
Externalities and Compensation: Primeval Games and

Solutions1

Yuan Ju2 Peter Borm3

First version: August 2005

This version: April 2007

1We thank René van den Brink, Eric van Damme, Hervé Moulin, Pieter Ruys, Marco Slikker,
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Abstract

The classical literature (Pigou (1920), Coase (1960), Arrow (1970)) and the relatively recent
studies (cf. Varian (1994)) associate the externality problem with efficiency. This paper
focuses explicitly on the compensation problem in the context of externalities. To capture
the features of inter-individual externalities, this paper constructs a new game-theoretic
framework: primeval games. These games are used to design normative compensation rules
for the underlying compensation problems: the marginalistic rule, the concession rule, and
the primeval rule. Characterizations of the marginalistic rule and the concession rule are
provided and specific properties of the primeval rule are studied.

JEL classification codes: C71; D62; D63.
Keywords: externality; compensation; primeval games; marginalistic rule; concession
rule; primeval rule.



1 Introduction

This paper focuses on the issue of externality and the associated compensation problem.

Externalities arise whenever an (economic) agent undertakes an action that has an effect

on another agent. When the effect turns out to be a cost imposed on the other agent(s),

it is called a negative externality. When agents benefit from an activity in which they

are not directly involved, the effect is called a positive externality. An associated funda-

mental question in real life is how to compensate for the losses incurred by the negative

externalities.

Pigou (1920) suggests a solution that involves intervention by a regulator who imposes

a (Pigouvian) tax. An alternative solution, known as the Coase theorem (Coase (1960)),

involves negotiation between the agents. Coase claims that if transactions costs are zero

and property rights are well defined, agents should be able to negotiate their way to an

efficient outcome. A third class of solutions, associated with Arrow (1970), involves setting

up a market for the externality. If a firm produces pollution that harms another firm, then

a competitive market for the right to pollute may allow for an efficient outcome. In this

framework, Varian (1994) designs the so-called compensation mechanisms for internalizing

externalities which encourage the firms to correctly reveal the costs they impose on the

other.

In fact, all solutions and approaches above try and solve the inefficiency problems aris-

ing from externalities, whereas they cannot be viewed as normative answers in terms of

fairness. In particular, the theories cannot answer a basic question like how much a house-

hold should be compensated by a polluting firm. Therefore, we are still in search of basic

normative solutions which might serve as benchmarks to determine adequate compensa-

tions in environments that are featured by externalities.

Solving an externality-incurred compensation problem boils down to recommending

rules or solutions for profit/cost sharing problems with externalities. A first model to solve

this problem was developed by Thrall and Lucas (1963) by the concept of partition function

form games : a partition function assigns a value to each pair consisting of a coalition and

a coalition structure which includes that coalition. Solution concepts for such games can

be found in Myerson (1977), Bolger (1986), Feldman (1994), Potter (2000), Pham Do and

Norde (2002), Maskin (2003), Macho-Stadler, Pérez-Castrillo, and Wettstein (2004), and

Ju (2004a).

However, one may observe that the framework of partition function form games does not

model the externalities among individuals but is restricted to specific coalitional effects.

The reason is simple: Partition function form games as well as cooperative games with

transferable utility (TU games) in characteristic function form always assume all the players
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in the player set N are present even if they do not form a coalition. Consider a partition

function form game and a player i in this game. What we know about the values with

respect to i covers the following three cases only: complete breakdown, i.e. all the players

in this game do not cooperate with each other; partial cooperation, i.e. i participates in

some coalition or i stands alone while some other players cooperate; complete cooperation,

i.e. all the players form a grand coalition. In fact, the externalities among individual

players (inter-individual externalities) are “internalized” or “incorporated” from the very

beginning because there is no explicit distinction between the case when only one player

is in the game and the case when all appear.

The task attempted in this paper is essentially twofold. First, it takes a player’s initial

situation (no other players, in an absolute stand-alone sense) into account and constructs

a new class of games, primeval games, which model the externalities among individual

players. Second, it discusses several compensation rules which can actually serve as specific

benchmarks to solve the compensation issue related to externality problems.

Primeval games have a flavor of TU games and are like partition function form games

in structure. Two basic differences with respect to the classical cooperative games are

that primeval games do not consider cooperation (and, hence, the notion of a coalition is

avoided), and primeval games take into account all situations in which only a subgroup of

players is present. In this way, all possible externalities among players are modelled.

We introduce three compensation rules for primeval games: the marginalistic rule, a

modification of the Shapley value for TU games (Shapley (1953)), the concession rule, which

is in the same spirit as the consensus value for TU games (Ju, Borm and Ruys (2004)),

and a more context-specific compensation rule, the primeval rule. The first two solution

concepts are axiomatically characterized. Properties of the primeval rule are discussed.

The paper has the following structure. The next section presents a small example that

motivates the approach and the model. In section 3, we lay out the general model: primeval

games. Section 4 defines three solution concepts for primeval games. Section 5 discusses

possible properties of a compensation rule for primeval games, and then characterizes the

marginalistic rule and the concession rule. Moreover, specific properties of the primeval

rule are studied and a comparison with the marginalistic rule and the concession rule is

provided for specific types of players in the same section. The final section concludes the

paper.
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2 A motivating example

Consider a scenario with three (economic) agents, a (a firm that generates air pollution),

b (a flower farm), and c (a swimming pool), negotiating to settle in an area close to one

another. Based on social welfare considerations, the local municipality is trying to reach

mutual agreement to accommodate all agents.

If all three agents would settle down together, the air pollution of agent a would neg-

atively affect both the blossoming results of agent b and the number of visitors of the

swimming pool. Moreover, the attraction of insects by the flowers of b and the smell of

fertilizer would have negative externality on c. Meanwhile, the swimming pool would also

cause negative effects on b by visitors’ cars and unwanted garbage deposits. Suppose in

this case (i.e., three agents co-existing) the utilities of a, b, and c are given by 12, 4 and

−1, respectively.

In order to more clearly pinpoint the externalities and to further understand the precise

consequences, it is necessary and interesting to go “back” to see the “primeval” situations:

to describe the six possibilities which can serve as reference points in the negotiations.

Utilities fitting the story adequately are given in the table below. For instance, in the case

that only agent b operates in the area while both a and c do not settle there, b’s utility

would be 8, which corresponds to the second column of the table.

(a) (b) (c) (a, b) (a, c) (b, c) (a, b, c)
(12) (8) (6) (12, 5) (12, 2) (7, 3) (12, 4,−1)

Here, from the externality point of view one can readily detect a basis for conflicts. In

particular, without adequate compensation, c can anticipate the fact of negative profits

caused by the presence of both a and b. In this case c will not set up business at all, which

is not a desirable outcome in terms of social welfare. Also b might turn to the municipality

for compensation for the negative effects caused by a and c. The questions are: Should

c as well as b be compensated? If so, by whom and how much? And in a more general

interactive environment, how to solve the conflicts arising from the externalities among

individual agents?

The situation could be further complicated by the presence of a fourth agent, d, rep-

resenting a cafeteria. In this case also positive externalities could be generated by d on c,

and vice versa. Then externalities have a mixed or combined character and the resulting

compensation issue becomes less transparent. Therefore, the need for a formal consistent

analysis and the search for reasonable compensation rules become more prominent.

Note that apparently one can come up with different (economic) stories or alternative

interpretations to the above table. However, the nature remains: individual agents may
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generate externalities to the others. We therefore will construct a general model to capture

this class of externalities and analyze the associated compensation issue.

3 The model: primeval games

To capture all the possibilities of the so-called inter-individual externalities and further dis-

cuss the associated compensation problem, we now construct the formal model of primeval

games.

Let N = {1, 2, ..., n} be the finite set of players. A subset S of N , in order to be

distinguished from the usual concept of coalition in cooperative games, is called a group

of individuals (in short, a group S). Here, the term of group should be understood as a

neutral concept, which has nothing to do with cooperation or anything else, but simply

means a set of individual players in N .

A pair (i, S) that consists of a player i and a group S of N to which i belongs is called

an embedded player in S. Let E(N) denote the set of embedded players, i.e.

E(N) =
{
(i, S) ∈ N × 2N |i ∈ S

}
.

Definition 3.1 A mapping

u : E(N) −→ R

that assigns a real value u(i, S) to each embedded player (i, S) is an individual-group func-

tion. The ordered pair (N, u) is called a primeval game1. The set of primeval games with

player set N is denoted by PRIN .

The value u(i, S) represents the payoff, or utility, of player i, given that all players in

S are present while all players in N\S are absent. For a given group S and an individual-

group function u, let ū(S) denote the vector (u(i, S))i∈S. We call u(i, {i}) the absolute

stand-alone payoff, or the Robinson Crusoe payoff (in short, R-C payoff) of player i in

game u.

We want to stress, however, that the model of primeval games does not consider the

phenomenon of cooperation and, hence, the individual numbers with respect to subgroups

are not the result of internal negotiations among the players involved: they just model the

consequences of individual externalities due to the presence of others.

Furthermore, the model of primeval games assumes that the player set is exogenously

given and no player can exclude another. However, the fact that a player has the right

1Since a primeval game models inter-individual externalities and aims to solve the associated compen-
sation problem, an alternative name would be individual externality-compensation game.
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to be in a game does not necessarily mean that he or she has the right to affect another

player. Therefore, when confronted with externalities, making monetary transfers among

players by a reasonable compensation rule that satisfies a set of normative standards may

help to smooth out the corresponding conflicts.

Definition 3.2 A (compensation) rule on PRIN is a function f , which associates with

each primeval game (N, u) in PRIN a vector f(N, u) = (fi(N, u))i∈N ∈ RN of individual

payoffs.

Efficiency of a compensation rule f will require that
∑

i∈N fi(N, u) =
∑

i∈N u(i, N).

That is to say, the situation in question is the case that all players co-exist. The prime

question is whether the corresponding payoff vector (u(i, N))i∈N , representing individual

payoffs resulting from externalities while no compensation is involved yet, is a fair status or

not. The primeval situations in the model, i.e., all possible co-existences of subsets of the

players, are used to examine the source and magnitude of the corresponding inter-individual

externalities. A compensation rule describes the transfers among the co-existing players

to fairly take externalities into consideration. Since we aim to smooth out the conflicts

arising from externalities, ideally, a compensation rule should be designed in accordance

with well justified principles or generally accepted conventions in this context and take all

these primeval situations into account.

4 Compensation rules

This section introduces several compensation rules for primeval games. Since it is assumed

that for any primeval game every player has the same right to enter it, there is no prede-

termined ordering of players. However, we need to take orders into account because they

help to clarify the relationship among players with respect to externalities. Therefore, we

consider all different orderings of players when determining compensations in the context

of externalities.

4.1 The marginalistic rule

People generally believe that one should not do harm to the others, and otherwise, one

must provide compensation. Analogously, if a player’s activities impose a positive effect

on the others, then he has the right to ask them to pay for that. Meanwhile we might

adopt a practical principle known as first come, first served. That is, the player who comes

into a game first should be well protected: Any later entrant must compensate him if she
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causes loss on him while he need not worry about any possible negative effects he could

impose on the later entrants, i.e., he has the right to assume no responsibility for his

behavior, irrespective of what consequence it might cause on the others. Along the same

line of reasoning, the second entrant only cares about the first player but does not have any

responsibility for his successors whereas all his successors should take care of the first two

entrants’ payoffs. More specifically, given an ordering of players, the early entrants should

be well protected such that the losses due to negative externalities that possibly arise later

are compensated. Also, the gains from positive externalities should be transferred to whom

they are produced by. Those effects can be well captured by the so-called marginal values.

Thus, the corresponding rule is in fact a completely marginal treatment of externalities.

The formal definition is provided as follows. For a primeval game u ∈ PRIN , let

Π(N) be the set of all bijections σ : {1, ..., |N |} −→ N . For a given σ ∈ Π(N) and

k ∈ {1, ..., |N |} we define Sσ
k = {σ(1), ..., σ(k)} and Sσ

0 = ∅. We construct the marginal

vector mσ(u), which corresponds to the situation where the players enter the game one by

one in the order σ(1), ..., σ(|N |) and where each player σ(k) is given the marginal value he

creates by entering. Formally, it is the vector in RN defined by

mσ
σ(k)(u) =

{
u(σ(1), {σ(1)}) if k = 1

u(σ(k), Sσ
k ) +

∑k−1
j=1

(
u(σ(j), Sσ

k )− u(σ(j), Sσ
k−1)

)
if k ∈ {2, ..., |N |}.

Therefore, player σ(k) might be involved in four kinds of compensating behavior or circum-

stances: compensating the incumbents if he produces negative externalities on them, being

compensated from the incumbents if they benefit from his showing up (i.e., he produces

positive externalities on the incumbents), being compensated by the later entrants if they

impose negative externalities on him; paying compensation to the later entrants if they

generate positive externalities on him.

Here, one can readily check that for a primeval game u ∈ PRIN and an order σ ∈ Π(N),

t∑

k=1

mσ
σ(k)(u) =

t∑

k=1

u(σ(k), Sσ
t )

for all t ∈ {1, ..., |N |}.
Furthermore, since no predetermined ordering of players exists, we take all possible

permutations into consideration. Thus, the marginalistic rule Φ(u) is defined as the average

of the marginal vectors, i.e.,

Φ(u) =
1

|N |!
∑

σ∈Π(N)

mσ(u).
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Note that the marginalitic rule for primeval games is in the same spirit of the Shapley

value for TU games.2 But the above story explains the nature of compensations in the

context of inter-individual externalities and contrasts with the other compensation rules

introduced below.

Example 4.1 Consider the following primeval game u with three players, a, b and c, which

involves both positive externalities and negative externalities.

S (a) (b) (c) (a, b) (a, c) (b, c) (a, b, c)
ū(S) (5) (3) (2) (8, 2) (5, 1) (3, 0) (8, 2, 2)

The outcome of the marginalistic rule is given by Φ(u) =
(
61

2
, 4, 11

2

)
. Thus, to compensate

for externalities, a needs to pay 11
2

to b, and c will pay 1
2

to b.

4.2 The concession rule

One might oppose the “first come, first served” idea behind the marginal vectors underly-

ing the marginalistic rule and rather prefer an equal responsibility based rule: From the

bilateral point of view, both parties (the incumbents and the entrant) should be equally

responsible for an externality due to the showing up of the new entrant.

Formally, in order to define the concession rule for primeval games, we construct the

concession vector Cσ(u), which corresponds to the situation where players enter the game

u one by one in an order σ ∈ Π(N) and where every new entrant, say σ(k), first obtains

the payoff when entering, u(σ(k), Sσ
k ), and then equally shares with every incumbent her

surplus/loss incurred by the corresponding positive/negative externality imposed by him,

and also equally shares his surplus/loss with all his successors. The notion of concession is

introduced here because players concede to each other and make a compromise on assuming

responsibilities of the externalities.

We first define player σ(k)’s concession payoff for the externalities on previous players

as

Pσ
σ(k)(u) =

k−1∑
j=1

u(σ(j), Sσ
k )− u(σ(j), Sσ

k−1)

2

and his concession payoff from the subsequent externalities as

Sσ
σ(k)(u) =

|N |∑

l=k+1

u(σ(k), Sσ
l )− u(σ(k), Sσ

l−1)

2
.

2More specifically, for any u ∈ PRIN , one can obtain a regular TU game v defined by v(S) =∑
i∈S u(i, S) for all S ⊂ N . It can be readily shown that the Shapley value of the TU game v coin-

cides with the outcome of the marginalistic rule of the primeval game u. However, there are no direct
counterparts in TU games for the next two compensation rules for primeval games.
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Apparently, when a player enters the game u in the very first place, he has no concession

payoff for the externalities on previous players. Therefore Pσ
σ(1)(u) = 0. Correspondingly,

when a player enters a game in the very last place, there is no subsequent externality for

him. Hence, Sσ
σ(|N |)(u) = 0.

Moreover, the concession payoff from the subsequent externalities for player σ(k) can

be simplified as

Sσ
σ(k)(u) =

u(σ(k), N)− u(σ(k), Sσ
k )

2

for all k = {1, ..., |N | − 1}.
Now, formally, the concession vector is the vector in RN defined by

Cσ
σ(k)(u) =





u(σ(1), {σ(1)}) + Sσ
σ(1)(u) if k = 1

u(σ(k), Sσ
k ) + Pσ

σ(k)(u) + Sσ
σ(k)(u) if k = {2, ..., |N | − 1}

u(σ(|N |), N) + Pσ
σ(|N |)(u) if k = |N |.

And more explicitly,

Cσ
σ(k)(u) =





u(σ(1),N)+u(σ(1),{σ(1)})
2

if k = 1

Pσ
σ(k)(u) +

u(σ(k),N)+u(σ(k),Sσ
k )

2
if k = {2, ..., |N | − 1}

u(σ(|N |), N) + Pσ
σ(|N |)(u) if k = |N |.

We want to note that for a primeval game u ∈ PRIN and an order σ ∈ Π(N),

|N |∑

k=1

Cσ
σ(k)(u) =

|N |∑

k=1

u(σ(k), N),

but generally,

t∑

k=1

Cσ
σ(k)(u) 6=

t∑

k=1

u(σ(k), Sσ
t )

for t ∈ {1, ..., |N | − 1}.
The concession rule C(u) is defined as the average of the concession vectors, i.e.,

C(u) =
1

|N |!
∑

σ∈Π(N)

Cσ(u).

Note that the concession rule for primeval games is in the same spirit as the consensus

value for TU games (cf. Ju, Borm and Ruys (2004)).
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Example 4.2 Consider the primeval game of Example 4.1. All concession vectors are

given by

σ Cσ
a (u) Cσ

b (u) Cσ
c (u)

(a b c) 61
2

31
2

2

(a c b) 61
2

4 11
2

(b a c) 71
2

21
2

2

(b c a) 81
2

21
2

1

(c a b) 6 4 2

(c b a) 81
2

11
2

2

Then, we get C(u) =
(
71

4
, 3, 13

4

)
. Thus, to compensate for externalities, a needs to pay 3

4

to b, and c will pay 1
4

to b. Compared to the outcome of the marginalistic rule, both a and

c give less compensation to b.

Proposition 4.3 describes a direct relation between the concession rule and the marginal-

istic rule.

Proposition 4.3 The outcome prescribed by the concession rule turns out to be the average

of the status quo payoff vector and the outcome of the marginalitic rule. For any game

u ∈ PRIN , we have

Ci(u) =
1

2
u(i, N) +

1

2
Φi(u)

for all i ∈ N .

Proof.

It can be readily shown that for all σ ∈ Π(N) and k ∈ {1, ...|N |}

Cσ
σ(k)(u) =

1

2
u(i, N) +

1

2
mσ

σ(k)(u).

From this the result is obvious.

4.3 The primeval rule

We now propose an alternative rule, the basic idea of which is that the losses due to negative

externalities should be compensated whereas the benefits from the positive externalities

are enjoyed for free. This is a general and natural attitude when people face externalities

in reality. Thus, the rule based on this idea might be easily accepted and implemented in

practice.
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The corresponding rule could be described as the chargeable negative externalities and

free positive externalities rule. For shorthand we call it the primeval rule.

For a primeval game u ∈ PRIN and an ordering σ ∈ Π(N) and k ∈ {1, ..., |N |},
we construct the primeval vector Bσ(u), which corresponds to the situation where the

players enter the game one by one in the order σ(1), ..., σ(|N |) and where each player

σ(k) compensates the losses of his predecessors but enjoys positive externalities from his

successors freely.

We now define player σ(k)’s loss for compensating negative externalities as

Lσ
σ(k)(u) =

k−1∑
j=1

max
{
u(σ(j), Sσ

k−1)− u(σ(j), Sσ
k ), 0

}

and his gain from subsequent positive externalities as

Gσ
σ(k)(u) =

|N |∑

l=k+1

max
{
u(σ(k), Sσ

l )− u(σ(k), Sσ
l−1), 0

}
.

Apparently, when a player enters the game u in the very first place, he assumes no

responsibility for the others. Therefore, Lσ
σ(1)(u) = 0. Similarly, when a player enters a

game in the very last place, he cannot enjoy any subsequent positive externalities. Hence,

Gσ
σ(|N |)(u) = 0.

Formally, the primeval vector Bσ(u) is the vector in RN defined by

Bσ
σ(k)(u) =





u(σ(1), {σ(1)}) + Gσ
σ(1)(u) if k = 1

u(σ(k), Sσ
k )− Lσ

σ(k)(u) + Gσ
σ(k)(u) if k ∈ {2, ..., |N | − 1}

u(σ(|N |), N)− Lσ
σ(|N |)(u) if k = |N |.

Similar to the concession rule, here one can check that for a primeval game u ∈ PRIN and

an order σ ∈ Π(N),

|N |∑

k=1

Bσ
σ(k)(u) =

|N |∑

k=1

u(σ(k), N),

but generally,

t∑

k=1

Bσ
σ(k)(u) 6=

t∑

k=1

u(σ(k), Sσ
t )

for t ∈ {1, ..., |N | − 1}.
The primeval rule ζ(u) is defined as the average of the primeval vectors, i.e.,

ζ(u) =
1

|N |!
∑

σ∈Π(N)

Bσ(u).
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Example 4.4 Consider the primeval game of Example 4.1. All primeval vectors are given

by

σ Bσ
a (u) Bσ

b (u) Bσ
c (u)

(a b c) 8 2 2

(a c b) 8 2 2

(b a c) 7 3 2

(b c a) 7 3 2

(c a b) 7 2 3

(c b a) 7 1 4

Then, we get ζ(u) =
(
71

3
, 21

6
, 21

2

)
. Thus, to compensate for externalities, a needs to pay 1

6

to b and 1
2

to c. Note that in this case c even becomes a compensation receiver instead of

a provider like in the previous two cases. This is due to the underlying idea that positive

externalities are for free.

We want to note that in general there is no direct relation between the primeval rule

and the other two compensations rules. However, when we focus on the class of negative

externality primeval games, we can find that the outcome prescribed by the primeval

rule coincides with the outcome of the marginalistic rule, as described by the following

proposition. A primeval game (N, u) is called a negative externality primeval game if

u(i, T ) ≥ u(i, S) for all i ∈ T and all T ⊂ S ⊂ N . This is a situation in which the presence

of any extra player will not make any player including herself better off. The example

discussed in section 2 is a negative externality primeval game.

Proposition 4.5 For any negative externality primeval game u ∈ PRIN , we have

Φi(u) = ζi(u)

for all i ∈ N .

Proof.

Let (N, u) be a negative externality primeval game. Given σ ∈ Π(N) and i ∈ N . Let

i = σ(k). It suffices to show Bσ
i (u) = mσ

i (u). Since (N, u) is a negative externality

primeval game, player i’s gain from subsequent positive externalities is always zero, i.e.,

Gσ
i (u) = Gσ

σ(k)(u) = 0 for all k ∈ {1, ..., |N |}. Moreover, player i’s loss for compensating

negative externalities is

Lσ
i (u) = Lσ

σ(k)(u) =
k−1∑
j=1

(
u(σ(j), Sσ

k−1)− u(σ(j), Sσ
k )

)
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for all k ∈ {2, ..., |N |}. By the definition of the primeval vector, we then have

Bσ
i (u) = Bσ

σ(k)(u) =

{
u(i, {i}) if k = 1

u(i, Sσ
k )−∑k−1

j=1

(
u(σ(j), Sσ

k−1)− u(σ(j), Sσ
k )

)
if k ∈ {2, ..., |N |}

which equals mσ
i (u).

Hence, the outcomes prescribed by the three compensation rules for the example dis-

cussed in section 2 are given by Φ(u) = ζ(u) = (82
3
, 42

3
, 12

3
) and C(u) = (101

3
, 41

3
, 1

3
).

Analogously, a primeval game (N, u) is called a positive externality primeval game if

u(i, T ) ≤ u(i, S) for all i ∈ T and all T ⊂ S ⊂ N . Apparently, for any positive externality

primeval game (N, u), ζi(u) = u(i, N) for all i ∈ N . Following Proposition 4.3, we know

Corollary 4.6 For any positive externality primeval game u ∈ PRIN , we have3

Ci(u) =
1

2
Φi(u) +

1

2
ζi(u)

for all i ∈ N .

5 Properties and characterizations

This section discusses possible properties of a compensation rule for primeval games. We

then provide characterizations using those properties.

The first property introduced below focuses on the externality side of a primeval game

and, consequently, fits the context well.

Given a game u ∈ PRIN , a player i ∈ N is called an immune player if u(i, S) = u(i, {i})
for all S ⊂ N and i ∈ S. Thus, an immune player is a player who is not affected by the

presence of the others.

Given a game u ∈ PRIN , a player i ∈ N is called an uninfluential player if u(j, S ∪
{i}) = u(j, S) for all S ⊂ N\{i} and j ∈ S. Thus, an uninfluential player is a player who

never affects another player.

Given a game u ∈ PRIN , a player i ∈ N is called a neutral player if it is both an

immune player and an uninfluential player in (N, u).

• Property 1 (The neutral player property): fi(u) = u(i, {i}), for all u ∈ PRIN and for

any neutral player i in (N, u).

3Please note that this result cannot be extended because the primeval rule does not satisfy additivity,
as suggested by Example 5.7 in section 6.
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It is reasonable to require a compensation rule for primeval games to satisfy the neutral

player property. Hence, it can serve as a basic benchmark to judge if a compensation rule

is adequately sensible. While one can easily come up with a rule that fails to satisfy this

property, we find that the marginalistic rule, the concession rule and the primeval rule pass

the test.

Proposition 5.1 The marginalistic rule, the concession rule and the primeval rule satisfy

the neutral player property.

Proof.

It follows that if player i is a neutral player in (N, u), then for the marginalistic rule

mσ
i (u) = u(i, {i}) for any σ ∈ Π(N); for the concession rule Cσ

i (u) = u(i, {i}) for any

σ ∈ Π(N); and for the primeval rule Bσ
i (u) = u(i, {i}) for any σ ∈ Π(N).

We now turn to other possible properties. As the co-existence of all players of a primeval

game is the situation in question, we require the efficiency (or balanced-budget) property

for a compensation rule: the sum of all the players’ values according to the rule equals the

sum of their status quo payoffs.

• Property 2 (Efficiency):
∑

i∈N fi(u) =
∑

i∈N u(i, N) for all u ∈ PRIN .

A third property is symmetry. For a primeval game u ∈ PRIN , we say that two players

i, j ∈ N are symmetric if for all S ⊂ N\{i, j},

u(i, S ∪ {i}) +
∑

k∈S

u(k, S ∪ {i}) = u(j, S ∪ {j}) +
∑

k∈S

u(k, S ∪ {j}).

It implies that in terms of total payoffs, the showing up of i has the same effect as that of

j for any group of players without i and j.

• Property 3 (Symmetry): fi(u) = fj(u) for all u ∈ PRIN , and for all symmetric

players i, j in (N, u).

The next property is the dummy property. Given a game u ∈ PRIN , a player i ∈ N is

called a dummy if

∑
j∈S

u(j, S ∪ {i}) + u(i, S ∪ {i}) =
∑
j∈S

u(j, S) + u(i, {i})

for all S ⊂ N\{i}.

13



• Property 4 (The dummy property): fi(u) = u(i, {i}), for all u ∈ PRIN and for any

dummy player i in (N, u).

We now introduce the following property.

• Property 5 (Additivity): f(u1 + u2) = f(u1) + f(u2) for all u1, u2 ∈ PRIN , where

u1 + u2 is defined by (u1 + u2)(i, S) = u1(i, S) + u2(i, S) for every (i, S) ∈ E(N).

Theorem 5.2 There is a unique compensation rule on PRIN satisfying efficiency, sym-

metry, the dummy property and additivity. This rule is the marginalistic rule.

The proof follows the lines of the proof of the characterization of the Shapley value for

TU games: the unanimity primeval games as provided below take the role of the unanimity

TU games. An explicit proof along similar lines is provided for the concession rule in the

proof of Theorem 5.5.

As a generalization of unanimity games for the class of TU games, unanimity games

for primeval games can be defined as follows.

Definition 5.3 Let (j, T ) ∈ E(N) be an embedded player. The unanimity game w(j,T ),

corresponding to (j, T ), is given by

w(j,T )(i, S) =

{
1, if j = i and T ⊂ S

0, otherwise

for every (i, S) ∈ E(N).

One can prove, similar to the case of TU games, that the unanimity games form a basis

for the class of primeval games (cf. Ju (2004b, p.100-101, Lemma 5.5.3)). This means

that if (N, u) is a primeval game, then there exist uniquely determined real numbers d(j,T ),

(j, T ) ∈ E(N), such that u =
∑

(j,T )∈E(N) d(j,T )w(j,T ).

As the following example shows, the concession rule and the primeval rule satisfy neither

symmetry nor the dummy property.

Example 5.4 Consider the following two primeval games (N, u1) and (N, u2) with N =

{a, b, c} such that a and b are symmetric players in game u1 and c is a dummy in game u2.

S (a) (b) (c) (a, b) (a, c) (b, c) (a, b, c)

ū1(S) (1) (1) (5) (2, 3) (2, 4) (0, 6) (3, 4, 2)

ū2(S) (5) (3) (2) (8, 2) (3, 4) (4, 1) (6, 0, 6)

However, the solutions for these two games are: Φ(u1) = (21
6
, 21

6
, 42

3
); C(u1) = (2 7

12
, 3 1

12
, 31

3
);

ζ(u1) = (11
2
, 31

2
, 4) and Φ(u2) = (6, 4, 2); C(u2) = (6, 2, 4); ζ(u2) = (51

2
, 2, 41

2
).
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Consider the dummy property which takes a marginal contribution perspective and

assigns a dummy player his R-C payoff. As we know, without taking compensation into

account, a dummy player i would get u(i, N). As u(i, {i}) and u(i, N) represent two polar

opinions, one may argue that taking the average could be a fair compromise.

• Property 6 (The quasi dummy property): fi(u) = u(i,{i})+u(i,N)
2

, for all u ∈ PRIN and

for any dummy player i in (N, u).

Now we introduce the property of adjusted symmetry. Similar to the quasi dummy

property, one may have the following argument. On the one hand, when considering the

same effect on total payoffs that symmetric players have, they may require the same value

in a game. On the other hand, since symmetric players can have different R-C payoffs or

status quo payoffs, their values should reflect such differences. An immediate and easy way

to deal with this problem is to adjust the values by their status quo payoffs.

• Property 7 (Adjusted symmetry): There is an α(u) ∈ R such that

fi(u) =
α(u) + u(i, N)

2
and fj(u) =

α(u) + u(j,N)

2

for all u ∈ PRIN , and for all symmetric players i, j in u, where α(u) is called the

standard value for symmetric players in u.

Theorem 5.5 The concession rule is the unique compensation rule on PRIN satisfying

efficiency, adjusted symmetry, the quasi dummy property and additivity.

Proof.

By the definition of the concession rule, efficiency and additivity are straightforward to

check.

Now we show that the concession rule satisfies the quasi dummy property. Given a game

u ∈ PRIN and σ ∈ Π(N), let player i be a dummy player in u and i = σ(k). By definition,

it can be readily verified that for all k ∈ {2, ..., |N |},

Pσ
σ(k)(u) =

1

2

k−1∑
j=1

(
u(σ(j), Sσ

k )− u(σ(j), Sσ
k−1)

)

=
1

2
(u(i, {i})− u(i, Sσ

k )) .

Then, by the definition of the concession vector, we know

Cσ
σ(k)(u) =

u(i, {i}) + u(i, N)

2
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for all k ∈ {1, ..., |N |}. What remains is obvious.

Below we show that the concession rule satisfies adjusted symmetry. Let i1, i2 be two

symmetric players in u ∈ PRIN . Consider σ ∈ Π(N), and without loss of generality,

σ(k) = i1, σ(h) = i2, where i1, i2 ∈ N . Let σ̄ ∈ Π(N) be the permutation which is

obtained from σ by interchanging the positions of i1 and i2, i.e.

σ̄(w) =





σ(w) if w 6= k, h

i1 if w = h

i2 if w = k.

As σ 7→ σ̄ is bijective, it suffices to prove that there exists an ασ(u) ∈ R such that

Cσ
i1
(u) = ασ(u)+u(i1,N)

2
and C σ̄

i2
(u) = ασ(u)+u(i2,N)

2
.

Case 1: 1 < k < h.

By definition, we know that

Cσ
i1
(u) = Cσ

σ(k)(u) =
1

2

(
k∑

l=1

u(σ(l), Sσ
k )−

k−1∑
j=1

u(σ(j), Sσ
k−1) + u(σ(k), N)

)

C σ̄
i2
(u) = C σ̄

σ̄(k)(u) =
1

2

(
k∑

l=1

u(σ̄(l), Sσ̄
k )−

k−1∑
j=1

u(σ̄(j), Sσ̄
k−1) + u(σ̄(k), N)

)
.

Obviously, u(σ(j), Sσ
k−1) = u(σ̄(j), Sσ̄

k−1) for all j ∈ {1, ..., k− 1}. Moreover, since i1 and i2

are symmetric players,
∑k

l=1 u(σ(l), Sσ
k ) =

∑k
l=1 u(σ̄(l), Sσ̄

k ). Let ασ(u) =:
∑k

l=1 u(σ(l), Sσ
k )−∑k−1

j=1 u(σ(j), Sσ
k−1). We then have Cσ

i1
(u) = ασ(u)+u(i1,N)

2
and C σ̄

i2
(u) = ασ(u)+u(i2,N)

2
.

Case 2: 1 < h < k. The proof is analogous to the above.

Case 3: 1 = k < h. This is obvious because

Cσ
i1
(u) = Cσ

σ(1)(u) =
u(i1, {i1}) + u(i1, N)

2

C σ̄
i2
(u) = C σ̄

σ̄(1)(u) =
u(i2, {i2}) + u(i2, N)

2
,

and u(i1, {i1}) = u(i2, {i2}).
Case 4: 1 = h < k. Analogously, the proof is easy to be established.

As a consequence, the concession rule satisfies adjusted symmetry.

Conversely, suppose a compensation rule f satisfies these four properties. We have to show

that f = C. Let u be a primeval game on N . Then,

u =
∑

(j,T )∈E(N)

d(j,T )w(j,T )

16



where d(j,T ) is uniquely determined.

By the additivity property,

f(u) =
∑

(j,T )∈E(N)

f(d(j,T )w(j,T )) and C(u) =
∑

(j,T )∈E(N)

C(d(j,T )w(j,T )).

Thus, it suffices to show that for all (j, T ) ∈ E(N) and d(j,T ) ∈ R we have f(d(j,T )w(j,T )) =

C(d(j,T )w(j,T )).

Let (j, T ) ∈ E(N) and d(j,T ) ∈ R. For any i /∈ T , one readily verifies that i is a dummy

player of game (N, d(j,T )w(j,T )). Therefore, by the quasi dummy property,

fi(d(j,T )w(j,T )) = Ci(d(j,T )w(j,T )) = 0 for all i /∈ T. (1)

Moreover, we know that all players in group T are symmetric players in (N, d(j,T )w(j,T )).

By adjusted symmetry,

fi(d(j,T )w(j,T )) =
αf

2
for all i ∈ T\{j} and some αf ∈ R, (2)

and

Ci(d(j,T )w(j,T )) =
αC
2

for all i ∈ T\{j} and some αC ∈ R. (3)

And for player j, by adjusted symmetry as well, we have

fj(d(j,T )w(j,T )) =
αf + d(j,T )

2
and Cj(d(j,T )w(j,T )) =

αC + d(j,T )

2
. (4)

Therefore, efficiency and (1)-(4) imply that

αf = αC =
1

|T |d(j,T ).

Finally, we note that the four properties characterizing the concession rule are logically

independent.

Before introducing the next property, we first define completely symmetric players.

Given a primeval game u ∈ PRIN , we say that two players i, j ∈ N are completely

symmetric if for all S ⊂ N\{i, j},

u(i, S ∪ {i}) = u(j, S ∪ {j}) and u(i, S ∪ {j} ∪ {i}) = u(j, S ∪ {j} ∪ {i})

and for all k ∈ S

u(k, S ∪ {i}) = u(k, S ∪ {j}).

It is natural to require that two completely symmetric players get the same value in

a primeval game as their emergences generate the same influence on other players while

getting the same influence from the emergences of the others.

17



• Property 8 (Complete symmetry): fi(u) = fj(u) for all u ∈ PRIN , and for all

completely symmetric players i, j ∈ N .

Obviously, from the stronger versions of symmetry considered before, it readily follows

that both the marginalisitic rule and the concession rule satisfy complete symmetry.

Now we discuss another property which pays more attention to the compensation aspect

and therefore seems important in the context of primeval games.

Given a game u ∈ PRIN , a player i ∈ N is called a harmful player if u(j, S ∪ {i}) ≤
u(j, S) for all S ⊂ N\{i} and j ∈ S. Thus, a harmful player is a player who never generates

positive externalities to other players.

Given a game u ∈ PRIN , a player i ∈ N is called a harmless player if u(j, S ∪ {i}) ≥
u(j, S) for all S ⊂ N\{i} and j ∈ S. Thus, a harmless player is a player who never

produces negative externalities to others.

Given a game u ∈ PRIN , a player i ∈ N is called an immune-harmful player if it is

both an immune player and a harmful player in u; or is called an immune-harmless player

if it is both an immune player and a harmless player in u.

• Property 9 (The immune-harmless player property): fi(u) = u(i, {i}), for all u ∈
PRIN and for any immune-harmless player i in (N, u).

Proposition 5.6 The primeval rule satisfies efficiency, complete symmetry and the immune-

harmless player property.

Proof.

(i) Efficiency: Clearly, by construction, Bσ(u) is efficient for all σ ∈ Π(N).

(ii) Complete symmetry: Let i1, i2 be two completely symmetric players in u ∈ PRIN .

Consider σ ∈ Π(N), and without loss of generality, σ(k) = i1, σ(h) = i2, where i1, i2 ∈ N .

Let σ̄ ∈ Π(N) be the permutation which is obtained from σ by interchanging the positions

of i1 and i2, i.e.

σ̄(w) =





σ(w) if w 6= k, h

i1 if w = h

i2 if w = k.

As σ 7→ σ̄ is bijective, it suffices to prove that Bσ
i1
(u) = Bσ̄

i2
(u).

Case 1: 1 < k < h.

By definition, we know

Bσ
i1
(u) = Bσ

σ(k)(u) = u(σ(k), Sσ
k )− Lσ

σ(k)(u) + Gσ
σ(k)(u)

Bσ̄
i2
(u) = Bσ̄

σ̄(k)(u) = u(σ̄(k), Sσ̄
k )− Lσ̄

σ̄(k)(u) + Gσ̄
σ̄(k)(u).
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Obviously, u(σ(k), Sσ
k ) = u(σ̄(k), Sσ̄

k ). Moreover, since i1, i2 are completely symmetric

players, Lσ
σ(k)(u) = Lσ̄

σ̄(k)(u) and Gσ
σ(k)(u) = Gσ̄

σ̄(k)(u). Therefore, Bσ
i1
(u) = Bσ̄

i2
(u).

Case 2: 1 < h < k. The proof is analogous to the above.

Case 3: 1 = k < h. Apparently,

Bσ
i1
(u) = u(σ(1), {σ(1)}) + Gσ

σ(1)(u) = u(σ̄(1), {σ̄(1)}) + Gσ̄
σ̄(1)(u) = Bσ̄

σ̄(1)(u) = Bσ̄
i2
(u).

Case 4: 1 = h < k. Analogously, the proof is easy to be established.

As a consequence, Bσ
i1
(u) = Bσ̄

i2
(u).

(iii) The immune-harmless player property: Given a primeval game u ∈ PRIN , let i be

an immune-harmless player in game u. Then, by definition, one can readily check that

Lσ
i (u) = 0 and Gσ

i (u) = 0 for all σ ∈ Π(N). Hence, Bσ
i (u) = u(i, {i}) for all σ ∈ Π(N).

The following example shows that the primeval rule does not satisfy additivity.

Example 5.7 Consider the primeval game u3 which is obtained by adding the primeval

games u1 and u2 of Example 5.4 together.

S (a) (b) (c) (a, b) (a, c) (b, c) (a, b, c)

ū3(S) (6) (4) (7) (10, 5) (5, 8) (4, 7) (9, 4, 8)

The primeval rule yields that ζ(u3) =
(
91

2
, 41

3
, 71

6

)
, which does not equal the sum of the

outcomes of the primeval rule for u1 and u2.

By investigating the gains of specific types of players under different compensation

rules, we can see the relationships and differences among those rules.

We first consider the following corollary which discusses the gains of an uninfluential

player according to the primeval rule and the marginalistic rule. The result is consistent

with our intuition: As an uninfluential player, he need not compensate the others while

he could benefit from the positive externalities from the others. So, for an uninfluential

player, the outcome of the primeval rule is always no less than that of the marginalistic

rule for a primeval game.

Corollary 5.8 For any game u ∈ PRIN and any uninfluential player i ∈ N , it holds that

ζi(u) ≥ Φi(u).

Proof. Given a game u ∈ PRIN , let i ∈ N be an uninfluential player. Given σ ∈ Π(N),

let i = σ(k). It suffices to show Bσ
i (u) ≥ mσ

i (u). This can be readily verified since

Bσ
i (u) = Bσ

σ(k)(u) =





u(i, {i}) + Gσ
σ(1)(u) if k = 1

u(i, Sσ
k ) + Gσ

σ(k)(u) if k ∈ {2, ..., |N | − 1}
u(i, N) if k = |N |
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and mσ
i (u) = mσ

σ(k)(u) = u(i, Sσ
k ) for k ∈ {1, ..., |N |}.

We would like to note that there is no general relationship between the concession rule

and the other two rules with respect to uninfluential players.

For an immune-harmful player, since he cannot get any positive externalities but needs

to compensate the others as he always does harm to them, the outcome of the primeval

rule is equivalent to that of the marginalistic rule. An immune-harmless player may be

expected to obtain his R-C payoff: He need not compensate the others because he does

not do anything harmful. Meanwhile, he need not be compensated because nobody affects

him. The primeval rule is consistent with this idea while the marginalistic rule and the

concession rule may give extra payoff to such a player as they take a different perspective

such that the positive externalities are not for free.

Corollary 5.9 For any game u ∈ PRIN , we have

(a) Φi(u) = ζi(u) ≤ Ci(u) ≤ u(i, {i}) for any immune-harmful player i ∈ N ; and

(b) Φi(u) ≥ Ci(u) ≥ ζi(u) = u(i, {i}) for any immune-harmless player i ∈ N .

Proof.

(a) Given σ ∈ Π(N) and let i = σ(k) for k ∈ {1, 2, ..., |N |}. First, in order to prove

Φi(u) = ζi(u), it suffices to show mσ
i (u) = Bσ

i (u). Apparently, when k = 1, mσ
i (u) =

Bσ
i (u) = u(i, {i}). When k ∈ {2, ..., |N |}, we get

mσ
i (u) =

k∑

l=1

u(σ(l), Sσ
k )−

k−1∑
j=1

u(σ(j), Sσ
k−1)

= u(i, Sσ
k ) +

k−1∑
j=1

u(σ(j), Sσ
k )−

k−1∑
j=1

u(σ(j), Sσ
k−1)

= u(i, Sσ
k )−

k−1∑
j=1

(
u(σ(j), Sσ

k−1)− u(σ(j), Sσ
k )

)

= Bσ
i (u).

Moreover, since
∑k−1

j=1

(
u(σ(j), Sσ

k−1)− u(σ(j), Sσ
k )

) ≥ 0, we know mσ
i (u) = Bσ

i (u) ≤
u(i, {i}) for all k ∈ {2, ..., |N |}. Then, Φi(u) = ζi(u) ≤ u(i, {i}). By Proposition 4.3,

we have

Cσ
i (u) =

1

2
u(i, N) +

1

2
Φi(u)

=
1

2
u(i, {i}) +

1

2
Φi(u)

≥ Φi(u).
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(b) By definition and analogous to part (a), the proof is easy to be established.

Corollary 5.10 For any game u ∈ PRIN and any harmless player i ∈ N with u(i, N) ≥
u(i, {i}), it holds that

ζi(u) ≥ u(i, {i}).

Proof. For a primeval game u ∈ PRIN , let i be a harmless player in u. For an ordering

σ ∈ Π(N), let i = σ(k), k ∈ {1, ..., |N |}. By definition and since u(i, N) ≥ u(i, {i}), we

know Gσ
i (u) ≥ 0 if k = 1; Lσ

i (u) = 0 for all k ∈ {2, ..., |N |}; and

u(i, Sσ
k ) + Gσ

i (u) ≥ u(i, N) ≥ u(i, {i})

for all k ∈ {2, ..., |N | − 1}. Hence, Bσ
i (u) ≥ u(i, {i}).

Note that Corollary 5.10 can be understood as the property of individual rationality

for harmless players: If a player’s presence never does harm to others and his status quo

payoff is greater than his R-C payoff, he should get at least his R-C payoff.

As the following example shows, the marginalistic rule and the concession rule do not

satisfy this property.

Example 5.11 Consider the following game u with three players, a, b and c.

S (a) (b) (c) (a, b) (a, c) (b, c) (a, b, c)

ū(S) (3) (1) (5) (0, 1) (0, 5) (0, 6) (3, 1, 6)

Here a is a harmless player. According to the marginalistic rule, Φa(u) = 21
3
; and according

to the concession rule, Ca(u) = 22
3
. Both are less than a’s R-C payoff of 3. However, the

primeval rule yields that ζa(u) = 4.

6 Concluding remarks

In this paper we constructed a new class of games, primeval games, to model inter-

individual externalities and analyzed the associated compensation problem from a nor-

mative perspective. Three compensation rules, as the solution concepts for such games,

were introduced. Firstly, following the argument that any player should assume the full

responsibility of the externalities imposed by him or her, the marginalistic rule is defined.

Next, by taking a bilateral perspective on the consequences of externalities, we obtain the

concession rule. Characterizations of these two compensation rules are provided. More-

over, the paper introduces a more context-specific solution concept, the primeval rule,
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which seems more appropriate to smooth out the conflicts arising from externalities. Spe-

cial properties of this rule as well as the comparison with the other two rules with respect to

special classes of primeval games or specific types of players are studied. We unfortunately

have to acknowledge the lack of a full characterization of the primeval rule.

We want to note that the three compensation rules under consideration can also be

motivated from a non-cooperative perspective. Following the generalized bidding approach

proposed by Ju and Wettstein (2006), Ju and Borm (2006) designed bidding games and

implemented the compensation rules in subgame perfect equilibrium. Moreover, the model

of primeval games provides a new angle to study the issue of coalition formation. As

a first attempt, Funaki, Borm and Ju (2006) associated the analysis of stable coalition

structures with compensation problems in the context of primeval games. Finally, we like

to note that a detailed analysis of the issues of variable populations and related consistency

aspects within the primeval game framework is an interesting topic for future research.
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