N
∣

∣

∣
|C(x̂i)| > 1

}

and N ′ = N\N∗. Assume without loss of

generality that for each i ∈ N ′, x̂i = ei
1. We introduce for all t ∈ N the game

Gt(x̂) = (N, {∆M̂ i}i∈N , {π̂i
t}i∈N). For all i ∈ N∗, M̂ i = {f i

1} and for all i ∈ N ′,

M̂ i = {f i
2, . . . , f

i
mi}. For all i ∈ N ′ the payoff function π̂i

t is the mixed extension of

π̂i
t(f

i
ki, (f

j

kj)j∈N\{i}) = πi(ei
ki, (x̂j)j∈N∗, ((1 − δj

t )e
j
1 + δj

t e
j

kj)j∈N ′\{i})

for all (f j

kj)j∈N ∈ ∏

j∈N M̂
j , t ∈ N. Since each i ∈ N∗ is a dummy player in

Gt(x̂), t ∈ N, we do not need to specify their payoff functions explicitly. Then, let
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x̃t ∈ NE(Gt(x̂)) for all t ∈ N. For all t ∈ N and all i ∈ N ′ we define x̄i
t ∈ ∆M i to

be the extension of x̃i
t ∈ ∆M̂ i to ∆M i, in the sense that x̄i

t,k = x̃i
t,k for all k ∈ M̂ i,

x̄i
t,1 = 0. Further, for all t ∈ N and i ∈ N∗, x̄i

t = x̂i. Next define the sequence

{x̂t}t∈N such that

x̂i
t = (1 − δi

t)x̂
i + δi

tx̄
i
t

for all i ∈ N and all t ∈ N. Note that since x̄i
t,1 = 0 for all i ∈ N ′ and all t ∈ N we

obtain that x̂t ∈ ∆(δt) for sufficiently large t ∈ N. Also note that since x̄i
t = x̂i for

all i ∈ N∗ and all t ∈ N, we obtain that x̂i
t = x̂i for all t ∈ N.

Hence, x̂t ∈ ∆(δt) for sufficiently large t ∈ N, and {x̂t}t∈N converges to x̂. Take

t̂ ∈ N such that for all i ∈ N , x̂i
t ∈ ∆M i(δi

t)∩U i(x̂i) for all t ≥ t̂. Then, we complete

the proof by showing that x̂i
t is a best reply against x̂−i

t in G(δt) for all i ∈ N and

for all t ≥ t̂. Let i ∈ N and t ≥ t̂. First of all, from (7.7) it follows that

πi(x̂i, x̂−i
t ) ≥ πi(xi, x̂−i

t ) (7.8)

for all xi ∈ ∆M i . If i ∈ N∗, then x̂i
t = x̂i ∈ ∆M i(δt) and x̂i

t is a best reply against

x̂−i
t in G(δt). So, assume i ∈ N ′. Then it remains to be shown that x̄i

t ∈ PSBi(x̂−i
t ).

Since x̃t ∈ NE(Gt(x̂)),

π̂i
t(x̃

i
t, x̃

−i
t ) ≥ π̂i

t(ẋ
i
t, x̃

−i
t )

for all ẋi
t ∈ ∆M̂ i . As a result, we obtain by the definition of π̂i

t that

πi(x̄i
t, x̂

−i
t ) ≥ πi(xi

t, x̂
−i
t ) (7.9)

for all xi
t ∈ ∆M i\{1}. Hence, x̄i

t ∈ PSBi(x̂−i
t ). Combining (7.8) and (7.9) results in

πi(x̂i
t, x̂

−i
t ) ≥ πi(xi

t, x̂
−i
t )

for all xi
t ∈ ∆M i(δi

t), which implies that x̂i
t is a best reply against x̂−i

t in G(δt).

Since the sequence {δt}t∈N was arbitrarily chosen this implies that each robust equi-

librium is a strict fall back equilibrium. �
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7.5 Structure of the set of fall back equilibria

For bimatrix games the set of Nash equilibria is the union of finitely many polytopes

(Jansen (1981)). The main result provided in this section is that this is also true

for the set of fall back equilibria. In order to obtain this result we need several

preliminary lemmas.

We first introduce some additional notation. For a bimatrix game G =

({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) the strategies x1, x̃1 ∈ ∆M1 are reply-equivalent if

the following two statements hold:

PB2(x1) = PB2(x̃1),

PSB2(x1) = PSB2(x̃1).

By V1, . . . ,Vr1 we denote the finitely many reply-equivalence classes in ∆M1 . In a

similar way a reply-equivalence relation can be defined for the strategies of player 2.

The reply-equivalence classes in ∆M2 are denoted by W1, . . . ,Wr2 . Note that since

the sets of pure best and pure second best replies are determined by linear inequa-

lities, the closure of each reply-equivalence class is a polytope.

By the use of Jansen (1993) we obtain the following two lemmas.

Lemma 7.5.1 Let H be a face of cl(Vs), s ∈ {1, . . . , r1}, or of cl(Wt), t ∈
{1, . . . , r2}. Then all the elements in relint(H) are reply-equivalent.

Lemma 7.5.2 If the intersection of the closure of two reply-equivalence classes is

non-empty, then this intersection is a face of both polytopes.

Given a bimatrix game G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) and reply-equivalence

classes Vs, s ∈ {1, . . . , r1}, and Wt, t ∈ {1, . . . , r2}, the (s, t)-fall back component is

defined by FBst(G) = {x ∈ FBE(G) |x1 ∈ cl(Vs), x
2 ∈ cl(Wt)}.

Proposition 7.5.3 For every s ∈ {1, . . . , r1}, t ∈ {1, . . . , r2}, FBst(G) is the carte-

sian product of two polytopes, which are faces of cl(Vs) and cl(Wt), respectively.
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Proof: Consider the reply-equivalence class Vs, s ∈ {1, . . . , r1}, and let H be a face

of cl(Vs). Take x1 ∈ relint(H) and x2 ∈ cl(Wt), t ∈ {1, . . . , r2}. We show that when-

ever (x1, x2) ∈ FBst(G) it holds that (x̃1, x2) ∈ FBst(G) for all x̃1 ∈ relint(H). The

fact that the set of fall back equilibria is closed then shows that (x̃1, x2) ∈ FBst(G)

for all x̃1 ∈ H , which completes the proof.

Let (x1, x2) ∈ FBst(G). If |C(x1)| = 1, then |H| = 1 and the statement follows

immediately. So, assume |C(x1)| > 1. We distinguish between two cases. We

first assume that |C(x2)| > 1. Then by Proposition 7.2.4 x ∈ NE(G), which im-

plies that C(x1) ⊆ PB1(x2) and C(x2) ⊆ PB2(x1). Let x̃1 ∈ relint(H). Then

C(x̃1) = C(x1), and hence C(x̃1) ⊆ PB1(x2). Furthermore, by Lemma 7.5.1

we obtain PB2(x̃1) = PB2(x1) and therefore, C(x2) ⊆ PB2(x̃1). Consequently,

(x̃1, x2) ∈ FBst(G).

Next we assume that |C(x2)| = 1. Let x̄2 ∈ ∆M2 with C(x̄2) ∩ C(x2) = ∅
and δ̄2 > 0 be such that for all δ2 ∈ (0, δ̄2] the strategy profile (x1, x̂2) ∈ ∆,

with x̂2 = (1 − δ2)x2 + δ2x̄2 satisfies C(x1) ⊆ PB1(x̂2), C(x2) ⊆ PB2(x1) and

C(x̄2) ⊆ PSB2(x1). Note that by Proposition 7.3.2 this is possible. We show

that these conditions are also satisfied for (x̃1, x2). Since x1, x̃1 ∈ relint(H),

by Lemma 7.5.1 we conclude PB2(x1) = PB2(x̃1) and PSB2(x1) = PSB2(x̃1),

and furthermore C(x1) = C(x̃1). Consequently, C(x̃1) = C(x1) ⊆ PB1(x̂2),

C(x2) ⊆ PB2(x1) = PB2(x̃1) and C(x̄2) ⊆ PSB2(x1) = PSB2(x̃1).

Hence, by Proposition 7.3.2 we obtain that (x̃1, x2) ∈ FBE(G), and as a conse-

quence (x̃1, x2) ∈ FBst(G). �

Since there are only finitely many combinations of reply-equivalence classes we ob-

tain the following theorem.

Theorem 7.5.4 Let G be a bimatrix game. Then the set of fall back equilibria of

G is the union of finitely many polytopes.

A maximal fall back component is a fall back component not properly contained

in another fall back component. From Example 7.1.1 it follows that a maximal

Nash subset may contain more than one maximal fall back component and that a

maximal fall back component need not be the face of a maximal Nash subset. The
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latter result in particular implies that an extreme element of a maximal fall back

component need not be an extreme element of a maximal Nash subset. Furthermore,

Lemma 7.5.2 and Proposition 7.5.3 imply that the intersection of two maximal fall

back components is either empty or a face of both maximal fall back components.

7.6 Complete fall back equilibrium

In this section we discuss a modification of the concept of fall back equilibrium.

In the thought experiment underlying fall back equilibrium each player faces the

possibility that, after all players decided on their action, the action chosen by him is

blocked. In that case the player plays a back-up action, chosen by him beforehand.

We assume that a back-up action is never blocked.

In this section we consider the possibility that any number of actions of each

player is blocked. Consequently, players have to decide beforehand on a second

back-up action in case the first back-up action is blocked and a third back-up action

in case the second back-up cannot be played either, etc. Hence, each player must

decide on a complete ordering of his actions. If all actions of a player turn out

to be blocked the game is not played and all players receive zero payoff. This

thought experiment is modelled by a corresponding complete fall back game. The

equilibrium concept that is based on this thought experiment is called complete fall

back equilibrium.

Note that not playing the game is not an option a player can choose, but that

this can only be the result of a player not being able to play any of his actions.

Therefore, the zero payoff to each player if this situation occurs is strategically ir-

relevant, as any fixed amount would result in the same set of equilibria. In order

to avoid the possibility that the game is not played we could also have chosen for a

setup in which at most all but one actions of each player are blocked. This results

in a similar equilibrium concept, but one that leads to different equilibria. This

alternative equilibrium concept will not be discussed in this chapter.

Let us formalise the concept introduced above. The action set in the complete

fall back game for player i ∈ N equals the set of all orderings of the action set M i,

and is given by Ωi. Hence, the total number of actions in the complete fall back

game for player i equals m̃i = mi!. A typical element of Ωi is denoted by σi, where

the action on position s of σi is given by σi(s) ∈ M i. By Ωi
k ⊆ Ωi, k ∈ M i, we
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denote the set of orderings of M i such that σi(1) = k for all σi ∈ Ωi
k. Similar to the

concept of fall back equilibrium we assume that each action of player i is blocked

with the same probability, denoted by εi, but we allow for different probabilities

among players. Hence, let ε = (ε1, . . . , εn) be an n-tuple of (small) non-negative

probabilities. If player i plays action σi ∈ Ωi in the complete fall back game he

plays with probability (1−εi)(εi)s−1 action σi(s) of the game G for s ∈ {1, . . . , mi}.
With probability (εi)mi

all actions of player i are blocked and the payoff to all players

is defined to be zero.

The complete fall back game G̃C(ε) is given by G̃C(ε) = (N, {∆Ωi}i∈N , {πC,i
ε }i∈N),

with πC,i
ε :

∏

j∈N ∆Ωj → R the extended expected payoff function to player i. A pure

strategy σi ∈ Ωi will be alternatively denoted by ei
σ. For pure strategy combinations

πC,i
ε is formally given by

πC,i
ε ((ej

σj )j∈N) =
∑

(k1,...,kn)∈
Q

r∈N Mr

(
∏

j∈N

(1 − εj)(εj)σj−1
(kj)−1)πi((ej

kj)j∈N).

A typical element of ∆Ωi will be denoted by ρi, the probability which ρi assigns

to pure strategy σi is given by ρi
σ. The set of all strategy profiles is given by

∆̃C =
∏

i∈N ∆Ωi, an element of ∆̃C by ρ.

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A

strategy profile x ∈ ∆ is a complete fall back equilibrium of G if there exists a

sequence {εt}t∈N of n-tuples of positive real numbers converging to zero, and a

sequence {ρt}t∈N such that ρt ∈ NE(G̃C(εt)) for all t ∈ N, converging to ρ ∈ ∆̃C ,

with xi
k =

∑

σi∈Ωi
k
ρi

σ for all k ∈ M i and all i ∈ N . The set of complete fall back

equilibria of G is denoted by CFBE(G).

Note that from the above definition it immediately follows that each completely

mixed Nash equilibrium is a complete fall back equilibrium. Moreover, we obtain

the result that each complete fall back equilibrium is a Nash equilibrium.

Theorem 7.6.1 Let G be an n-player strategic game. Then the set of complete fall

back equilibria of G is a non-empty and closed subset of the set of Nash equilibria

of G.

The proof of this theorem is analogous to the proof of Theorem 7.2.1 for fall back

equilibrium.
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As the thought experiment underlying the concept of complete fall back equilibrium

takes into account all levels of best replies and the thought experiment underlying

fall back equilibrium only the first and second, one might expect that the set of

complete fall back equilibria refines the set of fall back equilibria. This is however

not the case, as can be seen in Example 7.4.2. In this example the strategy profile

(e11, e
2
1, e

3
1), which is not a fall back equilibrium, is a complete fall back equilibrium.

This is due to the fact that each action in the complete fall back game puts positive

probability on all actions of the original game G. Therefore, player 1 is unable to

play e13 with zero probability, which is the main reason for (e11, e
2
1, e

3
1) not being a

fall back equilibrium.

The setup of complete fall back equilibrium is closely related to that of proper

equilibrium. In both concepts the replies of each player are ordered in such a way

that a complete set of levels of best replies is obtained. The properness concept then

requires that replies of a lower level are played with some significant smaller proba-

bility than replies from a higher level. The concept of complete fall back equilibrium

is however more restrictive, as for each action in the complete fall back game the

probability on the actions of the original game are given. Hence, by requiring that

players play a best reply in the complete fall back game the probability on each best

reply level of the original game is fixed. This is the reason why the set of complete

fall back equilibria refines the set of proper equilibria.

Theorem 7.6.2 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game.

Then each complete fall back equilibrium of G is a proper equilibrium of G.

Proof: Let x ∈ CFBE(G). Then by definition there exists a sequence {εt}t∈N of

n-tuples of positive real numbers converging to zero, and a sequence {ρt}t∈N such

that ρt ∈ NE(G̃C(εt)) for all t ∈ N, converging to ρ ∈ ∆̃C , with xi
k =

∑

σi∈Ωi
k
ρi

σ for

all k ∈ M i and all i ∈ N .

We define the sequence {xt}t∈N such that for all t ∈ N

xi
t,k =

∑

σi∈Ωi

(1 − εi
t)(ε

i
t)

σi−1
(k)−1ρi

t,σ

for all k ∈M i and all i ∈ N . Note that xi
t puts the same probability on the actions

of the game G as ρi
t for all i ∈ N and all t ∈ N, and that the sequence {xt}t∈N
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converges to x. However, since for all t ∈ N there is a probability of (εi
t)

mi

that all

actions of player i are blocked xi
t is not a probability distribution. For that reason

we define the sequence {x̂t}t∈N such that for all t ∈ N

x̂i
t,k =

xi
t,k

1 − (εi
t)

mi

for all k ∈ M i and all i ∈ N . Let the sequence {ε̂t}t∈N be given by ε̂t =

maxi∈N
εi
t

1−(εi
t)

mi for all t ∈ N.

Let i ∈ N and let πi(ei
k, x̂

−i

t̂
) < πi(ei

ℓ, x̂
−i

t̂
) for some k, ℓ ∈ M i and some t̂ ∈ N.

Since ρt ∈ NE(GC(εt)) for all t ∈ N it holds that x̂i
t̂,k

≤ εi
t̂

1−(εi
t̂
)mi x̂

i
t̂,ℓ

. Hence,

x̂i
t̂,k

≤
εi

t̂

1 − (εi
t̂
)mi x̂

i
t̂,ℓ

≤ ε̂t̂x̂
i
t̂,ℓ
.

Consequently, {ε̂t}t∈N is a sequence of positive real numbers converging to zero and

{x̂t}t∈N is a sequence of completely mixed strategy profiles converging to x such that

for all t ∈ N

πi(ei
k, x̂

−i
t ) < πi(ei

ℓ, x̂
−i
t ) ⇒ x̂i

t,k ≤ ε̂tx̂
i
t,ℓ

for all k, ℓ ∈M i and all i ∈ N . Hence, x is a proper equilibrium. �

The following example shows that the set of complete fall back equilibria can be a

strict subset of the set of proper equilibria.

Example 7.6.3 Consider the following three-player game in which the third player

chooses the left (e31) or the right (e32) matrix.

e21 e22 e23 e21 e22 e23
e11 10, 10, 10 0, 10, 0 0, 0, 1 1, 0, 10 0, 1, 0 0, 0, 0
e12 10, 1, 0 2, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
e13 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 5 0, 0, 0 0, 0, 0

As stated before, a difference between proper and complete fall back equilibrium

is that for the former concept one has more freedom in choosing the probabilities
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with which actions are played in the corresponding thought experiment. Therefore,

in this example the players can coordinate the probabilities on the lower level actions

in such a way that x = (e11, e
2
1, e

3
1) is a proper equilibrium.

Consider the sequence {εt}t∈N, with εt = 1
t

for all t ∈ N, converging to zero

and the sequence {xt}t∈N converging to x ∈ ∆, with xt for all t ∈ N given by

x1
t = (1− 1

25t
− 1

1000t2
)e11 + 1

25t
e12 + 1

1000t2
e13, x

2
t = (1− 1

100t
− 1

100t2
)e21 + 1

100t
e22 + 1

100t2
e23

and x3
t = (1 − 3

100t
)e31 + 3

100t
e32. Then xt is εt-proper for all t ∈ N and hence, x is a

proper equilibrium.

Let t ∈ N and consider xt. It is clear that although π1(e11, x
−1
t ) > π1(e12, x

−1
t ) >

π1(e13, x
−1
t ) there is no ε1

t > 0 such that x1
t,1 = 1 − ε1

t , x
1
t,2 = ε1

t − (ε1
t )

2 and x1
t,3 =

(ε1
t )

2−(ε1
t )

3. Consequently, xt /∈ NE(G̃C(εt)). In fact there does not exist a sequence

{εt}t∈N of positive real numbers converging to zero and a sequence {xt}t∈N of strategy

profiles converging to x such that xt ∈ NE(G̃C(εt)) for all t ∈ N. Consequently, x

is not a complete fall back equilibrium. ⊳

Although a lack of freedom for the notion of complete fall back equilibrium makes

that in general not each proper equilibrium is a complete fall back equilibrium,

for bimatrix bimatrix the sets of proper and complete fall back equilibria coincide.

Consequently, the concept of complete fall back equilibrium is a strategic character-

isation of proper equilibrium.

Theorem 7.6.4 Let G be a bimatrix game. Then the sets proper and complete fall

back equilibria of G coincide.

By Theorem 7.6.2 we only have to show that PR(G) ⊆ CFBE(G). That proof is

an extension of the proof of Theorem 7.4.1 in which it is shown that for bimatrix

games the set of fall back equilibria contains the set of proper equilibria.

Note that this theorem also implies that for bimatrix games complete fall back

equilibrium is a refinement of fall back equilibrium.

7.7 Dependent fall back equilibrium

In the previous section we modify the notion of fall back equilibrium in such a way

that in the underlying thought experiment any number of actions of each player can

be blocked. This idea results in the concept of complete fall back equilibrium. In
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this section we also alter the concept of fall back equilibrium, but here we consider

a thought experiment in which at most one single action in total can be blocked.

Hence, after all players decided on their action there is a small but positive probabi-

lity that the action of one of the players is blocked. In that case this player plays his

back-up action, chosen by him beforehand, while all other players play their primary

action. This thought experiment is modelled by letting players play a dependent fall

back game. The equilibrium concept that is based on this thought experiment is

called dependent fall back equilibrium.

Let us formalise this thought experiment. The action set in the dependent fall

back game for player i ∈ N equals the action set of the fall back game, hence

M̃ i = {(k, ℓ) ∈ M i × M i | k 6= ℓ}. Consequently, his total number of actions is

m̃i = mi(mi − 1). An action (k, ℓ) ∈ M̃ i consists of a primary action k and a back-

up action ℓ. Let ε = (ε1, . . . , εn) be an n-tuple of (small) non-negative probabilities.

The interpretation, given that each player i ∈ N plays action (ki, ℓi) in the depen-

dent fall back game, is that in the original game with probability 1− ∑

j∈N ε
j each

player i ∈ N plays ki, and with probability εj player j plays ℓj, while ki is played

by all players i ∈ N\{j}.
The dependent fall back game G̃D(ε) is given by G̃D(ε) = (N, {∆M̃ i}i∈N , {πD,i

ε }i∈N ),

with πD,i
ε :

∏

j∈N ∆M̃j → R the extended expected payoff function of player i. Pure

strategy (k, ℓ) ∈ M̃ i is alternatively denoted by ei
kℓ. The payoff function πD,i

ε is for

pure strategy profiles formally defined by

πD,i
ε ((ej

kjℓj )j∈N) = (1 −
∑

j∈N

εj)πi((ekj)j∈N) +
∑

j∈N

εjπi((ekr)r∈N\{j}, eℓj ).

A typical element of ∆M̃ i is denoted by ρi, where ρi
kℓ is the probability which ρi

assigns to pure strategy (k, ℓ). Note that ρi assigns probabilities to pure strategies

(k, ℓ) of the dependent fall back game, not to primary and back-up actions separately.

The set of all strategy profiles is given by ∆̃ =
∏

i∈N ∆M̃ i , an element of ∆̃ will be

denoted by ρ.

Definition Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game. A

strategy profile x ∈ ∆ is a dependent fall back equilibrium of G if there exists a

sequence {εt}t∈N of n-tuples of positive real numbers converging to zero, and a

sequence {ρt}t∈N such that ρt ∈ NE(G̃D(εt)) for all t ∈ N, converging to ρ ∈ ∆̃,

with xi
k =

∑

ℓ∈M i\{k} ρ
i
kℓ for all k ∈ M i and all i ∈ N . The set of dependent fall
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back equilibria of G is denoted by DFBE(G).

The following example shows that not each dependent fall back equilibrium is either

a fall back equilibrium or a complete fall back equilibrium. In Example 7.8.10 we

show that the reversed results are not valid either.

Example 7.7.1 Consider the 2 × 3 bimatrix game G depicted below.

e21 e22 e23
e11 1, 2 1, 1 0, 0
e12 1, 2 0, 2 1, 2

In this game strategy profile (e12, e
2
1) is not a fall back equilibrium, because player 2’s

unique best reply in G̃(ε) to e121 is e212, but against e212 player 1 prefers e112 over e121.

Analogously, we can show that (e12, e
2
1) is not a complete fall back equilibrium of G.

In the concept of dependent fall back equilibrium, however, it is not possible that

the actions of both players are blocked simultaneously. Consequently, player 2’s

payoff against e121 is the same for both e212 and e213 and against e213 player 1’s best

reply is e121. As a result (e121, e
2
13) is a Nash equilibrium of G̃D(ε) and hence, (e12, e

2
1) ∈

DFBE(G). ⊳

Theorem 7.7.2 Let G = (N, {∆M i}i∈N , {πi}i∈N) be an n-player strategic game.

Then the set of dependent fall back equilibria of G is a non-empty and closed subset

of the set of Nash equilibria of G.

The proof of this theorem is analogous to the proof of Theorem 7.2.1 for fall back

equilibrium.

For the analysis of the concept of fall back equilibrium the alternative character-

isation based on blocking games is very useful. Recall that the idea behind the

blocking games, which have the same dimension as the original game, is that the

strategy space of each player is restricted. However, for the notion of dependent fall

back equilibrium the events of two players having a blocked action are not indepen-

dent. Therefore, we can not restrict the strategy spaces in a similar way. Hence, for

further analysis of the concept of dependent fall back equilibrium only the original
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definition can be used. As a consequence, the results we obtain for this concept are

limited only to bimatrix games. For these type of games we study the relation to

perfect equilibrium.

We first give the definition of dominance. Let ∆M−i denote
∏

j∈N\{i} ∆Mj . We

say that a strategy xi ∈ ∆M i is dominated by a strategy x̄i ∈ ∆M i whenever

πi(x̄i, x−i) ≥ πi(xi, x−i) for all x−i ∈ ∆M−i , and πi(x̄i, x−i) > πi(xi, x−i) for some

x−i ∈ ∆M−i . A strategy x̄i strictly dominates xi if πi(x̄i, x−i) > πi(xi, x−i) for all

x−i ∈ ∆M−i . Furthermore, a strategy is called (strictly) dominant if it (strictly)

dominates all other strategies. This definition of dominance implies that for a bi-

matrix game a strategy profile is a perfect equilibrium if and only if it is a Nash

equilibrium that consists of two undominated strategies (Van Damme (1991)).

Proposition 7.7.3 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × 2 bimatrix

game. Then the sets of dependent fall back and perfect equilibria of G coincide.

Proof: We first state that whenever ei
1, i ∈ {1, 2}, is a dominant strategy for 2× 2

bimatrix game G this automatically implies that ei
12 is a strictly dominant strategy

in G̃D(ε) for ε > 0 small enough. This is due to the fact that the action against

which ei
1 is a strictly better response than ei

2 in the original game is played with

positive probability for any strategy profile in the dependent fall back game.

Next we show that DFBE(G) ⊆ PE(G). Let x̂ ∈ DFBE(G). We show that

x̂ ∈ PE(G) by proving that x̂1 is an undominated strategy. The proof that x̂2 is

undominated is analogous. Suppose x̂1 is a dominated strategy. Then, since m1 = 2

we know that x̂1 is dominated by a pure strategy and hence, without loss of genera-

lity we can assume that e11 is a dominant strategy and x̂1 6= e11. As a consequence,

for ε > 0 small enough e112 is a strictly dominant strategy in G̃D(ε), which implies

that in every dependent fall back equilibrium player 1 plays e11. Since x̂1 6= e11, this

implies that x̂ /∈ DFBE(G), which is a contradiction. Therefore, x̂1 must be an

undominated strategy.

We now demonstrate that PE(G) ⊆ DFBE(G). Let x̂ ∈ PE(G). We first as-

sume that there exists a dominant strategy for player 1. This strategy must be pure

and unique, and without loss of generality we can assume that this strategy is e11
and x̂1 = e11. As a result, for ε > 0 small enough e112 is a strictly dominant strategy
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in the dependent fall back game. Then, let {εt}t∈N be a sequence of pairs of positive

real numbers converging to zero and construct {ρ̂t}t∈N such that ρ̂1
t = e112, ρ̂

2
t,12 = x̂2

1

and ρ̂2
t,21 = x̂2

2 for all t ∈ N. Then for t ∈ N large enough,

πD,2
ε (e112, ρ̂

2
t ) ≥ πD,2

ε (e112, ρ
2
t )

for all ρ2
t ∈ ∆M̃2 , because x̂2 is an undominated strategy in G. Hence, x̂ ∈

DFBE(G). A similar result holds if there exists a dominant strategy for player 2.

Next we assume that both players do not have a dominant strategy. In that case

every Nash equilibrium of G is perfect, which means that it suffices to show that

every Nash equilibrium is also a dependent fall back equilibrium. Without loss of

generality we assume that π1(e11, e
2
1) > π1(e12, e

2
1). Then there exists an x̂2 defined

by x̂2
1 =

π1(e1
2,e2

2)−π1(e1
1,e2

2)

(π1(e1
1,e2

1)−π1(e1
2,e2

1))+(π1(e1
2,e2

2)−π1(e1
1,e2

2))
such that

PB1(x2) =







{1} for all x2 such that x2
1 ∈ (x̂2

1, 1],
{1, 2} for x2 = x̂2,
{2} for all x2 such that x2

1 ∈ [0, x̂2
1).

(7.10)

Let us now consider the sequence of dependent fall back games G̃D(εt), with {εt}t∈N

a sequence of pairs of positive real numbers converging to zero. It follows that for

each t ∈ N there exists a ρ̂2
t ∈ ∆M̃2 , which results in a different, but similar pure best

reply correspondence for player 1 as the one in G given by (7.10). By the continuity

of the payoff function the sequence {ρ̂2
t}t∈N converges to ρ̂2, with ρ̂2

12 = x̂2
1. Since a

similar argument holds for the best reply correspondences of player 2, this completes

the proof. �

Note that this implies by Proposition 7.2.5 that for 2 × 2 bimatrix games also the

sets of fall back and dependent fall back equilibria coincide.

The result that the sets of perfect and dependent fall back equilibria are equivalent

is only valid for 2 × 2 bimatrix games. However, for all 2 ×m2 bimatrix games the

intersection between the two sets is non-empty.

Proposition 7.7.4 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 ×m2 bimatrix

game. Then the intersection between the sets of dependent fall back and perfect

equilibria is non-empty.
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Proof: Take a sequence {εt}t∈N of pairs of positive real numbers converging to

zero and a sequence {ρ̂t}t∈N such that ρ̂t ∈ PE(G̃D(εt)) for all t ∈ N, converging

to ρ̂ ∈ ∆̃, and define x̂ ∈ ∆ such that x̂i
k =

∑

ℓ∈M i\{k} ρ̂
i
kℓ for all k ∈ M i and all

i ∈ {1, 2}.

Since G̃D(εt) is a bimatrix game for all t ∈ N, and the set of perfect equilibria

is non-empty for every bimatrix game, we know that such a sequence {ρ̂t}t∈N exists.

Then, by definition x̂ ∈ DFBE(G). We now prove that x̂ ∈ PE(G) by showing

that x̂i is an undominated strategy in G for all i ∈ {1, 2}.

We first consider x̂1. Since m1 = 2, if player 1 does not have a dominant stra-

tegy in the game G, then x̂1 is obviously undominated. Let us therefore assume

that player 1 does have a dominant strategy in the game G. Without loss of ge-

nerality we assume that this strategy is e11. Then for ε > 0 small enough e112 is a

dominant strategy in G̃D(ε). Hence, since ρ̂t ∈ PE(G̃D(εt)) for all t ∈ N it follows

that for t ∈ N large enough ρ̂1
t equals e112 and as a result x̂1 = e11. Consequently, x̂1

is an undominated strategy.

We now focus on player 2. Since x̂ ∈ DFBE(G) we know that strategy ρ̂2 ∈ ∆M̃2

forms a Nash equilibrium with some ρ1 ∈ ∆M̃1 in the game G̃D(0). By contradiction

we prove that ρ̂2 is undominated in G̃D(0), which implies that x̂2 is undominated in

G. So, let us assume that ρ̂2 is dominated by some ρ̄2 ∈ ∆M̃2 in G̃D(0). Without

loss of generality

πD,2
0 (e112, ρ̄

2) = πD,2
0 (e112, ρ̂

2), (7.11)

πD,2
0 (e121, ρ̄

2) > πD,2
0 (e121, ρ̂

2). (7.12)

Consequently, ρ̂ = (e112, ρ̂
2). Moreover, all actions in C2(ρ̂2) must give the highest

payoff to player 2 against e112. Furthermore, given that ρ̄2 exists we know that

there also exists a pure strategy satisfying both (7.11) and (7.12). Without loss of

generality we can assume that x̂2 6= e21 and that the pure strategy satisfying both

(7.11) and (7.12) is e212. Now, we define ρ2,∗ ∈ ∆M̃2 by e21ℓ, with ℓ ∈ C(x̂2)\{1}.
Note that since there always exists an action ℓ ∈ C(x̂2) unequal to 1, strategy ρ2,∗

can be constructed. Then, ρ̂2 is also dominated by ρ2,∗ in G̃D(0).
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Hence,

πD,2
0 (e112, ρ

2,∗) = πD,2
0 (e112, ρ̂

2),

πD,2
0 (e121, ρ

2,∗) > πD,2
0 (e121, ρ̂

2).

Moreover, because of the way the back-up action of ρ2,∗ was chosen,

πD,2
εt

(e112, ρ
2,∗) > πD,2

εt
(e112, ρ̂

2),

πD,2
εt

(e121, ρ
2,∗) > πD,2

εt
(e121, ρ̂

2)

for all t ∈ N. Then we define for all δ > 0, ρ2,δ
t such that ρ2,δ

t = ρ̂2
t + δ(ρ2,∗ − ρ̂2)

for all t ∈ N. Then there exists a δ > 0 such that ρ2,δ
t is an element of ∆M̃2 for all

t ∈ N. Furthermore, strategy ρ2,δ
t dominates ρ̂2

t for all t ∈ N, which contradicts the

assumption that ρ̂t ∈ PE(G̃D(εt)) for all t ∈ N. Hence, ρ̂2 cannot be dominated in

the game G̃D(0) and consequently x̂2 is an undominated strategy. �

In the above proof we show that for all 2 × m2 bimatrix games a strategy profile

x̂ ∈ ∆, defined by x̂i
k =

∑

ℓ∈M i\{k} ρ̂
i
kℓ for all k ∈ M i and all i ∈ {1, 2}, with

{εt}t∈N a sequence of pairs of positive real numbers converging to zero and {ρ̂t}t∈N a

sequence such that ρ̂t ∈ PE(G̃D(εt)) for all t ∈ N, converging to ρ̂ ∈ ∆̃, is a perfect

equilibrium. Unfortunately, this is not true for bimatrix games in general. Therefore,

the intersection between the sets of perfect and dependent fall back equilibria can

be empty.

Example 7.7.5 Consider the following 3 × 4 bimatrix game G.

e21 e22 e23 e24
e11 10, 2 3, 2 1, 0 10, 10
e12 11, 1 1, 2 10, 0 10, 1
e13 9, 2 5, 1 10, 0 10, 1

In the game G̃D(0) player 1’s strategy e112 forms a Nash equilibrium, e.g., in com-

bination with e241. Let us say that ρ̂1 = e112. Then this strategy is dominated by

ρ̄1 = 1
2
e121 + 1

2
e132, but not by any pure strategy. Therefore, it is impossible to define

some ρ1,∗ ∈ ∆M̃1 similar to the strategy constructed in the proof of Proposition 7.7.4

such that it dominates ρ̂1 in every game G̃D(ε). Hence, a setup similar to the one

in the proof of Proposition 7.7.4 can not be obtained.
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Moreover, we can show that for this game the intersection between the sets of

perfect and dependent fall back equilibria is empty. Player 1’s pure strategy e11 is

dominated (by 1
2
e12 + 1

2
e13) and as a consequence the unique perfect equilibrium is

given by x = (1
2
e12+

1
2
e13,

2
3
e21+

1
3
e22). Note that for determining a perfect equilibrium e11

is unimportant, because in the thought experiment underlying perfectness player 2

makes the mistake of playing e23 with positive probability.

In the dependent fall back framework, however, player 1 cannot discard his first

action, as player 2 can choose his back-up action strategically and will never play e23.

Indeed, in the dependent fall back game player 1 must always play e112 or e113 with

positive probability, not converging to zero, in order to sustain a Nash equilibrium.

Therefore, (1
2
e12 + 1

2
e13,

2
3
e21 + 1

3
e22) /∈ DFBE(G) and consequently, the intersection

between the sets of perfect and dependent fall back equilibria is empty for this

bimatrix game. ⊳

In this section we have shown that the intersection between the sets of perfect and

dependent fall back equilibria is non-empty for 2 ×m2 bimatrix games. However,

this result does not hold for bimatrix games in general, as is shown in Example 7.7.5.

Note that in that example a fourth column is needed to obtain that each dependent

fall back equilibrium makes use of a dominated strategy. Consequently, for 3 × 3

bimatrix games the intersection between the sets of perfect and dependent fall back

equilibria is non-empty. The formal proof is similar to the proof of Proposition 7.7.4,

and is therefore omitted.

Proposition 7.7.6 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 3 × 3 bimatrix

game. Then the intersection between the sets of dependent fall back and perfect

equilibria of G is non-empty.

We conclude this section with a graphical overview of the relations between all the

equilibrium concepts discussed in this chapter, for both n-player strategic games

(Figure 7.7.1) and bimatrix games (Figure 7.7.2). The questions whether the set of

robust equilibria is a subset of the sets of complete fall back, proper and dependent

fall back equilibria are still open. All other relations not depicted in these two figures

are known to be non-existent.
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Figure 7.7.1: Relations for n-player strategic games

7.8 2 ×m2 bimatrix games

In this section we study fall back equilibrium, and its variations complete and de-

pendent fall back equilibrium, for 2 ×m2 bimatrix games. Note first of all that for

a 2 ×m2 bimatrix game player 1 also has two actions in the corresponding (com-

plete/dependent) fall back game. Therefore, we can use the method developed in

Borm (1992) to find all Nash equilibria of a (complete/dependent) fall back game,

which give rise to (complete/dependent) fall back equilibria of the original game.

The main goal of this section is, however, to determine the various sets of equilibria

directly from the original game.

We start this section by introducing some notation and definitions for 2×m2 bima-

trix games. Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 ×m2 bimatrix game.

Consider the function g : ∆M1 → R, defined by g(x1) = maxk∈M2 π2(x1, e2k) for all

x1 ∈ ∆M1. Obviously, g is a piecewise linear function, and there exists a minimal

number v + 1 (≤ m2 + 1) of strategies in ∆M1 , e12 = x1(0), x1(1), . . . , x1(v) = e11,

such that g is affine on [x1(r − 1), x1(r)] for every r ∈ {1, 2, . . . , v}. Note that g,

which is called the upper envelope, represents player 2’s payoff corresponding to his

best reply function.

Further, a pure strategy k ∈ M2 of player 2 will be provided with label [1] if

PB1(e2k) = {1}, with label [2] if PB1(e2k) = {2}, and with label [12] if PB1(e2k) =

{1, 2}. Let I([1]) = {k ∈ M2 |PB1(e2k) = {1}} represent the set of player 2’s pure
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strategies with label [1]. The sets I([2]) and I([12]) are defined analogously. In

addition, for r ∈ {1, 2, . . . , v} let Ir = PB2(1
2
x1(r − 1) + 1

2
x1(r)) denote the set of

pure best replies to any strategy in the open interval (x1(r − 1), x1(r)).

Then for x1 ∈ ∆M1 , let the set S(x1) of solutions to x1 be defined by S(x1) =

{x2 ∈ ∆M2 |x ∈ NE(G)}. The set S(x1) is the convex hull of finitely many extreme

points. These points can be divided into two sets; pure and coordination solutions.

Let us define the interior of ∆M1 by ∆̇M1 = ∆M1\{e11, e12}. Then we define the set

PS(x1) of pure solutions to x1 by PS(x1) = {e2k ∈ ∆M2 | (x1, e2k) ∈ NE(G)}, which

results in

PS(x1) =







{e2k ∈ ∆M2 | k ∈ PB2(x1, [12])} if x1 ∈ ∆̇M1 ,
{e2k ∈ ∆M2 | k ∈ PB2(x1, [12]) ∪ PB2(x1, [1])} if x1 = e11,
{e2k ∈ ∆M2 | k ∈ PB2(x1, [12]) ∪ PB2(x1, [2])} if x1 = e12.

Here PB2(x1, [12]) = PB2(x1) ∩ I([12]) denotes the set of pure best replies to x1

with label [12]. The sets PB2(x1, [1]) and PB2(x1, [2]) are defined in a similar way.

As mentioned above, pure solutions may not be the only extreme points of

the set of solutions, as there can also be coordination solutions. Let k ∈ I([1])

and ℓ ∈ I([2]). Then there exists a unique strategy x2(k, ℓ) ∈ ∆M2 such

that C(x2(k, ℓ)) = {k, ℓ} and π1(e11, x
2(k, ℓ)) = π1(e12, x

2(k, ℓ)). In particular,

x2
k =

π1(e1
2,e2

ℓ
)−π1(e1

1,e2
ℓ
)

(π1(e1
1,e2

k
)−π1(e1

2,e2
k
))+(π1(e1

2,e2
ℓ
)−π1(e1

1,e2
ℓ
))

. Then we define the set CS(x1) of coor-

dination solutions to x1 ∈ ∆M1 by CS(x1) = {x2(k, ℓ) ∈ ∆M2 | k ∈ PB2(x1, [1]),

ℓ ∈ PB2(x1, [2])}. As a consequence, S(x1) = conv(PS(x1) ∪ CS(x1)). Hence, if
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x2 ∈ S(x1), then (x1, x2) ∈ NE(G).

After these preliminaries we first of all discuss the concept of fall back equilibrium

for 2 ×m2 bimatrix games. Reconsider the 2 × 4 bimatrix game of Example 7.1.1.

We delete in this example the upper envelope, which in this case corresponds to

action e23 for all x1 ∈ ∆M1 . Then all of player 1’s strategies with a non-empty set

of solutions in the game without action e23, x
1 ∈ {e12, [16e11 + 5

6
e12,

3
4
e11 + 1

4
e12], e

1
1}, cor-

respond to strategies that constitute with some x2 ∈ ∆M2 a fall back equilibrium

in the original game. We formalise this statement in Theorem 7.8.1 in which we

characterise the set of fall back equilibria for 2 ×m2 bimatrix games. Let us first

introduce some additional notation.

Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 ×m2 bimatrix game. Then for

x2 ∈ ∆M2 , with C(x2) 6= M2 the game Gx2 = ({1, 2}, {∆M i

x2
}i∈{1,2}, {πi}i∈{1,2}) is

defined to be the game which only differs from G in the sense that player 2’s action

set is restricted to M2\C(x2), with the domains of the payoff functions restricted

accordingly. Define the set of all strategy profiles of Gx2 by ∆x2 = ∆M1
x2

× ∆M2
x2

.

The set of solutions according to Gx2 is given by Sx2(x1), by PB2
x2(x1) we denote

player 2’s set of best replies, and Ix2,r, with r ∈ {1, . . . , vx2}, denotes player 2’s

set of best replies in an open interval between two intersection points on the upper

envelope.

We illustrate some of these definitions by the use of Example 7.1.1. The upper

envelope of G consists of one interval and the set of solutions of G is given by

S(x1) = {e21} for all x1 ∈ [e12, e
1
1]. However, for Gx2 the upper envelope consists

of three intervals, [e12,
1
6
e11 + 5

6
e12], [1

6
e11 + 5

6
e12,

3
4
e11 + 1

4
e12] and [3

4
e11 + 1

4
e12, e

1
1], and

furthermore, the set of solutions is dependent on x1, as, e.g., Sx2(e12) = {e22} and

Sx2(1
2
e11 + 1

2
e12) = {e23}.

Theorem 7.8.1 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × m2 bimatrix

game and x ∈ ∆. Then x is a fall back equilibrium of G if and only if the following

three assertions hold:

(I) x2 ∈ S(x1).

(II) If x1 = e11, then C(x2) ⊆ Iv. If x1 = e12, then C(x2) ⊆ I1.

(III) If x2 = e2k, with k ∈ I([12]), then there exists an x̃2 ∈ ∆M2
x2

such that
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(i) x̃2 ∈ Sx2(x1).

(ii) If x1 = e11, then C(x̃2) ⊆ Ix2,v, if x1 = e12, then C(x̃2) ⊆ Ix2,1.

Proof: Let us first show the “if” part. Assume there exists a strategy profile x ∈ ∆

satisfying conditions (I) - (III). Then we define for δ > 0 small the strategy profile

x̂ ∈ ∆ such that

x̂1 =

{

x1 if |C(x1)| > 1,
(1 − δ1)e1k + δ1e1ℓ otherwise,

with {k} = C(x1), and ℓ 6= k, and

x̂2 =

{

x2 if |C(x2)| > 1,
(1 − δ2)e2k + δ2x̄2 otherwise,

with {k} = C(x2), and x̄2 = x̃2 if k ∈ I([12]), x̄2 ∈ PSB2(x̂1)\{j} otherwise. We

show that x̂ ∈ ∆ satisfies one of the conditions of Proposition 7.3.2, proving that

x ∈ FBE(G).

We first assume that |C(xi)| > 1 for all i ∈ {1, 2}. Then x ∈ NE(G), because

x2 ∈ S(x1), which implies that the first condition of Proposition 7.3.2 is fulfilled.

Secondly, we assume that |C(x1)| > 1 and |C(x2)| = 1. We show that

C(x1) ⊆ PB1(x̂2), C(x2) ⊆ PB2(x1) and C(x̄2) ⊆ PSB2(x1). Since x1 ∈ ∆̇M1 ,

x2 ∈ S(x1) and x̃2 ∈ Sx2(x1) we obtain that PB1(x2) = PB1(x̃2) = {1, 2}.
Hence, C(x1) ⊆ PB1(x̂2). From the fact that x2 ∈ S(x1) it follows immediately

that C(x2) ⊆ PB2(x1). Furthermore, since x̃2 ∈ Sx2(x1) and x̄2 = x̃2 we get

C(x̄2) ⊆ PSB2(x1).

Next we assume that |C(x1)| = 1 and |C(x2)| > 1. We show that C(x2) ⊆ PB2(x̂1),

C(x1) ⊆ PB1(x2) and C(x̄1) ⊆ PSB1(x2). Without loss of generality x1 = e11.

Then, since C(x2) ⊆ Iv it holds that C(x2) ⊆ PB2(x̂1). The fact that x2 ∈ S(x1)

immediately gives the result C(x1) ⊆ PB1(x2). Furthermore, since |M1| = 2 we

obtain C(x̄1) ⊆ PSB1(x2).

Finally, we assume that both |C(x1)| = 1 and |C(x2)| = 1. We show that

C(x1) ⊆ PB1(x̂2), C(x2) ⊆ PB2(x̂1), C(x̄1) ⊆ PSB1(x2) and C(x̄2) ⊆ PSB2(x1).

Without loss of generality x1 = e11. Since x2 ∈ S(x1) we know that C(x1) ⊆ PB1(x2).
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If PB1(x2) = {1} this implies that C(x1) ⊆ PB1(x̂2). Otherwise, PB1(x2) = {1, 2}
and then since x̃2 ∈ Sx2(x1) it must hold that PB1(x̃2) 6= {2}, which implies that also

in that case C(x1) ⊆ PB1(x̂2). The fact that C(x2) ⊆ Iv leads to C(x2) ⊆ PB2(x̂1).

Furthermore, since |M1| = 2 it holds that C(x̄1) ⊆ PSB1(x̂2). Finally, since

C(x̃2) ⊆ Ix2,v we obtain that C(x̄2) ⊆ PSB2(x̂1).

Next we prove the “only if” part. So, let us assume x ∈ FBE(G). Consequently,

x ∈ NE(G), which implies that x2 ∈ S(x1). Therefore, the first condition of Theo-

rem 7.8.1 is always satisfied. Furthermore, since x ∈ FBE(G) we know that one of

the statements of Proposition 7.3.2 is satisfied. We prove that as a result also condi-

tions (II) and (III) of Theorem 7.8.1 hold. We first assume that the first statement

of Proposition 7.3.2 is fulfilled. Since the strategies of both players are mixed, the

conditions (II) and (III) hold automatically for this case.

Secondly, we assume that the second statement holds, with i = 1 and j = 2.

Statement (II) is automatically satisfied, and since C(x̄2) ⊆ PSB2(x1) we know

that there exists a x̃2 ∈ ∆M2
q

such that x̃2 ∈ Sx2(x1), which fulfills condition (III.i).

Statement (III.ii) holds automatically.

Next we assume that the second statement holds, with i = 2 and j = 1. Since

C(x2) ⊆ PB2(x̂1) we obtain C(x2) ⊆ Iv, satisfying (II). Statement (III) is automat-

ically satisfied.

Since C(x2) ⊆ PB2(x̂1) we obtain C(x2) ⊆ Iv, satisfying (II). Without loss of

generality x1 = e11. Then if x2 = e2k, with k ∈ I([1]) statement (III) is satisfied auto-

matically. Otherwise, k ∈ I([12]), and then the fact that C(x̄2) ⊆ PSB2(x̂1) implies

that C(x̄2) ⊆ PSB2(x1), and as a consequence there exists a strategy x̃2 such that

x̃2 ∈ Sx2(x1). Moreover, C(x̄2) ⊆ PSB2(x̂1) leads to the fact that C(x̃2) ⊆ Ix2,v. As

a result, (III) is fulfilled. �

Note that both in Theorem 7.8.1 itself and in the corresponding proof the blocking

game characterisation of fall back equilibrium, as given in Proposition 7.3.2, is cru-

cial and insightful, as all results follow from the idea that players are not allowed to

play a pure strategy with probability one in the thought experiment underlying fall

back equilibrium.
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Next we discuss the concept of complete fall back equilibrium. As a result of Theo-

rem 7.6.4 we know that the sets of complete fall back and proper equilibria coincide

for 2 ×m2 bimatrix games. Therefore, we can follow the characterisation by Borm

(1992) for proper equilibrium. Let us first give Borm (1992)’s theorem characterising

perfect equilibrium.

Theorem 7.8.2 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × m2 bimatrix

game and x ∈ ∆. Then x is a perfect equilibrium of G if and only if the following

three assertions hold:

(I) If I([1]) 6= ∅ and I([2]) = ∅, then x1 = e11. If I([2]) 6= ∅ and I([1]) = ∅, then

x1 = e12.

(II) x2 ∈ S(x1).

(III) If x1 = e11, then C(x2) ⊆ Iv. If x1 = e12, then C(x2) ⊆ I1.

Then, let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × m2 bimatrix game. The

2 × m2 bimatrix game Ḡ = ({1, 2}, {∆M̄ i}i∈{1,2}, {πi}i∈{1,2}) is obtained from G

by deleting from M2 all actions k ∈ I([12]), and restricting the payoff functions

accordingly.

Theorem 7.8.3 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × m2 bimatrix

game and x ∈ ∆. If I([12]) = {1, . . . , m2}, then the sets of proper and perfect

equilibria of G coincide. Otherwise x is a proper equilibrium of G if and only if the

following three assertions hold:

(I) There is an x̄2 ∈ ∆M̄2 such that (x1, x̄2) ∈ PE(G).

(II) x2 ∈ S(x1).

(III) If x1 = e11, then C(x2) ⊆ Iv. If x1 = e12, then C(x2) ⊆ I1.

The idea behind both complete fall back and proper equilibrium is that all actions

are played with positive probability, but that an action with a lower payoff is played

with significant smaller probability than an action with a higher payoff. As a result,

actions of player 2 against which player 1 is indifferent have no influence on player 1’s

decision, as long as he is not indifferent to some action of player 2. Consequently,
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the set of complete fall back equilibria for the 2×4 bimatrix game of Example 7.1.1

is given by CFBE(G) = {e11, e21} ∪ {2
5
e11 + 3

5
e12, e

2
1} ∪ {e12, e21}.

In the remainder of this section we discuss the concept of dependent fall back equi-

librium for 2 ×m2 bimatrix games. Due to the rather complicated structure of the

dependent fall back game it is harder to characterise the set of dependent fall back

equilibria for 2×m2 bimatrix games. Therefore, we examine the dependent fall back

game in more detail.

Let ε = (ε1, ε2) be a vector of small but positive probabilities and consider

the 2 × m̃2 dependent fall back game G̃D(ε). In the remainder of this sec-

tion we take ε > 0 small enough. A similar notation as for the game G =

({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) can be used to describe G̃D(ε). For this game

the corner points of the intervals describing the upper envelope are given by

e121 = ρ1
ε(0), ρ1

ε(1), . . . , ρ1
ε(ṽ) = e112. The exact position of these points depends

on ε, but both ṽ and the order of the intersection points are independent of ε. This

result follows from Lemma 7.8.5. Furthermore, also the sets indicating the labels

of player 2’s actions are independent of ε, and given by Ĩ([1]), Ĩ([2]) and Ĩ([12]),

where Ĩ([1]) = {(k, ℓ) ∈ M̃2 |PB1(e2kℓ) = {(1, 2)}} and the other sets are defined

analogously.

Lemma 7.8.4 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2×m2 bimatrix game

and let e2kℓ ∈ ∆M̃2 be a pure strategy of player 2 in the corresponding dependent fall

back game G̃D(ε). Then the following three statements hold for all (k, ℓ) ∈ M̃2:

1. (k, ℓ) ∈ Ĩ([1]) if and only if one of the following two assertions holds:

(a) k ∈ I([1]).

(b) k ∈ I([12]) and ℓ ∈ I([1]).

2. (k, ℓ) ∈ Ĩ([2]) if and only if one of the following two assertions holds:

(a) k ∈ I([2]).

(b) k ∈ I([12]) and ℓ ∈ I([2]).

3. (k, ℓ) ∈ Ĩ([12]) if and only if k ∈ I([12]) and ℓ ∈ I([12]).
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Lemma 7.8.4 directly relates the labels of the dependent fall back game to those of

the original game. Next we provide a lemma that gives a direct relation between the

intersection points of the lines describing player 2’s payoffs according to the pure

strategies of the dependent fall back game and those of the original game.

Lemma 7.8.5 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2×m2 bimatrix game

and let x̂1 ∈ ∆̇M1 be such that π2(x̂1, e2k) = π2(x̂1, e2ℓ) for some k, ℓ ∈ M2, k 6= ℓ.

Then for ρ1,I
ε ∈ ∆̇M̃1, with ρ1,I

ε,12 = x̂1
1, the following three results hold for all r ∈

M2\{k, ℓ}:

1. π2
ε(ρ

1,I
ε , e2rk) = π2

ε(ρ
1,I
ε , e2rℓ).

2. π2
ε(ρ

1,M
ε , e2kr) = π2

ε(ρ
1,M
ε , e2ℓr), with ρ1,M

ε,12 = ρ1,I
ε,12 + ε1

1−2ε1−ε2 (2ρ
1,I
ε,12 − 1).

3. π2
ε(ρ

1,O
ε , e2kℓ) = π2

ε (ρ
1,O
ε , e2ℓk), with ρ1,O

ε,12 = ρ1,I
ε,12 + ε1

1−2ε1−2ε2 (2ρ
1,I
ε,12 − 1).

Note that this lemma is valid for all intersection points in ∆̇M1 and not only for

those on the upper envelope. Further, the superscripts I, M and O correspond to

the notions of inside, middle and outside, respectively. The reason for this is that

ρ1,O
ε,12 < ρ1,M

ε,12 < ρ1,I
ε,12 <

1
2

whenever x̂1
1 <

1
2
. For x̂1

1 >
1
2

it is the other way around

and ρ1,O
ε = ρ1,M

ε = ρ1,I
ε for x̂1

1 = 1
2
. This means that in the graphical representation

of a dependent fall back game each group of strategies ρ1,O
ε , ρ1,M

ε and ρ1,I
ε is ordered

in the way their superscripts indicate. Note further that ρ1,I
ε is independent of ε.

Example 7.8.6 Consider the following 2 × 4 payoff matrix for player 2.

e21 e22 e23 e24
e11 0 3 6 9
e12 8 7 6 5

As also Figure 7.8.1 indicates, all lines corresponding to the pure strategies of player 2

intersect at x1 = 1
4
e11 + 3

4
e12. In the dependent fall back game player 2 has twelve

pure strategies. However, the corresponding lines do not all intersect at exactly the

same ρ1 ∈ ∆M̃1 . This is illustrated by Figure 7.8.2, which only gives the lines that

are part of the upper envelope, around the point (1
4
e112 + 3

4
e121, 6). Note that the fact

that not all twelve lines intersect with each other at the same point on the upper

envelope is due to the dependence between the players’ executed strategies.
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Figure 7.8.1: The original game of Ex-
ample 7.8.6

e121 e112ρ1,O
ε,12 ρ

1,M
ε,12 ρ1,I

ε,12 = 1
4

[ ]12

[ ]21

[ ]31

[ ]41

[ ]42

[ ]43

Figure 7.8.2: The dependent fall back
game of Example 7.8.6

As a result not all Nash equilibria at such an intersection point of the original

game are dependent fall back equilibria. Note, however, that by Lemma 7.8.5 the

structure of the upper envelope around such a point is fixed and for any point

x1 ∈ ∆M1 with at least three different intersecting lines, the dependent fall back

game has exactly three intersection points on the upper envelope, given by the

corresponding strategies ρ1,O
ε , ρ1,M

ε and ρ1,I
ε . We discuss the consequences for the set

of dependent fall back equilibria in these situations in more detail later on. ⊳

For a particular bimatrix game G we are obviously interested in the set NE(G̃D(ε)),

as DFBE(G) results from that set. Crucial for the determination of the Nash

equilibrium set of a dependent fall back game are the intersection points on the

upper envelope and the labels of the pure strategies corresponding to these lines.

As a result of the above lemmas we do not need to consider the dependent fall back

game itself for this, as the intersection points can be found by the use of Lemma 7.8.5

and the labels follow from Lemma 7.8.4.

Example 7.8.7 Consider the 2 × 3 bimatrix game depicted below.

e21 e22 e23
e11 0, 0 2, 6 1, 8
e12 1, 8 0, 6 1, 2

The Nash equilibrium set of this game is given by NE(G) = {(e12, e21)} ∪ {(1
4
e11 +
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Figure 7.8.3: The game of Exam-
ple 7.8.7
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Figure 7.8.4: The game of Exam-
ple 7.8.8

3
4
e12,

2
3
e21 + 1

3
e22)} ∪ conv({2

3
e11 + 1

3
e12, e

1
1}) × {e23}. Furthermore, NE(G̃D(ε)) =

{(e121, e212)} ∪ {((1
4
− 1

2
ε1

1−2ε1−2ε2 )e
1
12 + (3

4
+ 1

2
ε1

1−2ε1−2ε2 )e
1
21, (

2
3

+ ε2

3−6ε1−6ε2 )e
2
12 + (1

3
−

ε2

3−6ε1−6ε2 )e
2
21)} ∪ {(e112, e232)}. Consequently, the set of dependent fall back equilibria

of this game is given by DFBE(G) = {(e12, e21)}∪{(1
4
e11+ 3

4
e12,

2
3
e21+ 1

3
e22)}∪{(e11, e23)}.

In this example many Nash equilibria are dependent fall back equilibria. However,

from the set conv({2
3
e11 + 1

3
e12, e

1
1}) × {e23} only the corner solution {(e11, e23)} is a

dependent fall back equilibrium. The reason is that player 2’s action (3, 2) is an

element of Ĩ([1]) and not of Ĩ([12]), which is due to the fact that 2 ∈ I([1]), where

2 is the unique element of PSB2(x1) for all x1 ∈ (2
3
e11 + 1

3
e12, e

1
1]. Therefore, for all

x1 in this interval player 2 is unable to choose a back-up strategy that results in a

Nash equilibrium in the dependent fall back game. ⊳

The set of x1’s for which player 2 is able to choose a primary and back-up stra-

tegy such that there exists a Nash equilibrium in the dependent fall back game is

called the set of fall back strategies of player 1 and is defined by ∆FB
M1 = {x1 ∈

∆M1 | there exists x2 ∈ ∆M2 such that (x1, x2) ∈ DFBE(G)}. This set is charac-

terised later on but note that a particular x1 ∈ ∆̇M1 can only be an element of this set

if S(x1) 6= ∅ and there exists an x2 ∈ conv(PSB2(x1)) for which player 1 is indiffe-

rent between e11 and e12, because in order to make player 1 indifferent player 2 should

play strategies as primary and back-up for which both e11 and e12 are best replies.

Hence, whether x1 is an element of the set of fall back strategies does not only de-

pend on the labels of the strategies in the set PB2(x1), but also on those in the set

PSB2(x1). Obviously, x1 ∈ ∆FB
M1 is a necessary condition for (x1, x2) ∈ DFBE(G).
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Note that by Theorem 7.8.2 for perfect equilibria the set of second best replies in

itself is irrelevant and that as a result for Example 7.8.7 the set of perfect equilibria

coincides with the set of Nash equilibria and is therefore unequal to the set of

dependent fall back equilibria.

Example 7.8.8 Consider the following 2 × 4 bimatrix game.

e21 e22 e23 e24
e11 1, 0 1, 6 1, 5 0, 8
e12 0, 8 1, 6 1, 5 1, 2

We first of all consider the game without the third column. Then the only change

compared to Example 7.8.7 is in the labels indicating player 1’s best replies. The set

of Nash equilibria of this game is given by NE(G) = conv({1
4
e11 + 3

4
e12,

2
3
e11 + 1

3
e12})×

{e22}.
Obviously, also the dependent fall back game only differs in the labels and the

set of Nash equilibria of the dependent fall back game is given by NE(G̃D(ε)) =

{(3
7
e112 + 4

7
e121,

1
2
e221 + 1

2
e224)}. This results in DFBE(G) = {(3

7
e11 + 4

7
e12, e

2
2)}, which

coincides with the set of proper equilibria.

Next we consider the entire game, hence including column 3. Then the set of

Nash equilibria is exactly the same as before, because player 2’s action 3 is not

an element of PB2(x1) for any x1 ∈ ∆M1 . However, action 3 ∈ PSB2(x1) for

x1 ∈ [3
8
e11 + 5

8
e12,

1
2
e11 + 1

2
e12], which means that it may influence the Nash equilibrium

set of the dependent fall back game.

This is indeed the case as NE(G̃D(ε)) = conv({3
8
e112 + 5

8
e121,

1
2
e112 + 1

2
e121}) ×

{e223}. Therefore, DFBE(G) = conv({3
8
e11 + 5

8
e12,

1
2
e11 + 1

2
e12})×{e22}. It follows from

Theorem 7.8.3 that the third column does not influence the set of proper equilibria,

as it has label [12]. However, for dependent fall back equilibrium we only have to

consider the sets of pure best and pure second best replies. In this example, that

back-up strategy is e23 for x1 ∈ [3
8
e11 + 5

8
e12,

1
2
e11 + 1

2
e12] = ∆FB

M1 . ⊳

Next we start with the characterisation of the set ∆FB
M1 for a 2 ×m2 bimatrix game

G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) starting at the extreme points, hence for x1 ∈
{e11, e12}. Then, e11 ∈ ∆FB

M1 if there exist strategies k ∈ Iv and ℓ ∈ PSB2(e11) such that

(i) k ∈ I([1]) or (ii) k ∈ I([12]) and ℓ /∈ I([2]). Clearly, (e11, e
2
k) ∈ DFBE(G) in both
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cases, which means that the set of dependent fall back equilibria is non-empty. Note

however, that in case several lines coincide on the upper envelope at x1 = e11 this

fall back equilibrium need not be unique in this point. Example 7.8.7 demonstrates

option (ii), for k = 3 and ℓ = 2.

For x1 = e12 it is the other way around, hence e12 ∈ ∆FB
M1 if there exist strategies

k ∈ I1 and ℓ ∈ PSB2(e12) such that (i) k ∈ I([2]) or (ii) k ∈ I([12]) and ℓ /∈ I([1]).

Obviously, (e12, e
2
k) ∈ DFBE(G) if either one of the two options holds. Example 7.8.7

illustrates the first situation, with k = 1. In the following theorem we characterise

the set of dependent fall back equilibria for x1 ∈ {e11, e12}.

Theorem 7.8.9 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × m2 bimatrix

game and x ∈ ∆, with x1 ∈ {e11, e12}. Then x is a dependent fall back equilibrium of

G if and only if the following three assertions hold:

(I) x1 ∈ ∆FB
M1 .

(II) x2 ∈ S(x1).

(III) If x1 = e11, then C(x2) ⊆ Iv. If x1 = e12, then C(x2) ⊆ I1.

Note that the third statement indicates that x2 should not only be the best reply

against e11 (or e12), but to all x1 in the neighborhood of e11 (or e12) as well, which is due

to the fact that there is a strictly positive probability that player 1 has to deviate

to his other action. The exact same assertion should hold for all other refinements

discussed in this section.

For x1 ∈ ∆̇M1 it is more difficult to indicate whether x1 is a fall back strategy

of player 1, which is due to the structure around intersection points as shown in

Example 7.8.6. Therefore, we have to introduce some additional notation before we

first of all give the three conditions that describe which x1s in the interior of ∆M1 are

elements of ∆FB
M1 , and secondly and more importantly characterise the dependent

fall back equilibria for 2 ×m2 bimatrix games.

The set of pure outside best replies for a given x1 ∈ ∆̇M1 is defined by

POB2(x1) = PB2(ẋ1), with ẋ1 such that ẋ1
1 = x1

1 + ξ(2x1
1 − 1), with ξ > 0 very

small. In Example 7.8.7, e.g., POB2(1
4
e11 + 3

4
e12) = {1} and POB2(2

3
e11 + 1

3
e12) = {3}.

Furthermore, we define the set of pure outside second best replies by

POSB2(x1) = PSB2(ẋ1) ∩ PB2(x1). In Example 7.8.7, POSB2(1
4
e11 + 3

4
e12) =
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POSB2(2
3
e11 + 1

3
e12) = {2}. Note that the set of pure outside second best replies is

non-empty if and only if |PB2(x1)| > 1.

Finally, we also define the set of pure inside best replies, which is given by

PIB2(x1) = PB2(ẍ1), with ẍ1 such that ẍ1
1 = x1

1 − ξ(2x1
1 − 1), with ξ > 0 very

small. In Example 7.8.7, PIB2(1
4
e11 + 3

4
e12) = POSB2(1

4
e11 + 3

4
e12) = {2} and

PIB2(2
3
e11 + 1

3
e12) = POSB2(2

3
e11 + 1

3
e12) = {2}. Note that POSB2(x1) = PIB2(x1)

for any x1 ∈ ∆M1 with |PB2(x1)| = 2. However, when |PB2(x1)| 6= 2 this is in

general not the case.

Also note that POB2(x1), POSB2(x1) and PIB2(x1) are all subsets of PB2(x1)

for all x1 ∈ ∆̇M1 . Then, x1 ∈ ∆̇M1 is an element of ∆FB
M1 if and only if one of the

following three conditions holds:

1. There exist strategies k ∈ PB2(x1, [1]) and ℓ ∈ PB2(x1, [2]). In that case

each one of these two strategies can either be used as back-up for the other

resulting in a coordination solution of these strategies as a dependent fall back

equilibrium strategy, or they can be combined and used as a back-up strategy

for a third pure strategy r ∈ PB2(x1, [12]). The first situation arises, e.g., in

Example 7.8.7 at x1 = 1
4
e11 + 3

4
e12.

2. There exist strategies k ∈ PB2(x1, [12]), ℓ ∈ PSB2(x1, [1]) and r ∈
PSB2(x1, [2]). In that case player 2 can choose a combination between the

strategies ℓ and r as back-up for his primary strategy k, which results in

(x1, e2k) ∈ DFBE(G). Example 7.8.8 without the third column demonstrates

this at x1 = 3
7
e11 + 4

7
e12.

3. There exist strategies k ∈ PB2(x1, [12]) and ℓ ∈ PSB2(x1, [12]) and either

k ∈ POB2(x1) ∪ PIB2(x1) or x1 = 1
2
e11 + 1

2
e12. When PB2(x1) 6= PSB2(x1),

then k ∈ POB2(x1)∪PIB2(x1) and one can obviously take e2kℓ as a solution to

ρ1 corresponding to x1, as, e.g., in the complete version of Example 7.8.8 for

x1 ∈ [3
8
e11 + 5

8
e12,

1
2
e11 + 1

2
e12]. This is also possible when |PB2(x1)| = 2. However

for an x1 ∈ ∆̇M1 with at least three different intersecting lines it is slightly

more difficult, and the condition that k ∈ POB2(x1) ∪ PIB2(x1) is needed if

x1 6= 1
2
e11 + 1

2
e12.

This can be explained by the use of Example 7.8.6. There the lines of strategies

e223 and e232 are not part of the upper envelope. Hence, if both e22 and e23
have a label [12] and strategies 1 and 4 both a label [1] (or [2]) the set of
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dependent fall back equilibria for x1 = 1
4
e11+ 3

4
e12 is empty. Hence, it is required

that k ∈ POB2(x1) ∪ PIB2(x1). If k ∈ POB2(x1) there always is a Nash

equilibrium at intersection point ρ1,M
ε , and depending on the labels of the other

lines maybe even at ρ1,O
ε as well, and if k ∈ PIB2(x1) there certainly is a Nash

equilibrium at ρ1,I
ε , and possibly also at ρ1,M

ε . Hence, in those cases x1 ∈ ∆FB
M1 .

For x1 = 1
2
e11 + 1

2
e12, ρ

1,O
ε = ρ1,M

ε = ρ1,I
ε , and therefore, if k ∈ PB2(x1, [12]) and

ℓ ∈ PSB2(x1, [12]), then we immediately obtain that x1 ∈ ∆FB
M1 .

We now know when an x1 ∈ ∆M1 is part of the fall back strategies of player 1.

However, not all solutions to such an x1 ∈ ∆FB
M1 are also dependent fall back equi-

libria. In Example 7.8.6, e.g., we can see that when three or more lines inter-

sect with each other on the upper envelope of the original game not all corres-

ponding lines intersect with each other on the upper envelope of the dependent

fall back game. Strategies out of the sets POB2(x1), POSB2(x1), PIB2(x1) and

PB2(x1)\(POB2(x1)∪POSB2(x1)∪PIB2(x1)) give rise to three intersection points,

which lead to different sets of Nash equilibria.

Example 7.8.10 Consider the following 2 × 4 bimatrix game G.

e21 e22 e23 e24
e11 1, 0 1, 3 0, 6 0, 9
e12 0, 8 1, 7 1, 6 1, 5

Note that player 2’s payoff matrix is the same as in Example 7.8.6. The set

of Nash equilibria of the dependent fall back game is given by NE(G̃D(ε)) =

{(1
4
− 1

2
ε1

1−2ε1−ε2 )e
1
12 + (3

4
+ 1

2
ε1

1−2ε1−ε2 )e
1
21)} × conv({ρ2(21, 31), ρ2(21, 41)}), where

ρ2(kℓ, rs) is a coordination solution similar to x2(k, ℓ) as defined for 2×m2 bimatrix

games. This Nash equilibrium set leads to DFBE(G) = {(1
4
e11 + 3

4
e12, e

2
2)}. Hence,

although x1 ∈ ∆FB
M1 for x1 = 1

4
e11 + 3

4
e12 not all solutions to this x1 are dependent

fall back equilibria; the coordination solutions x2(1, 3) and x2(1, 4) do not sustain,

because lines corresponding to a primary strategy out of POB2(x1) (pure strategy 1

in this example) do not intersect with lines corresponding to the primary strategies

out of PB2(x1)\(POB2(x1) ∪ POSB2(x1)) (pure strategies 3 and 4) on the upper

envelope of the dependent fall back game.

Note that by Theorem 7.8.1, e.g., strategy profile (1
4
e11 + 3

4
e12,

1
2
e21 + 1

2
e23) ∈ FBE(G),
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which implies that not every fall back equilibrium is a dependent fall back equili-

brium. Furthermore, by Theorem 7.8.3 this strategy profile is also a complete fall

back equilibrium. Consequently, the set of complete fall back equilibria is not a

subset of the set of dependent fall back equilibria. ⊳

From the above it follows that to characterise the set of dependent fall back equi-

libria there is a need for additional restrictions. These are given by the requirement

that x2 is an element of SFB(x1), the set of fall back solutions to x1 ∈ ∆̇M1 . Let us

give all six sets that together define this set SFB(x1).

For all x1 ∈ ∆̇M1 a strategy e2k ∈ PSO
FB(x1), the outside set of pure fall back solu-

tions to x1, if and only if |POB2(x1)| = 1 and one of the following two assertions

holds:

1. k ∈ POB2(x1, [12]) and one of the following two statements is fulfilled:

(a) There exists a strategy ℓ ∈ POSB2(x1, [12]).

(b) There exist strategies ℓ ∈ POSB2(x1, [1]) and r ∈ POSB2(x1, [2]).

2. k ∈ POSB2(x1, [12]) and one of the following two statements is fulfilled:

(a) There exists a strategy ℓ ∈ POB2(x1, [12]).

(b) There exist strategies ℓ, r ∈ POB2(x1)∪POSB2(x1) such that ℓ ∈ I([1])

and r ∈ I([2]).

For all x1 ∈ ∆̇M1 a strategy x2(k, ℓ) ∈ CSO
FB(x1), the outside set of coordination fall

back solutions to x1, if and only if |POB2(x1)| = 1 and the following two assertions

hold:

1. x2(k, ℓ) ∈ CS(x1).

2. k, ℓ ∈ POB2(x1) ∪ POSB2(x1).

For all x1 ∈ ∆̇M1 a strategy e2k ∈ PSM
FB(x1), the middle set of pure fall back solutions

to x1, if and only if one of the following two assertions holds:

1. |POB2(x1)| = 1, k ∈ (PB2(x1)\POB2(x1)) ∩ I([12]) and one of the following

two statements is fulfilled:
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(a) There exists a strategy ℓ ∈ POB2(x1, [12]).

(b) There exist strategies ℓ ∈ PB2(x1, [1]) and r ∈ PB2(x1, [2]).

2. |POB2(x1)| > 1, k ∈ PB2(x1, [12]) and one of the following two statements is

fulfilled:

(a) There exists a strategy ℓ ∈ POB2(x1, [12]), with ℓ 6= k.

(b) There exist strategies ℓ ∈ PB2(x1, [1]) and r ∈ PB2(x1, [2]).

For all x1 ∈ ∆̇M1 a strategy x2(k, ℓ) ∈ CSM
FB(x1), the middle set of coordination fall

back solutions to x1, if and only if the following two assertions hold:

1. x2(k, ℓ) ∈ CS(x1).

2. If |POB2(x1)| = 1, then k, ℓ /∈ POB2(x1).

For all x1 ∈ ∆̇M1 a strategy e2k ∈ PSI
FB(x1), the inside set of pure fall back solutions

to x1, if and only if k ∈ PIB2(x1, [12]) and one of the following two assertions holds:

1. There exists a strategy ℓ ∈ PSB2(x1, [12]), with ℓ 6= k.

2. There exist strategies ℓ ∈ PSB2(x1, [1]) and r ∈ PSB2(x1, [2]).

For all x1 ∈ ∆̇M1 a strategy x2(k, ℓ) ∈ CSI
FB(x2), the inside set of coordination fall

back solutions to x1, if and only if the following two assertions hold:

1. x2(k, ℓ) ∈ CS(x1).

2. k, ℓ ∈ PIB2(x1).

As a result the outside, middle and inside set of fall back solutions to x1 ∈ ∆̇M1

are given by SO
FB(x1) = conv(PSO

FB(x1) ∪ CSO
FB(x1)), SM

FB(x1) = conv(PSM
FB(x1) ∪

CSM
FB(x1)) and SI

FB(x1) = conv(PSI
FB(x1)∪CSI

FB(x1)), respectively. The set of fall

back solutions to x1 ∈ ∆̇M1 is defined as SFB(x1) = SO
FB(x1) ∪ SM

FB(x1) ∪ SI
FB(x1).

Note that SFB(x1) is not equal to the convex hull of its subsets but only to the

union. This is due to the fact that the three separate sets of fall back solutions

result from different intersection points on the upper envelope; at an intersection

point x1 ∈ ∆̇M1 the set SO
FB(x1) corresponds, e.g., to the intersection point ρ1,O

ε of

the dependent fall back game, and this set is empty whenever x1 does not correspond

to an intersection point on the upper envelope of the original game.
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Note further that these sets do not only contain equilibria on intersection points

of the upper envelope, but also the equilibria on line segments, as these are elements

of SI
FB(x1).

Whenever x1 ∈ ∆̇M1 , then x2 ∈ SFB(x1) implies that x1 ∈ ∆FB
M1 . Therefore the

theorem that characterises the dependent fall back equilibria for x1 ∈ ∆̇M1 can be

given in the following way.

Theorem 7.8.11 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × m2 bimatrix

game and x ∈ ∆. If x1 ∈ ∆̇M1\{1
2
e11 + 1

2
e12}, then (x1, x2) is a dependent fall back

equilibrium of G if and only if x2 ∈ SFB(x1). If x1 = 1
2
e11 + 1

2
e12, then (x1, x2) is a

dependent fall back equilibrium of G if and only if x1 ∈ ∆FB
M1 and x2 ∈ S(x1).

To complete the relations for 2×m2 bimatrix games between all equilibrium concepts

discussed in this chapter we show that every robust equilibrium is a dependent fall

back equilibrium for 2 ×m2 bimatrix games. We first give Borm (1992)’s theorem

characterising the set of robust equilibrium for 2 ×m2 bimatrix games.

Theorem 7.8.12 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2 × m2 bimatrix

game and x ∈ ∆. Then x is a robust equilibrium of G if and only if x is a perfect

equilibrium of G and one of the following three assertions holds:

(I) x1 = e11 and, either PB1(x2) = {1} or I([2]) = ∅.

(II) x1 = e12 and, either PB1(x2) = {2} or I([1]) = ∅.

(III) x1 ∈ ∆̇M1\{x1(r)}r∈{1,...,v−1} and I([12]) = {1, . . . , n}.

Proposition 7.8.13 Let G = ({1, 2}, {∆M i}i∈{1,2}, {πi}i∈{1,2}) be a 2×m2 bimatrix

game. Then each robust equilibrium of G is a dependent fall back equilibrium of G.

Proof: Let x ∈ RB(G). We first assume that x1 = e11. (The proof for x1 = e12
is analogous.) Since x ∈ PE(G) it follows that (II) and (III) of Theorem 7.8.9 are

satisfied. Hence, it suffices to show that x1 ∈ ∆FB
M1 . Consequently, it must hold

that there exists a strategy k ∈ Iv and a strategy ℓ ∈ PSB2(e21) such that either (i)

k ∈ I([1]) or (ii) k ∈ I([12]) and ℓ /∈ I([2]). By (I) and (III) of Theorem 7.8.12 we

easily obtain that indeed either (i) or (ii) is valid.
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Next we assume that (III) is satisfied. If x1 = 1
2
e11+

1
2
e12, we must show that x1 ∈ ∆FB

M1

and x2 ∈ S(x1). The latter holds by the fact that x ∈ PE(G). Furthermore, since

I([12]) = {1, . . . , n} there exist strategies k ∈ PB2(x1, [12]) and ℓ ∈ PSB2(x1, [12]),

which implies that x1 ∈ ∆FB
M1 .

If x1 6= 1
2
e11 + 1

2
e12 we must show that x2 ∈ SFB(x1). Since I([12]) = {1, . . . , n} it

follows that x2 cannot be a coordination solution. Hence, it suffices to show that x2

is an element of the convex hull of a set of pure solutions. Let k ∈ C(x2). We show

that e2k ∈ PSI
FB, which completes the proof. Since x1 ∈ ∆̇M1\{x1(r)}r∈{1,...,v−1},

k ∈ PIB2(x1) and since I([12]) = {1, . . . , n}, k ∈ PIB2(x1, [12]). Furthermore, as

I([12]) = {1, . . . , n} there exists a strategy ℓ ∈ PSB2(x1, [12]), with ℓ 6= k. Hence,

e2k ∈ PSI
FB(x1). �

We conclude this section with a graphical overview of the relations for 2 × m2

bimatrix games between all equilibrium concepts discussed in this chapter. Note

that all relations not present in this figure are indeed known to be non-existent.

RB

SPE

DFBEPEFBE

PR

NE

CFBE

SFBE

Borm (1992)

Borm (1992)

Myerson (1978)
Theorem 7.4.1

Proposition 7.8.13

Theorem 7.2.1
Selten (1975)

Theorem 7.7.2

Theorem 7.6.4

Theorem 7.3.3

Figure 7.8.5: Relations for 2 ×m2 bimatrix games
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Het modelleren van interactief

gedrag, en oplossingsconcepten

Je zoekt zelden wat je vindt
Maar je weet dat er iets is

Bløf, Omarm: De Mooiste verliezers (2003)

Samenvatting

In dit proefschrift behandelen we enkele onderwerpen uit de speltheorie. Deze stro-

ming binnen de economische wetenschappen heeft als doel om situaties met verschil-

lende beslissingsnemers (spelers) wiskundig te modelleren en te analyseren. Spelthe-

orie is onder te verdelen in twee takken: coöperatieve speltheorie en niet-coöperatieve

speltheorie. Niet-coöperatieve speltheorie behandelt situaties waarin spelers, om wat

voor reden dan ook, geen bindende afspraken kunnen maken.

Coöperative speltheorie daarentegen bestudeert situaties waarin spelers de mo-

gelijkheid hebben tot samenwerking om op die manier (extra) opbrengsten te ge-

nereren of kosten te besparen. Men richt zich binnen deze tak van de speltheorie

met name op het bestuderen van eerlijke allocaties van de gezamenlijke opbrengsten.

Hiervoor wordt vaak gebruik gemaakt van een coöperatief spel. In een coöperatief

spel wordt ieder mogelijke coalitie van spelers geassocieerd met een bepaalde waarde,

die correspondeert met de opbrengsten die deze coalitie kan behalen zonder mede-

werking van de spelers buiten de coalitie. Deze coalitiewaarden kunnen dan gebruikt

worden als referentiekader voor het verdelen van de opbrengsten van de grote coalitie

(de coalitie van alle spelers) over de spelers van het spel. Het meest fundamentele

225
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oplossingsconcept voor coöperatieve spelen is de core. Een allocatie is een core ele-

ment als het voldoet aan twee eigenschappen. Allereerst moet een allocatie efficient

zijn, wat inhoudt dat de opbrengsten van de grote coalitie exact verdeeld moet wor-

den over de spelers. Ten tweede moet een allocatie stabiel zijn. Een allocatie is

stabiel als er geen coalitie van spelers bestaat met een coalitiewaarde hoger dan de

opbrengsten uit de allocatie.

In het eerste gedeelte van dit proefschrift behandelen we verschillende onderwerpen

uit de coöperatieve speltheorie. In Hoofdstuk 3 analyseren we oplossingsconcepten

voor coöperatieve spelen. Twee van de meest bekende en bestudeerde één-punts-

oplossingsconcepten voor coöperatieve spelen zijn de nucleolus en de prenucleolus.

De prenucleolus is de unieke allocatie in de preimputatieverzameling (de verzameling

van alle efficiente allocaties) waartegen het maximale bezwaar per coalitie minimaal

is. Veel minder bekend en bestudeerd zijn de gerelateerde concepten de per capita

nucleolus en de per capita prenucleolus. De per capita prenucleolus is de unieke

allocatie in de preimputatieverzameling waartegen het maximale bezwaar per speler

van een coalitie minimaal is. Kortweg zijn onder de prenucleolus alle coalities even

belangrijk, terwijl gegeven de per capita prenucleolus alle spelers van alle coalities

even belangrijk zijn.

In een uitgebreid overzicht laten we zien aan welke eigenschappen de per capita

prenucleolus voldoet en we gebruiken enkele van deze eigenschappen om dit oplos-

singsconcept te karakteriseren. Verder onderzoeken we de relaties tussen de per

capita prenucleolus en andere oplossingsconcepten voor coöperatieve spelen. Een

soortgelijke analyse passen we toe voor de per capita nucleolus, en ook voor de

gerelateerde concepten de per capita prekernel en de per capita kernel. Bovendien

presenteren we ook een nieuwe karakterisering van de core.

In de Hoofdstukken 4 en 5 is ons uitganspunt niet een coöperatief spel, maar een

onderliggende coöperative situatie. Een coöperative situatie bestaat in het algemeen

uit een groep spelers die kunnen kiezen uit een verzameling alternatieven en elk

van deze alternatieven resulteert in bepaalde kosten voor (de groep) spelers. Deze

verzameling alternatieven en bijbehorende kosten zijn over het algemeen afkomstig

van een combinatorisch optimaliseringsprobleem waarin verschillende spelers de con-

trole hebben over delen van dit probleem. Men kan hier bijvoorbeeld denken aan een

minimum opspannende boom probleem. In een dergelijk probleem dienen een aantal
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spelers zich rechtstreeks of indirect te verbinden met een bepaalde voorziening. Dit

kan bijvoorbeeld een elektriciteitscentrale of watervoorziening zijn. Door samen te

werken kunnen de spelers een netwerk vormen met minimale kosten. Een dergelijk

netwerk wordt een minimum opspannende boom (mob) genoemd. Men kan de verza-

meling van alle opspannende bomen dan zien als de verzameling alternatieven, met

een mob als optimaal alternatief. Als een optimaal alternatief gevonden is, dan is

het zaak om de bijbehorende totale kosten eerlijk te verdelen over alle spelers zo-

danig dat iedere speler daadwerkelijk wil samenwerken om dit optimale alternatief

te bewerkstelligen. Daarom leidt een coöperatieve situatie in het algemeen tot twee

vragen; welk alternatief moet er gekozen worden en hoe moeten de bijbehorende

kosten verdeeld worden over de spelers? Om de tweede vraag te beantwoorden kun-

nen we coöperatieve situaties modelleren als een coöperatief spel.

In Hoofdstuk 4 bestuderen we een specifieke klasse van coöperatieve situaties, pu-

blieke netwerk situaties met congestie. Deze klasse van coöperatieve situaties genera-

liseert de klasse van minimum opspannende boom problemen in de zin dat de kosten

van het gebruik van een bepaalde verbinding van het netwerk in deze klasse afhangen

van het aantal gebruikers van deze verbinding. Voor toepassingen kan men denken

aan computer netwerken met een hoofdserver, aan communicatienetwerken met een

unieke informatieverstrekker of aan distributiecentra met meerdere leveranciers op

een publiek wegennetwerk. We bestuderen met name publieke netwerk situaties met

convexe congestie kosten, wat betekent dat de gemiddelde kosten voor het gebruik

van een verbinding toenemen met het aantal gebruikers van deze verbinding. Voor

deze klasse presenteren we een algoritme dat voor iedere coalitie van spelers het op-

timale netwerk genereert. Verder beargumenteren we dat dit soort situaties passend

gemodelleerd worden door het marginale congestie kostenspel. We bewijzen dat dit

spel concaaf is, wat kortweg betekent dat samenwerken met een grotere groep meer

kostenbesparing oplevert dan samenwerken met een kleinere groep. Als een gevolg

hiervan wil in een concaaf spel iedereen met iedereen samenwerken. We introduceren

ook een één-punts-oplossingsconcept dat gebasseerd is op drie principes van gelijke

behandeling van spelers.

In Hoofdstuk 5 pakken we het algemener aan. Het uitgangspunt is een willekeurige

coöperatieve situatie en de centrale vraag is hoe we de kosten van het optimale al-

ternatief moeten verdelen. Hiervoor maken we gebruik van coöperatieve spelen. In
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het algemeen is het echter niet duidelijk welk spel het best past bij welke situatie.

Daarom presenteren we een algemeen model dat gebruikt kan worden als een gids

voor het vinden van een passend coöperatief spel. Daarnaast kan hetzelfde model ook

gebruikt worden voor het vinden van core elementen van de bijbehorende spelen. Dit

model passen we toe op verschillende (bekende) klassen van coöperatieve situaties,

waaronder volgorde problemen zonder beginvolgorde, minimum opspannende boom

problemen, permutatie situaties zonder initiële allocatie en handelsreizigersproble-

men. We besteden extra aandacht aan de nieuwe klasse van reperateursproblemen,

waarin een reperateur een groep spelers moet bezoeken en de kosten van de spe-

lers afhangen van de tijd waarop zij op de reperateur moeten wachten. Voor een

toepassing kan men bijvoorbeeld denken aan fabrieken met kapotte machines, die

opbrengsten mislopen doordat er niet geproduceerd kan worden. Voor deze klasse

van coöperatieve situaties introduceren en analyseren wij een passend coöperatief

spel. Bovendien bekijken we twee één-punts-oplossingsconcepten.

Hoofdstuk 6 vormt een brug tussen coöperatieve en niet-coöperatieve speltheorie.

In dat hoofdstuk onderzoeken we de rol van het toestaan van bepaalde vormen van

samenwerking in niet-coöperatieve spelen in strategische vorm, ook wel strategische

spelen genoemd. In een strategisch spel kiezen alle spelers tegelijkertijd één strate-

gie uit hun persoonlijke verzameling van mogelijke strategieën. De uitbetaling aan

iedere speler is in het algemeen afhankelijk van zijn eigen keuze en van de keuze(s)

van de andere speler(s). Normaal gesproken kunnen spelers in een strategisch spel

geen bindende afspraken maken. In dit hoofdstuk staan we echter toe dat de spelers

een strategische optie hebben om bepaalde contracten af te sluiten. Deze contracten

bepalen de uitbetaling aan de spelers nadat een bepaalde combinatie van strategieën

gespeeld is. We analyseren dit soort situaties en besteden in het bijzonder aandacht

aan evenwichtsgedrag van de spelers.

Hoofdstuk 7 staat volledig in het teken van strategische spelen. Voor dergelijke spe-

len is het Nash evenwicht het fundamentele oplossingsconcept. Een combinatie van

strategieën is een Nash evenwicht als geen enkele speler zijn uitbetaling kan verhogen

door af te wijken van zijn gekozen strategie. De verzameling van Nash evenwichten

kan echter erg groot zijn en bovendien kan het tegen-intuitieve uitkomsten bevatten.

Daarom zijn er in de loop der jaren meerdere verfijningen van dit evenwichtsconcept

geintroduceerd, zoals perfecte en propere evenwichten. Wij introduceren en analy-
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seren een nieuw evenwichtsconcept, fall back evenwichten geheten, waarin het idee

is dat een evenwicht stabiel moet zijn tegen het wegvallen van bepaalde strategieën.

We laten zien dat de verzameling van fall back evenwichten een niet-lege en ge-

sloten deelverzameling is van de verzameling van Nash evenwichten. Verder onder-

zoeken we de relaties tussen fall back evenwichten aan de ene kant, en verschillende

andere evenwichtsconcepten, waaronder perfecte en propere evenwichten, aan de

andere kant. Naast fall back evenwichten introduceren en analyseren we bovendien

drie gerelateerde evenwichtsconcepten, zijnde strict fall back, complete fall back en

dependent fall back evenwichten.
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