
Efficient approximation of
black-box functions and Pareto sets

Proefschrift

ter verkrijging van de graad van doctor aan de Univer-
siteit van Tilburg, op gezag van de rector magnificus,
prof.dr. Ph. Eijlander, in het openbaar te verdedigen
ten overstaan van een door het college voor promoties
aangewezen commissie in de aula van de Universiteit op
vrijdag 20 november 2009 om 14.15 uur door

Gijs Rennen

geboren op 17 juli 1982 te IJsselstein.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6416202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotores: prof.dr. ir. D. den Hertog
prof.dr. ir. E.R. van Dam

THOMAS STIELTJES INSTITUTE

FOR MATHEMATICS

Science can purify religion from error and superstition;
religion can purify science from idolatry and false absolutes.
Each can draw the other into a wider world,
a world in which both can flourish.

(John Paul II, Letter to the Reverend George V. Coyne, S.J.)

Acknowledgements

The hardest arithmetic to master is that which
enables us to count our blessings.

(Eric Hoffer, Reflections on the Human Condition)

When I look back on the three years of my Ph.D. career, I consider myself to be truly

blessed. Not only blessed with interesting and fruitful research of which this thesis is the

final result, but also blessed in many other respects. Most of all, I feel blessed with the

guidance, help, and company of many people who made it such a formative, valuable, and

wonderful time. Therefore, I would like to use this opportunity to express my gratitude

to all of them.

I would like to begin by thanking Dick den Hertog and Edwin van Dam for their

support as my supervisors. After being my supervisor for both my Bachelor and Master

thesis, Dick offered me the possibility and encouraged me to continue my research as an

M.Phil and Ph.D. student. I am still very glad that I accepted this offer and that Edwin

agreed to become my second supervisor. In terms of my research subjects, Dick and Edwin

gave me a lot of freedom, which is reflected by the variety of subjects discussed in this

thesis. I am grateful for the pleasant and stimulating manner in which we could discuss

my progress at our meetings. Their guidance, help, encouragement, and enthusiasm have

been indispensable factors in the successful progress and completion of my Ph.D. career.

Besides Dick and Edwin, several other people have also directly contributed to the

research in this thesis. My first paper is based on the results of my internship at the

Center for Quantitative Methods (CQM) where I was supervised by Peter Stehouwer and

Erwin Stinstra. I am still thankful for their support and for the opportunity to write a

paper on the obtained results together with Erwin Stinstra and Geert Teeuwen. Secondly,

I owe many thanks to Bart Husslage, who finished his Ph.D. career at Tilburg University

one year after I started. His research on space-filling (nested) Latin hypercube designs

provided a solid basis for much of my research on this topic. Furthermore, I thank

him for the pleasant cooperation on several papers included in this thesis. Thirdly, I

would like to thank Aswin Hoffman, clinical physicist at the Department of Radiation

v

vi Acknowledgements

Oncology at Radboud University Nijmegen Medical Centre. Aswin introduced me to the very

interesting and relevant subject of multi-objective IMRT optimization. I’m very thankful

for his help in learning to understand the background, terminology and characteristics of

this problem. Furthermore, I want to thank him for arranging several occasions where I

could meet people involved in both the practical and research side of IMRT optimization.

When doing research, it is also important to have others researchers critically and ex-

pertly evaluate one’s work. Therefore, I am very thankful that David Craft, Annie Cuyt,

Jack Kleijnen, Dolf Talman, and Vassili Toropov are willing to join Dick and Edwin in

my thesis committee. Their expertise on the different topics covered in this thesis resulted

in valuable comments and suggestions. I would also like to thank Dolf for critically proof-

reading two of the papers included in this thesis.

Just as a plant grows better in good soil, so does research ‘grow’ better in a stim-

ulating and pleasant working environment. Therefore, I want to thank all my colleagues

in the Department of Econometrics and Operations Research, who created just such an

environment. I will never forget the many puns at the lunch table, the cryptic crosswords

during the coffee breaks, and the ingenious door-switching joke. Especially, I would like to

thank the ‘sub-department’ consisting of Cristian, Edwin, Elleke, Gerwald, John, Lisanne,

Marieke, Mark, Marloes, Romeo, Ruud, and Salima. Also after working hours, they have

been great company during game, sinterklaas and bungee-soccer evenings.

Besides the contacts with my colleagues, I am also very grateful for many other people

whom I have met during my Ph.D. years. Especially, I would like to thank all the great

people that I’ve learned to know (better) via Student Alpha, Connect, Ichthus and the

Evangelical Baptist Church in Tilburg. Meeting Christians with different backgrounds,

personalities, and nationalities has taught me many lessons, which are more valuable to

me than the results in this thesis.

However, the persons who have taught me the most valuable lessons in live are my

parents, Jan and Merence. I feel truly blessed with the values they taught me and the ex-

ample they have been and still are. I also would like to thank Jan, Merence, and Els very

much for their support in both my working and personal life during my Ph.D. years. Fur-

thermore, I would like to thank Els and Kees for agreeing to be paranymphs at my PhD

defence.

Finally and most of all, I want to give thanks to Him from whom all blessings flow. He

who created heaven and earth. He who knows me completely and still loves me. I want to

thank Him for the talents He gave me and the opportunities to use them. For bringing

many wonderful people on my path. And for blessing me in more ways than can be count-

ed by any arithmetic.

Contents

1 Introduction 1

1.1 Simulation-based optimization . 2

1.2 Multi-objective optimization . 3

1.3 Approximation methods . 4

1.3.1 Metamodeling approach for black-box functions 4

1.3.2 Sandwich algorithms for Pareto sets 7

1.3.3 Similarities and differences between approximating black-box func-

tions and Pareto sets . 10

1.4 Contribution . 12

1.4.1 Maximin Latin hypercube designs 12

1.4.2 Subset selection from large non-uniform datasets 13

1.4.3 Complexity control in symbolic regression 14

1.4.4 Enhancement of sandwich algorithms for approximating convex

Pareto sets . 14

1.5 Overview of research papers . 15

I Maximin Latin hypercube designs 17

2 Space-filling Latin hypercube designs for computer experiments 19

2.1 Introduction . 19

2.2 Periodic designs . 23

2.3 Other methods . 26

2.3.1 Enhanced stochastic evolutionary algorithm 26

2.3.2 Simulated Annealing . 27

2.3.3 Permutation Genetic Algorithm 27

2.4 Computational results . 28

2.5 Conclusions . 30

2.A Tables of numerical results . 31

vii

viii Contents

3 Bounds for maximin Latin hypercube designs 35

3.1 Introduction . 35

3.2 Upper bounds for the `2-distance . 38

3.2.1 Bounding by the average . 38

3.2.2 Bounding by non-overlapping circles in two dimensions 41

3.3 Upper bounds for the `∞-distance . 47

3.3.1 Bounding by graph covering . 47

3.3.2 Attaining Baer’s bound . 49

3.3.3 Bounding by projection and partitioning in three dimensions . . . 52

3.4 Upper bounds for the `1-distance . 53

3.5 Final remarks and conclusions . 56

3.5.1 Final remarks . 56

3.5.2 Conclusions . 56

3.A Bounds on two-dimensional `2-maximin LHDs 58

4 Nested maximin Latin hypercube designs 59

4.1 Introduction . 59

4.2 Problem formulation . 63

4.3 Grid-structures for nested Latin hypercube designs 65

4.3.1 Nested n2-grid . 65

4.3.2 Nested n1-grid . 68

4.3.3 Grid with nested maximin axes 68

4.4 Two-dimensional nested designs . 68

4.4.1 Branch-and-bound algorithm . 68

4.4.2 Pareto nested designs . 69

4.5 Higher-dimensional nested designs . 70

4.5.1 Enhanced stochastic evolutionary algorithm 70

4.5.2 Generating new designs . 72

4.6 Numerical results . 74

4.7 Conclusions and further research . 79

4.7.1 Conclusions . 79

4.7.2 Further research . 80

4.A Maximin and separation distances . 81

II Subsets of large non-uniform datasets 85

5 Subset selection from large datasets for Kriging modeling 87

5.1 Introduction . 87

Contents ix

5.1.1 Motivation . 87

5.1.2 Design of Computer Experiments 90

5.1.3 Dispersion problems . 91

5.1.4 Overview . 92

5.2 Example . 92

5.3 Subset selection methods . 94

5.3.1 Orthogonal Array Selection . 94

5.3.2 Fast Exchange Algorithm . 95

5.3.3 Greedy MAXMIN Selection . 96

5.3.4 Greedy DELETION Algorithm 96

5.3.5 Sequential Selection . 97

5.4 Computational results . 98

5.4.1 Subset selection methods . 98

5.4.2 Performance measures . 99

5.4.3 Datasets . 101

5.4.4 Results for artificial datasets of 2000 points 103

5.4.5 Results for artificial datasets of 5000 and 10000 points 105

5.4.6 Results for HSCT dataset of 2487 points 106

5.5 Conclusions and further research . 107

5.A Results for artificial datasets of 2000 points 108

5.B Results for artificial datasets of 5000 points 110

5.C Results for artificial datasets of 10000 points 112

5.D Results for HSCT dataset of 2487 points 114

5.E Kriging model . 115

5.F Radial basis functions . 117

III Complexity control in symbolic regression 119

6 Metamodeling by symbolic regression and Pareto simulated annealing121

6.1 Introduction . 121

6.2 Symbolic regression approach . 122

6.2.1 Model structure . 123

6.2.2 Finding the best transformation functions 124

6.3 Extensions to the basic algorithm . 130

6.3.1 Reasons for extension . 130

6.3.2 Complexity measure . 130

6.3.3 Pareto simulated annealing . 132

6.4 Numerical comparison to other metamodel types 135

x Contents

6.4.1 The six-hump-camel-back function 136

6.4.2 The Kotanchek formula . 137

6.5 Conclusions . 139

IV Sandwich algorithms for approximating convex Pareto
sets 141

7 Enhancement of sandwich algorithms for approximating multi-dimen-

sional convex Pareto sets 143

7.1 Introduction . 143

7.2 Problem definition and notation . 146

7.3 Sandwich algorithms . 151

7.3.1 Inner and outer approximations 151

7.3.2 Algorithm of Solanki et al. 151

7.3.3 Algorithm of Klamroth et al. 153

7.3.4 Algorithm of Craft et al. 154

7.4 Adding dummy points to IPS . 155

7.4.1 Motivation of dummy points . 155

7.4.2 Effect of dummy points on inner normals 157

7.4.3 Determining non-IPS-dominated points of IPS 158

7.5 Error measure . 162

7.5.1 Motivation and definition of α(PS, IPS) and α(OPS, IPS) . . . 162

7.5.2 Calculating α(PS, IPS) and α(OPS, IPS) 164

7.6 Transformations . 168

7.6.1 Notation . 168

7.6.2 Non-convex objectives . 169

7.6.3 Improving IPS and OPS . 170

7.6.4 Calculating α(PS, IPS−1) and α(OPS−1, IPS−1) 172

7.7 Application of enhancements . 175

7.7.1 Application of dummy points . 175

7.7.2 Application of error measure . 175

7.7.3 Application of transformations . 176

7.7.4 Enhanced version of algorithm of Solanki et al. 176

7.8 Numerical comparison of sandwich algorithms 177

7.8.1 Comparison method . 177

7.8.2 Test case 1: artificial 3-dimensional case 179

7.8.3 Test case 2: artificial 5-dimensional case 181

7.8.4 Test case 3: IMRT problem . 181

Contents xi

7.8.5 Test case 4: geometric programming problem 183

7.9 Conclusions and future research . 184

Bibliography 187

Samenvatting (Summary in Dutch) 203

xii Contents

Chapter 1

Introduction

The most exciting phrase to hear in science, the
one that heralds new discoveries, is not “Eureka!”
(“I’ve found it!”) but “That’s funny...”

(Isaac Asimov)

In recent decades, computers have been able to solve increasingly complex problems.

Despite the increased computational power, certain problems still take a considerable

amount of time to solve. Optimization problems involving complex deterministic simu-

lation models or dealing with multiple objectives are two classes of problems that can

be very time-consuming to solve. For these problems, determining optimal or good so-

lutions in a reasonable amount of time is a complicated task. Therefore, the central

topic of this thesis is to develop and improve methods for dealing efficiently with these

time-consuming optimization problems. Although the techniques to deal with these two

classes of optimization problems are different, they do share one important characteris-

tic. In both cases, the used approach involves determining an approximation of a set or

function based on data points that are time-consuming to calculate.

In the case of complex simulation models, we often approximate the black-box function

describing the relation between the input- and output-variables of the simulation model.

A black-box function is defined as a mathematical function of which no explicit description

is known, but which can be evaluated to obtain output-values for feasible input-values.

We approximate this black-box function by a so-called metamodel. This metamodel does

have an explicit description and can be used to optimize the output or to provide insight

into the input-output relation. To build this metamodel, we need a set of data points

that contain the value of the output variable for a certain setting of the input-variables.

Because obtaining each data point requires an evaluation of the complex simulation

model, these data points are time-consuming to calculate.

1

2 Introduction

When dealing with multi-objective optimization problems, we can try to approximate

the unknown Pareto set. This set contains all Pareto optimal solutions, i.e., solutions for

which it is not possible to improve one objective without deteriorating another. Selecting

a solution that does not satisfy this definition is sub-optimal as we can improve one or

more objectives at no costs for the other objectives. Therefore, determining the Pareto

set is often an important part of solving a multi-objective optimization problem. As

calculating a Pareto optimal solution requires formulating and solving a time-consuming

optimization problem, determining the complete Pareto set is generally infeasible. Instead

an approximation is determined that can be used by the decision maker to select a

desirable solution.

As the calculation of a data point is time-consuming in both problems, we want

to determine an accurate metamodel or approximation of the Pareto set using as few

points as possible. In this thesis, our main focus is, therefore, on efficiently selecting

which simulations to run or optimizations to perform. By selecting these simulations and

optimizations in an efficient way, we thus aim to reduce the number of points necessary

to obtain an accurate solution.

In Sections 1.1 and 1.2, we treat the problems of simulation-based optimization and

multi-objective optimization in more detail. Methods for building a metamodel or an

approximation of the Pareto set are discussed in Section 1.3. Particularly, we describe

the metamodelling approach described in Den Hertog and Stehouwer (2002) and the basic

steps of sandwich algorithms used for approximating convex Pareto sets. Furthermore,

we also discuss the similarities and differences between these two approaches. Section 1.4

gives a summary of the contributions of this thesis. Finally, an overview of the papers

included in this thesis is provided in Section 1.5.

1.1 Simulation-based optimization

With the advance of computer technology and simulation techniques, deterministic com-

puter simulations have found many applications in the recent decades. Applications

described in literature include supply chain optimization (Kleijnen (2005), Zheng et al.

(2008)), medical radiation (Campos (2006)), ecological simulation (Kleijnen et al. (1992)),

dynamical systems (Fang et al. (2000)), and electrical, chemical, automotive and aero-

space engineering (see, e.g., Simpson et al. (2001), Chen et al. (2006), Oden et al. (2006),

and Kleijnen (2008)). Many of these applications concern the design of products, sys-

tems, and processes. Designers use the simulation models to optimize certain quantifiable

characteristics of the design. In the case of product design, physical experiments were

used in the past for these optimizations. One could think, for instance, of the crash-tests

performed with prototypes of cars to optimize their road safety. However, building differ-

1.2 Multi-objective optimization 3

ent prototypes and performing the tests is a time-consuming and expensive process. The

increased complexity of new products and the reduced time-to-market further raised the

necessity for an alternative approach. Therefore, physical prototyping is nowadays often

replaced by virtual prototyping; i.e., computer simulations are used instead of physical

tests to determine certain properties of a design. This means, for example, that the

consequences of a car crash are no longer measured by crashing real cars, but by simu-

lating the forces exerted on a car during a crash using computer models. Although these

simulations are faster than physical experiments, they can nevertheless require several

minutes or even hours to evaluate. An increase in computational power could reduce

these calculation times. However as the simulation models also tend to become more

complex, simulation models with large calculation times are likely to continue to exist.

An often used method to deal with time-consuming simulation models is to approx-

imate the input-output relation of the simulation model by a so-called metamodel; see,

e.g., Montgomery (2009), Sacks et al. (1989a), (1989b), Koehler and Owen (1996), My-

ers (1999), Jones et al. (1998), Booker et al. (1999), Den Hertog and Stehouwer (2002),

Santner et al. (2003), and Kleijnen (2008). These metamodels are explicit functions

and can be evaluated instantaneously. In literature, metamodels are also referred to as

compact models, surrogate models, response surface models, and emulators.

1.2 Multi-objective optimization

Many optimization problems, including simulation-based problems, do not involve a single

objective but involve multiple objectives. These multi-objective optimization problems

(MOPs) occur in various fields such as supply chain management, medical decision mak-

ing, and design engineering (Stewart et al. (2008)). For a comprehensive overview, we

refer to White (1990), which contains a list of 500 papers describing different applications

in various fields.

An example of a multi-objective optimization problem discussed in this thesis is the

IMRT optimization problem. This medical decision problem deals with determining a

good radiation plan for treating a tumor. In general, the objectives involved in this prob-

lem can be divided into two groups. Firstly, we have objectives that aim at maximizing

the probability of eradicating the tumor. These objectives often focus on delivering a

certain prescribed radiation dose to the tumor. The second group of objectives deals

with minimizing the risk of damage to healthy tissue. As radiation needs to pass through

other tissue before reaching the tumor, it is unavoidable that tissue surrounding the tu-

mor also receives a certain radiation dose. The objectives especially aim at limiting the

dose delivered to healthy tissue that is very sensitive to radiation. As the first group

of objectives often favors more radiation and the second less radiation, it is impossible

4 Introduction

to determine a radiation plan that optimizes all objectives. Instead, a good trade-off

between the different objectives needs to be determined. As the definition of a good

trade-off also depends on the preference of the physician and the patient, it is difficult to

formulate a general definition.

An often used approach to determine a suitable trade-off is to convert the multi-

objective optimization problem into a single objective problem. This can, for instance,

be done by optimizing a weighted sum of the objectives or by optimizing one objective

while putting bounds on the others. A drawback of these approaches is that it requires

determining weights or bounds before the decision maker has any information on the

possible solutions. By choosing the weights or bounds, the decision maker thus has

to formulate a certain preference before knowing anything about the possible trade-offs

among the different objectives. Therefore, several optimizations and interactions of the

decision maker are often required before a satisfying solution is found. Another drawback

is that the decision maker obtains little insight into the trade-offs between the different

objectives. Information on these trade-offs can be valuable as it may influence the choice

of the decision maker. If, for example, a small deterioration in one objective allows for a

large improvement of another objective, the decision maker may wish to select a solution

with a different trade-off between these objectives.

An approach that overcomes these problems is to approximate the Pareto set. The

Pareto set contains all Pareto optimal solutions, e.g., solutions for which improvement

in one objective is not possible without deterioration of another. By evaluating the

Pareto set, decision makers can thus obtain insight into the possible trade-offs among

the objectives. This insight can help the decision maker to select a solution that better

reflects his preferences. The fact that the decision maker no longer has to formulate his

preference a-priori by setting weights or bounds is a clear advantage of using the Pareto

set. To determine Pareto optimal points, also single-objective optimization problems

have to be formulated and solved which can be rather time-consuming. Combined with

a large number of solutions in the Pareto set, it is generally impossible to determine the

complete Pareto set. Instead an approximation of the Pareto set is determined based on

a limited set of solutions. Determining this approximation is thus an important step in

solving many multi-objective optimization problems.

1.3 Approximation methods

1.3.1 Metamodeling approach for black-box functions

In this section, we describe the global steps of the metamodeling approach; see Den

Hertog and Stehouwer (2002). This approach determines a metamodel which can be

used to analyse or optimize the simulation model and the simulated (real) system. The

1.3 Approximation methods 5

four different steps of the metamodeling approach are: problem definition, design of

computer experiments, metamodeling, and analysis and optimization. Next, we shortly

explain these steps and mention the problems relevant for this thesis. A more detailed

description can be found in Stinstra (2006).

Step 1: Problem specification

The first step consists of formulating the characteristics of the approximation problem.

Firstly, we identify and define the input and output variables. At this stage, it is often

not certain which input variables have an important effect on the output variable. The

set of input variables may thus contain irrelevant variables.

Secondly, we determine the design space, i.e., the region in the input space for which

we want to approximate the simulation model. The design space can be limited by

lower and upper bounds on the individual input variables but also by constraints based

on combinations of input variables. These constraints can, for instance, be physical

constraints that cause certain combinations of input variables to be infeasible. Expert

knowledge can also reduce the design space when it is already know that certain input

combinations do not result in good solutions. Constraints on the output variables can also

be formulated. However, as the output value is only known after running the simulation

model, we can only check these constraints afterwards and cannot use them to limit the

design space a priori.

Thirdly, we need to set the simulation budget which determines how many simulations

can be performed to approximate the simulation model. This budget can be formulated

in terms of the number of simulation runs or the amount of simulation time. Lastly, if

the metamodel is used for optimization, the objective function and constraints can be

specified in this step of the metamodelling approach.

Step 2: Design of computer experiments

To obtain information about the simulation model, we must perform simulations for

different combinations of input values. A set of several combinations of input values is

called a design; each combination is called a design point. When each simulation run is

time-consuming, the number of design points we can evaluate is limited. This implies that

it becomes important how we select these design points. When functions are subject to

stochastic noise, design of experiments deals with this question, see, e.g., Kleijnen (2008).

However, these designs of experiments are not suitable for determinist simulation models.

Some causes are the following (see Stehouwer and Den Hertog (1999)):

• The presence of stochastic noise in traditional experiments can result in different

output values when the same design point is evaluated multiple times. There-

fore, design points are often evaluated more than once in traditional design of

6 Introduction

experiments. For deterministic black-box functions, this is unnecessary as multiple

evaluations of the same point always results in the same output value.

• In traditional design of experiments, the design points are often selected at or near

the border of the design space. The use of different metamodeling techniques for

deterministic black-boxes may result in a different preference for the positioning of

the design points. For example, when fitting a Kriging metamodel, is it better to

spread the design points evenly over the entire design space.

For approximating deterministic simulation models, designs of computer experiments

are developed to serve as good designs. Several types of designs are developed including

(space-filling) Latin hypercube designs, orthogonal arrays and uniform designs. Which

design type is most suitable for a particular application depends, among others, on the

type of metamodeling technique. Therefore, we must select both the metamodeling

technique and the design in this step. In several chapters of this thesis, we focus on

determining designs of computer experiments having several desirable properties. More

information on designs of computer experiments can be found in Sacks et al. (1989a)

(1989b), Myers (1999), Simpson et al. (2001), Santner et al. (2003), Bursztyn and

Steinberg (2006), Fang and Sudjianto (2006), Husslage (2006), and Forrester et al. (2008).

Step 3: Metamodeling

Using the input and output values of the evaluated design points, we now have to fit a

metamodel that accurately describes the input-output relation of the simulation model.

There exist many different types of metamodels. Polynomials, neural networks, rational

functions, radial basis functions, symbolic regression and Kriging models are just a num-

ber of possible approximation methods. In this thesis, we use the last three methods.

For more information on different types of metamodels, see Santner et al. (2003), Fang

and Sudjianto (2006), and Forrester et al. (2008).

After fitting a metamodel, the model must be validated using techniques such as

cross-validation, see Kleijnen and Sargent (2000). If the metamodel is evaluated to be

invalid, we should fit a different metamodel or evaluate additional design points.

Step 4: Analysis and optimization

When we have found a valid metamodel, we can use it for a number of purposes. Firstly,

we can us it to gain insight into the relation between the input and output variables of

the simulation model. This insight can be used to validate the simulation model; see

Kleijen (1999). Secondly, the metamodel can be used to optimize some function of the

output value of the simulation model.

1.3 Approximation methods 7

In this thesis, we focus on so-called one-shot metamodeling approaches in which each

of the above steps is performed once. However, there are also sequential approaches

in which the selection of design points is based on metamodels fit to previously evalu-

ated design points. This means that Steps 2 and 3 are performed multiple times. In

Section 1.3.3, we motivate why we chose to focus our research on one-shot approaches

instead of sequential approaches.

1.3.2 Sandwich algorithms for Pareto sets

Many different methods have been developed for approximating Pareto sets. Certain

methods can be used only for problems with two objectives. Methods and techniques

that can handle more than two objectives include:

• ε-Constraint method (Haimes et al. (1971))

• Genetic algorithms (Fonseca and Fleming (1995))

• Normal-boundary intersection (Das (1999a))

• Normal constraint method (Messac et al. (2003), Messac and Mattson (2004))

• Physical programming (Messac and Mattson (2002))

• Sandwich algorithms (Solanki et al. (1993), Klamroth et al. (2002), Craft et al.

(2006) and Shao and Ehrgott (2008))

• Simulated annealing (Czyżak and Jaszkiewicz (1998))

• Weighting method (Zadeh (1963))

General overviews and discussions of multi-objective optimization methods are given in

the books of Hwang and Masud (1979), Steuer (1986), Miettinen (1999), Ehrgott (2005),

and Branke et al. (2008), and the survey papers of Ruzika and Wiecek (2003), Marler

and Arora (2004), and Ehrgott and Wiecek (2005).

We focus our research on the approximation of multi-dimensional convex Pareto sets

using sandwich algorithms. By multi-dimensional, we mean that the problem has more

than two objectives. Several factors make the approximation of these Pareto sets much

more complicated than bi-objective Pareto sets. A Pareto set is called convex if the union

of the Pareto set and all points dominated by the Pareto set forms a convex set. Our

research into convex Pareto sets is motivated by the IMRT optimization problem where

most objectives are convex or can be made convex. However, convex Pareto sets also

occur in other areas, as the geometric programming example in Chapter 7 shows.

8 Introduction

Sandwich algorithms approximate a convex Pareto set by determining an inner and

outer approximation between which the Pareto set is sandwiched. Using these two ap-

proximations, an upper bound on the approximation error of the Pareto set can be de-

termined. In most sandwich algorithms, this upper bound is used to select which part of

the approximation should be improved in each step of the algorithm. This approach thus

aims at efficiently selecting the optimizations by using the upper bound. Furthermore,

the upper bound provides the decision maker with a quality guarantee on the accuracy

of the approximation.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1.1: Convex Pareto set with ini-
tial inner and outer approximation.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1.2: Solving optimization to de-
termine new Pareto optimal point.

Although there are differences, most sandwich algorithms use the same basic steps.

To explain these steps, we use the example in Figure 1.1. Although we consider multi-

dimensional problems in this thesis, we use a bi-objective example to simplify the expla-

nations. The shaded area in Figure 1.1 represents the set of all feasible objective vectors

and the black line represents the Pareto set.

Step 1: Determining initial approximations

The first step of each sandwich algorithm is to obtain an initial inner and outer ap-

proximation. These initial approximations are often based on the solutions found by

minimizing each objective separately. This gives the two Pareto optimal solutions rep-

resented by the two dots in Figure 1.1. As we approximate a convex Pareto set, the

gray line connecting these two solutions forms an inner approximation of the Pareto set.

The initial outer approximation is shown by the two dashed lines. We know that there

are only solutions above and to the right of these two bounds, because the two initial

solutions were obtained by minimizing the individual objectives.

1.3 Approximation methods 9

Step 2: Formulating and solving a single-objective optimization problem

In the second step, we determine a new Pareto optimal point by formulating and solving

a single-objective optimization problem. In our example, this problem is a weighted sum

problem, which consists of optimizing a weighted sum of the two objectives. The weights

are chosen such that the iso-objective lines are parallel to the inner approximation. In

Figure 1.2, we plotted a number of these iso-objective lines and the optimal point. The

figure shows that by using these weights, we find a Pareto optimal point furthest away

from the current inner approximation.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

α
1

α
2

Figure 1.3: Calculation of upper bound
on approximation error to select the
next optimization.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1.4: Inner and outer approxima-
tion after two iterations.

Step 3: Updating the inner and outer approximation

The inner approximation is updated by adding the Pareto optimal point found in Step 2.

As shown in Figure 1.3, the inner approximation now consists of two line pieces, which

are referred to as facets. The outer approximation is updated by adding the iso-objective

line at the new Pareto optimal point. Because this is the optimal iso-objective line, we

know that there are no feasible points below this line.

Step 4: Calculating an upper bound for the approximation error

The fourth step consists of calculating an upper bound for the approximation error. We

choose to calculate this bound by determining the maximal distance between each facet

and the outer approximation. The lines showing these maximal distances for each facet

are indicated by α1 and α2 in Figure 1.3.

10 Introduction

Step 5: Stop or select facet for further improvement

If the approximation is accurate enough or some other stopping criterion is met, the

sandwich algorithm is terminated at this step. Otherwise, we select the facet with the

largest maximal distance α and return to Step 2. The weights of the weighted sum

problem in Step 2 are then chosen such that the iso-objective lines are parallel to the

selected facet. In this example, we would select the right facet because α2 > α1. After

performing Steps 2 and 3 for this facet, we obtain the approximation plotted in Figure 1.4.

Determining an approximation of the Pareto set is only one step in the complete

solution process of a multi-objective optimization problem. When we have found a good

approximation of the Pareto set, a decision maker still has to choose a solution from

this set. When only two or three objectives are considered, the approximation of the

Pareto set can still be visualized using a plot of the objective-vectors. However, when

the multi-objective optimization problem has more than three objectives, other methods

have to be used. Several different methods to deal with this problem see are discussed in

Das (1999b), Monz (2006), Craft et al. (2007), Eskelinen et al. (2007), and Branke et al.

(2008).

1.3.3 Similarities and differences between approximating black-
box functions and Pareto sets

As we mentioned before, the problems of approximating a black-box function and a Pareto

set are similar in certain respects. An important similarity is the time-consuming nature

of the calculations needed to determine data points on which the approximations can be

based. Therefore, efficient selection of the simulations to run or optimizations to perform

is important in both approximation problems. This similarity generated our interest in

the problem of approximating Pareto sets as we wanted to see whether approaches from

design of computer experiments could also be used for the selection of optimizations.

However, when we started to study this problem, we discovered that a different approach

would be more suitable for the efficient approximation of convex Pareto sets.

An important difference between the used methods is that we use a so-called one-shot

approach for black-box functions and a sequential approach for convex Pareto sets. The

designs of computer experiments considered in this thesis are one-shot because the selec-

tion is made once before the evaluations are performed and is thus not influenced by the

outcomes of these evaluations. The sandwich algorithms, on the other hand, are sequen-

tial because outcomes of previous optimizations are used to select new optimizations.

Although we use a one-shot approach for black-box functions and a sequential approach

for Pareto sets, one-shot and sequential approaches exist for both approximation prob-

1.3 Approximation methods 11

lems. For example, the normal constraint method (Messac et al. (2003), Messac and

Mattson (2004)) selects a fixed set of optimization problems after minimizing the indi-

vidual objectives to determine their relevant ranges. An example of a sequential design

of computer experiments can be found in Jin et al. (2002) where the maximum entropy

and the integrated mean squared error criterion are used to select new evaluations. Other

examples of sequential designs of computer experiments can be found in Kleijnen and

Van Beers (2004) and Van Beers and Kleijnen (2008).

The decision to focus on one-shot approaches for the design of computer experiments

is motivated by two main reasons. Firstly, one-shot designs are useful as an initial

design on which to base the first metamodel in a sequential approach. As the quality

of this initial metamodel can influence the number of subsequent evaluations needed to

obtain an accurate metamodel, it is important to select a good initial design. The design

points must be well positioned in the design space and not be too few. Therefore, if the

simulation budget is very limited, a good one-shot design may give better results than a

sequential design with a too small initial design. Secondly, when using a one-shot design,

we can easily perform parallel computations and deal with multiple outputs. When we

can perform m simulation runs in parallel, we can simply start with evaluating m design

points from the one-shot design and select a new unevaluated design point when one

of the simulation runs is finished. Furthermore, the design points do not depend on

the output of the black-box function, so the number of outputs has no influence on the

design. Although some sequential approaches can also deal with parallel computations

and multiple outputs, these approaches are generally less straightforward.

For the approximation of convex Pareto sets, we use sequential sandwich algorithms.

The two main reasons for using a sequential approach are the following. Firstly, because

of the convexity of the Pareto set, it is relatively easy to determine inner and outer

approximations of the Pareto set. These approximations enable us to determine upper

bounds on the approximation error, which can be used to identify which parts of the

approximations can potentially improve the most. A sequential approach can use this

valuable information to select the optimizations, whereas a one-shot approach cannot.

Therefore, a one-shot approach may result in unnecessary optimizations that determine

data points in parts where the approximation is already accurate enough. Secondly,

determining data points in the Pareto set requires formulating and solving a single-

objective optimization problem. Most approaches use one formulation in which certain

parameters are varied to determine different data points. For example, the weighted

sum method optimizes a weighted sum of the objective functions for different sets of

weights. Even though we know that the Pareto set is convex, determining an efficient

set of parameter values is generally very difficult without additional information on the

exact shape of the Pareto set. For the weighted sum method, Das and Dennis (1997) have

12 Introduction

shown that using an uniform distribution of weight vectors does not generally give an

uniform distribution of points from a Pareto set. The normal constraint method of Messac

and Mattson (2004), on the other hand, does give a relatively even distribution of points

on the Pareto set. However, this method often results in more optimizations and data

points than strictly necessary; e.g., relatively flat regions of a convex Pareto set can often

be adequately approximated by the convex hull of a small number of data points. As the

Normal Constraint method and other one-shot approaches have no information on these

flat areas, they often generate unnecessary data points. These problems illustrate that a

one-shot approach is generally not capable of selecting an efficient set of optimizations.

Besides the one-shot and sequential approach, another difference is that the dimen-

sionality of the data points in Pareto sets is generally lower than that of data points

of black-box functions. The dimensionality of the first is determined by the number of

objectives and of the second by the number of input and output variables. The num-

ber of objectives is generally fewer than ten as it is very difficult for a decision maker

to determine a good trade-off between many different objectives; see Miller (1956) and

Saaty and Ozdemir (2003). Although an approximation of the Pareto set can support

the decision maker, trading of more than ten objectives is not useful in practice. The

number of input variables of a black-box function on the other hand can be much larger

than ten, especially in complex simulation models.

1.4 Contribution

1.4.1 Maximin Latin hypercube designs

The contributions of this thesis can be divided into four topics. The first topic con-

cerns several aspects of maximin Latin hypercube designs (LHDs). Maximin LHDs form

a class of designs of computer experiments and have two important properties: non-

collapsingness and space-fillingness. By non-collapsingness, we mean that for every input

variable it holds that all design points have a different value. By choosing the design

points in this way, we avoid the situation that design points that coincide in one or

several input variables collapse when the input variable in which they differ turn out to

have no (important) influence on the output value. Especially, when each evaluation of

the black-box function is time-consuming, it is important to avoid this situation. Space-

fillingness means that we select the design points such that they cover all parts of the

design-space uniformly. The maximin criteria, which aims at maximizing the minimal

distance between any pair of design points, is one criterion to enhance space-fillingness.

The maximin criterion exists in several variants depending on the chosen distance mea-

sure, e.g., the `2, `1 and `∞ norm.

1.4 Contribution 13

In Chapter 2, we consider several methods for finding maximin LHDs. Firstly, we

construct maximin LHDs by limiting the search to so-called periodic designs. Secondly,

we use the Enhanced Stochastic Evolutionary (ESE) algorithm of Jin et al. (2005) to

find approximate maximin LHDs where the term ‘approximate’ indicates that optimality

of the maximin objective is not guaranteed. The (approximate) maximin LHDs are

determined for up to 10 input variables and up to 300 design points. The Euclidean

distance measure `2 is used for the maximin criterion. Besides `2-maximin, we also use

the Audze Eglais measure (Audze and Eglais (1977)) to find space-filling LHDs.

Because determining maximin LHDs becomes more difficult as the number of input

variables and design points increase, we introduce upper bounds on the `2-, `1-, and `∞-

maximin criteria in Chapter 3. By comparing these bounds to the separation distance—

the minimal distance between any pair of points—of an approximate maximin LHD, we

can assess the quality of these designs. For all three maximin criteria, we determine

bounds for different numbers of input variables and design points. To determine these

bounds, we use several techniques and problem-formulations including Mixed Integer

Programming, the Traveling Salesman Problem and the Graph Covering Problem.

In certain situations, we need a special type of designs consisting of two separate

designs, one being a subset of the other. These nested designs can be used to deal with

training and test sets, models with different levels of accuracy, linking parameters, and

sequential evaluations. As non-collapsingness and space-fillingness are also important

for nested designs, we discuss the construction of nested maximin LHDs in Chapter 4.

A difficulty when constructing these designs is that depending on the number of design

points in each design, the LHD-structure can not always be satisfied for both designs.

For these cases, we introduce three different grid-structures that aim at maintaining the

LHD-structure as much as possible. For each of these structures, we construct nested

approximate maximin designs and discuss how to determine which grid to use for a specific

application. Nested maximin designs with two input variables are determined using a

branch-and-bound algorithm. To determine nested approximate maximin designs with

more input variables, four different variants of the ESE algorithm of Jin et al. (2005) are

introduced and compared.

1.4.2 Subset selection from large non-uniform datasets

Similar to design of computer experiments, the second topic of this thesis also deals

with determining a dataset for fitting a metamodel. The main difference is that now

we already have a dataset at our disposal containing the input and output values of a

large number of deterministic simulations, experiments, or function evaluations. When

building a metamodel, the general intuition is that using more data always results in a

better model. However, when the dataset is large and non-uniformly distributed over

14 Introduction

the design space, we show that this need not always be true. In Chapter 5, we show for

the Kriging method–which is frequently used for fitting metamodels—that using such a

dataset can cause several problems. By using a uniform subset instead of the complete

dataset, we aim to reduce these problems. Some aspects that can be improved by using

a uniform subset are reducing the time necessary to fit the model, avoiding numerical

inaccuracies, and improving the robustness with respect to errors in the output data. We

describe and compare several new and current methods for selecting a uniform subset.

These methods are tested and compared on several artificial datasets and one real life

dataset.

1.4.3 Complexity control in symbolic regression

Chapter 6 deals with a different method for fitting a metamodel: symbolic regression.

This technique has the advantage of being very flexible as only few restrictions are im-

posed on the structure of the metamodel. This can result in more accurate and better

interpretable metamodels, but can also lead to “overfitting”. A model is called overfitted

if it also tries to explain the noise in the training data and thus becomes a less accurate

description of the general behavior of the model underlying the training data. To reduce

the risk of overfitting, we introduce a measure to quantify the complexity of a function.

This measure is based on the idea that the complexity of a function is correlated with

the minimal degree of a polynomial necessary to approximate this function with a certain

accuracy. Using Pareto simulated annealing, we determine metamodels that give a good

balance between complexity and accuracy in the training data.

1.4.4 Enhancement of sandwich algorithms for approximating
convex Pareto sets

The first three topics all involve the approximation of a black-box function. Chapter 7,

on the other hand, deals with approximating a Pareto set. More specifically, we consider

the enhancement of sandwich algorithms for approximating convex Pareto sets with two

or more objectives. These sets generally result from multi-objective optimization prob-

lems (MOPs) with convex objective functions and constraints. Sandwich algorithms are

used to approximate these Pareto sets as they can provide a quality guarantee on the

accuracy of the approximation. We introduce three enhancements for existing sandwich

algorithms. Firstly, we introduce dummy points that can help us in better selecting which

single-objective optimization to run in each step of the sandwich algorithm. Secondly,

we define a quality measure that provides easily interpretable quality guarantees. We

also describe how this measure can easily be calculated using dummy points. Thirdly,

transformations are introduced that can improve the approximations and extend the ap-

1.5 Overview of research papers 15

plication of sandwich algorithm to certain non-convex MOPs. To test the effect of these

enhancements, we compare several existing sandwich algorithms with our new algorithm

that incorporates the above enhancements. A comparison using four test cases shows

that our new algorithm is generally more efficient; i.e., it requires less time-consuming

optimization to reach the same level of (guaranteed) accuracy.

1.5 Overview of research papers

This thesis contains the following six research papers:

Chapter 2 Husslage, B.G.M., G. Rennen, E.R. van Dam, and D. den Hertog.
Space-filling Latin hypercube designs for computer experiments, Op-
timization and Engineering. Submitted.

Chapter 3 Dam, E.R. van, G. Rennen, and B.G.M. Husslage (2009). Bounds for
maximin Latin hypercube designs, Operations Research, 57.

Chapter 4 Rennen, G., B.G.M. Husslage, E.R. van Dam, and D. den Hertog
(2009). Nested maximin Latin hypercube designs, Structural and
Multidisciplinary Optimization. To appear.

Chapter 5 Rennen, G. (2009). Subset selection from large datasets for Kriging
modeling, Structural and Multidisciplinary Optimization, 38(6), 545–
569.

Chapter 6 Stinstra, E.D., G. Rennen, and G.J.A. Teeuwen (2008). Metamodel-
ing by symbolic regression and Pareto simulated annealing, Structural
and Multidisciplinary Optimization, 35(4), 315–326.

Chapter 7 Rennen, G., E.R. van Dam, and D. den Hertog. Enhancement of sand-
wich algorithms for approximating multi-dimensional convex Pareto
sets, INFORMS Journal on Computing. Submitted.

The thesis is divided into four parts that correspond to the four contributions de-

scribed in Section 1.4.

16 Introduction

Part I

Maximin Latin hypercube designs

Chapter 2

Space-filling Latin hypercube
designs for computer experiments

“Space,” it says, “is big. Really big. You just won’t
believe how vastly hugely mind-bogglingly big it is. I
mean you may think it’s a long way down the road to the
chemist, but that’s just peanuts to space.”

(Douglas Adams, The Hitchhiker’s Guide to the Galaxy)

2.1 Introduction

A k-dimensional Latin hypercube design (LHD) of n points, is a set of n points xi =

(xi1, xi2, . . . , xik) ∈ {0, . . . , n− 1}k such that for each dimension j all xij are distinct. A

LHD is called maximin when the separation distance mini 6=j d(xi, xj) is maximal among

all LHDs of given size n, where d is a certain distance measure. In this chapter, we

concentrate on the Euclidean (or `2) distance measure, i.e.,

d(xi, xj) =

√√√√
k∑

l=1

(xil − xjl)2, (2.1)

because this measure is often chosen in practice.

Besides maximin LHDs, we also treat Audze-Eglais LHDs. These LHDs minimize the

following objective:

n∑
i=1

n∑
j=i+1

1

d(xi, xj)2
, (2.2)

where d(xi, xj) is again the Euclidean distance between points xi and xj. By minimizing

this objective, we can also obtain LHDs with uniformly distributed points (Bates et al.

(2004)).

19

20 Space-filling LHDs for computer experiments

For both classes of LHDs, we aim to construct a database of the best designs known

in literature. We do this by generating new designs and comparing them with existing

designs. These new designs are often approximate maximin or Audze-Eglais designs in

the sense that optimality of the objective is not guaranteed. The reason is that optimiza-

tion over the total set of LHDs can be very time-consuming for larger values of k and n.

Therefore, to find good designs, optimization is often done over a certain class of LHDs

or heuristics are used, which do not guarantee optimality. A good example of the first

case are the periodic LHDs described in this chapter. Examples of the second case are

simulated annealing used by Morris and Mitchell (1995), the permutation genetic algo-

rithm of Bates et al. (2004) and the Enhanced Stochastic Evolutionary (ESE) algorithm

of Jin et al. (2005).

The designs that are best according to the comparisons in this chapter can be down-

loaded for free from the website http://www.spacefillingdesigns.nl. As far as we

know this is the first extensive online catalogue of maximin and Audze-Eglais LHDs,

although there are several catalogues for classical design of experiments, see, e.g., the

WebDOETM website of Crary (2008). Crary et al. (2000) developed I-OPTTM to gen-

erate designs with minimal integrated mean squared error (IMSE). They found that

IMSE-optimal designs can have proximate design points, which they call “twin points”;

see also Crary (2002). For more websites and software for various types of designs, we

refer to pages 54 and 130 of Kleijnen (2008).

Our main motivation for investigating this topic is that maximin and Audze-Eglais

Latin hypercube designs are very useful in computer simulation. One important area

where computer simulation is much used is engineering. Engineers are confronted with

the task of designing products and processes. Since physical experimentation is often

expensive and difficult, computer models are frequently used for simulating physical

characteristics. Engineers often need to optimize the product or process design; i.e.,

they need to find the best settings for a number of design parameters that influence the

critical quality characteristics of the product or process. A computer simulation run is

often time-consuming and there is a large number of possible input combinations. For

these reasons, engineers construct metamodels that model the quality characteristics as

explicit functions of the design parameters. Such a metamodel—also called a (global)

approximation model or surrogate model—is obtained by simulating a number of design

points. Well-known metamodel types are polynomial and Kriging models. Since a meta-

model evaluation is much faster than a simulation run, in practice the metamodel is used

instead of the simulation model, to gain insight into the characteristics of the product

or process and to optimize it. A review of metamodeling applications in structural opti-

mization can be found in Barthelemy and Haftka (1993), and in multidisciplinary design

optimization in Sobieszczanski-Sobieski and Haftka (1997).

2.1 Introduction 21

As observed by many researchers, there is an important distinction between designs

for computer experiments and designs for the more traditional response surface meth-

ods. Physical experiments exhibit random errors and computer experiments are often

deterministic (Simpson et al. (2004)). This distinction is crucial and much research is

therefore aimed at obtaining efficient designs for deterministic computer experiments.

As several authors recognize, designs for computer experiments should at least satisfy

the following two criteria (see Johnson et al. (1990) and Morris and Mitchell (1995)).

First of all, the design should be space-filling in some sense. When no details on the

functional behavior of the response is available, it is important to be able to obtain infor-

mation for the entire design space. Therefore, design points should be “evenly spread”

over the entire region. One of the measures often used to obtain such space-filling de-

signs is the maximin measure. The Audze-Eglais measure is another measure used for

this purpose. Note that in other fields of research, space-filling designs are referred to as

low discrepancy designs.

Secondly, the design should be non-collapsing. When one of the design parameters

has (almost) no influence on the function value, two design points that differ only in

this parameter will “collapse”, i.e., they can be considered as the same point that is

evaluated twice. For deterministic simulation models this is not desirable. Therefore,

two design points should not share any coordinate values when it is not known a priori

which dimensions are important. To obtain non-collapsing designs, the Latin hypercube

structure is often enforced. It can be shown that if the function of interest is independent

of one or more of the k parameters then, after removal of the irrelevant parameters, the

projection of the LHD onto the reduced design space retains good spatial properties; see

Koehler and Owen (1996). Maximin LHDs are frequently used in practical applications,

see, e.g., the examples given in Driessen et al. (2002), Den Hertog and Stehouwer (2002),

Alam et al. (2004), and Rikards and Auzins (2004).

Only a few authors consider the construction of maximin LHDs. For example, Morris

and Mitchell (1995) use simulated annealing to find approximate maximin LHDs for up

to five dimensions and up to 12 design points, and a few larger values, with respect to

the `1- and `2-distance measure. Van Dam et al. (2007) derive general formulas for

two-dimensional maximin LHDs when the distance measure is `∞ or `1, while for the

`2-distance measure (approximate) maximin LHDs up to 1000 design points are obtained

by using a branch-and-bound algorithm and constructing (adapted) periodic designs. Ye

et al. (2000) propose an exchange algorithm for finding approximate maximin symmetric

LHDs. The symmetry property is used as a compromise between computing effort and

design optimality. Jin et al. (2005) describe an enhanced stochastic evolutionary (ESE)

algorithm for finding approximate maximin LHDs. They also apply their method for other

space-filling criteria. Cioppa and Lucas (2007) consider a combination of the maximin

22 Space-filling LHDs for computer experiments

`2-distance and modified `2-discrepancy. Furthermore, they limit their search to nearly

orthogonal LHDs; i.e., LHDs for which the maximum pairwise correlation between column

of the matrix X = [xij] is below 0.03 and the condition number of X>X is below 1.13.

Lastly, the Statistics Toolbox of Matlab also contains a function lhsdesign to generate

approximate maximin LHDs. This function randomly generates a number of LHDs and

picks the one with the largest separation distance. Although this method is very fast,

other methods generally result in much better space-filling LHDs. To asses the quality

of approximate maximin LHDs, Van Dam et al. (2009b) generate upper bounds on the

separation distance for certain classes of maximin LHDs. By comparing the separation

distances of LHDs to these bounds, we can get an indication of their quality.

There is much more literature related to maximin designs that are not restricted to

LHDs. These maximin designs are certainly space-filling, but not necessarily non-col-

lapsing. Firstly, the problem of finding the maximal common radius of n circles that can

be packed into a square is equivalent to the maximin design problem in two dimensions.

Melissen (1997) gives a comprehensive overview of historical developments and state-of-

the-art research in this field. For the `2-distance measure in the two-dimensional case,

optimal solutions are known for n ≤ 30 and n = 36, see, e.g., Kirchner and Wengerodt

(1987), Peikert et al. (1991), Nurmela and Österg̊ard (1999), and Markót and Csendes

(2005). Furthermore, many good approximating solutions have been found for n ≥ 31;

see the Packomania website of Specht (2008). Baer (1992) solved the maximum `∞-circle

packing problem in a k-dimensional unit cube. The `1-circle packing problem in a square

has been solved for many values of n; see Fejes Tóth (1971) and Florian (1989).

Secondly, the maximin design problem has been studied in location theory. In this

area of research, the problem is usually referred to as the max-min facility dispersion

problem (see Erkut (1990)). Facilities are placed such that the minimal distance to any

other facility is maximal. Again, the resulting solution is certainly space-filling, but

not necessarily non-collapsing. A few publications consider maximin designs in higher

dimensions, e.g., Trosset (1999), Locatelli and Raber (2002), Stinstra et al. (2003), and

Dimnaku et al. (2005). These publications describe nonlinear programming heuristics to

find approximate maximin designs.

Audze-Eglais LHDs are also constructed by only a few authors. The criterion was first

introduced by Audze and Eglais (1977) and is based on the analogy of minimizing forces

between charged particles. Bates et al. (2004) formulate the problem of finding Audze-

Eglais LHDs and use a permutation genetic algorithm to generate them. Liefvendahl

and Stocki (2006) compare maximin and Audze-Eglais LHDs and recommend the Audze-

Eglais criterion over the maximin criterion. Examples of practical applications of Audze-

Eglais LHDs can be found in Rikards et al. (2001), Bulik et al. (2004), Stocki (2005),

and Hino et al. (2006).

2.2 Periodic designs 23

There are several other measures proposed in the literature besides maximin and

Audze-Eglais, e.g., maximum entropy, minimax, IMSE, and discrepancy. For a good

overview, we refer to Koehler and Owen (1996). In statistical environments, Latin hyper-

cube sampling (LHS) is often used. In such an approach, points on the grid are sampled

without replacement, thereby deriving a random permutation for each dimension; see

McKay et al. (1979). Giunta et al. (2003) give an overview of pseudo- and quasi-Monte

Carlo sampling, LHS, orthogonal array sampling, and Hammersley sequence sampling.

They notice that the basic LHS technique can lead to designs with poor space-filling

properties. Extensions of the basic LHS technique are therefore necessary to obtain bet-

ter designs, but these are unfortunately not standard yet in all software packages. Bates

et al. (1996) obtain designs for computer experiments by exploring so-called lattice points

and using results from number theory.

Several papers combine space-filling criteria with the Latin hypercube structure. Jin

et al. (2005) describe an enhanced stochastic evolutionary algorithm for finding maxi-

mum entropy and uniform designs. Van Dam (2008) derives interesting results for two-

dimensional minimax LHDs.

In the literature different designs for computer experiments have been compared and

the overall conclusion tends to be that the maximum entropy and distance-based criteria,

such as maximin and Audze-Eglais, often perform best; see, e.g., Simpson et al. (2001),

Santner et al. (2003), and Bursztyn and Steinberg (2006).

This chapter is organized as follows. Section 2.2 describes how periodic designs can

be used to obtain good approximate maximin and Audze-Eglais LHDs. In Section 2.3, we

shortly describe some heuristics found in literature that are used for the same purpose.

The ESE algorithm of Jin et al. (2005) described in this section and periodic designs

are used to generate new approximate maximin and Audze-Eglais LHDs. Computational

results for up to ten dimensions and for up to 300 design points, as well as a comparison

of the new and existing results, are provided in Section 2.4. Finally, Section 2.5 contains

conclusions.

2.2 Periodic designs

Van Dam et al. (2007) show that two-dimensional maximin Latin hypercube designs

often have a nice, periodic structure. By constructing (adapted) periodic designs, many

maximin and otherwise good LHDs are found for up to 1000 points. Therefore, extending

this idea to higher dimensions seems natural.

Let a k-dimensional Latin hypercube design of n points be represented by the se-

quences y1, . . . , yk, with every yi a permutation of the set {0, . . . , n − 1}. As in the

two-dimensional case, a design is constructed by fixing the first dimension, without loss

24 Space-filling LHDs for computer experiments

of generality, to the sequence y1 = (0, . . . , n − 1) and assigning (adapted) periodic se-

quences to all other dimensions. Two types of periodic sequences are considered. The

first one is the sequence (v0, . . . , vn−1), where

vi = (i + 1)p mod (n + 1)− 1, for i = 0, . . . , n− 1 (2.3)

and p is the period of the sequence, which is chosen such that n+1 and p have no common

divisor, i.e., gcd(n + 1, p) = 1, resulting in a permutation of the set {0, . . . , n− 1}.
Note that the periodic designs obtained in this way resemble lattices ; see, e.g., Bates

et al. (1996). The main difference is that lattices are infinite sets of points, which may

collapse, so constructing a (finite) Latin hypercube design requires a proper subset of non-

collapsing lattice points. For given n, the structure of the lattice will, however, not always

lead to a Latin hypercube design with a sufficient number of points. This is in contrast

to periodic designs, for which the modulo operator insures that for every combination

of periods pj, with gcd(n + 1, pj) = 1, j = 2, . . . , k, a feasible Latin hypercube design is

obtained.

The second type of sequence is the more general sequence (w0, . . . , wn−1), where

wi = (s + ip) mod n for i = 0, . . . , n− 1. (2.4)

Note that we changed the modulus compared to equation (2.3). In this case, all starting

points s = 0, . . . , p and all periods p = 1, . . . , bn
2
c will be considered. Note, however, that

the resulting sequence w may no longer be one-to-one; i.e., some values may occur more

than once, and, hence, the resulting design may no longer be an LHD. Now, let r > 0 be

the smallest value for which wr = w0; it then follows that r = n
gcd(n,p)

. When r < n, a

way to construct a one-to-one sequence of length n is by shifting parts of the sequence by,

say, q, and repeating this when necessary. To formulate this procedure more explicitly,

for the updated sequence w it now holds that

wi = (s + ip + jq) mod n, for i = jr, . . . , (j + 1)r − 1, and j = 0, . . . , gcd(n, p)− 1.(2.5)

Let m represent the modulus and, hence, the type of sequence used, i.e., m = n + 1

corresponds to the first type and m = n to the second. For given n, we now have to set

the parameters (p, q, s,m) for every sequence y2, . . . , yk.

To find the best settings for the parameters, it would be best to test all values. How-

ever, when the dimension and the number of points increase, the number of possibilities

increases rapidly. Hence, computing all possibilities gets very time-consuming or even

impossible. Therefore, three classes of parameter settings (named A, B, and C) are dis-

tinguished. The largest one, class A, consists of checking the following parameter values:

p = 1, . . . , bn
2
c, q = 1− p, . . . , p− 1, s = 0, . . . , p, and m ∈ {n, n + 1}.

2.2 Periodic designs 25

Dimension k Class A Class B Class C

3
4
5
6
7

2 ≤ n ≤ 70
2 ≤ n ≤ 25

−
−
−

71 ≤ n ≤ 100
26 ≤ n ≤ 100
2 ≤ n ≤ 80
2 ≤ n ≤ 35

−

−
−

81 ≤ n ≤ 100
36 ≤ n ≤ 100
2 ≤ n ≤ 100

Table 2.1: Classes of periodic sequences used to generating maximin designs with number
of points n and dimension k.

Testing in three and four dimensions indicated that almost all adapted periodic max-

imin designs are based on a shift of 1− p, −1, or 1 (as was the case for two dimensions;

see Van Dam et al. (2007)). Furthermore, most maximin designs are found to have a

starting point equal to either p − 1 or p. Class B is therefore set up to be a subset of

class A with the aforementioned restrictions on the parameters q and s. Finally, for the

dimensions 5 to 7 the number of possibilities has to be reduced even further, leading to

parameter class C, which (based on some more test results) restricts class B to the values

q = 1 and s = p, leaving the other parameters unchanged. Table 2.1 shows the different

classes used in the computations of the approximate maximin LHDs for each dimension.

For the approximate Audze-Eglais LHDs, we only used class C.

0 3 6 9 12 15 18 21

0

3

6

9

12

15

18

21

y2

y1

2

5

8

11

14

17

20

0

3

6

9

12

15

18

21

1

4

7

10

13

16

19

Figure 2.1: Two-dimensional projection of the three-dimensional LHD (y1, y2, y3) of 22
points.

As an example, consider a three-dimensional adapted periodic LHD of 22 points. For

the maximin criterion, a best parameter setting (class A) is found to be (p2, q2, s2,m2) =

(8,−7, 7, 22) and (p3, q3, s3,m3) = (3, 0, 2, 23) and, hence, the corresponding maximin

26 Space-filling LHDs for computer experiments

LHD, with separation distance 69, is defined by the sequences

y1 = (0, 1 , 2, 3 , 4 , 5 , 6 , 7 , 8, 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21),
y2 = (7, 15, 1, 9 , 17, 3 , 11, 19, 5, 13, 21, 0 , 8 , 16, 2 , 10, 18, 4 , 12, 20, 6 , 14),
y3 = (2, 5 , 8, 11, 14, 17, 20, 0 , 3, 6 , 9 , 12, 15, 18, 21, 1 , 4 , 7 , 10, 13, 16, 19).

(2.6)

Thus, y3 is a periodic sequence, with m = n + 1, and y2 is an adapted periodic sequence,

with m = n and q2 = −7. Note that to obtain a one-to-one sequence, the second part of

y2, i.e., (0, 8, . . . , 14), is formed by shifting the first part of y2, i.e., (7, 15, . . . , 21), by −7.

The periods and shift are clearly visible in the two-dimensional projection of the LHD in

Figure 2.1. In this figure the y3-values are depicted at the design points.

Like in the two-dimensional case, it may happen that for a given n the corresponding

maximin LHD has a separation distance that is smaller than the distance of a design

of n − 1 points. For these n, however, better designs can usually be derived by adding

an extra “corner point” to the LHD of n − 1 points. In this way, a monotone nonde-

creasing sequence of separation distances was found for all dimensions; see Table 2.6 in

Appendix 2.A.

2.3 Other methods

2.3.1 Enhanced stochastic evolutionary algorithm

Besides restricting ourselves to a certain class of LHDs, we can also generate good max-

imin or Audze-Eglais LHDs using heuristics. The ESE algorithm of Jin et al. (2005) is

one of the methods developed for this purpose, and is used in this chapter to generate

new approximate maximin and Audze-Eglais LHDs.

This method starts with an initial design and tries to find better designs by iteratively

changing the current design. To determine if a new design is accepted, a threshold-based

acceptance criterion is used. This criterion is controlled in the outer loop of the algorithm.

In the inner loop of the algorithm new designs are explored.

The inner loop explores the design space as follows. At each iteration, the algorithm

creates a fixed number of new designs by exchanging two randomly chosen elements.

The new design with the largest separation distance or with the smallest Audze-Eglais

objective value is then compared to the current design with a threshold criterion. The

criterion is such that better designs are always accepted and worse designs can also be

accepted with a certain probability. If the new design is accepted, it replaces the current

design. This proces is repeated for a user defined number of iterations.

The outer loop controls the threshold value. After the inner loop is completed, the

outer loop determines how much improvement is made in the inner loop. If the amount

of improvement is above a certain level, the algorithm starts an improvement process in

which it tries to rapidly find a local optimum. It does this by lowering the threshold value

2.3 Other methods 27

and thus accepting fewer deteriorations in the inner loop. If too little improvement is

made, an exploration process is started that is intended to escape from a local optimum.

The threshold value is first rapidly increased to move away from a local optimum and

later slowly decreased to find better designs after moving away. The final design of the

algorithm is the best design found during all iterations of the inner loop.

For a more detailed description of the algorithm, we refer to the original paper of

Jin et al. (2005). To find maximin and Audze-Eglais LHDs, we implemented the ESE

algorithm in Matlab. The parameters of the algorithm were set to the values suggested

in Jin et al. (2005). The only adjustment we made to the original algorithm is in the

choice of stopping criterion. Instead of stopping after a fixed number of runs of the outer

loop, our criterion is to stop when in the last 1000 runs of the outer loop no improvement

is made.

2.3.2 Simulated Annealing

Another heuristic used to find maximin LHDs is simulated annealing. Morris and Mitchell

(1995) were the first to apply simulated annealing for this purpose. The simulated anneal-

ing method tries to find good designs by iteratively changing a random starting design.

A key characteristic of simulated annealing is that not only improvements are accepted

but also changes that result in worse designs can be accepted. This enables simulated

annealing to escape from local optima.

Besides Morris and Mitchell (1995), also Husslage (2006) uses simulated annealing

for finding maximin LHDs. One of the main differences between the two methods is the

objective function. Husslage (2006) directly uses the separation distance of a design,

whereas Morris and Mitchell (1995) use a surrogate measure φp. The latter measure also

takes into account the number of pairs of points with a certain distance between them.

By including this information, it is easier to decide which design is best if they have the

same separation distance. This surrogate measure is also used by other authors, e.g., Jin

et al. (2005) and Palmer and Tsui (2001).

2.3.3 Permutation Genetic Algorithm

To obtain Audze-Eglais LHDs, Bates et al. (2004) use a permutation genetic algorithm.

The genetic algorithm uses a population of 10 designs and creates new generations of

designs by applying different crossover methods. Results of the algorithm are reported

for eight different combinations of n and k. In Section 2.4, we make a comparison

between these results and our designs obtained with periodic designs and ESE.

28 Space-filling LHDs for computer experiments

2.4 Computational results

Using (adapted) periodic designs and the ESE algorithm, we obtain approximate maximin

and Audze-Eglais LHDs for the cases described in Table 2.2. All computations have been

performed on PCs with a 2.8 GHz Pentium D processor. For the cases with n > 100, a

limit of 6 hours was imposed on the calculation time.

Dimension k 3 4 5 6 7 8 9 10

Maximin PD 300 300 100 100 100
Maximin ESE 300 300 100 100 100 100 100 100
Audze-Eglais PD 100 100 100
Audze-Eglais ESE 100 100 100 100 100 100 100 100

Table 2.2: Largest values of n for which LHDs were generated using periodic designs
(PD) and the ESE algorithm.

Table 2.6 in Appendix 2.A shows the squared `2 separation distance of the (approx-

imate) maximin LHDs that were obtained by applying periodic designs and the ESE

algorithm. From this table it can be seen that (adapted) periodic designs work particu-

larly well for larger values of n. For dimension 2 to 4, there is a noticeable break-even

point in the table, i.e., a point (or, better, an interval) where the preference shifts from

the designs found by ESE to (adapted) periodic designs. Furthermore, these break-even

points seem to increase with the dimension of the design and it is to be expected that

break-even points for k-dimensional designs with k ≥ 5 will occur for larger values of n,

i.e., n > 250. This behavior could be explained by the “border effect”, i.e., the irregu-

larity of designs that is caused by the borders of the design space. Clearly, the number

of “borders” of the k-dimensional box region increases exponentially, with respect to k.

However, due to the Latin hypercube structure the number of design points that are

located on or near these borders is limited. This, in turn, leads to very irregular optimal

Latin hypercube designs when the number of design points is small with respect to the

number of borders (which again depends on k). Hence, the nice, periodic structure that is

sought for by our periodic heuristic works well only when the number of design points is

relatively large compared to the dimension. Van Dam et al. (2007) have already shown

the presence of this particular behavior in two-dimensional maximin Latin hypercube

designs, i.e., their optimal designs can all be represented by periodic designs. The results

of Table 2.6 suggest that this behavior also occurs in higher dimensions. ESE, however,

does not depend on an underlying structure, so it can therefore often find better designs.

Since all six- and seven-dimensional (adapted) periodic designs with 3 to 100 points are

dominated by the designs found by ESE, the former are not computed for larger dimen-

sions.

2.4 Computational results 29

n 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim
M&M ESE M&M ESE M&M ESE M&M ESE M&M ESE M&M ESE M&M ESE

3 6 6 7 7 8 8
4 6 6 12 12 14 14
5 11 11 15 15 24 24
6 14 14 22 22 32 32 40 40
7 17 17 28 28 40 40 61 61
8 21 21 42 42 50 50 91 89
9 22 22 42 42 61 61 126 126
10 27 27 50 47 82 82
11 29 30 55 55 80 80
12 36 36 63 63 91 91 139 136
13
14 219 215

Table 2.3: Squared `2 separation distance of designs found by Morris and Mitchell (1995)
and the ESE algorithm.

With the ESE algorithm, we can match the results of Morris and Mitchell (1995) for

most combination of k and n. Only for the cases (k, n) equal to (4, 10), (6, 12), (7, 14),

and (8, 8), we obtain slightly worse designs. Morris and Mitchell (1995), however, have

already observed that designs that satisfy n = k or n = 2k exhibit special symmetric

properties; they refer to them as foldover designs. For the case k = 3, n = 11, we obtained

an improved (and optimal) design. Furthermore, using a branch-and-bound algorithm,

the three-dimensional designs of up to 14 points have been verified to be optimal (Van

Dam et al. (2009b)).

When comparing the ESE results with the simulated annealing results in Husslage

(2006), we again see that ESE gives better or equally good results for most combination of

k and n. For only nine combinations, the results of the SA algorithm are better. However,

especially for larger values of n, the ESE algorithm finds designs with considerably higher

separation distances.

k × n 2× 17 3× 17 4× 17 5× 17 6× 17 7× 17 8× 33 9× 33 10× 33

NOLHD 17 21 68 103 131 140 525 720 745
ESE 18 54 103 159 214 227 1037 1244 1436

Table 2.4: Squared `2 separation distance of the nearly orthogonal LHDs found by Cioppa
and Lucas (2007) and the LHDs found by the ESE algorithm.

Table 2.4 contains a comparison with the results of Cioppa and Lucas (2007). For

almost all cases, the separation distance of the nearly orthogonal LHD is considerably

lower than the separation distance of the LHD found by ESE. Besides the use of a different

search algorithm, this difference is probably also caused by two other factors; Cioppa and

Lucas (2007) optimize a combination of the maximin `2-distance and the modified `2-

discrepancy, and they consider only nearly orthogonal LHDs.

30 Space-filling LHDs for computer experiments

k × n 2× 5 2× 10 2× 120 3× 5 3× 10 3× 120 5× 50 5× 120

PermGA 1.2982 2.0662 5.5174 0.7267 1.0242 1.9613 0.7270 0.7930
ESE 1.2982 2.0662 5.4941 0.7267 1.0199 1.9328 0.7195 0.7840

Table 2.5: Audze-Eglais values of designs found by Bates et al. (2004) and the ESE
algorithm.

The results obtained for the Audze-Eglais measure are given in Table 2.7 in Ap-

pendix 2.A. We can easily see that for almost all cases the results of the ESE algorithm

are better than the (adapted) periodic designs. It is likely that by running ESE for some

more starting solutions, better or equally good designs can be found for all cases. The

ESE algorithm thus outperforms the periodic designs for the Audze-Eglais measure. In

Table 2.5, we compare the results with those found by Bates and see that the ESE algo-

rithm gives better or equally good results. This shows that the ESE algorithm is quite

successful in finding LHDs with a good Audze-Eglais value.

2.5 Conclusions

This chapter discusses existing and new results for maximin and Audze-Eglais Latin

hypercube designs. Such designs can play an important role in the area of computer sim-

ulation. The new results are obtained using two heuristics. The first heuristic is based on

the observation that many optimal LHDs—and two-dimensional LHDs in particular—

exhibit a periodic structure. By considering periodic and adapted periodic designs, ap-

proximate maximin LHDs for up to seven dimensions and for up to 300 design points are

constructed. The second heuristic uses the ESE algorithm of Jin et al. (2005) to find

approximate maximin LHDs for up to ten dimensions. These new results are compared to

existing results obtained with simulated annealing and permutation genetic algorithms.

In most cases, the ESE algorithm resulted in the best maximin and Audze-Eglais LHDs.

However, when the number of design points is large with respect to the dimension of the

design, the periodic designs tend to be better. Appendix 2.A contains all the obtained

squared `2 separation distances and Audze-Eglais values. All corresponding designs can

be downloaded from the website http://www.spacefillingdesigns.nl.

2.A Tables of numerical results 31

2.A Tables of numerical results

n 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim
ESE Per ESE Per ESE Per ESE Per ESE Per ESE ESE ESE

2 3 3 4 4 5 5 6 6 7 7 8 9 10
3 6 3 7 4 8 5 12 6 13 7 14 18 19
4 6 6 12 12 14 11 20 15 21 16 26 28 33
5 11 6 15 12 24 11 27 15 32 16 40 43 50
6 14 14 22 16 32 23 40 28 47 29 53 61 68
7 17 14 28 16 40 23 52 28 61 31 70 80 89
8 21 21 42 25 50 32 63 42 79 46 90 101 114
9 22 21 42 25 61 39 75 45 92 47 112 126 142
10 27 21 47 36 82 55 91 62 109 68 131 154 171
11 30 24 55 39 80 55 108 62 129 69 152 178 206
12 36 30 63 46 91 62 136 91 152 95 177 204 235
13 41 35 70 51 103 64 138 91 178 95 205 235 268
14 42 35 77 70 114 86 154 104 215 119 236 268 305
15 45 42 87 71 129 88 171 111 220 129 273 309 347
16 50 42 93 85 151 101 190 130 241 155 317 352 393
17 53 42 99 85 158 113 208 131 266 161 332 396 442
18 56 50 108 94 170 123 231 155 291 186 361 451 496
19 59 57 119 94 184 136 256 169 323 195 390 469 554
20 65 57 130 106 206 139 279 210 349 226 425 506 625
21 68 65 145 116 223 165 302 210 380 236 463 548 650
22 72 69 150 117 235 174 325 223 418 270 501 595 691
23 75 72 159 130 250 178 348 236 448 273 542 640 747
24 81 76 170 138 266 201 374 258 481 308 585 690 800
25 86 91 178 156 285 205 400 286 520 350 626 739 857
26 86 91 188 156 302 226 426 296 548 365 664 791 910
27 90 91 198 157 310 238 447 310 585 382 712 840 976
28 94 94 210 174 331 258 479 339 620 406 766 898 1041
29 101 94 221 174 349 269 507 346 654 417 817 956 1100
30 105 105 233 194 367 310 531 390 691 458 849 1019 1173
31 110 107 244 212 405 310 563 390 728 482 900 1104 1241
32 110 114 253 212 413 341 587 419 778 518 966 1139 1318
33 117 114 264 215 426 341 622 430 814 537 1010 1201 1396
34 125 133 273 230 445 358 648 470 851 561 1072 1270 1478
35 126 133 286 234 467 366 683 495 914 586 1113 1326 1555
36 131 133 297 250 486 400 719 518 939 636 1181 1405 1647
37 138 152 309 266 520 408 744 528 976 668 1236 1477 1721
38 142 152 321 283 541 415 788 561 1028 709 1286 1534 1790
39 146 152 330 283 566 439 816 561 1084 726 1344 1609 1870
40 152 155 342 291 575 492 876 632 1122 786 1416 1675 1946
41 158 162 355 293 596 492 882 632 1156 802 1496 1765 2058
42 161 168 367 319 626 496 907 670 1209 903 1526 1843 2149
43 171 168 383 323 666 520 947 670 1256 903 1597 1905 2224
44 179 186 396 331 680 548 992 696 1336 903 1653 1994 2319
45 182 186 407 347 698 565 996 737 1366 926 1723 2079 2415
46 186 189 421 366 723 592 1064 797 1408 985 1794 2155 2507
47 189 189 438 378 754 611 1088 797 1459 985 1847 2244 2600
48 201 189 450 413 763 632 1119 857 1531 1054 1924 2336 2732
49 203 196 464 415 803 634 1167 893 1592 1074 1989 2397 2828
50 206 213 478 415 830 663 1203 893 1639 1113 2041 2492 2893
51 206 213 490 421 850 692 1230 917 1662 1161 2132 2566 3006
52 217 213 504 455 883 709 1274 1003 1734 1231 2203 2686 3134
53 219 216 515 455 894 716 1340 1003 1808 1241 2234 2713 3261
54 209 233 534 477 932 760 1359 1019 1856 1288 2356 2805 3339
55 230 243 546 483 956 760 1421 1082 1896 1325 2429 2935 3452
56 230 243 558 515 982 784 1431 1104 2003 1358 2444 3021 3551
57 249 261 574 515 1007 846 1488 1136 2024 1479 2554 3119 3651
58 245 261 594 539 1035 846 1554 1166 2043 1479 2650 3187 3795
59 254 266 609 544 1063 849 1564 1223 2136 1509 2733 3297 3889
60 261 273 618 568 1094 904 1631 1242 2232 1577 2796 3420 4090
61 266 274 630 620 1128 904 1667 1258 2266 1615 2868 3525 4158
62 269 283 657 620 1150 934 1715 1306 2345 1680 2977 3636 4313
63 281 297 670 620 1178 967 1781 1380 2376 1680 3056 3690 4355
64 278 297 684 625 1206 985 1804 1430 2452 1769 3097 3820 4514
65 290 314 694 630 1216 997 1868 1430 2492 1786 3219 3932 4581
66 299 314 718 666 1261 1050 1874 1476 2543 1857 3279 4004 4769
67 294 314 735 666 1299 1072 1954 1482 2638 1868 3399 4081 4942
68 306 314 746 685 1330 1087 1983 1538 2693 1940 3453 4212 4995
69 306 324 765 698 1351 1112 2028 1588 2746 1965 3520 4317 5127
70 314 325 779 716 1378 1150 2094 1633 2838 2130 3588 4464 5276

Table 2.6: Squared `2 separation distance found using periodic designs (PD) and the ESE
algorithm (ESE). (Table continued on next page).

32 Space-filling LHDs for computer experiments

n 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim
ESE Per ESE Per ESE Per ESE Per ESE Per ESE ESE ESE

71 314 325 793 716 1413 1150 2141 1644 2871 2130 3749 4548 5437
72 314 341 810 750 1430 1203 2136 1768 2960 2177 3810 4666 5556
73 329 350 834 759 1462 1229 2197 1768 3042 2206 3932 4776 5661
74 341 350 842 767 1512 1229 2291 1774 3120 2244 3941 4915 5817
75 341 350 867 771 1530 1274 2303 1862 3157 2295 4073 5006 5937
76 341 363 882 813 1569 1300 2387 1935 3218 2375 4178 5179 6111
77 341 363 894 823 1591 1308 2433 1947 3323 2403 4266 5222 6272
78 371 387 910 844 1621 1382 2479 2014 3387 2505 4390 5385 6384
79 374 387 927 848 1639 1382 2498 2037 3474 2525 4465 5535 6466
80 374 403 949 873 1691 1395 2554 2037 3550 2590 4565 5577 6653
81 381 406 963 916 1730 1406 2648 2064 3619 2642 4679 5748 6780
82 374 406 989 938 1742 1475 2680 2141 3669 2753 4719 5859 6935
83 374 417 1002 940 1762 1501 2696 2141 3723 2767 4848 5976 7094
84 406 426 1021 967 1818 1534 2790 2229 3870 2838 4920 6119 7256
85 413 426 1043 967 1866 1552 2819 2232 3919 2874 5032 6212 7357
86 413 428 1053 967 1882 1573 2875 2375 3958 3103 5164 6346 7532
87 413 428 1073 976 1934 1598 2913 2375 4095 3103 5225 6469 7639
88 434 437 1086 1050 1954 1685 2975 2398 4166 3183 5340 6660 7877
89 426 443 1102 1050 1990 1690 3067 2400 4176 3183 5450 6750 7950
90 446 481 1134 1060 2027 1710 3104 2516 4308 3190 5576 6901 8128
91 434 481 1134 1089 2031 1748 3143 2516 4379 3234 5626 6950 8330
92 446 481 1149 1089 2100 1805 3216 2599 4428 3277 5758 7067 8442
93 446 481 1171 1098 2130 1813 3283 2604 4512 3361 5832 7342 8601
94 470 481 1199 1124 2169 1881 3348 2747 4581 3474 6007 7436 8774
95 482 481 1219 1135 2206 1901 3335 2747 4703 3531 6064 7469 8877
96 486 509 1250 1261 2227 1965 3451 2769 4808 3639 6222 7645 9146
97 474 515 1258 1261 2299 1965 3514 2817 4848 3639 6304 7781 9379
98 485 531 1283 1261 2299 1965 3560 2850 4936 3690 6376 7896 9381
99 489 531 1298 1261 2338 2009 3628 2878 4999 3731 6448 8023 9617
100 494 554 1305 1261 2401 2053 3648 3000 5040 3903 6617 8228 9835
105 521 563 1395 1329
110 566 626 1510 1414
115 594 650 1591 1499
120 629 702 1708 1603
125 629 713 1798 1750
130 693 766 1906 1872
135 729 780 1995 1909
140 758 845 2103 2089
145 779 894 2185 2225
150 825 934 2310 2278
155 842 986 2365 2367
160 854 1002 2486 2548
165 904 1041 2582 2648
170 914 1121 2659 2869
175 965 1132 2771 2902
180 1011 1208 2897 3077
185 1026 1224 2970 3267
190 1061 1298 3094 3325
195 1086 1350 3210 3492
200 1106 1371 3257 3596
205 1166 1425 3273 3708
210 1196 1473 3377 3767
215 1229 1538 3476 3983
220 1259 1544 3543 4159
225 1293 1611 3661 4292
230 1329 1646 3703 4326
235 1305 1706 3815 4532
240 1350 1806 3893 5061
245 1397 1891 3986 5061
250 1412 1901 3990 5075
255 1417 1923 4100 5122
260 1445 1971 4164 5236
265 1449 2021 4182 5519
270 1464 2144 4361 5656
275 1478 2150 4487 5746
280 1493 2184 4388 6023
285 1501 2209 4607 6094
290 1476 2269 4722 6380
295 1526 2354 4726 6590
300 1542 2409 4898 6604

Table 2.6: Squared `2 separation distance found using periodic designs (PD) and the ESE
algorithm (ESE). (Continued).

2.A Tables of numerical results 33

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim
ESE Per ESE Per ESE Per ESE Per ESE ESE ESE ESE ESE

2 0.500 0.500 0.333 0.333 0.250 0.250 0.200 0.200 0.167 0.143 0.125 0.111 0.100
3 0.900 0.900 0.611 0.611 0.386 0.450 0.321 0.362 0.250 0.230 0.193 0.200 0.151
4 1.000 1.000 0.642 0.642 0.454 0.489 0.367 0.382 0.300 0.260 0.225 0.201 0.180
5 1.298 1.390 0.727 0.891 0.509 0.658 0.401 0.527 0.336 0.287 0.250 0.222 0.200
6 1.521 1.521 0.794 0.800 0.561 0.594 0.431 0.476 0.358 0.307 0.268 0.238 0.215
7 1.598 1.598 0.867 0.975 0.599 0.694 0.464 0.532 0.376 0.322 0.282 0.250 0.225
8 1.804 1.879 0.921 0.960 0.619 0.696 0.488 0.538 0.398 0.334 0.292 0.260 0.234
9 1.935 1.935 0.971 1.052 0.660 0.742 0.504 0.567 0.414 0.349 0.301 0.267 0.240
10 2.066 2.066 1.020 1.085 0.686 0.744 0.515 0.556 0.425 0.360 0.311 0.273 0.246
11 2.196 2.279 1.069 1.137 0.709 0.785 0.536 0.612 0.434 0.369 0.319 0.281 0.250
12 2.273 2.273 1.095 1.163 0.724 0.785 0.551 0.589 0.441 0.375 0.326 0.287 0.256
13 2.401 2.487 1.128 1.191 0.746 0.825 0.563 0.632 0.453 0.381 0.331 0.292 0.261
14 2.476 2.476 1.167 1.252 0.762 0.829 0.575 0.635 0.462 0.385 0.335 0.296 0.265
15 2.578 2.643 1.194 1.255 0.775 0.818 0.583 0.636 0.470 0.393 0.339 0.299 0.268
16 2.666 2.683 1.221 1.290 0.791 0.848 0.589 0.642 0.477 0.398 0.341 0.302 0.271
17 2.721 2.721 1.246 1.340 0.805 0.866 0.600 0.656 0.483 0.404 0.347 0.305 0.273
18 2.819 2.848 1.271 1.337 0.816 0.875 0.609 0.655 0.488 0.408 0.350 0.307 0.275
19 2.890 2.984 1.292 1.374 0.827 0.895 0.615 0.667 0.492 0.413 0.354 0.310 0.277
20 2.959 2.962 1.318 1.394 0.835 0.907 0.620 0.681 0.496 0.416 0.358 0.313 0.278
21 3.025 3.033 1.339 1.408 0.847 0.914 0.625 0.671 0.501 0.419 0.361 0.316 0.281
22 3.070 3.070 1.357 1.426 0.856 0.922 0.632 0.687 0.505 0.422 0.363 0.318 0.283
23 3.138 3.159 1.377 1.454 0.868 0.925 0.638 0.693 0.510 0.425 0.366 0.321 0.285
24 3.197 3.201 1.396 1.458 0.875 0.931 0.644 0.677 0.513 0.427 0.368 0.323 0.287
25 3.254 3.293 1.412 1.485 0.884 0.940 0.648 0.701 0.516 0.430 0.370 0.324 0.289
26 3.309 3.332 1.428 1.480 0.891 0.947 0.653 0.707 0.518 0.432 0.372 0.326 0.290
27 3.360 3.383 1.442 1.499 0.898 0.957 0.657 0.708 0.521 0.435 0.373 0.328 0.292
28 3.405 3.420 1.454 1.503 0.906 0.961 0.660 0.712 0.524 0.437 0.375 0.329 0.293
29 3.458 3.539 1.468 1.543 0.912 0.978 0.664 0.716 0.527 0.439 0.376 0.330 0.294
30 3.505 3.515 1.481 1.528 0.919 0.974 0.667 0.716 0.530 0.441 0.378 0.331 0.295
31 3.543 3.550 1.493 1.563 0.925 0.976 0.671 0.719 0.533 0.443 0.380 0.333 0.296
32 3.589 3.623 1.505 1.562 0.931 0.996 0.674 0.729 0.535 0.444 0.381 0.334 0.297
33 3.636 3.642 1.517 1.588 0.935 0.990 0.678 0.732 0.537 0.446 0.383 0.335 0.298
34 3.676 3.713 1.528 1.565 0.941 1.005 0.682 0.735 0.540 0.447 0.384 0.336 0.299
35 3.716 3.786 1.539 1.601 0.946 1.003 0.685 0.731 0.542 0.449 0.385 0.337 0.300
36 3.758 3.774 1.549 1.600 0.950 1.005 0.688 0.734 0.543 0.450 0.386 0.338 0.301
37 3.794 3.819 1.558 1.599 0.956 1.019 0.691 0.736 0.545 0.452 0.387 0.339 0.301
38 3.828 3.828 1.568 1.623 0.959 1.023 0.694 0.746 0.547 0.453 0.388 0.340 0.302
39 3.868 3.879 1.578 1.646 0.965 1.025 0.696 0.742 0.548 0.455 0.389 0.341 0.303
40 3.906 3.918 1.587 1.636 0.968 1.019 0.699 0.742 0.550 0.456 0.390 0.341 0.303
41 3.939 4.009 1.596 1.639 0.971 1.033 0.701 0.751 0.551 0.457 0.391 0.342 0.304
42 3.974 3.974 1.604 1.658 0.975 1.031 0.703 0.742 0.552 0.458 0.392 0.343 0.305
43 4.007 4.045 1.612 1.675 0.979 1.042 0.705 0.752 0.554 0.460 0.393 0.344 0.306
44 4.029 4.029 1.621 1.670 0.983 1.040 0.708 0.754 0.555 0.461 0.394 0.344 0.306
45 4.063 4.074 1.628 1.678 0.986 1.044 0.710 0.752 0.557 0.462 0.394 0.345 0.307
46 4.096 4.115 1.636 1.693 0.990 1.044 0.712 0.753 0.559 0.463 0.395 0.346 0.307
47 4.130 4.179 1.643 1.695 0.993 1.055 0.714 0.761 0.560 0.464 0.396 0.346 0.308
48 4.160 4.206 1.650 1.699 0.997 1.052 0.716 0.759 0.561 0.464 0.397 0.347 0.308
49 4.187 4.187 1.657 1.711 1.001 1.059 0.718 0.762 0.563 0.465 0.398 0.347 0.309
50 4.216 4.254 1.665 1.713 1.004 1.058 0.720 0.765 0.564 0.466 0.398 0.348 0.309
51 4.246 4.280 1.671 1.729 1.007 1.063 0.721 0.768 0.566 0.467 0.399 0.348 0.310
52 4.273 4.277 1.678 1.730 1.010 1.062 0.723 0.765 0.567 0.468 0.400 0.349 0.310
53 4.302 4.343 1.685 1.734 1.013 1.072 0.725 0.771 0.568 0.468 0.400 0.349 0.310
54 4.331 4.341 1.690 1.739 1.016 1.070 0.726 0.769 0.569 0.469 0.401 0.350 0.311
55 4.355 4.413 1.697 1.755 1.018 1.073 0.728 0.773 0.570 0.470 0.401 0.350 0.311
56 4.382 4.404 1.703 1.756 1.022 1.071 0.729 0.772 0.571 0.470 0.402 0.351 0.312
57 4.404 4.427 1.708 1.760 1.024 1.079 0.731 0.776 0.572 0.471 0.403 0.351 0.312
58 4.431 4.437 1.714 1.763 1.027 1.076 0.732 0.776 0.573 0.472 0.403 0.352 0.312
59 4.458 4.498 1.719 1.777 1.030 1.087 0.734 0.780 0.574 0.473 0.404 0.352 0.313
60 4.482 4.490 1.725 1.772 1.032 1.079 0.735 0.777 0.575 0.473 0.404 0.353 0.313
61 4.499 4.530 1.731 1.778 1.034 1.087 0.736 0.776 0.576 0.474 0.405 0.353 0.314
62 4.526 4.576 1.736 1.786 1.036 1.087 0.738 0.781 0.576 0.475 0.405 0.354 0.314
63 4.556 4.576 1.742 1.789 1.039 1.094 0.739 0.783 0.577 0.475 0.406 0.354 0.314
64 4.573 4.590 1.746 1.794 1.041 1.087 0.740 0.784 0.578 0.476 0.406 0.354 0.315
65 4.595 4.599 1.751 1.802 1.043 1.095 0.742 0.786 0.579 0.477 0.407 0.355 0.315
66 4.619 4.635 1.757 1.804 1.045 1.093 0.742 0.785 0.580 0.477 0.407 0.355 0.315
67 4.636 4.642 1.761 1.812 1.047 1.100 0.744 0.787 0.581 0.478 0.407 0.355 0.315
68 4.661 4.681 1.766 1.819 1.049 1.096 0.745 0.790 0.581 0.478 0.407 0.356 0.316
69 4.683 4.713 1.771 1.818 1.052 1.104 0.746 0.791 0.582 0.479 0.408 0.356 0.316
70 4.703 4.710 1.775 1.818 1.053 1.100 0.747 0.790 0.583 0.480 0.408 0.356 0.316

Table 2.7: Audze-Eglais values found using periodic designs (PD) and the ESE algorithm
(ESE). (Table continued on next page).

34 Space-filling LHDs for computer experiments

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim
ESE Per ESE Per ESE Per ESE Per ESE ESE ESE ESE ESE

71 4.727 4.742 1.780 1.831 1.055 1.108 0.747 0.795 0.584 0.480 0.409 0.357 0.317
72 4.743 4.746 1.784 1.829 1.057 1.103 0.749 0.791 0.584 0.481 0.409 0.357 0.317
73 4.763 4.781 1.789 1.836 1.059 1.106 0.749 0.794 0.585 0.481 0.409 0.357 0.317
74 4.781 4.820 1.793 1.842 1.061 1.112 0.751 0.795 0.586 0.482 0.410 0.358 0.317
75 4.803 4.817 1.796 1.847 1.063 1.112 0.752 0.797 0.586 0.482 0.410 0.358 0.318
76 4.823 4.828 1.801 1.850 1.064 1.110 0.753 0.796 0.587 0.483 0.410 0.358 0.318
77 4.838 4.853 1.805 1.851 1.066 1.112 0.755 0.799 0.587 0.483 0.411 0.359 0.318
78 4.863 4.883 1.809 1.847 1.068 1.114 0.755 0.795 0.588 0.484 0.411 0.359 0.318
79 4.882 4.934 1.812 1.863 1.070 1.119 0.756 0.801 0.589 0.484 0.411 0.359 0.318
80 4.895 4.922 1.816 1.864 1.071 1.117 0.757 0.799 0.589 0.484 0.412 0.359 0.319
81 4.920 4.942 1.820 1.869 1.072 1.120 0.758 0.802 0.590 0.485 0.412 0.360 0.319
82 4.936 4.944 1.824 1.862 1.074 1.120 0.759 0.801 0.590 0.485 0.413 0.360 0.319
83 4.949 4.949 1.827 1.879 1.076 1.126 0.760 0.805 0.591 0.486 0.413 0.360 0.319
84 4.968 4.992 1.831 1.876 1.077 1.122 0.761 0.802 0.591 0.486 0.413 0.360 0.320
85 4.985 5.014 1.834 1.879 1.079 1.124 0.761 0.804 0.592 0.486 0.414 0.360 0.320
86 5.003 5.014 1.838 1.882 1.081 1.125 0.762 0.804 0.592 0.487 0.414 0.361 0.320
87 5.019 5.060 1.842 1.891 1.082 1.130 0.763 0.808 0.593 0.487 0.414 0.361 0.320
88 5.034 5.047 1.845 1.885 1.083 1.130 0.764 0.805 0.594 0.487 0.414 0.361 0.320
89 5.056 5.096 1.848 1.895 1.085 1.133 0.765 0.810 0.594 0.488 0.415 0.361 0.321
90 5.070 5.063 1.852 1.885 1.086 1.131 0.766 0.807 0.594 0.488 0.415 0.361 0.321
91 5.086 5.113 1.854 1.890 1.088 1.134 0.766 0.809 0.595 0.489 0.415 0.362 0.321
92 5.104 5.114 1.858 1.902 1.089 1.135 0.767 0.809 0.595 0.489 0.416 0.362 0.321
93 5.119 5.122 1.861 1.903 1.090 1.136 0.768 0.810 0.596 0.489 0.416 0.362 0.321
94 5.130 5.143 1.864 1.900 1.092 1.138 0.769 0.810 0.596 0.490 0.416 0.362 0.321
95 5.151 5.177 1.867 1.909 1.093 1.138 0.769 0.813 0.597 0.490 0.416 0.362 0.322
96 5.163 5.183 1.870 1.910 1.094 1.139 0.770 0.811 0.597 0.490 0.417 0.363 0.322
97 5.177 5.179 1.872 1.915 1.096 1.138 0.771 0.814 0.598 0.490 0.417 0.363 0.322
98 5.198 5.223 1.876 1.915 1.097 1.142 0.771 0.812 0.598 0.491 0.417 0.363 0.322
99 5.211 5.244 1.879 1.923 1.098 1.143 0.772 0.815 0.599 0.491 0.417 0.363 0.322
100 5.223 5.221 1.882 1.921 1.099 1.143 0.773 0.812 0.599 0.491 0.418 0.363 0.322

Table 2.7: Audze-Eglais values found using periodic designs (PD) and the ESE algorithm
(ESE). (Continued).

Chapter 3

Bounds for maximin
Latin hypercube designs

Genius may have its limitations, but
stupidity is not thus handicapped.

(Elbert Hubbard)

3.1 Introduction

Latin hypercube designs form a class of designs that are often used for finding approxi-

mations of the input-output behavior of deterministic computer simulation models on a

box-constrained domain. This type of simulation model is used in engineering, logistics,

and finance to analyze and optimize the design of products or processes (see Driessen

(2006) and Stinstra (2006)). The reason for approximating these models is that a com-

puter simulation run is usually rather time-consuming to perform. This makes the model

impractical when it comes to obtaining insight in the underlying process or in optimizing

its parameters. A common approach to overcome this problem is to determine a meta-

model that approximates the relation between the input and output parameters of the

computer simulation model. Such a metamodel is based on the information obtained

from a limited number of simulation runs; see, e.g., Montgomery (2009), Sacks et al.

(1989a), Sacks et al. (1989b), Jones et al. (1998), Myers (1999), Booker et al. (1999),

and Den Hertog and Stehouwer (2002). The quality of the metamodel depends, among

others, on the choice of the simulation runs. The inputs of a simulation run can be

represented as a vector containing the values of all input parameters or factors. When

the simulation model has k input parameters, the simulation runs can therefore be repre-

sented by points in the k-dimensional input space. A set of these design points is called

a design and we denote the number of design points by n. As designs can be scaled to

35

36 Bounds for maximin Latin hypercube designs

any box-constrained domain, the designs in this chapter are without loss of generality

constructed on a hypercube.

As is recognized by several authors, a design should at least satisfy the following two

criteria (see Johnson et al. (1990) and Morris and Mitchell (1995)). Firstly, the design

should be space-filling. This means that the whole design space should be well-represented

by the design points. To achieve this characteristic, we consider the maximin criterion,

which states that the points should be chosen such that the minimal distance between

any two points is maximal. This minimal distance is called the separation distance of

the design. The maximin criterion is defined for different distance measures. In this

chapter, we use the `∞, `1, and `2-measures. We remark that Johnson et al. (1990)

explicitly link the distance measure to the covariance function in a spatial process model.

Thus, `1 and `2 are related to the Ornstein-Uhlenbeck and Gaussian covariance functions.

The `∞-measure does not relate to an accepted covariance function, nevertheless, it is

of theoretical value. Other space-filling designs are minimax, integrated mean squared

error, and maximum entropy designs. A good survey of these designs can be found in the

book of Santner et al. (2003). Secondly, the design should be non-collapsing. When a

parameter has (almost) no influence on the output, then two design points that differ only

in this parameter can be considered as the same point. As each point is time-consuming

to evaluate, this situation should be avoided. Therefore, non-collapsingness requires that

for each parameter the values in all design points should be distinct.

Latin hypercube designs (LHDs) are a particular class of non-collapsing designs. For

LHDs on the [0, n − 1]k hypercube, the values of the input parameters are chosen from

the set {0, 1, . . . , n − 1} and for each input parameter each value in this set is chosen

exactly once. More formally, we can describe a k-dimensional LHD of n design points as

a set of n points xi = (xi1, xi2, . . . , xik) with {xij|i = 1, 2, . . . , n} = {0, 1, . . . , n − 1} for

all j.

Finding maximin LHDs can be time-consuming for larger values of k and n. There-

fore, most results in this field concern approximate maximin LHDs. With “approximate

maximin”, we mean that it is not guaranteed that the separation distance is maximal.

For some cases, however, we do have proof of maximality and thus know “optimal” max-

imin LHDs. For the distance measures `∞ and `1 for instance, Van Dam et al. (2007)

derive general formulas for two-dimensional maximin LHDs. Furthermore, they obtain

two-dimensional `2-maximin LHDs for n ≤ 70 by using a branch-and-bound algorithm.

For approximate maximin LHDs more results are available. Van Dam et al. (2007)

construct two-dimensional approximate `2-maximin LHDs for up to 1000 points by op-

timizing a periodic structure. Husslage et al. (2006) extend these results to more di-

mensions. Morris and Mitchell (1995) use a simulated annealing approach to obtain

approximate `1- and `2-maximin LHDs for up to five dimensions and up to 12 points

3.1 Introduction 37

and a few larger values. Jin et al. (2005) describe an enhanced stochastic evolutionary

algorithm for finding space-filling LHDs. The maximin distance criterion is one of the

criteria that they consider. Ye et al. (2000) use an exchange algorithm to obtain ap-

proximate maximin symmetric LHDs; they impose the symmetry property to reduce the

computational effort.

In this chapter, we construct bounds for the separation distance of certain classes

of maximin LHDs. These bounds are useful for assessing the quality of approximate

maximin LHDs by comparing their separation distances with the corresponding upper

bounds. Until now only upper bounds are known for the separation distance of cer-

tain classes of unrestricted maximin designs (by unrestricted design we mean any set of

n points in the [0, n − 1]k hypercube, i.e., there need not be a Latin hypercube struc-

ture). Oler (1961), for instance, gives an upper bound for two-dimensional unrestricted

`2-maximin designs. Furthermore, Baer (1992) gives an upper bound for the separa-

tion distance of unrestricted `∞-maximin designs. The separation distance of maximin

LHDs also satisfies these unrestricted bounds. By using some of the special properties

of LHDs, we are able to find new and tighter bounds for maximin LHDs. Table 3.1

gives an overview of the classes of maximin LHDs treated in each section of this chapter.

For these classes, different methods are used to determine the upper bounds. Within

the methods, a variety of combinatorial optimization techniques are employed; namely,

Mixed Integer Programming, the Traveling Salesman Problem, and the Graph Covering

Problem. Besides these bounds, also a construction method is described for generating

LHDs that meet Baer’s bound for the `∞-distance measure for certain values of n.

`2 `∞ `1

k = 2 Section 3.2.2
k = 3 Section 3.3.3
k large relative to n Section 3.2.1 Section 3.3.1 Section 3.4
n ≈ mk for k, m ∈ N Section 3.3.2

Table 3.1: Overview of the classes of maximin LHDs treated in this chapter.

We realize that the results obtained for k large relative to n may not be of direct

practical use. Still, it is important to have these theoretical results that indicate the

boundaries for the separation distance. The other results in this chapter do concern LHDs

where the number of points n is larger than k, which therefore are of more practical use.

This chapter is organized as follows. In Section 3.2, two methods are described that

give bounds for `2-maximin LHDs. The first method is based on the average squared

`2-distance, which is useful when k is large relative to n. The second method gives

a bound for two-dimensional LHDs by partitioning the hypercube into smaller parts.

Section 3.3 describes bounds for `∞-maximin LHDs. By reformulating the problem as an

38 Bounds for maximin Latin hypercube designs

edge covering problem in graphs, a bound is obtained for k-dimensional maximin LHDs.

Furthermore, a method is described to construct LHDs meeting Baer’s bound. Also

a specific bound is given for three-dimensional maximin LHDs. The bound is found by

projecting the three-dimensional hypercube onto two dimensions, and then partitioning it

into strips. Section 3.4 gives a bound for `1-maximin LHDs that is based on the average

`1-distance. This method is similar to the first method for the `2-distance. Finally,

Section 3.5 gives some final remarks and conclusions.

3.2 Upper bounds for the `2-distance

3.2.1 Bounding by the average

We obtain a bound for the separation distance of an LHD from the fact that the minimal

squared distance is at most equal to the average squared distance between points of an

LHD.

Proposition 3.1. Let D be an LHD of n points in k dimensions. Then the separation

`2-distance d satisfies

d2 ≤
⌊

n(n + 1)k

6

⌋
.

Proof. Let D = {x1, . . . ,xn}, with xi = (xi1, . . . , xik). The average squared distance

among the points of D is

1(
n
2

)
∑
i>j

∑

h

(xih − xjh)
2 =

1(
n
2

)
∑

h

∑
i>j

(xih − xjh)
2 =

1(
n
2

)
∑

h

∑

i′>j′
(i′ − j′)2 =

n(n + 1)k

6
. (3.1)

Since the squared separation distance is integer and at most equal to the average squared

distance, rounding (3.1) finishes the proof.

For fixed k, the separation distance of n points in a k-dimensional cube of side n − 1

is at most order n
k−1

k (this can be seen by comparing the total volume of n pairwise

disjoint balls of diameter d to the total volume of the cube). It follows that the bound

in Proposition 3.1 is not of the right order to be tight if k is fixed and n grows.

Note that if an LHD would have a separation distance close to the bound in Propo-

sition 3.1, then the separation and average distances are about the same, i.e., all points

are at approximately the same distance from each other. Supported by the fact that the

maximal number of equidistant points in a k-dimensional space is k + 1, we are led to

believe that the bound in Proposition 3.1 can be close to tight only if k is large relative

to n. Note that when n is fixed the upper bound is linear in k (ignoring the rounding).

The following lemma also provides a lower bound that is linear in k, which shows that

the bound is of the right order if n is fixed and k grows.

3.2 Upper bounds for the `2-distance 39

Lemma 3.1. Let dmax(n, k) be the maximin `2-distance of an LHD of n points in k

dimensions. Then dmax(n, k1 + k2)
2 ≥ dmax(n, k1)

2 + dmax(n, k2)
2.

Proof. Let D1 = {x1, . . . ,xn} and D2 = {y1, . . . ,yn} be maximin LHDs in dimensions

k1 and k2, respectively. Let zi be the concatenation of xi and yi, for i = 1, . . . , n, then

one obtains an LHD D = {z1, . . . , zn} of n points in dimension k1 + k2 with squared

separation distance at least dmax(n, k1)
2 + dmax(n, k2)

2.

To show the strength of the bound in Proposition 3.1, we determine the maximin distance

for LHDs of at most 5 points in any dimension. For this purpose, we first formulate the

maximin problem as an integer programming problem.

Let D = {x1, . . . ,xn}, with xi = (xi1, . . . , xik), be an LHD. For each j = 1, . . . , k the

map π sending i to xij + 1 is a permutation of {1, 2, . . . , n}. Thus the maximin distance

is the solution of the following problem:

max d
s.t.

∑
π∈Sn

kπ(π(i)− π(j))2 ≥ d2, ∀ i > j∑
π∈Sn

kπ = k
kπ ∈ N0, ∀ π ∈ Sn

(3.2)

where Sn is the set of permutations of {1, 2, . . . , n}. Note that for any j, replacing xij

by n − 1 − xij for all i does not change the separation distance of the design. Thus we

may restrict the set Sn to its first half when ordered lexicographically. This reduces the

number of variables in the program to n!/2. Note also that we may assume that kπ∗ ≥ 1

for an arbitrary permutation π∗, because we may reorder the points of the design as we

wish.

Consider now the cases n = 3, 4, and 5 (for n = 2 the bound is trivially attained).

Proposition 3.2. For n = 3, the maximin `2-distance satisfies dmax(3, k)2 = k + 3bk
3
c.

Proof. The stated result follows from solving the above integer programming problem

(3.2) by hand (the number of variables is 3).

Dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
dmax(4, k)2 1 5 6 12 14 20 21 26 28 33 35 40 41 46 48 53 55 60 62
Upper bound 3 6 10 13 16 20 23 26 30 33 36 40 43 46 50 53 56 60 63

Table 3.2: Squared maximin `2-distance for LHDs of 4 points.

For n = 4 we have that d2 ≤ b10k
3
c. We obtain Table 3.2 by solving the integer program

(3.2) for k ≤ 19 using the CPLEX-solver in AIMMS (Bisschop and Entriken 1993).

Proposition 3.3. For n = 4, the maximin `2-distance satisfies dmax(4, k)2 = b10k
3
c − 1

if k ≡ 1 or 5 (mod 6), dmax(4, k)2 = 10k
3
− 2 if k ≡ 3 (mod 6), and dmax(4, k)2 = b10k

3
c if

k is even, except for the cases k ≤ 5, k = 7, k = 13; see Table 3.2.

40 Bounds for maximin Latin hypercube designs

Proof. By recursively applying Lemma 3.1 (always with k2 = 6, and starting with k1 =

6, 8, and 10) one obtains maximin LHDs for all even dimensions at least 6 meeting the

upper bound.

For the odd dimensions the upper bound b10k
3
c cannot be attained. Even worse, for

odd k divisible by 3, d2 = 10k
3
− 1 cannot be attained. Suppose on the contrary that one

of the above values is attained; then the minimal squared distance is at least 10k−3
3

. Fix

the point that has the smallest average squared distance to the remaining points. Then

this average squared distance equals 10k−e
3

, where e equals 0, 1, 2, or 3. Now let k0 be

the number of coordinates where the fixed point is 0 or 3, and let k1 = k − k0 be the

number of coordinates where it is 1 or 2. It follows that the average squared distance of

this point to the other points equals 12+22+32

3
k0 + (−1)2+12+22

3
k1 = 14

3
k0 + 2k1 = 10k−e

3
. It

now follows that k0 = k
2
− e

8
, and hence k should be even (and e = 0). Thus, if the upper

bound is attained, then k cannot be odd, and for odd k divisible by 3, the gap with the

upper bound is at least 2.

Now by recursively applying Lemma 3.1 (always with k2 = 6, and starting with

k1 = 9, 11, and 19) one obtains maximin LHDs for all odd k ≥ 21.

For n = 5 we have that d2 ≤ 5k. We obtain Table 3.3 by solving the integer program

(3.2) for k ≤ 14 using the CPLEX-solver in AIMMS (Bisschop and Entriken 1993).

Dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
dmax(5, k)2 1 5 11 15 24 27 32 40 43 50 54 60 64 70
Upper bound 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Table 3.3: Squared maximin `2-distance for LHDs of 5 points.

Proposition 3.4. For n = 5, the maximin `2-distance satisfies dmax(5, k)2 = 5k − 1 if k

is odd, and dmax(5, k)2 = 5k if k is even, except for the cases k ≤ 4, k = 6, k = 7, k = 9.

For these exceptions, see Table 3.3.

Proof. We claim that the bound 5k can only be attained for even k. Indeed, if this bound

is attained, then all points of the design are at equal distance. Fix a point, let k0 be the

number of coordinates where this point is 0 or 4, let k1 be the number of coordinates

where it is 1 or 3, and let k2 be the number of coordinates where it is 2. It follows that the

average squared distance of this point to the other points equals 30
4
k0 + 15

4
k1 + 10

4
k2 = 5k.

Since k0 + k1 + k2 = k, it follows that 3k1 + 4k2 = 2k, and hence k1 is always even.

We claim that this implies that the distance between any two points must be even, and

hence that k must be even. To prove the claim, consider two points, and let kee and koo

be the number of coordinates where both points are even and odd, respectively. Also,

let keo and koe be the number of coordinates where the first point is even and the second

one is odd, and the other way around, respectively. From the above it follows that both

3.2 Upper bounds for the `2-distance 41

koe + koo and keo + koo are even (k1 is even), and hence koe + keo is even. But then the

distance between the two points is even, which proves the claim. Thus we may conclude

that the bound d2 ≤ 5k cannot be attained for odd k.

Besides the maximin designs obtained from integer programming, we obtain maximin

designs in even dimensions by recursively applying Lemma 3.1 with k1 and k2 both even

and at least 8. Then maximin LHDs for other odd dimensions are obtained by applying

Lemma 3.1 with k1 = 5 and k2 even and at least 8.

Also for n = 6 we computed the integer programming problem (3.2) for some small values

of k; see Table 3.4. For some values of k, we only obtain a lower bound.

Dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13
dmax(6, k)2 1 5 14 22 32 40 ≥ 47 ≥ 53 ≥ 61 ≥ 67 ≥ 74 ≥ 82 ≥ 89
Upper bound 7 14 21 28 35 42 49 56 63 70 77 84 91

Table 3.4: Squared maximin `2-distance for LHDs of 6 points.

Note that Husslage (2006) have found better designs for k = 8 and 10 using simulated

annealing. More specifically, dmax(6, 8)2 ≥ 54 and dmax(6, 10)2 ≥ 68.

3.2.2 Bounding by non-overlapping circles in two dimensions

In this section, we first introduce a new method for determining bounds on the `2-maximin

distance for two-dimensional LHDs. Next, we compare the new bounds with an existing

bound for unrestricted designs and with (approximate) maximin LHDs in Van Dam et al.

(2007).

Methods to determine upper bounds

To find a bound for two-dimensional LHDs, we first look at the more general class of

unrestricted designs. An upper bound for the `2-maximin distance of unrestricted designs,

derived with Oler’s theorem (Oler 1961), is:

d ≤ 1 +

√
1 + (n− 1)

2√
3
.

For LHDs, the value of d2 is always the sum of two squared integers. We can use this

property to define a slightly tighter upper bound. The Oler bound for LHDs is obtained

by rounding down

(
1 +

√
1 + (n− 1)

2√
3

)2

to the nearest integer that can be written as the sum of two squared integers.

42 Bounds for maximin Latin hypercube designs

To determine a bound more tailored to the special characteristics of two-dimensional

`2-maximin LHDs, we use the following properties. A two-dimensional LHD of n points

can be represented by a sequence y that is a permutation of the set {0, 1, . . . , n−1}. The

points of the LHD are then given by {(x, yx)|x = 0, . . . , n − 1}. We can depict a two-

dimensional `2-maximin LHD with separation distance d by n non-overlapping circles

with diameter d and their centers given by {(x, yx)|x = 0, . . . , n − 1}. We call circles

consecutive if they have consecutive x-values.

The general idea for the new bound is the following. First, determine for each d how

much distance along the y-axis is at least needed to place dde consecutive non-overlapping

circles with diameter d on the {0, 1, . . . , dde − 1} × N+-grid. With this information, we

can determine a lower bound for the distance along the y-axis necessary to place n non-

collapsing points with separation distance d. The second step is to determine dn that

denotes the minimal d for which this distance is larger than n− 1. By taking the largest

sum of two squares that is strictly smaller than d2
n, we have found an upper bound on

the squared separation distance of two-dimensional `2-maximin LHDs of n points. In the

remainder of this section, we describe these two steps in more detail.

For the first step, fix x ∈ {0, 1, . . . , n− dde} and consider a subset of dde circles with

consecutive x-values x, . . . , x+ dde− 1 with y-values yx, . . . , yx+dde−1. The distance along

the x-axis between any of these circles is less than d. This implies that the y-value of

any circle in this set influences the y-value of any other circle in the set, due to the

non-overlapping criterion.

The first step is thus to determine the minimal distance along the y-axis necessary to

place dde consecutive non-overlapping circles with diameter d. This minimal distance is

independent of the fixed value x and equal to Y (d) in the following problem:

Y (d) = min (max{y1, . . . , ydde} −min{y1, . . . , ydde})
s.t. ‖(k, yk)− (l, yl)‖ ≥ d ∀ k, l ∈ {1, . . . , dde}, k 6= l

y ∈ Ndde+ ,

(3.3)

where y1, . . . , ydde represent the y-values of dde consecutive circles.

For every k, l ∈ {1, . . . , dde}, k 6= l, we can calculate the minimal required differ-

ence between yk and yl. When we take, without loss of generality, yk ≤ yl, applying

Pythagoras’ theorem gives:

yl − yk ≥
⌈√

d2 − (l − k)2
⌉
≥ 1.

In this result, we can round up because yl and yk must be integer. Furthermore, the last

inequality holds because (l − k)2 < d2. This inequality implies that the points in the set

are also non-collapsing. Thus, adding non-collapsingness constraints will not influence

the value of Y (d).

3.2 Upper bounds for the `2-distance 43

A drawback of solving problem (3.3) is that it is very time-consuming for larger

values of d. Therefore, instead of solving problem (3.3), we propose to solve the following

problem:

Ỹ (d) = min yσ(dde) − yσ(1)

s.t.
∥∥(σ(i + 1), yσ(i+1))− (σ(i), yσ(i))

∥∥ ≥ d ∀ i ∈ {1, . . . , dde − 1}
yσ(1) < yσ(2) < . . . < yσ(dde)
σ ∈ Sdde
y ∈ Ndde+ ,

(3.4)

where Sdde is the set of all permutations of {1, . . . , dde}. For Ỹ (d) the following holds.

Lemma 3.2. For any d, Ỹ (d) ≤ Y (d).

Proof. The difference between problems (3.3) and (3.4) is only in the constraints. Prob-

lem (3.4) only requires non-overlappingness of circles with consecutive y-values, whereas

problem (3.3) requires that all circles are non-overlapping. As the constraints of prob-

lem (3.4) are thus a subset of the constraints of problem (3.3), Ỹ (d) is at most Y (d).

Take for example d =
√

65. By total enumeration, we find that Y (
√

65) = 49 and

Ỹ (
√

65) = 46. Figures 3.1 and 3.2 show two settings for y that attain these values.

As can be seen, the solution to problem (3.3) gives a solution where all circles are non-

overlapping. Problem (3.4), on the other hand, results in overlapping circles with non-

consecutive y-values.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

y

x

Figure 3.1: Setting for y that attains Y (
√

65) = 49.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

y

x

Figure 3.2: Setting for y that attains Ỹ (
√

65) = 46.

The following lemma shows that problem (3.4) can be reformulated.

Lemma 3.3. Ỹ (d) in problem (3.4) is equal to:

Ỹ (d) = min
σ

dde−1∑
i=1

⌈√
d2 − (σ(i + 1)− σ(i))2.

⌉
(3.5)

44 Bounds for maximin Latin hypercube designs

Proof. Clearly, yσ(dde) − yσ(1) =
∑dde−1

i=1 (yσ(i+1) − yσ(i)). For a given permutation σ, we

must choose y such that yσ(i+1) − yσ(i) is minimized for each i ∈ {1, . . . , dde − 1} and

satisfies the constraints. This way, we also minimize the sum of these terms. Applying

Pythagoras’ theorem gives that the minimal difference between yσ(i+1) and yσ(i) that

satisfies the constraints is:

⌈√
d2 − (σ(i + 1)− σ(i))2

⌉
.

We can round up because yσ(i+1) and yσ(i) must be integer. Using this result, we can

rewrite Ỹ (d) as stated in (3.5).

Determining Y (d) and Ỹ (d) can be done in a number of ways:

• Total enumeration. This can be done within reasonable time for d ≤ 10. For

larger values of d, computation time becomes very large, because the number of

permutations is dde!. We can use this method to determine both Y (d) and Ỹ (d).

• Mixed Integer Program (MIP). We can rewrite problem (3.3) as a MIP as follows:

Y (d) = min ymax

s.t. ymax ≥ yi ∀ i ∈ {1, . . . , dde}
(yl − yk) + Mxkl ≥

⌈√
d2 − (l − k)2

⌉
∀ k, l ∈ {1, . . . , dde}, k 6= l

(yk − yl) + M(1− xkl) ≥
⌈√

d2 − (l − k)2
⌉
∀ k, l ∈ {1, . . . , dde}, k 6= l

y ∈ Rdde+ , xkl ∈ {0, 1} ∀ k, l ∈ {1, . . . , dde},

with M = 2dde. Note that we do not have to require y ∈ Ndde+ , as the constraints

enforce this property. We can also rewrite problem (3.4) as a MIP problem, but we

omit this as the next method is more suitable.

• Traveling Salesman Problem (TSP). It is possible to rewrite problem (3.5) as a TSP

problem. Take a complete graph Kdde+1 and label the vertices 0, 1, . . . , dde. Define

the weights of the edges as follows:

w0,i = 0 ∀ i = 1, . . . , dde
wi,j =

⌈√
d2 − (j − i)2

⌉
∀ i, j = 1, . . . , dde.

A shortest tour in this graph now corresponds to a permutation that minimizes

problem (3.5).

We can thus determine a lower bound for the minimal distance along the y-axis, necessary

to place dde consecutive non-overlapping circles with diameter d. Step 2 is now to use

3.2 Upper bounds for the `2-distance 45

Y (d) or Ỹ (d) to find an upper bound for the maximin distance of a two-dimensional

LHD. When we base our upper bound on Y (d), we define dn as follows:

dn = min d

s.t. Y (d) +
⌊

n
dde

⌋
− 1 > n− 1

d2 ∈ N+.

(3.6)

Proposition 3.5. Let d∗2n be the largest sum of two squares that is strictly smaller than

d2
n. Then the value d∗n is an upper bound for the separation distance of a two-dimensional

LHD of n points.

Proof. First determine for a given number of points n whether an LHD with `2-distance

d can possibly exist. For given n and d, we do this as follows. The maximal number of

mutually disjoint subsets of dde consecutive circles is given by
⌊

n
dde

⌋
. For each subset,

Y (d) is a lower bound for the distance along the y-axis necessary to place the points

in the subset. Due to the non-collapsingness criterion, the y-value of the point in a

subset with the smallest y-value must be different for each subset. Therefore, we need at

least Y (d) +
⌊

n
dde

⌋
− 1 distance along the y-axis to construct an LHD of n points with

`2-distance d. By solving problem (3.6), we find the minimal d for which this minimal

required distance is larger than n−1, i.e., for which Y (d)+
⌊

n
dde

⌋
−1 > n−1 holds. We thus

know that dn is the minimal d for which our method shows that no LHD with maximin

distance dn exists. By taking d∗2n equal to the largest sum of two squares that is strictly

smaller than d2
n, we have an upper bound for the maximin distance of a two-dimensional

LHD.

We can also determine an upper bound by replacing Y (d) in problem (3.6) with Ỹ (d) or

any other lower bound on Y (d). By doing so, we find an upper bound that is at most as

good as the bound based on Y (d).

As we expect that the separation distance of two-dimensional maximin LHDs is non-

decreasing in n, we would like the upper bound to have this same property. The following

lemma shows that the upper bound d∗n indeed has this property.

Lemma 3.4. The upper bound d∗n is non-decreasing in n.

Proof. To show that the bound is non-decreasing in n, we use the fact that dn is the

smallest d for which Y (d) +
⌊

n
dde

⌋
− 1 > n− 1 holds. As d∗n < dn, we thus know that:

Y (d∗n) +

⌊
n

dd∗ne
⌋
− 1 ≤ n− 1,

which implies that:

Y (d∗n) +

⌊
n + 1

dd∗ne
⌋
− 1 ≤ Y (d∗n) +

⌊
n

dd∗ne
⌋
≤ n.

46 Bounds for maximin Latin hypercube designs

This means that d∗n does not satisfy the constraint of problem (3.5) for n + 1. Therefore,

dn+1 > d∗n. Recall that d∗2n+1 is obtained by rounding down d2
n+1to the largest sum of two

squares that is strictly smaller than d2
n+1. As d∗2n is a sum of two squares that is strictly

smaller than d2
n+1, we can conclude that d∗n+1 ≥ d∗n. Hence, the upper bound d∗n based

on Y (d) is non-decreasing in n.

The same holds for the upper bound based on Ỹ (d) or any other lower bound on Y (d).

Numerical results

We use the MIP formulation in (4) to determine Y (d) for d2 = 2, . . . , 144. To solve the

MIP, we implemented it in AIMMS (Bisschop and Entriken 1993) and used the CPLEX

9.1 solver (CPLEX 2005). All calculations were done on a PC with a 2.40 GHz Pentium

IV processor. Small values of d2 required less than a second to solve, but the largest d2

required two days.

The TSP formulation was used to determine Ỹ (d) for d2 = 2, . . . , 665. The TSP

problem is symmetric, which enabled us to use the algorithm described by Volgenant

and Jonker (1982). Their exact algorithm is based on the 1-tree relaxation in a branch-

and-bound algorithm. We used the implementation provided and described in Volgenant

(1990). Most cases were solved in less than a minute, but a few of the larger cases required

several hours to solve.

With the values obtained for Y (d) and Ỹ (d), we determined upper bounds for n =

2, . . . , 114 and n = 2, . . . , 529, respectively. All bounds can be found in the appendix.

For n = 2, . . . , 70, Van Dam et al. (2007) determined optimal maximin designs using

branch-and-bound techniques. In Table 3.5 a comparison is made between the upper

bounds and the d- and d2-values of these optimal maximin LHDs. One might wonder if it

is fair to use the Oler bound in this comparison as it is a bound for unrestricted designs.

However, as it is the only comparable known upper bound, it is not possible to make a

better comparison.

Average % Average % Number of
above optimal d above optimal d2 tight cases

Oler bound 22.24 50.26 0
Bound based on Y (d) 5.77 12.04 12

Bound based on Ỹ (d) 6.44 14.47 12

Table 3.5: Comparison between bounds and optimal maximin LHDs for n = 2, . . . , 70,
given in Van Dam et al. (2007).

The table shows that the new bounds are a considerable improvement when compared

with the Oler bound for smaller values of n. By definition, the bound based on Y (d) is

3.3 Upper bounds for the `∞-distance 47

always at least as good as the bound based on Ỹ (d). For n = 2, . . . , 70, the bound based

on Y (d) is tighter for 13 values of n.

As we may not have optimal maximin LHDs for n > 70, we compare the upper bounds

with the approximate maximin LHDs in Van Dam et al. (2007). Table 3.6 shows that

the new bounds are still better than the Oler bound, but the differences are smaller.

Average % above Average % above
best known d best known d2

Oler bound 18.49 41.16
Bound based on Y (d) 5.89 12.26

Bound based on Ỹ (d) 6.51 13.58

Table 3.6: Comparison between bounds and approximate maximin LHDs for n =
2, . . . , 114, given in Van Dam et al. (2007).

For n = 115, . . . , 529, we can compare only the Oler bound and the bound based on Ỹ (d).

In Table 3.7 the comparison is made for different intervals of n. We see that the Oler

bound becomes relatively better as n increases.

Size n [2, 100] [101, 200] [201, 300] [301, 400] [401, 500] [501, 529]

Oler bound 22.40 10.45 7.75 6.46 5.74 5.66

Bound based on Ỹ (d) 6.65 6.31 5.85 5.72 5.70 5.95

Table 3.7: Average percentage that the bounds are above the separation distance d of
the approximate maximin LHDs given in Van Dam et al. (2007).

The bound based on Ỹ (d) is at least as good as the Oler bound for n = 2, . . . , 410. For

n = 411, . . . , 415, sometimes one bound is better and sometimes the other. For values of

n ≥ 416, the Oler bound is at least as good as the Ỹ (d) based bound. This has two causes.

Firstly, the LHD becomes more similar to an unrestricted design as n increases. Since

the original Oler bound is intended for unrestricted designs, it is to be expected that the

Oler bound becomes better as n increases. Secondly, the definition of Ỹ (d) allows certain

circles to overlap. When d becomes larger, this will occur more and more frequently. The

bound based on Ỹ (d) is thus weaker for large n. However, in practice LHDs are used for

relatively small values of n (several dozens) which makes this drawback less relevant.

3.3 Upper bounds for the `∞-distance

3.3.1 Bounding by graph covering

For the `∞-distance we obtain a bound for the separation distance of an LHD as follows.

48 Bounds for maximin Latin hypercube designs

Proposition 3.6. Let D be an LHD of n points and dimension k. Then the separation

`∞-distance d satisfies

k(n− d)(n− d + 1) ≥ n(n− 1).

Proof. In each coordinate (n − d)(n − d + 1)/2 pairs of points have distance at least d.

Since each pair of points must be separated by a distance at least d in at least one of the

coordinates, it follows that k(n− d)(n− d + 1)/2 ≥ n(n− 1)/2.

Similar to the bound for the `2-case in Section 3.2.1, this bound does not seem to be of

the right order if k is fixed. For example, if k = 2, the inequality in the proposition is

satisfied if n ≥ 4d. However, the maximin distance satisfies d = b√nc; see Van Dam

et al. (2007).

Rather than finding the maximin distance given n and k, it seems more convenient to

find the smallest k = kmin(n, d) for which an LHD of size n and dimension k with sepa-

ration distance d exists. The proof of Proposition 3.6 suggests to formulate the problem

as a graph covering problem. Consider the complete graph on n vertices (representing

the points of the design). Each edge of this graph (representing a pair of points) must be

covered by one of k subgraphs of a particular form. For each coordinate this graph has

as edges those pairs of points that are at distance at least d in this coordinate. These

subgraphs are all isomorphic copies of the graph that can be described as follows: the ver-

tices are the points 0, 1, . . . , n−1, and two points are adjacent if their absolute difference

is at least d. Thus the problem can now be reformulated as to find the minimal number

of copies of a graph G(n, d) that cover all edges of the complete graph Kn. Such graph

covering problems are not studied frequently. However, graph partitioning problems—

where the complete graph must be partitioned into (the right number of) copies of a

given graph—are studied; see Heinrich (1996). Of course, if such a partitioning exists,

then it is a minimal covering.

The graphs G(n, d) that are of interest to us depend only on the difference between

n and d, so it makes sense to fix this difference. To start off easily, let d = n − 1

(which is extremal). The graph G(n, d) now consists of a single edge (and some isolated

vertices that we may discard), and it is clear that we can cover (partition) the edges of

the complete graph Kn by
(

n
2

)
copies. Thus the above bound is tight, and we have the

following proposition.

Proposition 3.7. For d = n − 1, the smallest k = kmin(n, d) for which an LHD of size

n in k dimensions with separation `∞-distance d exists, satisfies kmin(n, n− 1) =
(

n
2

)
.

For d = n− 2, we have the following.

Proposition 3.8. For d = n− 2, the smallest k = kmin(n, d) for which an LHD of size n

in k dimensions with separation `∞-distance d exists, satisfies kmin(n, n− 2) = dn(n−1)
6

e.

3.3 Upper bounds for the `∞-distance 49

Proof. Let d = n − 2, then the graph G(n, d) is a path P4 of 4 vertices (again we may

discard the isolated vertices). Bermond and Sotteau (1976) showed that if n(n− 1) is a

multiple of 6, then Kn can be partitioned into copies of P4. It is straightforward to extend

their result to minimal coverings, i.e., Kn can be covered by kmin(n, n − 2) = dn(n−1)
6

e
copies of P4. Thus for LHDs of size n and separation distance d = n−2 we need precisely

this many dimensions.

For d = n − 3 we were able to show the following. We omit the proof, which is similar

(but more technical) to the proof of the case d = n− 2.

Proposition 3.9. For d = n− 3, the smallest k = kmin(n, d) for which an LHD of size n

in k dimensions with separation `∞-distance d exists, satisfies kmin(n, n− 3) = dn(n−1)
12

e.
For smaller d the situation becomes more complicated. For large n we have the following:

if e = n−d is fixed, then by a result of Wilson (1976) there is a function N(e) such that a

partition of Kn into copies of G(n, n−e) exists if n(n−1) is a multiple of (n−d)(n−d+1)

and n > N(e). Thus in those cases kmin(n, d = n− e) = n(n−1)
e(e+1)

.

For n ≤ 10 and all d it is possible to construct LHDs with dimension k meeting the

lower bound d n(n−1)
(n−d)(n−d+1)

e, except in the cases n = 8, d = 3 and n = 10, d = 5. For the

first exception, k = 2 cannot be attained, since in two dimensions we have n ≥ d2; see

Van Dam et al. (2007). For the second exception, k = 3 cannot be attained, as we prove

by a complete search by computer (see also Section 3.5.1).

3.3.2 Attaining Baer’s bound

Baer (1992) showed that the maximin `∞-distance d for unrestricted designs of n points

on [0, n − 1]k equals n−1
b(n−1)1/kc . For n = mk + 1, this maximin distance equals mk−1. In

this section, we give a construction of maximin LHDs of n = mk points with separation

distance mk−1, and show that n cannot be smaller to achieve this separation distance.

First, we need the following lemma.

Lemma 3.5. For the `∞-distance, the maximin distance d for LHDs of n points in k

dimensions is a non-decreasing function of n.

Proof. Consider an LHD D of size n and separation distance d. Let the point of D with

first coordinate n− d have remaining coordinates x2, x3, . . . , xk. Now construct D′ from

D by increasing by one all coordinates that are at least x2, x3, . . . , xk, respectively, and

adding the point (n, x2, x3, . . . , xk). Then D′ is an LHD of size n + 1 with the same

separation distance d as D, which proves the lemma.

From this lemma and the above observation it follows that an LHD of n = mk points in

k dimensions has separation distance at most mk−1. We now give a construction of an

LHD attaining that upper bound.

50 Bounds for maximin Latin hypercube designs

Construction 3.1. Let m ≥ 2 and k ≥ 1 be integers, and let n = mk. For a =

(a1, a2, . . . , ak) ∈ {0, 1, . . . , m− 1}k and j = 1 . . . , k, let x(a) = (x1, x2, . . . , xk), where

xj =
k−1∑

i=k−j

ai+1−k+jm
i + mk−j − 1−

k−j−1∑
i=0

ak−im
i,

and let D be the design D = {x(a) | a ∈ {0, 1, . . . , m− 1}k}.

Examples of this construction are given in Tables 3.8 and 3.9.

a1 0 1 0 1 0 1 0 1
a2 0 0 1 1 0 0 1 1
a3 0 0 0 0 1 1 1 1
x1 3 7 1 5 2 6 0 4
x2 1 3 5 7 0 2 4 6
x3 0 1 2 3 4 5 6 7

Table 3.8: Construction 3.1 for m = 2 and k = 3.

a1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
a2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
a3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
a4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x1 7 15 3 11 5 13 1 9 6 14 2 10 4 12 0 8
x2 3 7 11 15 1 5 9 13 2 6 10 14 0 4 8 12
x3 1 3 5 7 9 11 13 15 0 2 4 6 8 10 12 14
x4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 3.9: Construction 3.1 for m = 2 and k = 4.

Proposition 3.10. The design D from Construction 3.1 is an LHD of n = mk points in

k dimensions with maximin `∞-distance d = mk−1.

Proof. One can check that for each j, the map sending a to xj is a one-to-one map from

{0, 1, . . . , m − 1}k to {0, 1, . . . , n − 1}. Thus D is an LHD on n points. Next, observe

the recursive structure of the construction. For fixed m, each point x′(a1, a2, . . . , ak−1) =

(x′1, x
′
2, . . . , x

′
k−1) of the LHD in dimension k − 1, and each value ak determines a point

x(a1, a2, . . . , ak) = (x1, x2, . . . , xk) in the LHD in dimension k, where xj = m(x′j + 1) −
ak − 1, for j = 1, . . . , k − 1, and xk =

∑k−1
i=0 ai+1m

i. For an example, see the constructed

designs in Tables 3.8 and 3.9. We use this recursion now to prove by induction on

k that the separation distance is d = mk−1. Of course this is trivial for k = 1, the

basis for induction. Now suppose that the statement is true for k − 1. Let a and b ∈
{0, 1, . . . , m − 1}k, and consider the corresponding design points x(a) = (x1, x2, . . . , xk)

and y(b) = (y1, y2, . . . , yk), respectively. If xk and yk differ by at least d, then we are

done, hence we may assume that they differ by at most d − 1. Then it follows that ak

and bk differ by at most one. Since the points x′ = (1
m

(xj + ak + 1) − 1)j=1,...,k−1 and

y′ = (1
m

(yj +bk +1)−1)j=1,...,k−1 are in the LHD of dimension k−1 (as explained above),

3.3 Upper bounds for the `∞-distance 51

which by assumption has separation distance mk−2, it follows that if ak = bk, then x

and y are at distance at least m · mk−2 = d. Moreover, if ak and bk differ by one, say

(without loss of generality) that ak = bk + 1, then the points x′ and y′ are at distance

at least mk−2. If this distance is at least mk−2 + 1, then m(x′ + 1) and m(y′ + 1) have

distance at least d + m, hence x and y are at distance at least d + m − 1 ≥ d. If the

aforementioned distance between x′ and y′ is however exactly mk−2, then (a1, a2, . . . , ak−1)

and (b1, b2, . . . , bk−1) must differ (by one) in exactly one coordinate, say the t-th one. If

at = bt − 1, then yt − xt = mk−1 − bk + ak = d + 1; otherwise at = bt + 1, and then

xk = yk + mk−1 + mt−1 > d, and so in any case x and y have distance at least d. The

statement now follows by induction.

In fact, we can slightly generalize the above result.

Proposition 3.11. Let m ≥ 2, k ≥ 2, and t ≤ m be nonnegative integers, and let

n = mk + t. Then the maximin distance d for LHDs of n points in k dimensions satisfies

d = mk−1.

Proof. It follows from Lemma 3.5 and Proposition 3.10 that the maximin distance is at

least as stated. From Baer’s upper bound n−1
b(n−1)1/kc (rounded down) it follows that it is

at most as stated.

Note also that if D is an LHD with separation distance d, and we remove an arbitrary

point (x1, x2, . . . , xk) from D, and from the remaining points in D we decrease by one all

coordinates that are larger than x1, x2, . . . , xk, respectively, then we obtain an LHD of size

n−1 with separation distance at least d−1. Thus the maximin distance cannot increase

by more than one as n increases by one. We now show that the above construction is

extremal in the sense that we cannot decrease n and still achieve the same maximin

distance.

Proposition 3.12. Let m ≥ 2 and k ≥ 2 be integers, and let n = mk − 1. Then the

maximin `∞-distance d for LHDs of n points in k dimensions satisfies d = mk−1 − 1 .

Proof. By the above observation and Proposition 3.10 it suffices to prove that an LHD

on n points cannot have separation distance d = mk−1. Suppose on the contrary that we

have such an LHD. Partition the set I = {0, 1, . . . , n − 1} into m parts: Ii = {id, id +

1, . . . , id + d− 1}, i = 0, . . . , m− 2 (each of cardinality d), and Im−1 = {(m− 1)d, (m−
1)d + 1, . . . , (m − 1)d + d − 2} (of cardinality d − 1). Accordingly, partition the set Ik

into mk parts Ii1× Ii2×· · ·× Iik . In each of these parts the points are at mutual distance

at most d− 1, hence each part contains at most one design point. Suppose now that the

part Ii1 × Ii2 × · · · × Iik does not contain a design point. Since Ii1 × I × · · · × I then

contains |Ii1| points on one hand, and at most mk−1 − 1 = d− 1 on the other hand, this

52 Bounds for maximin Latin hypercube designs

implies that i1 = m− 1. Similarly it follows that i2 = · · · = ik = m− 1, hence all parts

except Im−1 × Im−1 × · · · × Im−1 contain precisely one point.

Now consider a slightly different partition of I, i.e., into parts Ji = Ii, for i =

0, . . . , m−3, Jm−2 = Im−2\{(m−1)d−1}, and Jm−1 = {(m−1)d−1}∪Im−1. By consider-

ing the partition of Ik into parts Ji1×Ii2×· · ·×Iik , it follows that Jm−1×Im−1×· · ·×Im−1

contains precisely one design point. Similarly Im−1×Jm−1×· · ·× Im−1 contains precisely

one design point. Since Im−1×Im−1×· · ·×Im−1 does not contain a design point, these two

points must be distinct. However, both are contained in Jm−1×Jm−1×Im−1×· · ·×Im−1,

which contradicts the fact that also this part can contain at most one design point.

3.3.3 Bounding by projection and partitioning in three dimen-
sions

Consider a three-dimensional LHD of n points (xi, yi, zi), i = 1, . . . , n, with `∞-distance

d. Now, project all design points for which zi ≤ d − 1 onto the (x, y)-plane. Since the

z-values of all these design points differ less than d, the differences of the x- or y-values

should at least be d for all points, i.e., the projected points form a two-dimensional

design with separation distance d. The same holds for any other “layer” within the

three-dimensional LHD for which the z-values of the design points differ less than d. By

taking the appropriate layer and further analyzing the projected design we obtain the

following proposition.

Proposition 3.13. For integers n ≥ 3 and d ≥ 2, let N(n, d) be given by

N(n, d) =

bn
d
c∑

i=1

(⌊
n− bn

d
c − i + 1

d

⌋
+ 1

)
+ min

{
n− dbn

d
c,

⌊
n− 2bn

d
c

d

⌋
+ 1

}
. (3.7)

The maximal d such that d ≤ N(n, d) is an upper bound for the `∞-maximin distance

dmax for a three-dimensional LHD of n points.

Proof. Consider the mutually disjoint “layers” Ii = {id, id + 1, . . . , id + d − 1}, i =

0, . . . , bn
d
c−1, of z-values of the LHD. Among these bn

d
c layers there must be at least one

for which the corresponding projected design (as described above) has all its x-values at

most n − bn
d
c (since all x-values are distinct). The projection of this layer will be onto

the (n− bn
d
c)× (n− 1)-grid; see Figure 3.3.

In Figure 3.3, one can identify bn
d
c mutually disjoint strips of size (n−bn

d
c)× (d− 1).

Furthermore, since the differences in y-values within each strip are less than d, the x-

values have to differ at least d, and, hence, the first strip contains at most bn−bn
d
c

d
c +

1 points. Moreover, since all x-values are distinct, the second strip contains at most

bn−bn
d
c−1

d
c+ 1 points, the third strip at most bn−bn

d
c−2

d
c+ 1 points, et cetera.

3.4 Upper bounds for the `1-distance 53

•
•
•
•

•
•
•
•

0 n − bn

d
c n − 1

x

0

d − 1

d

2d − 1

2d

3d − 1

dbn

d
c

n − 1

y

Remainder

•
•

•
d

d

Figure 3.3: Strips within the projection onto the (x, y)-plane.

When n is not divisible by d, the remaining “partial” strip contains at most bn−2bn
d
c

d
c+

1 points, but also at most n−dbn
d
c points. Note that in case n is divisible by d (and there

is no remaining strip), the latter term is equal to 0 and the former term is non-negative

(since d ≥ 2). Thus, N(n, d) is an upper bound for the number of points in the projected

design, and the result follows.

For values of n up to 165, the corresponding upper bounds are provided in Table 3.10.

For many values of n the bound is better than Baer’s bound. The bound also confirms

Proposition 3.12 for k = 3 and m ≤ 5.

Size n ≤ 3 5 10 13 15 18 21 30 34 38 41 45 49 53 68

Bound 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Size n ≤ 73 78 83 87 92 97 102 107 130 136 142 148 154 159 165

Bound 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 3.10: Upper bound for `∞-maximin distance dmax for several n.

3.4 Upper bounds for the `1-distance

In this section, we apply the ideas of Section 3.2.1 concerning the `2-distance to the

`1-distance. Bounding by the average gives the following bound.

Proposition 3.14. Let D be an LHD of n points in k dimensions. Then the separation

`1-distance d satisfies

d ≤
⌊

(n + 1)k

3

⌋
.

54 Bounds for maximin Latin hypercube designs

Proof. Let D = {x1, . . . ,xn}, with xi = (xi1, . . . , xik). The average distance among the

points of D is:

1(
n
2

)
∑
i>j

∑

h

|xih − xjh| = 1(
n
2

)
∑

h

∑
i>j

|xih − xjh| = 1(
n
2

)
∑

h

∑

i′>j′
(i′ − j′) = k(n + 1)/3,

and rounding finishes the proof.

Similar remarks as in the `2-case apply here. More evidence that the bound is not of the

right order to be tight if k is fixed is given by the case k = 2, where the maximin distance

is known to be b√2n + 2c; see Van Dam et al. (2007). The analogue of Lemma 3.1 is

the following.

Lemma 3.6. Let dmax(n, k) be the maximin `1-distance of an LHD of n points in k

dimensions. Then dmax(n, k1 + k2) ≥ dmax(n, k1) + dmax(n, k2).

We can write the maximin distance d as the solution of the following integer programming

problem:

max d
s.t.

∑
π∈Sn

kπ|π(i)− π(j)| ≥ d, ∀ i > j∑
π∈Sn

kπ = k
kπ ∈ N0, ∀ π ∈ Sn,

(3.8)

where Sn is the set of permutations of {1, 2, . . . , n}. As before, we may restrict the set

Sn to its first half when ordered lexicographically, and we may assume that kπ∗ ≥ 1 for

an arbitrary permutation π∗.

We again consider the cases n = 3, 4, and 5 to show the strength of the bound in

Proposition 3.14.

Proposition 3.15. For n = 3, the maximin `1-distance satisfies dmax(3, k) = b4k
3
c.

Proof. The stated result follows from solving the above integer programming problem

(3.8) by hand (the number of variables is 3). Alternatively, it also follows by using

the upper bound and recursively applying Lemma 3.6 starting from dmax(3, 1) = 1,

dmax(3, 2) = 2 (both trivial), and dmax(3, 3) = 4. The latter is attained by the design

{(0, 1, 2), (1, 2, 0), (2, 0, 1)}.

Proposition 3.16. For n = 4, the maximin `1-distance satisfies dmax(4, k) = b5k
3
c − 1 if

k ≡ 3 (mod 6), and dmax(4, k) = b5k
3
c otherwise.

3.4 Upper bounds for the `1-distance 55

Proof. First, we show that the upper bound b5k
3
c cannot be attained if k ≡ 3 (mod 6).

Suppose that k is a multiple of 3, and that an LHD with separation distance d = 5k/3

exists. This implies that all points in the design are at equal distance. Fix one point,

and let k0 be the number of coordinates where this point is 0 or 3, and let k1 = k− k0 be

the number of coordinates where it is 1 or 2. It follows that the average distance of this

point to the other points equals 2k0 + 4
3
k1 = 5

3
k. It now follows that k1 = k/2, hence k

should be even. Thus, for k ≡ 3 (mod 6) the bound cannot be attained.

By solving the integer programming problem (3.8) for k ≤ 6 by computer and using

Lemma 3.6 (with k2 = 6), we then find that the upper bound b5k
3
c is attained for all

k except for k ≡ 3 (mod 6), and that for these exceptions the maximin distance is one

less.

Proposition 3.17. For n = 5, the maximin `1-distance satisfies dmax(5, k) = 2k − 1 if

k ≤ 4 or k = 7, and dmax(5, k) = 2k otherwise.

Proof. We first show that the bound 2k cannot be attained for k ≤ 4 and k = 7. If the

bound is attained, then all points of the design are at equal distance. Fix a point, let k0 be

the number of coordinates where this point is 0 or 4, let k1 be the number of coordinates

where it is 1 or 3, and let k2 be the number of coordinates where it is 2. It follows that

the average distance of this point to the other points equals 10
4
k0 + 7

4
k1 + 6

4
k2 = 2k. Since

k0 + k1 + k2 = k, it follows that k1 + 4
3
k2 = 2

3
k. For 2 ≤ k ≤ 4 and k = 7, there is

a unique nonnegative integer solution (k0, k1, k2) to these equations, and so each point

has the same number k2 of coordinates where this point is 2. This implies that the total

number of coordinates where a 2 occurs equals 5k2 on one hand, and k on the other hand.

This gives a contradiction in these cases.

By solving the integer programming problem (3.8) for k ≤ 9 by computer, and using

Lemma 3.6 (with k2 = 5 or 6), we then find that the upper bound 2k is attained for all

k except for k ≤ 4 and k = 7, and that for these exceptions the maximin distance is one

less than the given upper bound.

Also for n = 6 and n = 7, we computed the integer programming problem (3.8) for

k ≤ 20; see Tables 3.11 and 3.12. Note that for some values of k only a lower bound

was obtained. The tables show that the upper bound is again attained for many values

of k. In particular it follows that for n = 6, the upper bound b7k
3
c is attained for all

k ≡ 0, 1, 2, 5 (mod 6), except for k = 1, 2 and possibly for k = 7. For n = 7, the upper

bound b8k
3
c is attained for all k ≡ 0, 1 (mod 3), except for k = 1 and 3. Similar to

Section 3.2.1, we thus obtained a bound that is tight for n fixed and k increasing.

56 Bounds for maximin Latin hypercube designs

Dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dmax(6, k) 1 3 6 8 11 14 ≥ 15 18 ≥ 20 ≥ 22 25 28 30 32 ≥ 34 ≥ 36 39 42 44 46
Upper bound 2 4 7 9 11 14 16 18 21 23 25 28 30 32 35 37 39 42 44 46

Table 3.11: Maximin `1-distance for LHDs of 6 points.

Dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dmax(7, k) 1 4 6 10 12 16 18 ≥ 20 24 26 ≥ 28 32 34 ≥ 36 40 42 ≥ 44 48 50 ≥ 52
Upper bound 2 5 8 10 13 16 18 21 24 26 29 32 34 37 40 42 45 48 50 53

Table 3.12: Maximin `1-distance for LHDs of 7 points.

3.5 Final remarks and conclusions

3.5.1 Final remarks

By a branch-and-bound algorithm we were able to find maximin LHDs in three dimensions

for small n and the three distance measures `2, `1, and `∞. The maximin distances are

given in Table 3.13.

Size n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Squared maximin `2-distance 3 6 6 11 14 17 21 22 27 30 36 41 42 48
Maximin `1-distance 3 4 4 5 6 6 7 8 8 8 9 10 10 11 11
Maximin `∞-distance 1 2 2 2 3 3 4 4 4 4 5 5 5 6 6 6

Table 3.13: Maximin distances for LHDs in three dimensions.

The corresponding maximin designs and all other (approximate) maximin LHDs that ap-

peared in this chapter can be downloaded from http://www.spacefillingdesigns.nl.

In two dimensions, the `∞-maximin distance is equal to bn 1
2 c; see Van Dam et al.

(2007). The results in three dimensions suggest that the corresponding `∞-maximin

distance equals bn 2
3 c. A natural extension would be that the `∞-maximin distance in k

dimensions equals d = bn k−1
k c. However, this is not the case in general, because for the

case n = 17 and k = 23 the optimal distance is smaller than b17
22
23 c = 15 according to

Proposition 3.6. The expression for d may, however, still provide an upper bound for the

maximin distance.

Another interesting point is that we conjecture—but were unable to prove—that the

analogue of Lemma 3.5 holds for the `2- and `1-distance measures, i.e., that also for these

distance measures the maximin distance is non-decreasing in n.

3.5.2 Conclusions

We have obtained bounds for the separation distance of LHDs for several distance mea-

sures. These bounds are useful to assess the quality of approximate maximin LHDs by

comparing their separation distances with the corresponding upper bounds. For the `2-

3.5 Final remarks and conclusions 57

and `1-distances we obtain bounds by considering the average distance. These bounds

are almost tight when the dimension k is relatively large. For the `2-distance in two di-

mensions we obtain a method that produces a bound that is better than Oler’s bound if

the number of points of the LHD is at most 400. For the `∞-distance we obtain a bound

by looking at it as a graph covering problem. Besides this bound we construct maximin

LHDs attaining Baer’s bound for infinitely many values of n (the number of points) in

all dimensions. Finally, we present a method for obtaining a bound for three-dimensional

LHDs that is better than Baer’s bound for many values of n.

58 Bounds for maximin Latin hypercube designs

3.A Bounds on two-dimensional `2-maximin LHDs
n Oler d∗2n (Y (d)) d∗2n (Ỹ (d)) d2 n Oler d∗2n (Y (d)) d∗2n (Ỹ (d)) d2 n Oler d∗2n (Ỹ (d)) d2

2 5 2 2 2∗ 59 85 73 73 61∗ 120 162 148 128
3 5 2 2 2∗ 60 85 73 73 65∗ 130 173 160 145
4 8 5 5 5∗ 61 85 74 74 65∗ 140 185 173 149
5 10 5 5 5∗ 62 89 74 74 65∗ 150 200 185 170
6 10 5 5 5∗ 63 90 74 74 65∗ 160 212 202 178
7 13 8 8 8∗ 64 90 74 74 65∗ 170 225 208 185
8 13 8 8 8∗ 65 90 80 80 68∗ 180 234 225 202
9 17 10 10 10∗ 66 90 80 80 68∗ 190 245 234 208
10 18 13 13 10∗ 67 90 80 82 74∗ 200 261 250 218
11 20 13 13 10∗ 68 97 80 85 74∗ 210 274 261 241
12 20 13 13 13∗ 69 98 85 85 74∗ 220 281 274 245
13 20 13 13 13∗ 70 98 85 85 74∗ 230 298 290 250
14 25 17 17 17∗ 71 100 85 85 74 240 306 298 269
15 26 17 17 17∗ 72 101 85 89 74 250 320 314 277
16 26 18 18 17∗ 73 101 85 89 74 260 333 325 292
17 29 20 20 18∗ 74 104 89 89 74 270 346 338 305
18 29 20 20 18∗ 75 106 89 90 80 280 360 349 320
19 32 25 25 18∗ 76 106 90 90 85 290 370 365 320
20 32 25 25 18∗ 77 106 97 97 85 300 377 373 338
21 34 25 25 20∗ 78 109 97 97 85 310 394 388 346
22 34 26 26 25∗ 79 109 97 97 85 320 405 401 356
23 37 29 29 26∗ 80 109 97 97 85 330 416 410 370
24 37 29 29 26∗ 81 113 100 100 85 340 433 425 386
25 40 29 29 26∗ 82 113 100 101 85 350 445 442 401
26 41 29 29 26∗ 83 116 100 104 90 360 457 450 409
27 41 32 32 26∗ 84 117 100 104 90 370 468 464 410
28 41 34 34 29∗ 85 117 100 106 90 380 481 477 425
29 45 34 34 29∗ 86 117 104 106 97 390 493 490 442
30 45 34 34 29∗ 87 117 106 106 97 400 505 505 450
31 45 34 37 32∗ 88 122 106 106 97 410 514 514 461
32 45 37 40 32∗ 89 122 106 109 97 420 522 530 466
33 50 40 40 34∗ 90 125 109 109 98 430 541 544 485
34 52 41 41 37∗ 91 125 109 109 98 440 549 549 490
35 53 41 41 37∗ 92 125 113 113 98 450 565 565 509
36 53 41 41 37∗ 93 128 113 116 100 460 578 580 509
37 53 45 45 37∗ 94 130 116 116 100 470 586 592 533
38 53 45 45 41∗ 95 130 117 117 100 480 601 601 545
39 58 45 45 41∗ 96 130 117 117 101 490 613 617 549
40 58 45 50 41∗ 97 130 117 117 101 500 626 629 565
41 61 45 52 41∗ 98 130 117 122 101 510 637 641 578
42 61 50 52 41∗ 99 136 117 125 101 520 650 656 586
43 61 52 52 41∗ 100 137 117 125 109 529 661 661 586
44 65 52 52 50∗ 101 137 117 125 109
45 65 52 53 50∗ 102 137 125 125 113
46 68 53 53 50∗ 103 137 125 125 113
47 68 58 58 50∗ 104 137 125 130 117
48 68 58 58 50∗ 105 137 128 130 117
49 72 58 58 50∗ 106 145 130 130 117
50 73 61 61 52∗ 107 146 130 130 117
51 74 61 61 52∗ 108 146 130 130 117
52 74 61 65 58∗ 109 149 130 136 117
53 74 61 65 58∗ 110 149 130 136 117
54 74 61 65 58∗ 111 149 136 136 128
55 80 65 65 58∗ 112 149 136 137 128
56 80 65 68 58∗ 113 153 137 137 128
57 82 68 68 58∗ 114 153 137 137 128
58 82 68 73 61∗

Table 3.14: Oler bound, bounds based on Y (d) and Ỹ (d), and d2 of the best known LHD.
When an optimal maximin LHD is known, the corresponding d2 is marked with ∗.

Chapter 4

Nested maximin
Latin hypercube designs

Mathematic puns are the first sine of madness.

(Johann Von Haupkoph)

4.1 Introduction

Latin hypercube designs are very useful in the approximation of black-box functions. By

definition, black-box functions have no explicit description, but can be evaluated to ob-

tain output values for specific input values. As evaluations of a black-box function often

involve time-consuming computer simulations, we would like to construct an approximat-

ing model (or metamodel) based on evaluations in a (small) number of points; see, e.g.,

Montgomery (2009), Sacks et al. (1989a), (1989b), Myers (1999), Jones et al. (1998),

Booker et al. (1999), Den Hertog and Stehouwer (2002), Santner et al. (2003), Queipo

et al. (2005), Wang and Shan (2007), and Kleijnen (2008). A review of metamodeling

applications in structural optimization can be found in Barthelemy and Haftka (1993),

and in multidisciplinary design optimization in Sobieszczanski-Sobieski and Haftka (1997)

and Simpson et al. (2008).

We use the term design to denote the set of evaluation points. As observed by many

researchers, there is an important distinction between designs for computer experiments

and designs for the more traditional response surface methods. Physical experiments

exhibit random errors whereas computer experiments are often deterministic (see, e.g.,

Simpson et al. (2004), Forrester et al. (2006), and Forrester et al. (2008)). Therefore,

designs for experiments often evaluate certain points multiple times. For designs for

computer experiments, replication is redundant because the same input always results in

the same output. This distinction is crucial, so one of the main aims in the field of design

59

60 Nested maximin Latin hypercube designs

of computer experiments (DoCE) is therefore to obtain efficient designs for computer

experiments.

As is recognized by several authors, a design for computer experiments should at

least satisfy the following two criteria (see Johnson et al. (1990) and Morris and Mitchell

(1995)). First of all, the design should be space-filling in some sense. When no details

on the functional behavior of the response parameters are available, it is important to be

able to obtain information for the entire design space. Therefore, design points should

be “evenly spread” over the entire region. Secondly, the design should be non-collapsing.

When one of the design parameters has (almost) no influence on the black-box function

value, two design points that differ only in this parameter will “collapse”, i.e., they can be

considered as the same point that is evaluated twice. As evaluation of the deterministic

black-box function is often time-consuming, this is not a desirable situation. Therefore,

two design points should not share any coordinate values when it is not known a priori

which parameters are important. Moreover, we would like the projections of the points

onto the axes to be separated as much as possible. When we consider a black-box function

on a box-constrained domain, this can be accomplished by using Latin hypercube designs.

A Latin hypercube design (LHD) of n points in k dimensions can be defined as an n× k

matrix, were each column is a permutation of the set {0, 1
n−1

, 2
n−1

, . . . , 1}. The rows

xi = (xi1, xi2, . . . , xim), i = 1, . . . , n, then define the n design points. Because the columns

are permutations of the above set, for all of the k coordinates it holds that no two design

points have the same value.

To obtain space-filling designs, the evaluation points are chosen in such a way that the

separation distance (i.e., the minimal distance among any pair of points) is maximized,

leading to so-called maximin designs. Other space-filling designs, like minimax, integrated

mean squared error (IMSE), Audze-Eglais, discrepancy and maximum entropy designs,

are also used in the literature. For a good survey of these designs see the book of Santner

et al. (2003). Goel et al. (2008) argue that it would be better to use several criteria when

selecting a design. However, Santner et al. (2003) show that maximin Latin hypercube

designs—generally speaking—yield good approximations.

Maximin Latin hypercube designs were first constructed by Morris and Mitchell (1995)

using simulated annealing. Ye et al. (2000) considered only the class of symmetric ap-

proximate maximin LHDs to reduce the computing effort. Jin et al. (2005) introduce

the enhanced stochastic evolutionary (ESE) algorithm for finding various space-filling

designs, including approximate maximin LHDs. Husslage et al. (2008) use the ESE

algorithm to construct approximate maximin LHDs for up to 10 dimensions and up

to 300 design points. Furthermore, they also construct approximate maximin LHDs

by optimizing the maximin criterion over all LHDs having a certain periodic structure.

This approach is an extension of the method used by Van Dam et al. (2007) to ob-

4.1 Introduction 61

tain two-dimensional approximate maximin LHDs. In that paper, two-dimensional max-

imin LHDs are also found using a branch-and-bound algorithm. Finally, Grosso et al.

(2009) use Iterated Local Search heuristics to find good approximate maximin LHDs for

up to 10 dimensions. The best designs found in these papers are published on-line at

http://www.spacefillingdesigns.nl. This website also contains the upper bounds on

the separation distance for certain classes of maximin LHDs found by Van Dam et al.

(2009b). These upper bounds can be used to asses the quality of approximate maximin

LHDs.

In real-life, there are situations where we need a special type of designs called nested

designs. This type of design consists of two separate designs, with the requirement

that one design is a subset of the other design. Van Dam et al. (2009a) show how to

construct one-dimensional nested maximin designs; the current chapter focuses on two-

and higher-dimensional designs1. Four main reasons for nesting maximin designs are:

validation, models with different levels of accuracy, linking parameters, and sequential

evaluations.

To start with the first reason, consider the problem of fitting and validating a partic-

ular metamodel. In practice, the following approach is often used. First, a metamodel

is fitted to the responses obtained when evaluating the design points in the training set.

Then, a new set of design points—called the test set—is evaluated and the responses

are compared with the response values predicted by the metamodel. If the differences

between the predicted and the actual response values are small, the metamodel is consid-

ered to be valid; see also Cherkassky and Mulier (1998) for a more detailed description of

the use of training and test sets. Because a metamodel should be a global approximation

model, i.e., it should be valid for the entire feasible region, both the training set and

the test set should cover the entire region. Moreover, the design points in the test set

should not lie too close to the design points in the training set, i.e., the total set of design

points should be space-filling. This can be accomplished by nesting two designs that are

optimized with respect to, for example, the maximin criterion. The design points that

are in both designs then form the training set and the points that are only in the large

design make up the test set.

The second reason applies when an output variable of a process, product, or system

is modeled by two black-box functions with different accuracy levels. These black-box

functions could, for instance, be simulation models with different levels of detail. As

a more accurate model is in general also more time-consuming, we can perform fewer

evaluations of the high-accuracy model than of the low-accuracy model in the same

amount of time. Instead of choosing to use either the high or low-accuracy model, we

can choose to use both. We can then evaluate the high-accuracy model at all points in

1This chapter is a revision and extension of Husslage et al. (2005).

62 Nested maximin Latin hypercube designs

the small design and the low-accuracy model at all points in the large design. By using

a nested design, high and low-accuracy evaluations are thus performed at all points in

the small design. Multi-fidelity methods can combine the results from both models to

obtain a metamodel that is better than a metamodel obtained by using only one of the

two models and the same amount of time. More information on multi-fidelity methods

can be found in Cressie (1993), Kennedy and O’Hagan (2000), Qian et al. (2006), and

Forrester et al. (2007).

A third reason for using nested designs concerns linking parameters. Consider a prod-

uct that consists of two components, each represented by a separate black-box function.

To obtain an approximating model describing the behavior of the complete product, we

need function evaluations of each black-box function. When one black-box function is

more time-consuming to evaluate than the other, it could be better to perform different

numbers of function evaluations of each black-box function. Moreover, in practice it may

occur that these functions have input parameters in common; such parameters are called

linking parameters, see Husslage et al. (2003). Evaluating the linking parameters at

the same setting in both functions leads to an evaluation of the product. Not only do

product evaluations provide a better understanding of the product, they are also very

useful in the product optimization process. Another reason for using the same settings

for (linking) parameters is due to physical restrictions on the black-box functions. Set-

ting the parameters for computer experiments can be a time-consuming job in practice,

because characteristics, such as shape and structure, have to be redefined for every new

experiment. Therefore, it is preferable to use the same settings as much as possible. By

constructing nested designs, we can determine the settings for linking parameters.

Nested designs are also useful when dealing with sequential evaluations. In practice it

is common that after evaluating an initial set of points, extra evaluations are needed. As

an example, suppose we construct an approximating model for some black-box function

based on n1 function evaluations. However, after validating the obtained model, it turns

out that an extra set of function evaluations is needed to build a better model. We then

face the problem of constructing a design on a total of n2 points given the initial design

on n1 points with n2 > n1. To anticipate the possibility of extra evaluations, one can

construct the two designs (on n1 and n2 points) at once, by constructing a nested design.

An alternative method to deal with this situation would be sequential sampling. As this

is beyond the scope of this chapter, we refer to Jones et al. (1998), Jin et al. (2002), and

Kleijnen and Van Beers (2004) for more information on sequential sampling.

Above, we described why both Latin hypercube designs and nested designs are im-

portant. In this chapter, we construct nested maximin Latin hypercube designs in k

dimensions with k ≥ 2. Section 4.2 gives a more detailed formulation of this problem.

When nesting two designs, it is not always possible to satisfy the LHD-structure for

4.2 Problem formulation 63

both designs. Therefore, we introduce in Section 4.3 three different grid-structures that

approximate the LHD-structure as good as possible. In Section 4.4, we present a branch-

and-bound method for determining two-dimensional nested maximin designs and discuss

two-dimensional Pareto optimal nested designs. For higher dimensions, determining the

nested LHD that maximizes d becomes too time consuming. In Section 4.5, we therefore

introduce a heuristic that also aims to maximize d but does not guarantee to find the op-

timal d. In Section 4.6, numerical results obtained with different variants of this heuristic

are presented and compared. Furthermore, we discuss how to select a grid-structure and

design based on these results. Finally, Section 4.7 contains conclusions and suggestions

for further research.

4.2 Problem formulation

In this chapter, we focus on the problem of nesting two designs, X1 and X2, with X1 ⊂ X2,

Xj = {xi = (xi1, xi2, . . . , xim) | i ∈ Ij}, and |Ij| = nj, j = 1, 2. Thus, the index set

I1 ⊂ I2 = {1, 2, . . . , n2} defines which design points xi are part of both designs. The

nested design is defined by the combination of X1 and X2. All design parameters are

scaled such that they take values in the interval [0, 1].

The first condition that we impose on the nested designs is that X1 and X2 must

both be non-collapsing. This can be accomplished by using the LHD-structure. The

main property of a regular LHD is that all points when projected onto one of the axes

are equidistantly distributed. To form an LHD, the points in X1 must thus be projected

onto the set {0, 1
n1−1

, 2
n1−1

, . . . , 1} and the points in X2 onto {0, 1
n2−1

, 2
n2−1

, . . . , 1}. In

order for X1 and X2 to both form a Latin hypercube design, the first set must be a

subset of the second. However, this only holds when n2 − 1 is a multiple of n1 − 1 or,

stated differently, when

c2 :=
n2 − 1

n1 − 1

is integer. In all other cases, we have to compromise on the LHD-structure of one or

both designs. As there are different ways of doing this, we propose three different grid-

structures in Section 4.3: nested n1-grids, nested n2-grids, and grids with nested maximin

axes. All of these grid-structures are constructed to compromise as little as possible on

the LHD-structure. When c2 is integer, the different grid-structures coincide and are such

that both X1 and X2 are LHDs.

Secondly, we aim to determine the design points xi and the set I1 such that both

designs are as much as possible space-filling given the chosen grid-structure. To optimize

the space-fillingness, we choose to use the maximin distance criterion. As the distances

between the points in X1 will naturally be greater than the distances between the points in

64 Nested maximin Latin hypercube designs

X2, scaling of these distances is necessary to enable a fair comparison with the maximin

distance criterion. Therefore, we define dj as the minimal scaled distance between all

points in the design Xj:

dj := min
l,m∈Ij

l 6=m

d(xl, xm)

sj

, j = 1, 2, (4.1)

where d(·, ·) is the Euclidean distance measure and s1 and s2 are scaling factors for the

Euclidean distances in X1 and X2, respectively. Because one-dimensional designs of n

points have distance 1/(n−1) and the minimum distance of n points in an k-dimensional

hypercube is at most of the order 1/ k
√

n− 1, it seems natural to use scaling factors

sj := 1/ k
√

nj − 1, j = 1, 2

in (4.1) for k-dimensional designs. As we use the maximin distance criterion, we have

to maximize the minimal scaled distance between any pair of points in X1 and X2.

Therefore, what remains is to maximize the minimal distance

d = min{d1, d2}

over all I1 ⊂ I2, with |I1| = n1, and xi ∈ [0, 1]2.

We are aware that the above formulation is just one way of combining the two sep-

aration distances into one objective and that other scaling factors or formulations are

also possible. Using different scaling factors is no problem as all methods in this chapter

can also be used for other values of s1 and s2. In Section 4.7, we discuss some other

alternative objectives. Dealing with maximizing d1 and d2 as a bi-objective optimization

problem is another possibility. For two-dimensional nested designs with small n1 and n2,

we use this approach in Section 4.4.2. However, to limit the scope of this chapter, our

main focus is on the above maximin objective.

By limiting the choice of design points to certain grids to obtain non-collapsingness, we

generally obtain less space-filling designs. However, as a comparison of two-dimensional

non-nested designs in Van Dam et al. (2007) shows, the loss in space-fillingness by im-

posing the LHD-structure is quite small. Furthermore, the non-collapsingness achieved

by the LHD-structure is important when dealing with deterministic computer experi-

ments. Especially when black-box function evaluations are expensive, using a separate

screening design to determine the significant design parameters is often not an option.

Consequently, we assume that the benefit of non-collapsingness justifies a limited loss in

space-fillingness. By determining space-filling nested LHDs, we aim to limit this loss as

much as possible.

4.3 Grid-structures for nested Latin hypercube designs 65

4.3 Grid-structures for nested Latin hypercube designs

As mentioned in the previous section, X1 and X2 can only both form a Latin hypercube

design if c2 := n2−1
n1−1

is integer. When n1 and n2 do not satisfy this condition, we have

to use a different structure that compromises on the LHD-structure of one or both de-

signs. In this section, we introduce three different grid-structures that represent different

compromises. A discussion on how to decide which grid-structure is most suitable for a

particular situation is provided in Section 4.6.

To illustrate the different structures, examples are provided for the two-dimensional

case of n1 = 6 and n2 = 13 points. In Figures 4.1 and 4.2 also the individual maximin

Latin hypercube designs of n1 = 6 and n2 = 13 points are depicted to enable comparison

with the non-nested case. Note that Figures 4.1 is not a subset of Figure 4.2. Furthermore,

the circles illustrate the maximin distance because when we draw circles with the design

points as their center, the maximin distance is equal to largest diameter such that the

circles are non-overlapping. Moreover, it shows where the separation distance is attained.

0
1

5

2

5

3

5

4

5
1

0

1

5

2

5

3

5

4

5

1

Figure 4.1: A maximin Latin hypercube
design of 6 points; d1 = 1.0000.

0
1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12
1

0

1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12

1

Figure 4.2: A maximin Latin hypercube
design of 13 points; d2 = 1.0408.

4.3.1 Nested n2-grid

Before we explain the nested n2-grid, let us first introduce the term Xj-coordinates.

With Xj-coordinates we denote the levels obtained when projecting the design points of

design Xj onto one of the axes (or dimensions), for j = 1, 2. For Xj to be an LHD, the

Xj-coordinates must thus be equidistantly distributed for every dimension.

66 Nested maximin Latin hypercube designs

To construct a nested design where X2 is an LHD, we have to choose all design points

on the n2-grid, with grid points {0, 1
n2−1

, 2
n2−1

, . . . , 1}k. Remember that we selected the

LHD-structure because of the non-collapsingness with respect to the projections of the

design points onto the axes. For the design X2, the non-collapsingness is guaranteed

by the equidistant distribution of the X2-coordinates. To obtain a non-collapsing design

X1 ⊂ X2, we also want to select the X1-coordinates equidistantly distributed. If this is not

possible, we try to obtain a space-filling distribution of the X1-coordinates. Hence, what

remains is to add restrictions that lead to the desired distribution of the X1-coordinates.

To start, consider the case where c2 = n2−1
n1−1

∈ N. In this case, a non-collapsing design

X1 is obtained by limiting the choice of design points (of X1) to the set of equidistantly

distributed X1-coordinates {0, 1
n1−1

, 2
n1−1

, . . . , 1}k. See, for example, the two-dimensional

nested maximin Latin hypercube design of n1 = 16 and n2 = 31 points (with c2 = 2)

depicted in Figure 4.3. As all grid-structures coincide when c2 is integer, this design is

also a nested maximin design for the other two grid-structures. Therefore, we refer to it

as a nested maximin LHD instead of a nested maximin n2-LHD.

For the case c2 6∈ N, the situation is more complicated. Because we are bound to

the n2-grid, and n1 − 1 is no longer a divisor of n2 − 1, it is not possible to have the

X1-coordinates equidistantly distributed. From the one-dimensional case, however, we

know that for equidistantly distributed X2-coordinates (as is the case with the n2-grid)

it is optimal to have either bc2c − 1 or dc2e − 1 X2-coordinates between succeeding X1-

coordinates; see Van Dam et al. (2009a). Therefore, we require the X1-coordinates to be

separated by either bc2c 1
n2−1

or dc2e 1
n2−1

.

Note that this restriction still leaves multiple grids possible for design X1 when c2 6∈ N.

Figure 4.4 shows an example of a nested maximin design on a nested n2-grid of n1 = 6

and n2 = 13 points, with d = d2 = 0.9129 and d1 = 1.0035. In this and following figures,

the design points of X1 are represented by solid dots, the open dots represent the extra

design points needed to complete design X2, hence, the solid and open dots together form

the design points of X2. The diameters of the dotted and solid circles are equal to the

unscaled distance d1 ∗ s1 and d2 ∗ s2, respectively. They thus illustrated the separation

distances of the designs X1 and X2.

For the nested n2-grid, a suitable method to determine nested LHDs would seem to

take an existing LHD of n2-points for X2 and select a subset of n1 points for X1. Forrester

et al. (2007), for instance, use an exchange algorithm to implement this approach for

multi-fidelity modeling. Although this method is quite attractive because of its simplicity,

it does not generally yield a nested LHD satisfying all the restrictions of the nested n2-

grid. We illustrate this with the example in Figure 4.5. The figure shows a maximin

Latin hypercube design for n = 15 obtained in Van Dam et al. (2007). Let us assume we

want to construct a nested LHD with n1 = 8 and n2 = 15. Because in this case c2 = 2,

4.3 Grid-structures for nested Latin hypercube designs 67

0
1

5

2

5

3

5

4

5
1

0

1

5

2

5

3

5

4

5

1

Figure 4.3: A nested maximin Latin hy-
percube design of n1 = 16 and n2 = 31
points; d = d1 = d2 = 0.9309.

0
1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12
1

0

1

12

2

12

3

12

4

12

5

12

6

12

7

12

8

12

9

12

10

12

11

12

1

Figure 4.4: A nested maximin n2-Latin
hypercube design of n1 = 6 and n2 = 13
points; d = d2 = 0.9129 and d1 = 1.0035.

the nested n2-grid is unique and both the X1- and X2-coordinates must be equidistantly

distributed for both dimensions. The solid dots represent X1 when we satisfy this latter

restriction for the dimension on the horizontal axis. We can easily see that the distribution

of the X1-coordinates on the other axis is certainly not equidistant or space-filling. This

problem also occurs for many other Latin hypercube designs and is even more likely to

occur when the number of dimensions increases. Therefore, we do not use this method

to construct nested LHDs, but use the methods described in Sections 4.4.1 and 4.5.1.

0
1

14

2

14

3

14

4

14

5

14

6

14

7

14

8

14

9

14

10

14

11

14

12

14

13

14
1

0

1

14

2

14

3

14

4

14

5

14

6

14

7

14

8

14

9

14

10

14

11

14

12

14

13

14

1

Figure 4.5: Example of the problem occurring when taking X1 equal to a subset of an
existing LHD.

68 Nested maximin Latin hypercube designs

4.3.2 Nested n1-grid

When we want X1 to be an LHD instead of X2, we can use the nested n1-grid. The

design X1 is then obtained by choosing n1 design points on the n1-grid, with grid points

{0, 1
n1−1

, 2
n1−1

, . . . , 1}k. The additional X2-coordinates are placed equidistantly between

the X1-coordinates. Similar to the nested n2-grid, the (interiors of the) intervals formed

by consecutive X1-coordinates are again required to contain either bc2c − 1 or dc2e − 1

X2-coordinates. Hence, consecutive X2-coordinates are separated by either 1
bc2c

1
n1−1

or
1
dc2e

1
n1−1

. Again, this leaves multiple grids possible when c2 6∈ N. See Figure 4.6 for an

example of a nested maximin design on a nested n1-grid of n1 = 6 and n2 = 13 points,

with d = d2 = 0.9522 and d1 = 1.0000.

4.3.3 Grid with nested maximin axes

The use of the Latin hypercube structure in the construction of a nested maximin design

implies a preference of one design over the other. Design X1 is assumed to be more

important than design X2 when a nested n1-grid is used; design X2 is preferred over design

X1 in case of a nested n2-grid. If both sets are assumed to be of equal importance we

would like to treat them equally. To deal with this problem, the X1- and X2-coordinates

could be restricted to take only values at the levels of a (known) one-dimensional nested

maximin design of n1 and n2 points; see Van Dam et al. (2009a). The design points of X1

and X2 could then be chosen from the grid points obtained in this way. Note that in this

case the projections of the design points onto the axes are always optimally space-filling

with respect to the maximin distance criterion. Furthermore, note that a one-dimensional

maximin design, with c2 6∈ N, is (again) not unique, so there are multiple grids possible.

Figure 4.7 depicts an example of a nested maximin design of n1 = 6 and n2 = 13 points

on a grid with nested maximin axes, with d = d1 = 0.9589 and d2 = 0.9805.

4.4 Two-dimensional nested designs

4.4.1 Branch-and-bound algorithm

To obtain two-dimensional nested maximin LHDs, we use an extension of the branch-and-

bound algorithm of Van Dam et al. (2007). This extended branch-and-bound algorithm

works as follows. Given n1, n2 and the grid-structure, we first determine all possible

nested grids and calculate the possible distances that can occur for X1 and X2. These

distances form a discrete set that can be efficiently searched and optimized. To determine

whether a nested LHD exists with X1 and X2 having separation distances at least d1 and

d2, respectively, a branch-and-bound search is performed for each possible nested grid.

This branch-and-bound method is similar to the one used for the usual LHDs described

4.4 Two-dimensional nested designs 69

0
6

30

12

30

18

30

24

30
1

3

30

9

30

15

30

20

30

22

30

26

30

28

30

0

6

30

12

30

18

30

24

30

1

3

30

9

30

15

30

20

30

22

30

26

30

28

30

Figure 4.6: A nested maximin n1-Latin
hypercube design of n1 = 6 and n2 = 13
points; d = d2 = 0.9522 and d1 = 1.0000.

0
6

66

12

66

18

66

24

66

30

66

36

66

41

66

46

66

51

66

56

66

61

66
1

0

6

66

12

66

18

66

24

66

30

66

36

66

41

66

46

66

51

66

56

66

61

66

1

Figure 4.7: A nested maximin design of
n1 = 6 and n2 = 13 points on a grid with
nested maximin axes; d = d1 = 0.9589
and d2 = 0.9805.

in Van Dam et al. (2007); however, in general the nested grid-structures do not allow

for the refinements given there. In the search tree, a node at level t corresponds to a

partial nested design consisting of t design points (x1, . . . , xt), where the first n1 points

are in X1 and the points are, furthermore, ordered by ascending first coordinate. Nodes

in the tree are pruned when they correspond to partial nested designs that are collapsing

or that have separation distances smaller than d1 or d2.

Using the extended branch-and-bound algorithm, we obtained results for n2 up to 15

for all three grid-structures. For the cases where c2 ∈ N, the algorithm is refined so that

nested maximin LHDs could be obtained for n2 up to 32. The maximin distances of these

designs can be found in Tables 4.6 and 4.7 in Appendix 4.A. The corresponding designs

can be found on the website http://www.spacefillingdesigns.nl. In Section 4.6, the

results are compared and discussed.

4.4.2 Pareto nested designs

Besides nested designs that maximize the objective function d = min{d1, d2}, there are

also some other interesting nested designs, namely Pareto nested designs. We call a

combination of distances (d1, d2) Pareto optimal (or Pareto) if it is not possible to improve

one of the distances, without deteriorating the other distance. A Pareto nested design is

a nested design of which the distances (d1, d2) form a Pareto combination. For c2 ∈ N and

n2 ≤ 32, we have found all the Pareto combinations using a slightly adjusted version of

the branch-and-bound algorithm. Furthermore, the original branch-and-bound algorithm

70 Nested maximin Latin hypercube designs

already ensures that the distances (d1, d2) of all nested maximin designs provided in

Table 4.6 (in Appendix 4.A) are Pareto optimal.

n1 n2 Pareto combinations (d1, d2)

4 10 (0.8165, 0.9428), (1.2910, 0.7454)
4 16 (1.2910, 0.9309), (0.8165, 1.0646)
6 16 (1.0000, 0.7303), (0.6325, 1.0646)
9 17 (1.1180, 0.7906), (0.7906, 1.0607)
4 19 (1.2910, 0.9718), (0.8165, 1.0000)
7 19 (1.1547, 0.9718), (0.5774, 1.0000)

10 19 (1.0541, 0.7454), (0.7454, 1.0000)
11 21 (1.0000, 0.7071), (0.7071, 1.0000)
8 22 (1.0690, 0.8997), (0.5345, 0.9258)

12 23 (0.8528, 1.0871), (0.9535, 0.6742)
4 25 (1.2910, 1.0206), (0.8165, 1.0408)
5 25 (1.1180, 0.9129), (0.7071, 1.0408)
7 25 (1.1547, 0.8660), (0.5774, 1.0408)
9 25 (1.0000, 1.0408), (1.1180, 0.9129)

14 27 (1.0000, 1.0000), (1.1435, 0.8321)
4 28 (1.2910, 0.9623), (0.8165, 0.9813)

10 28 (0.9428, 0.9813), (1.0541, 0.8607)
5 29 (1.1180, 0.9636), (0.7071, 1.0177)
8 29 (1.0690, 0.9449), (0.8452, 0.9636)

15 29 (0.9636, 0.9636), (1.1019, 0.8018)
7 31 (1.1547, 0.9129), (0.5774, 0.9309)

16 31 (0.9309, 0.9309), (1.0646, 0.7746),
(0.7303, 1.0328)

Table 4.1: All two-dimensional pairs (n1, n2) with more than one Pareto combination;
c2 ∈ N, n2 ≤ 32.

Table 4.1 provides all Pareto combinations (d1, d2) corresponding to the pairs (n1, n2),

with c2 ∈ N and n2 ≤ 32, for which there exist more than one such combination. In

this table, the first entry corresponds to the optimal maximin combination (d1, d2), fol-

lowed by the other Pareto combination(s). Note that in case of n1 = 11 and n2 = 21

points there exist two different Pareto combinations, both with a maximin distance

equal to d = 0.7071. For the (n1, n2) pairs (9, 17) and (10, 19), the objective values

of the Pareto nested designs are also equal (0.7906 and 0.7454, respectively); how-

ever, the individual maximal distances of the second Pareto combination are smaller

than the maximal distances of the (optimal) first combination (1.0607 < 1.1180 and

1.0000 < 1.0541, respectively). The Pareto nested designs can also be found on the

website http://www.spacefillingdesigns.nl.

4.5 Higher-dimensional nested designs

4.5.1 Enhanced stochastic evolutionary algorithm

For dimensions higher than two and for larger values of n1 and n2, the above branch-and-

bound algorithm becomes too time-consuming for determing nested LHDs that maximize

d. In these cases, we can use heuristics to find nested approximate maximin LHDs,

4.5 Higher-dimensional nested designs 71

where “approximate” indicates that optimality is not guaranteed. One possible heuristic

is the ESE algorithm of Jin et al. (2005). Using this algorithm, Husslage et al. (2008)

obtain good results for approximate maximin LHDs. Furthermore, the algorithm is used

in Viana et al. (2007) to generate space-filling LHDs. Although this algorithm was

originally designed for non-nested designs, with some changes it is also applicable to

nested designs. Before we look at these changes, we first give a short description of the

original ESE algorithm; this description is based on Husslage et al. (2008).

The algorithm starts with an initial design and tries to find better designs by iter-

atively changing the current design. To determine if a new design can be accepted, a

threshold-based acceptance criterion is used. This criterion is controlled in the outer loop

of the algorithm. In the inner loop of the algorithm, new designs are explored.

The inner loop explores the design space as follows. At each iteration, first a dimension

m ∈ {1, . . . , k} is selected. The algorithm then creates a fixed number of new designs by

exchanging the mth coordinate value of two randomly chosen points of the current design.

The new design with the largest separation distance is then compared with the current

design using a threshold criterion. The criterion ensures that better designs are always

accepted and that worse designs can be accepted with a certain probability depending

on the threshold value. If the new design is accepted, it replaces the current design. This

proces is repeated until a certain stopping criterion is met.

The outer loop controls the threshold value. After the inner loop is completed, the

outer loop determines how much improvement is made in the inner loop. If the improve-

ment is above a certain level, the algorithm starts an improvement process in which it

tries to rapidly find a local optimum. It does this by lowering the threshold value and

thus accepting fewer deteriorations in the inner loop. If too little improvement is made,

an exploration process is started that is intended to escape from a local optimum. The

threshold value is first increased rapidly to move away from a local optimum and later

slowly decreased to find better designs after moving away. The final design given by the

algorithm is the best design found during all iterations of the inner loop.

To use the ESE algorithm for nested designs, the step that needs to be changed most

is the generation of new designs. When one point is selected from X1 and the other

from X2\X1, exchanging the mth coordinate value can distort the nested grid-structure.

Figures 4.8 and 4.9 give an example where this distortion indeed occurs. The design in

Figure 4.9 is obtained by exchanging one coordinate value of two points in the lower left

part of Figure 4.8. As we require in each dimension that the first and last point should be

in X1, the new design is not a valid nested LHD. We could try to repair this by changing

the assignment of the points to the sets X1 and X2. However, there exists no assignment

such that the invalid nested design in Figure 4.9 becomes a valid nested LHD on a nested

n2-grid.

72 Nested maximin Latin hypercube designs

0
1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9
1

0

1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9

1

Figure 4.8: A nested Latin hypercube
design of n1 = 6 and n2 = 10 points;
d = d1 = 0.3086 and d2 = 0.5556.

0
1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9
1

0

1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9

1

Figure 4.9: A nested design obtained by
exchanging one coordinate value between
a point in X1 and one point in X2\X1.

Besides solving the above problem, a new method for generating designs can also take

into account that we use a different objective function. As we consider the minimum of

d1 and d2, we can, for instance, use different methods depending on which of the two

values is smallest. In the next section, we discuss some different methods of generating

new designs that take the above two aspects into account.

4.5.2 Generating new designs

The main problem that needs to be addressed by the new methods for generating new

designs is the distortion of the chosen grid-structure. Fortunately, we can quite easily

solve this problem in the following way. Instead of randomly choosing two points from

the complete set of points, we choose two points from either X1 or X2\X1. By exchanging

coordinate values between two points within the same set, the chosen grid-structure is

always maintained. Using this method, we do need to decide how to choose one of the

two sets. Random selection is one option, but as we aim to maximize min{d1, d2}, we

could also base our choice on whether d1 or d2 is smallest. When d1 is smallest, selecting

two points from X2\X1 is not very useful as their positions do not directly influence the

value of d1. The value of d2, on the other hand, does depend on the positions of all points

and therefore both sets are relevant when d2 is smallest.

We can also take into account that the grids are not unique when c2 is non-integer.

For instance, when n1 = 6 and n2 = 13, it can be verified that there are 21 different

two-dimensional nested n2-grids, after accounting for reflection and rotational symmetry.

4.5 Higher-dimensional nested designs 73

In such cases, the choice of a specific grid can affect the maximal attainable value of

d. Therefore, we consider different methods of selecting the grid of the initial design.

Furthermore, we also look at methods that can change a grid without distorting it.

Based on the above observations, we develop the following four methods for generat-

ing new designs. The first method, which we call POINTRAND, starts with randomly

selecting a point from X2. Depending on whether this point is in X1 or not, we select

a second point from X1 or X2\X1 respectively. This simple method is probably closest

to the original ESE algorithm. However, it does not take into account the values of d1

and d2 and is not able to change the grid. To determine the effect of the first aspect, we

develop a second method called POINTDMIN. When d2 is smallest, the method works

in the same way as POINTRAND. However when d1 is smallest, we only choose points

from X1 because they are the only ones affecting d1.

The third and fourth methods, GROUPRAND and GROUPDMIN, are able to change

the grid. Remember that for all types of grids, there must be either bc2c − 1 or dc2e − 1

X2-coordinates between every pair of consecutive X1-coordinates. By deciding between

which pairs we place bc2c − 1 points and between which pairs we place dc2e − 1 points,

we fix a grid. To change a grid without it becoming invalid, we must thus change the

assignment of bc2c− 1 and dc2e− 1 X2-points to the pairs of consecutive X1-coordinates.

This principle leads to the following definitions of the two GROUP methods. The methods

GROUPRAND and GROUPDMIN start with selecting a first point in the same way as

in POINTRAND and POINTDMIN, respectively. After this first step, both methods

continue in the same way. If a point in X1 is selected, we simply exchange two points

in X1. Otherwise, we decide with equal probability to either exchange the selected

point with another point in X2\X1 or to perform a group-exchange. A group-exchange

is performed by first selecting two pairs of consecutive X1-points, i.e., X1-points that

have consecutive X1-coordinates in the mth dimension. All X2-points between a pair of

consecutive X1-points are now referred to as a group. Note that when bc2c = 1, a group

can be empty. To generate a new design, we now switch the two groups. As both groups

contain bc2c − 1 or dc2e − 1 points, this switch results in a valid nested design. When

the number of points in the groups differ, the exchange of the groups also changes the

grid. Depending on the type of grid, the group exchange not only affects the position of

the points in the group but possibly other points too. Which and how other points are

affected differs per type of grid, but is fairly straightforward to determine.

To illustrate the different methods, we again use the design in Figure 4.8. To simplify

notation, we use the terms DMIN, RAND, POINT or GROUP to refer to any of the

two methods whose name contain these words, e.g., POINTDMIN and GROUPDMIN

are both DMIN methods. As d1 < d2, a DMIN method would exchange a coordinate

value of two points in X1. In the ESE algorithm, a fixed number of designs is generated

74 Nested maximin Latin hypercube designs

0
1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9
1

0

1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9

1

Figure 4.10: A nested Latin hypercube
design of n1 = 6 and n2 = 10 points;
d = d2 = 0.7454 and d1 = 0.8958.

0
1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9
1

0

1

9

2

9

3

9

4

9

5

9

6

9

7

9

8

9

1

Figure 4.11: A nested maximin Latin hy-
percube design of n1 = 6 and n2 = 10
points; d = d1 = 0.8958 and d2 = 0.9428.

and the best is selected for comparison with the current design. We could, for instance,

obtain the design in Figure 4.10 by the exchange of one coordinate value between the

points with coordinates (0, 6
9
) and (1, 4

9
) in the current design of Figure 4.8. Looking at

the d-values, we see that this design is an improvement and is thus selected by the ESE

algorithm to become the new current design. Let us next consider a GROUP method

and take m equal to 2, i.e., the dimension on the vertical axis. The two differently shaded

areas in Figure 4.10 now form two possible groups. Notice that the top group is empty

as there are no X2-points between the X1-points. In Figure 4.11, we see the result of

exchanging the two groups. Because the groups are of different size, the grid has now

changed. Again the design has improved and in this case the design is even optimal.

4.6 Numerical results

To compare the four different variants of the ESE algorithm, we generated three- and

four-dimensional nested designs with n1 = 5, 10, . . . , 50 and n2 = n1 + 5, n1 + 10, . . . , 60

for each of the three grid-structures. We thus consider 65 different pairs (n1, n2) for

each dimension and grid-structure. As the grid is not unique when c2 /∈ N, the grid we

select might affect the space-fillingness of the final design. For each combination of n1,

n2, dimension, and grid-structure, we therefore ran the ESE algorithm ten times with a

different grid and initial design. These computations have been performed on PCs with

a 2.8 GHz Pentium D processor and the variants were implemented in Matlab R2007a.

Per variant, grid and dimension, it took as much as 2 to 4 days to perform the ten runs

4.6 Numerical results 75

of the ESE algorithm for all 65 pairs. These computation times may seem quite large,

but fortunately they are only one-time costs. When a good design is found and stored,

it can be used many times in various applications without any additional computational

cost. Therefore, we made all nested designs generated for this chapter available on the

website http://www.spacefillingdesigns.nl.

For these ten runs, we tried two types of initial grids and designs: random and diago-

nal. For the first type, we randomly select a grid and design that satisfy the restrictions

of the chosen grid-structure. The second type starts with a diagonal design, where each

design point has the same value for all coordinates. However, the results did not indicate

a significant effect of the chosen type on the space-fillingness of the final design. Also the

calculation times of the ESE algorithm did not significantly differ. Therefore, we do not

make a distinction between these two types in the remainder of this chapter.

RAND DMIN
Three-dimensional GROUP POINT GROUP POINT

Nested n1-grid 60 37 12 17
Nested n2-grid 63 34 17 17
Grid with nested
maximin axes

55 23 6 17

Four-dimensional

Nested n1-grid 66 26 2 11
Nested n2-grid 57 29 6 15
Grid with nested
maximin axes

49 31 9 11

Table 4.2: Percentage of the (n1, n2)-pairs for which a certain variant of the ESE algorithm
finds a best design.

Using the best results of the ten runs of the ESE algorithm, we determine for each

(n1, n2)-pair which method(s) obtained a best design. In Tables 4.8 and 4.9 of Ap-

pendix 4.A, the separation distances of the best designs are given for each of the three

grid-structures. Table 4.2 contains the percentage of the 65 (n1, n2)-pairs for which a

certain method performs best. Note that the sum of the percentages per row is larger

than 100%, because—for some cases—a best design is found by multiple variants of the

ESE algorithm. For the same reason, we cannot take the sum of two columns to deter-

mine the combined performance of two methods. When we study the results, we see that

the two RAND-methods find the best design for most cases. One explanation for the

relative poor performance of the DMIN-methods could be that the number of neighbor

designs is smaller. By “neighbor” designs we mean all designs that can be obtained by

making one possible change to the current design. When d1 < d2, a DMIN-method pro-

duces fewer neighbor designs than a RAND-method, because the DMIN-methods allow

76 Nested maximin Latin hypercube designs

fewer changes. This can make it more difficult for a DMIN-method to escape from a

local minimum, which could result in a lower performance. Of the two RAND-methods,

GROUPRAND performs the best for most cases. This indicates that the possibility of

changing the grid indeed improves the performance of the ESE algorithm. Based on these

results, we decided to use both RAND-methods to obtain nested approximate maximin

designs for five up to ten dimensions. For dimension ten, calculating all 65 pairs took

approximately 8 days per grid and variant.

l1(n1, n2) l2(n1, n2)
Two-dimensional Average Range Average Range

Nested n1-grid 4.13 [0.00,36.75] 11.12 [-5.41,52.56]
Nested n2-grid 3.10 [-33.33,36.75] 8.92 [0.00,36.75]
Grid with nested
maximin axes

3.83 [-14.29,36.75] 10.08 [-11.61,45.79]

Three-dimensional

Nested n1-grid 11.00 [0.00,17.60] 7.23 [-1.07,15.81]
Nested n2-grid 10.95 [1.14,19.60] 7.90 [3.03,12.92]
Grid with nested
maximin axes

11.38 [0.19,17.63] 8.02 [2.88,13.69]

Four-dimensional

Nested n1-grid 8.90 [0.00,17.54] 4.01 [-2.82,10.78]
Nested n2-grid 9.56 [-7.04,16.82] 5.63 [2.11,11.21]
Grid with nested
maximin axes

10.10 [-1.37,17.22] 5.82 [2.53,11.93]

Table 4.3: Average and range of percentage loss lj(n1, n2) caused by using nested
(approximate) maximin designs instead of (approximate) maximin LHDs.

Furthermore, we are interested in the loss of space-fillingness caused by using nested

instead of non-nested designs. We therefore compare the d1- and d2-values of the best

nested design to the scaled separation distances of the (approximate) maximin LHDs of

the same size. For a pair (n1, n2), we denote the first distances by d1(n1, n2) and d2(n1, n2)

and the latter distances by d(n1) and d(n2). For d(n1) and d(n2), we use the best known

(approximate) maximin LHDs available on http://www.spacefillingdesigns.nl (De-

cember 2008). We now define the percentage loss in separation distance as

lj(n1, n2) := (dj(n1, n2)− d(nj)) /d(nj), j = 1, 2.

Table 4.3 displays the averages and the ranges of these percentage losses over all evaluated

(n1, n2)-pairs. Note that for two dimensions, we evaluated different pairs than for the

other dimensions. When we consider the two-dimensional results, we see that the n2-

grid on average gives the best space-fillingness for both designs X1 and X2. For the

4.6 Numerical results 77

higher dimensions, the averages and ranges are closer, but the nested n1-grid performs

slightly better on both d1 and d2. These results are a bit surprising as we expected the

nested n2-grid to perform better on d2 and the nested n1-grid to perform better on d1.

Another observation, which might be surprising at first sight, is that some ranges also

contain negative values. This means that for some (n1, n2)-pairs, the d1- or d2-distance

is better than the distance of the corresponding (approximate) maximin LHD. Our main

explanation is that the designs X1 or X2 do not always have to satisfy the LHD-structure.

In some cases, this enables X1 or X2 to attain a larger separation distance than the

(approximate) maximin LHD.

Although the above results give some indication of the performance of the grids in

general, the results do not tell us which grid gives the highest d, d1 and d2 values for

a specific pair (n1, n2). In Table 4.4, we present the percentages of pairs (n1, n2), with

c2 /∈ N, for which a grid type performs best on a particular distance. We do not consider

the pairs with c2 ∈ N because for these pairs all grids are equal.

Percentage best designs
Two-dimensional d d1 d2

Nested n1-grid 17 36 16
Nested n2-grid 67 56 72
Grid with nested maximin axes 16 11 13

Three-dimensional

Nested n1-grid 52 45 53
Nested n2-grid 19 37 21
Grid with nested maximin axes 29 18 26

Four-dimensional

Nested n1-grid 69 71 66
Nested n2-grid 24 18 26
Grid with nested maximin axes 8 11 10

Table 4.4: Percentage of the (n1, n2)-pairs, with c2 /∈ N, for which a particular grid type
performs best on d, d1, or d2.

Not surprisingly, the grids with the lowest average loss in Table 4.3 also have the highest

percentage of pairs for which they perform best. However, there is still a considerable

percentage of pairs where one of the other two grids perform better. It thus depends

on the particular pair (n1, n2) which grid to choose based on the separation distances.

Furthermore, in many practical situations, the values of n1 and n2 are not fixed which

leaves some freedom to change these values. In those situations, we can thus also consider

nested designs where n1 and n2 are slightly lower or higher. Let us, for example, consider

the two-dimensional designs with n1 = 5 and n2 = 10. In Table 4.5, we compare the losses

78 Nested maximin Latin hypercube designs

of these designs to the losses of the designs with n1 = 6 and n2 = 10. The comparison

shows that all losses either reduce or stay the same. Choosing n1 equal to 6 instead of 5

thus seems to be a better choice in terms of space-fillingness.

Two-dimensional l1(5, 10) l2(5, 10) l1(6, 10) l2(6, 10)

Nested n1-grid 36.75 16.15 0.00 10.00
Nested n2-grid 28.34 10.56 10.42 10.56
Grid with nested maximin axes 31.20 12.28 2.02 8.17

Table 4.5: Example of reduction in percentage loss lj(n1, n2) by choosing different value
for n1.

The choice for a specific grid or (n1, n2)-pair not only depends on the space-fillingness.

When it is not known a priori which design parameters are important, the non-collapsing-

ness criterion should also be considered. The projections of the design point onto the

axes should preferably be space-filling, which is accomplished by choosing a grid with

nested maximin axes.

Furthermore, the reason why a nested design is used may also affect the choice for

a particular grid. For example, a nested n1-grid or a grid with the highest d1 could be

preferable for sequential evaluations, because it is known with certainty that the first set

of design points is evaluated, whereas the evaluation of an extra set of design points may

depend on the previously evaluated set. However, in the same setting, a nested n2-grid is

preferred when the final set of design points (i.e., X2) is required to be a Latin hypercube

design, as is often the case in practice. When dealing with linking design parameters, the

choice for a specific grid mostly depends on the question which of the two designs—X1 or

X2—is considered to be the most important one and should, thus, have an LHD-structure

or have the largest separation distance. A grid with nested maximin axes should be used

when there is no explicit preference for either one of the designs. When constructing a

training set and a test set, design X1 forms the training set and is the most important

of the two designs. This is because the prediction accuracy of a metamodel is, among

others, affected by the choice of the evaluation points in the training set. A space-filling

distribution of these points over the feasible region is desirable and, hence, the grid for

which the design points of X1 have the largest separation distance is preferred. When

combining high and low-accuracy models, it is hard to say which of the two designs is

more important. The X2 design is important because it is used to fit the initial model,

but the X1 design is also important as it is used to evaluate the accurate model whose

results must improve the initial model.

From this discussion it follows that the notion of the “best” nested grid-design depends

on the application at hand and the user’s preferences. Fortunately, when c2 ∈ N, the

comparison of the various nested grid-designs is superfluous. In this case, we do not have

4.7 Conclusions and further research 79

to differentiate between different grid-structures, because they all yield the same nested

maximin design (and maximin distance).

4.7 Conclusions and further research

4.7.1 Conclusions

A nested design consists of two separate designs, one being a subset of the other. Using

these nested designs instead of traditional designs is useful when dealing with training

and test sets, models with different levels of accuracy, linking parameters, or sequential

evaluations, because nested designs can capture the dependencies between the two black-

box functions or evaluation stages (with respect to the design parameters). This chapter

focuses on constructing nested (approximate) maximin Latin hypercube designs. The

maximin criterion is used to find space-filling nested designs, i.e., designs with the design

points spread over the entire design space. By choosing the design points on a grid, we

ensure non-collapsingness, i.e., no two design points will have the same coordinate values.

We distinguish between three types of grids: a nested n1-grid, a nested n2-grid, and a

grid with nested maximin axes. Which grid to use mainly depends on the application

under consideration and the user’s preferences. For two-dimensional designs, a branch-

and-bound algorithm gives nested maximin designs for all grids and for values of n2 up to

15. In the special case where n1 − 1 is a divisor of n2 − 1, we provide maximin distances

for n2 up to 32.

For dimensions higher than two, we introduced four variants of the ESE algorithm.

Using a comparison of three- and four-dimensional designs, we determined that the

POINTRAND- and GROUPRAND-methods obtained the best results. Therefore, these

methods are also used to obtain designs for dimensions five up to ten and for up to 100

design points. Note that both variants of the ESE algorithms can also be used for higher

dimensions and larger numbers of points. When the number of points or dimensions

increases, changing the design and calculating the new value for d will become more

time-consuming. We could solve or reduce this problem by performing fewer iterations of

the inner loop of the ESE algorithm, although this might reduce the quality of the final

nested design.

Besides comparing the different variants, we also studied the loss in space-fillingness

by using nested designs instead of non-nested designs. The results show that the nested

n2-grid in general gives the smallest losses in two dimensions and the nested n1-grid does

so in higher dimensions. We also show that we can reduce this loss by choosing slightly

different values for n1 and n2.

80 Nested maximin Latin hypercube designs

4.7.2 Further research

We remark that the objective d = min{d1, d2} used in this chapter is only one way of

combining the separation distances of X1 and X2. As mentioned in the introduction,

alternative scaling factors and formulations are possible. Taking the weighted sum of

both objectives instead of the minimum would be a possible alternative objective. When

using this objective, the branch-and-bound and ESE algorithms can still be used with

little or no adjustments. Note however, that the DMIN-methods are not a very logical

choice for this alternative objective as these methods explicitly consider the minimum of

d1 and d2. Dealing with maximizing d1 and d2 as a bi-objective optimization problem is

another possibility. In that case, different Pareto optimal nested designs could be found

by using the weighted sum objective with various scaling factors.

Furthermore, we could also change the number of designs we want to nest. For

instance in multi-fidelity modeling, we could come across models with more than two

levels of accuracy. In these situations, we can use a nested design consisting of more than

two designs. Note that for one-dimensional designs, Van Dam et al. (2009a) already

considered optimizing the maximin criterion for these nested designs. To generate these

nested designs for higher dimensions, we could extend the methods described in this

chapter. The three main challenges would then be the following. Firstly, we must find

grid-structures such that each design satisfies the LHD-structure as much as possible.

This will become more difficult when we want to nest more designs. To solve this problem,

we could initially consider only nested designs for which all designs can satisfy the LHD-

structure. When nesting three designs X1 ⊂ X2 ⊂ X3 with n1, n2 and n3 design points,

this would be possible if both n2−1
n1−1

and n3−1
n2−1

are integer. Secondly, we should decide on

a criterion or method to achieve good space-fillingness for all the designs. Although we

also need to make this decision for two sets, the decision will become more difficult when

more sets have to be nested. Thirdly, when using the ESE algorithm, the methods for

generating new designs should not distort the grid-structure. Depending on the grid-

structure, we should determine whether the methods presented in this chapter are still

applicable or if they should be adjusted. When a suitable grid and method is determined

and a single objective is used for space-fillingness, the ESE-method in this chapter can

be used to generate nested designs with more than two designs.

4.A Maximin and separation distances 81

4.A Maximin and separation distances

Table 4.6 provides the maximin distances for nested maximin Latin hypercube designs

in two dimensions with c2 ∈ N, and for n2 ≤ 32. For n2 up to 15, and c2 6∈ N, Table 4.7

provides the maximin distances for the two-dimensional nested maximin designs for all

three grid-structures. Tables 4.8 and 4.9 provide the separation distances of three- and

four-dimensional nested approximate maximin designs with n1 = 5, 10, . . . , 50 and n2 =

n1 + 5, n1 + 10, . . . , 60 for all three grid-structures. Besides these distances, all tables

also contain the scaled separation distances d(n1) and d(n2) of the approximate maximin

LHDs available on http://www.spacefillingdesigns.nl (December 2008). The nested

approximate maximin designs for dimensions five up to ten can also be found on this

website.

n1 n2 d(n1) d(n2) d d1 d2

2 3 1.4142 1.0000 1.0000 1.4142 1.0000
2 4 1.4142 1.2910 0.8165 1.4142 0.8165
2 5 1.4142 1.1180 0.7071 1.4142 0.7071
3 5 1.0000 1.1180 0.7071 1.0000 0.7071
2 6 1.4142 1.0000 1.0000 1.4142 1.0000
2 7 1.4142 1.1547 0.9129 1.4142 0.9129
3 7 1.0000 1.1547 0.9129 1.0000 0.9129
4 7 1.2910 1.1547 0.8165 0.8165 1.1547
2 8 1.4142 1.0690 0.8452 1.4142 0.8452
2 9 1.4142 1.1180 1.0000 1.4142 1.0000
3 9 1.0000 1.1180 1.0000 1.0000 1.0000
5 9 1.1180 1.1180 1.1180 1.1180 1.1180
2 10 1.4142 1.0541 0.9428 1.4142 0.9428
4 10 1.2910 1.0541 0.8165 0.8165 0.9428
2 11 1.4142 1.0000 1.0000 1.4142 1.0000
3 11 1.0000 1.0000 1.0000 1.0000 1.0000
6 11 1.0000 1.0000 1.0000 1.0000 1.0000
2 12 1.4142 1.0871 0.9535 1.4142 0.9535
2 13 1.4142 1.0408 0.9129 1.4142 0.9129
3 13 1.0000 1.0408 0.9129 1.0000 0.9129
4 13 1.2910 1.0408 0.9129 1.2910 0.9129
5 13 1.1180 1.0408 0.8165 1.1180 0.8165
7 13 1.1547 1.0408 0.9129 1.1547 0.9129
2 14 1.4142 1.1435 1.0000 1.4142 1.0000
2 15 1.4142 1.1019 0.9636 1.4142 0.9636
3 15 1.0000 1.1019 0.8452 1.0000 0.8452
8 15 1.0690 1.1019 0.8452 1.0690 0.8452
2 16 1.4142 1.0646 1.0646 1.4142 1.0646
4 16 1.2910 1.0646 0.9309 1.2910 0.9309
6 16 1.0000 1.0646 0.7303 1.0000 0.7303
2 17 1.4142 1.0607 1.0308 1.4142 1.0308
3 17 1.0000 1.0607 1.0000 1.0000 1.0308
5 17 1.1180 1.0607 0.9014 1.1180 0.9014
9 17 1.1180 1.0607 0.7906 1.1180 0.7906
2 18 1.4142 1.0290 1.0000 1.4142 1.0000
2 19 1.4142 1.0000 1.0000 1.4142 1.0000
3 19 1.0000 1.0000 1.0000 1.0000 1.0000
4 19 1.2910 1.0000 0.9718 1.2910 0.9718
7 19 1.1547 1.0000 0.9718 1.1547 0.9718

10 19 1.0541 1.0000 0.7454 1.0541 0.7454
2 20 1.4142 0.9733 0.9733 1.4142 0.9733

n1 n2 d(n1) d(n2) d d1 d2

2 21 1.4142 1.0000 0.9487 1.4142 0.9487
3 21 1.0000 1.0000 0.9487 1.0000 0.9487
5 21 1.1180 1.0000 0.9487 1.1180 0.9487
6 21 1.0000 1.0000 0.9220 1.0000 0.9220

11 21 1.0000 1.0000 0.7071 1.0000 0.7071
2 22 1.4142 1.0911 0.9258 1.4142 0.9258
4 22 1.2910 1.0911 0.9258 1.2910 0.9258
8 22 1.0690 1.0911 0.8997 1.0690 0.8997
2 23 1.4142 1.0871 0.9535 1.4142 0.9535
3 23 1.0000 1.0871 0.9535 1.0000 0.9535

12 23 1.0871 1.0871 0.8528 0.8528 1.0871
2 24 1.4142 1.0632 1.0426 1.4142 1.0426
2 25 1.4142 1.0408 1.0408 1.4142 1.0408
3 25 1.0000 1.0408 1.0000 1.0000 1.0408
4 25 1.2910 1.0408 1.0206 1.2910 1.0206
5 25 1.1180 1.0408 0.9129 1.1180 0.9129
7 25 1.1547 1.0408 0.8660 1.1547 0.8660
9 25 1.1180 1.0408 1.0000 1.0000 1.0408

13 25 1.0408 1.0408 1.0408 1.0408 1.0408
2 26 1.4142 1.0198 1.0198 1.4142 1.0198
6 26 1.0000 1.0198 1.0000 1.0000 1.0000
2 27 1.4142 1.0000 1.0000 1.4142 1.0000
3 27 1.0000 1.0000 1.0000 1.0000 1.0000

14 27 1.1435 1.0000 1.0000 1.0000 1.0000
2 28 1.4142 1.0364 0.9813 1.4142 0.9813
4 28 1.2910 1.0364 0.9623 1.2910 0.9623

10 28 1.0541 1.0364 0.9428 0.9428 0.9813
2 29 1.4142 1.0177 0.9636 1.4142 0.9636
3 29 1.0000 1.0177 0.9636 1.0000 0.9636
5 29 1.1180 1.0177 0.9636 1.1180 0.9636
8 29 1.0690 1.0177 0.9449 1.0690 0.9449

15 29 1.1019 1.0177 0.9636 0.9636 0.9636
2 30 1.4142 1.0000 1.0000 1.4142 1.0000
2 31 1.4142 1.0328 0.9832 1.4142 0.9832
3 31 1.0000 1.0328 0.9832 1.0000 0.9832
4 31 1.2910 1.0328 0.9309 1.2910 0.9309
6 31 1.0000 1.0328 0.9309 1.0000 0.9309
7 31 1.1547 1.0328 0.9129 1.1547 0.9129

11 31 1.0000 1.0328 0.9309 1.0000 0.9309
16 31 1.0646 1.0328 0.9309 0.9309 0.9309
2 32 1.4142 1.0160 0.9672 1.4142 0.9672

Table 4.6: Maximin distances for two-dimensional nested maximin Latin hypercube de-
signs; c2 ∈ N.

82 Nested maximin Latin hypercube designs

Nested n1-grid Nested n2-grid Grid with nested axes
n1 n2 d(n1) d(n2) d d1 d2 d d1 d2 d d1 d2

3 4 1.0000 1.2910 0.6124 1.0000 0.6124 0.8165 1.3333 0.8165 0.6999 1.1429 0.6999
4 5 1.2910 1.1180 1.0541 1.2910 1.0541 1.1180 1.3693 1.1180 1.0880 1.3325 1.0880
3 6 1.0000 1.0000 0.9317 1.0000 0.9317 1.0000 1.2000 1.0000 0.9091 1.0909 0.9091
4 6 1.2910 1.0000 0.8165 0.8165 1.0541 0.9798 0.9798 1.0000 0.8645 0.8645 1.1161
5 6 1.1180 1.0000 0.8839 1.1180 0.8839 0.8944 0.8944 1.0000 0.9575 0.9722 0.9575
5 7 1.1180 1.1547 0.9682 1.1180 0.9682 0.9428 0.9428 1.1547 0.9897 1.0302 0.9897
6 7 1.0000 1.1547 1.0000 1.0000 1.0392 1.0541 1.0541 1.1547 1.1161 1.1161 1.1207
3 8 1.0000 1.0690 0.9354 1.0000 0.9354 1.0690 1.1429 1.0690 0.9978 1.0667 0.9978
4 8 1.2910 1.0690 0.7916 0.8165 0.7916 0.8452 1.3325 0.8452 0.7990 1.3152 0.7990
5 8 1.1180 1.0690 1.0458 1.1180 1.0458 0.8452 1.0302 0.8452 0.9990 1.0968 0.9990
6 8 1.0000 1.0690 0.8367 1.0000 0.8367 0.9035 0.9035 1.0690 0.9126 0.9383 0.9126
7 8 1.1547 1.0690 0.9129 0.9129 0.9860 0.9897 0.9897 1.0690 1.0319 1.0319 1.0349
4 9 1.2910 1.1180 0.8889 1.2910 0.8889 1.0000 1.2624 1.0000 0.9231 1.2814 0.9231
6 9 1.0000 1.1180 0.8944 1.0000 0.8944 1.0000 1.0078 1.0000 0.9575 0.9575 0.9722
7 9 1.1547 1.1180 0.9129 0.9129 1.0000 0.9682 0.9682 1.1180 0.9422 0.9422 1.0000
8 9 1.0690 1.1180 0.8571 1.0690 0.8571 1.0458 1.0458 1.1180 0.9990 0.9990 1.0679
3 10 1.0000 1.0541 0.8485 1.0000 0.8485 0.9428 1.1111 0.9428 0.8932 1.0526 0.8932
5 10 1.1180 1.0541 0.7071 0.7071 0.8839 0.8012 0.8012 0.9428 0.7692 0.7692 0.9247
6 10 1.0000 1.0541 0.9487 1.0000 0.9487 0.8958 0.8958 0.9428 0.9680 0.9798 0.9680
7 10 1.1547 1.0541 0.7906 1.1547 0.7906 0.9428 0.9813 0.9428 0.8883 0.8883 0.9035
8 10 1.0690 1.0541 0.8452 0.8452 0.9583 0.9296 0.9296 1.0541 0.9097 0.9226 0.9097
9 10 1.1180 1.0541 0.9561 1.0000 0.9561 0.9938 0.9938 1.0541 0.9513 0.9513 1.0090
4 11 1.2910 1.0000 0.8784 1.2910 0.8784 0.8944 1.1619 0.8944 0.8863 1.2103 0.8863
5 11 1.1180 1.0000 0.7454 1.1180 0.7454 0.8944 1.0770 0.8944 0.8131 1.0985 0.8131
7 11 1.1547 1.0000 0.8333 1.1547 0.8333 0.8944 1.0392 0.8944 0.8824 0.9666 0.8824
8 11 1.0690 1.0000 0.8452 0.8452 1.0102 0.9539 0.9539 1.0000 0.8965 0.8965 1.0715
9 11 1.1180 1.0000 1.0000 1.0000 1.0078 0.8944 1.0198 0.8944 0.9722 0.9722 1.0009

10 11 1.0541 1.0000 0.9428 0.9428 0.9938 0.9487 0.9487 1.0000 0.9680 0.9680 0.9798
3 12 1.0000 1.0871 0.8740 1.0000 0.8740 0.9535 1.0041 0.9535 0.9120 1.0009 0.9120
4 12 1.2910 1.0871 0.9965 1.2910 0.9965 1.0871 1.2695 1.0871 1.0250 1.2838 1.0250
5 12 1.1180 1.0871 0.7817 1.1180 0.7817 0.8528 1.0602 0.8528 0.7984 1.1039 0.7984
6 12 1.0000 1.0871 0.9446 1.0000 0.9446 0.9535 1.0947 0.9535 0.9511 1.0699 0.9511
7 12 1.1547 1.0871 0.8740 1.1547 0.8740 0.9535 0.9959 0.9535 0.8863 1.1222 0.8863
8 12 1.0690 1.0871 0.8452 0.8452 1.0051 0.9535 1.0205 0.9535 0.8518 0.8518 1.0307
9 12 1.1180 1.0871 1.0000 1.0000 1.0570 0.9271 0.9271 1.0871 0.9552 0.9552 0.9998

10 12 1.0541 1.0871 0.9428 0.9428 1.0423 0.9833 0.9833 1.0871 0.9664 0.9664 0.9862
11 12 1.0000 1.0871 1.0000 1.0000 1.0488 1.0365 1.0365 1.0871 1.0102 1.0102 1.0595
6 13 1.0000 1.0408 0.9522 1.0000 0.9522 0.9129 1.0035 0.9129 0.9589 0.9589 0.9805
8 13 1.0690 1.0408 0.8452 0.8452 1.0498 0.9129 0.9860 0.9129 0.8158 1.0380 0.8158
9 13 1.1180 1.0408 0.9186 1.0000 0.9186 0.9129 1.0000 0.9129 0.8748 1.0000 0.8748

10 13 1.0541 1.0408 0.9428 0.9428 0.9813 0.9129 1.0607 0.9129 0.9404 0.9583 0.9404
11 13 1.0000 1.0408 0.8944 0.8944 0.9798 0.9501 0.9501 1.0408 0.9301 0.9301 0.9476
12 13 1.0871 1.0408 0.9535 0.9535 0.9959 0.9965 0.9965 1.0408 0.9720 0.9720 1.0153
3 14 1.0000 1.1435 0.9286 1.0000 0.9286 0.8771 1.0769 0.8771 0.9082 0.9630 0.9082
4 14 1.2910 1.1435 0.9329 1.2910 0.9329 0.8771 1.3122 0.8771 0.8971 1.2280 0.8971
5 14 1.1180 1.1435 0.8498 1.1180 0.8498 0.7845 1.1717 0.7845 0.8035 1.1557 0.8035
6 14 1.0000 1.1435 0.8750 1.0000 0.8750 0.8771 1.0879 0.8771 0.8755 0.9722 0.8755
7 14 1.1547 1.1435 0.9234 1.1547 0.9234 0.8771 1.0659 0.8771 0.8863 1.0851 0.8863
8 14 1.0690 1.1435 0.8144 1.0690 0.8144 0.8771 1.0377 0.8771 0.8228 1.0801 0.8228
9 14 1.1180 1.1435 0.7906 0.7906 1.0078 0.8971 0.8971 1.1435 0.8210 0.8210 1.0284

10 14 1.0541 1.1435 0.9428 0.9428 1.0214 0.9515 0.9515 1.1435 0.9600 0.9600 1.0790
11 14 1.0000 1.1435 0.9192 1.0000 0.9192 1.0030 1.0030 1.1435 0.9774 0.9774 1.1144
12 14 1.0871 1.1435 0.9535 0.9535 1.0365 1.0519 1.0519 1.1435 1.0244 1.0244 1.0592
13 14 1.0408 1.1435 1.0408 1.0408 1.0623 1.0987 1.0987 1.1435 1.0716 1.0716 1.1154
4 15 1.2910 1.1019 0.8994 1.2910 0.8994 0.8748 0.8748 1.1019 0.9010 1.2852 0.9010
5 15 1.1180 1.1019 0.8432 1.1180 0.8432 0.9636 1.1518 0.9636 0.8994 1.1333 0.8994
6 15 1.0000 1.1019 0.9080 1.0000 0.9080 0.8452 0.9313 0.8452 0.8960 0.9731 0.8960
7 15 1.1547 1.1019 0.9582 1.1547 0.9582 1.1019 1.2372 1.1019 1.0456 1.2049 1.0456
9 15 1.1180 1.1019 0.7906 0.7906 0.9922 0.8452 1.0880 0.8452 0.7967 0.7967 1.0242

10 15 1.0541 1.1019 0.9428 0.9428 1.0599 0.9091 0.9091 0.9636 0.9299 0.9299 1.0758
11 15 1.0000 1.1019 0.9539 1.0000 0.9539 0.9583 0.9583 0.9636 0.9272 0.9272 1.0295
12 15 1.0871 1.1019 0.8672 1.0871 0.8672 0.9768 0.9768 1.1019 0.9675 0.9675 1.0147
13 15 1.0408 1.1019 0.9129 0.9129 0.9860 1.0202 1.0202 1.1019 0.9923 0.9923 1.0718
14 15 1.1435 1.1019 1.0000 1.0000 1.0176 1.0619 1.0619 1.1019 1.0368 1.0368 1.0759

Table 4.7: Maximin distances for two-dimensional nested designs; c2 6∈ N.

4.A Maximin and separation distances 83

Nested n1-grid Nested n2-grid Grid with nested axes
n1 n2 d(n1) d(n2) d d1 d2 d d1 d2 d d1 d2

5 10 1.3162 1.2009 1.1400 1.1906 1.1400 1.0583 1.0583 1.0591 1.0990 1.0990 1.1664
5 15 1.3162 1.1927 1.0827 1.3162 1.0827 1.1023 1.2524 1.1023 1.0661 1.2929 1.0661
5 20 1.3162 1.1410 1.0506 1.1906 1.0506 1.0510 1.1991 1.0510 1.0888 1.3087 1.0888
5 25 1.3162 1.1465 1.0546 1.1906 1.0546 1.0546 1.1906 1.0546 1.0546 1.1906 1.0546
5 30 1.3162 1.1061 1.0582 1.1906 1.0582 1.0647 1.2708 1.0647 1.0672 1.1876 1.0672
5 35 1.3162 1.1030 1.0605 1.1906 1.0605 1.0695 1.2148 1.0695 1.0530 1.1868 1.0530
5 40 1.3162 1.1033 1.0623 1.1906 1.0623 1.0507 1.1811 1.0507 1.0587 1.1847 1.0587
5 45 1.3162 1.0943 1.0553 1.1906 1.0553 1.0553 1.1906 1.0553 1.0553 1.1906 1.0553
5 50 1.3162 1.0899 1.0517 1.1906 1.0517 1.0508 1.2095 1.0508 1.0537 1.1726 1.0537
5 55 1.3162 1.0911 1.0510 1.1906 1.0510 1.0476 1.1857 1.0476 1.0471 1.1930 1.0471
5 60 1.3162 1.0902 1.0431 1.1906 1.0431 1.0454 1.2020 1.0454 1.0492 1.3137 1.0492

10 15 1.2009 1.1927 1.0285 1.0841 1.0285 1.0612 1.1119 1.0612 1.0396 1.0396 1.0559
10 20 1.2009 1.1410 0.9895 1.0074 0.9895 1.0030 1.0034 1.0030 1.0114 1.0118 1.0114
10 25 1.2009 1.1465 1.0036 1.0074 1.0036 1.0056 1.0218 1.0056 0.9895 0.9932 0.9895
10 30 1.2009 1.1061 1.0074 1.0074 1.0118 1.0051 1.0566 1.0051 1.0052 1.0052 1.0092
10 35 1.2009 1.1030 1.0221 1.0591 1.0221 1.0438 1.0684 1.0438 1.0182 1.0200 1.0182
10 40 1.2009 1.1033 1.0074 1.0074 1.0231 1.0289 1.0411 1.0289 1.0272 1.0531 1.0272
10 45 1.2009 1.0943 1.0108 1.0591 1.0108 1.0216 1.0216 1.0275 1.0224 1.0550 1.0224
10 50 1.2009 1.0899 1.0201 1.0591 1.0201 1.0402 1.0748 1.0402 1.0183 1.0183 1.0230
10 55 1.2009 1.0911 1.0119 1.0591 1.0119 1.0119 1.0591 1.0119 1.0119 1.0591 1.0119
10 60 1.2009 1.0902 1.0129 1.0591 1.0129 1.0265 1.0303 1.0265 1.0345 1.0512 1.0345
15 20 1.1927 1.1410 1.0612 1.0612 1.0908 1.0320 1.0383 1.0320 1.0431 1.0432 1.0431
15 25 1.1927 1.1465 0.9889 0.9889 1.0250 0.9984 1.0092 0.9984 1.0146 1.0146 1.0255
15 30 1.1927 1.1061 0.9889 0.9889 0.9996 0.9834 0.9834 0.9938 0.9824 0.9824 0.9994
15 35 1.1927 1.1030 0.9889 0.9889 0.9945 0.9975 0.9975 0.9993 0.9822 0.9843 0.9822
15 40 1.1927 1.1033 0.9889 0.9889 0.9889 0.9990 1.0117 0.9990 0.9942 0.9957 0.9942
15 45 1.1927 1.0943 0.9889 0.9889 0.9981 0.9957 1.0130 0.9957 0.9914 0.9914 0.9970
15 50 1.1927 1.0899 1.0038 1.0038 1.0041 0.9991 1.0140 0.9991 0.9990 1.0390 0.9990
15 55 1.1927 1.0911 1.0034 1.0038 1.0034 1.0046 1.0275 1.0046 1.0176 1.0185 1.0176
15 60 1.1927 1.0902 1.0283 1.0329 1.0283 1.0158 1.0221 1.0158 1.0111 1.0111 1.0128
20 25 1.1410 1.1465 1.0600 1.0603 1.0600 1.0311 1.0311 1.0409 1.0240 1.0240 1.0290
20 30 1.1410 1.1061 1.0224 1.0224 1.0322 1.0051 1.0080 1.0051 1.0097 1.0097 1.0135
20 35 1.1410 1.1030 0.9758 1.0030 0.9758 0.9856 1.0051 0.9856 0.9858 0.9858 0.9868
20 40 1.1410 1.1033 0.9570 0.9931 0.9570 0.9676 0.9676 0.9722 0.9711 0.9788 0.9711
20 45 1.1410 1.0943 0.9831 0.9831 0.9915 0.9854 0.9854 0.9892 0.9750 0.9750 0.9750
20 50 1.1410 1.0899 0.9909 0.9931 0.9909 0.9851 0.9938 0.9851 0.9854 0.9854 0.9872
20 55 1.1410 1.0911 0.9908 1.0030 0.9908 0.9849 0.9895 0.9849 0.9888 0.9888 0.9924
20 60 1.1410 1.0902 0.9831 0.9831 0.9897 0.9897 1.0011 0.9897 1.0013 1.0013 1.0117
25 30 1.1465 1.1061 1.0546 1.0546 1.1068 1.0289 1.0289 1.0647 1.0367 1.0396 1.0367
25 35 1.1465 1.1030 1.0339 1.0339 1.0521 1.0038 1.0038 1.0129 1.0081 1.0117 1.0081
25 40 1.1465 1.1033 0.9984 0.9984 1.0066 0.9952 1.0033 0.9952 0.9980 0.9994 0.9980
25 45 1.1465 1.0943 0.9618 0.9911 0.9618 0.9827 0.9834 0.9827 0.9877 0.9878 0.9877
25 50 1.1465 1.0899 0.9491 0.9764 0.9491 0.9737 0.9797 0.9737 0.9778 0.9792 0.9778
25 55 1.1465 1.0911 0.9744 0.9764 0.9744 0.9704 0.9704 0.9749 0.9725 0.9728 0.9725
25 60 1.1465 1.0902 0.9764 0.9764 0.9796 0.9720 0.9827 0.9720 0.9671 0.9698 0.9671
30 35 1.1061 1.1030 1.0647 1.0647 1.0759 1.0342 1.0342 1.0350 1.0267 1.0273 1.0267
30 40 1.1061 1.1033 1.0271 1.0271 1.0508 1.0119 1.0119 1.0252 1.0043 1.0043 1.0247
30 45 1.1061 1.0943 0.9995 0.9995 1.0094 0.9989 1.0022 0.9989 0.9897 0.9897 0.9930
30 50 1.1061 1.0899 0.9825 0.9825 0.9936 0.9823 0.9894 0.9823 0.9810 0.9839 0.9810
30 55 1.1061 1.0911 0.9357 0.9357 0.9466 0.9799 0.9805 0.9799 0.9823 0.9847 0.9823
30 60 1.1061 1.0902 0.9113 0.9113 0.9179 0.9658 0.9658 0.9720 0.9773 0.9834 0.9773
35 40 1.1030 1.1033 1.0653 1.0653 1.1151 1.0441 1.0441 1.0650 1.0322 1.0341 1.0322
35 45 1.1030 1.0943 1.0306 1.0306 1.0525 1.0122 1.0122 1.0212 1.0062 1.0062 1.0113
35 50 1.1030 1.0899 1.0129 1.0129 1.0139 1.0027 1.0027 1.0075 0.9980 0.9985 0.9980
35 55 1.1030 1.0911 0.9764 0.9764 0.9990 0.9840 0.9840 0.9849 0.9897 0.9897 0.9923
35 60 1.1030 1.0902 0.9764 0.9764 0.9766 0.9838 0.9838 0.9919 0.9833 0.9833 0.9841
40 45 1.1033 1.0943 1.0614 1.0614 1.1050 1.0483 1.0483 1.0553 1.0392 1.0392 1.0412
40 50 1.1033 1.0899 1.0362 1.0362 1.0647 1.0242 1.0242 1.0267 1.0073 1.0087 1.0073
40 55 1.1033 1.0911 1.0066 1.0066 1.0291 1.0046 1.0068 1.0046 0.9976 0.9976 1.0014
40 60 1.1033 1.0902 0.9761 0.9761 0.9919 0.9897 0.9956 0.9897 0.9899 0.9899 0.9907
45 50 1.0943 1.0899 1.0584 1.0584 1.0804 1.0416 1.0416 1.0508 1.0300 1.0300 1.0300
45 55 1.0943 1.0911 1.0492 1.0492 1.0686 1.0119 1.0170 1.0119 1.0116 1.0116 1.0164
45 60 1.0943 1.0902 1.0181 1.0181 1.0194 0.9977 0.9977 1.0007 0.9956 0.9983 0.9956
50 55 1.0899 1.0911 1.0402 1.0402 1.0744 1.0277 1.0277 1.0499 1.0321 1.0330 1.0321
50 60 1.0899 1.0902 1.0267 1.0267 1.0563 1.0172 1.0172 1.0265 1.0061 1.0068 1.0061

Table 4.8: Scaled separation distances for three-dimensional nested approximate maximin
designs.

84 Nested maximin Latin hypercube designs

Nested n1-grid Nested n2-grid Grid with nested axes
n1 n2 d(n1) d(n2) d d1 d2 d d1 d2 d d1 d2

5 10 1.3693 1.3608 1.2141 1.2748 1.2141 1.2472 1.3240 1.2472 1.2201 1.3279 1.2201
5 15 1.3693 1.3035 1.2069 1.2247 1.2069 1.2203 1.3325 1.2203 1.2001 1.3880 1.2001
5 20 1.3693 1.2862 1.1683 1.2247 1.1683 1.1784 1.1839 1.1784 1.1888 1.2094 1.1888
5 25 1.3693 1.2407 1.1738 1.3693 1.1738 1.1738 1.3693 1.1738 1.1738 1.3693 1.1738
5 30 1.3693 1.2241 1.1689 1.3693 1.1689 1.1706 1.2250 1.1706 1.1612 1.2926 1.1612
5 35 1.3693 1.2074 1.1735 1.2247 1.1735 1.1735 1.3323 1.1735 1.1588 1.2132 1.1588
5 40 1.3693 1.1902 1.1558 1.2247 1.1558 1.1640 1.2146 1.1640 1.1577 1.2222 1.1577
5 45 1.3693 1.1881 1.1560 1.2748 1.1560 1.1560 1.2748 1.1560 1.1560 1.2748 1.1560
5 50 1.3693 1.1830 1.1459 1.2247 1.1459 1.1492 1.3715 1.1492 1.1428 1.3652 1.1428
5 55 1.3693 1.1773 1.1490 1.2247 1.1490 1.1502 1.2642 1.1502 1.1475 1.2695 1.1475
5 60 1.3693 1.1734 1.1463 1.3693 1.1463 1.1487 1.2699 1.1487 1.1378 1.2282 1.1378

10 15 1.3608 1.3035 1.2347 1.2472 1.2347 1.1966 1.1995 1.1966 1.1871 1.1878 1.1871
10 20 1.3608 1.2862 1.1599 1.1706 1.1599 1.1419 1.1710 1.1419 1.1265 1.1265 1.1327
10 25 1.3608 1.2407 1.1564 1.1706 1.1564 1.1319 1.1319 1.1333 1.1365 1.1511 1.1365
10 30 1.3608 1.2241 1.1410 1.1706 1.1410 1.1373 1.1473 1.1373 1.1362 1.1564 1.1362
10 35 1.3608 1.2074 1.1482 1.1706 1.1482 1.1496 1.1672 1.1496 1.1362 1.1362 1.1374
10 40 1.3608 1.1902 1.1359 1.1386 1.1359 1.1427 1.1700 1.1427 1.1389 1.1462 1.1389
10 45 1.3608 1.1881 1.1364 1.1547 1.1364 1.1410 1.1497 1.1410 1.1371 1.1392 1.1371
10 50 1.3608 1.1830 1.1547 1.1547 1.1599 1.1454 1.1606 1.1454 1.1382 1.1425 1.1382
10 55 1.3608 1.1773 1.1425 1.1547 1.1425 1.1425 1.1547 1.1425 1.1425 1.1547 1.1425
10 60 1.3608 1.1734 1.1222 1.1222 1.1268 1.1391 1.1647 1.1391 1.1298 1.2066 1.1298
15 20 1.3035 1.2862 1.2124 1.2124 1.2207 1.1741 1.1741 1.1886 1.1751 1.1751 1.1852
15 25 1.3035 1.2407 1.1510 1.1560 1.1510 1.1341 1.1341 1.1407 1.1451 1.1456 1.1451
15 30 1.3035 1.2241 1.1126 1.1139 1.1126 1.1059 1.1101 1.1059 1.1020 1.1150 1.1020
15 35 1.3035 1.2074 1.1394 1.1394 1.1535 1.1139 1.1163 1.1139 1.1178 1.1178 1.1197
15 40 1.3035 1.1902 1.1135 1.1225 1.1135 1.1117 1.1267 1.1117 1.1128 1.1128 1.1225
15 45 1.3035 1.1881 1.1207 1.1225 1.1207 1.1060 1.1303 1.1060 1.1074 1.1074 1.1105
15 50 1.3035 1.1830 1.1239 1.1309 1.1239 1.1184 1.1221 1.1184 1.1103 1.1157 1.1103
15 55 1.3035 1.1773 1.1218 1.1309 1.1218 1.1112 1.1219 1.1112 1.1223 1.1234 1.1223
15 60 1.3035 1.1734 1.1139 1.1139 1.1155 1.1156 1.1166 1.1156 1.1036 1.1036 1.1091
20 25 1.2862 1.2407 1.1987 1.1987 1.2162 1.1671 1.1671 1.1702 1.1747 1.1747 1.1765
20 30 1.2862 1.2241 1.1732 1.1732 1.1904 1.1401 1.1429 1.1401 1.1386 1.1386 1.1418
20 35 1.2862 1.2074 1.1152 1.1313 1.1152 1.1155 1.1155 1.1162 1.1336 1.1336 1.1368
20 40 1.2862 1.1902 1.0988 1.0988 1.1083 1.0912 1.0945 1.0912 1.0970 1.1097 1.0970
20 45 1.2862 1.1881 1.1249 1.1260 1.1249 1.1013 1.1108 1.1013 1.0952 1.0952 1.1015
20 50 1.2862 1.1830 1.1098 1.1098 1.1145 1.0971 1.0971 1.1000 1.0917 1.0917 1.0945
20 55 1.2862 1.1773 1.1062 1.1098 1.1062 1.1010 1.1010 1.1078 1.0931 1.0931 1.0963
20 60 1.2862 1.1734 1.0988 1.0988 1.1024 1.1123 1.1123 1.1156 1.0933 1.0933 1.0947
25 30 1.2407 1.2241 1.2024 1.2024 1.2192 1.1600 1.1600 1.1651 1.1670 1.1670 1.1685
25 35 1.2407 1.2074 1.1629 1.1629 1.1690 1.1297 1.1313 1.1297 1.1431 1.1431 1.1474
25 40 1.2407 1.1902 1.1407 1.1407 1.1548 1.1227 1.1251 1.1227 1.1193 1.1193 1.1204
25 45 1.2407 1.1881 1.0996 1.1143 1.0996 1.0951 1.0975 1.0951 1.1057 1.1057 1.1108
25 50 1.2407 1.1830 1.0969 1.0990 1.0969 1.0946 1.0963 1.0946 1.0817 1.0817 1.0827
25 55 1.2407 1.1773 1.1182 1.1182 1.1204 1.1021 1.1127 1.1021 1.0875 1.0898 1.0875
25 60 1.2407 1.1734 1.1182 1.1182 1.1193 1.0916 1.0957 1.0916 1.0869 1.0869 1.0895
30 35 1.2241 1.2074 1.1950 1.1950 1.1980 1.1522 1.1522 1.1605 1.1509 1.1513 1.1509
30 40 1.2241 1.1902 1.1596 1.1596 1.1784 1.1258 1.1258 1.1264 1.1255 1.1266 1.1255
30 45 1.2241 1.1881 1.1401 1.1401 1.1477 1.1076 1.1076 1.1091 1.1198 1.1198 1.1204
30 50 1.2241 1.1830 1.1061 1.1146 1.1061 1.1105 1.1147 1.1105 1.1123 1.1123 1.1130
30 55 1.2241 1.1773 1.0861 1.0972 1.0861 1.0987 1.0998 1.0987 1.0935 1.0956 1.0935
30 60 1.2241 1.1734 1.0943 1.0943 1.1022 1.0822 1.0822 1.0835 1.0824 1.0824 1.0831
35 40 1.2074 1.1902 1.1799 1.1799 1.2144 1.1567 1.1567 1.1622 1.1488 1.1493 1.1488
35 45 1.2074 1.1881 1.1670 1.1670 1.1905 1.1365 1.1367 1.1365 1.1266 1.1266 1.1340
35 50 1.2074 1.1830 1.1496 1.1496 1.1568 1.1184 1.1259 1.1184 1.1078 1.1078 1.1123
35 55 1.2074 1.1773 1.1341 1.1341 1.1360 1.1062 1.1062 1.1067 1.1097 1.1097 1.1100
35 60 1.2074 1.1734 1.1071 1.1071 1.1147 1.0952 1.0952 1.0976 1.0892 1.0892 1.0939
40 45 1.1902 1.1881 1.1780 1.1780 1.2141 1.1556 1.1556 1.1574 1.1450 1.1457 1.1450
40 50 1.1902 1.1830 1.1728 1.1728 1.1848 1.1243 1.1243 1.1262 1.1319 1.1329 1.1319
40 55 1.1902 1.1773 1.1485 1.1498 1.1485 1.1146 1.1174 1.1146 1.1146 1.1146 1.1166
40 60 1.1902 1.1734 1.1354 1.1354 1.1437 1.0986 1.0988 1.0986 1.1064 1.1064 1.1075
45 50 1.1881 1.1830 1.1736 1.1736 1.2056 1.1407 1.1407 1.1454 1.1454 1.1454 1.1471
45 55 1.1881 1.1773 1.1780 1.1780 1.2026 1.1225 1.1236 1.1225 1.1225 1.1225 1.1244
45 60 1.1881 1.1734 1.1455 1.1455 1.1494 1.1121 1.1121 1.1126 1.1112 1.1112 1.1152
50 55 1.1830 1.1773 1.1718 1.1718 1.1981 1.1449 1.1449 1.1480 1.1443 1.1443 1.1445
50 60 1.1830 1.1734 1.1606 1.1606 1.2065 1.1254 1.1256 1.1254 1.1152 1.1152 1.1163

Table 4.9: Scaled separation distances for four-dimensional nested approximate maximin
designs.

Part II

Subsets of large
non-uniform datasets

Chapter 5

Subset selection from
large datasets for Kriging modeling

Perfection is achieved, not when there is nothing
more to add, but when there is nothing left to
take away.

(Antoine de Saint-Exupery)

5.1 Introduction

5.1.1 Motivation

Kriging is an interpolation technique that finds its roots in geostatistics. The method

is named after Krige, a South-African mining engineer, and is based on his work at

the Witwatersrand reef complex (Krige 1951). In the 1960s, the French mathematician

Matheron formalized Krige’s method (Matheron 1963). Besides geostatistics, Kriging has

also found numerous applications in other fields. Sacks et al. (1989b) applied Kriging in

the field of deterministic simulation for the design and analysis of computer experiments.

Since then, many others followed; see Jones et al. (1998), Jones (2001), Koehler and

Owen (1996), Santner et al. (2003), Stehouwer and Den Hertog (1999), and Kleijnen

(2009). A basic description of Kriging can be found in Appendix 5.E.

When building a Kriging model, the general intuition is that using more data always

results in a better model. Therefore, a large dataset is regarded as a good starting point

for building a model. However, when the dataset is already given, there are situations

where using only a subset has certain advantages. Especially when the large given dataset

is non-uniformly distributed over the whole design space, problems can occur. In this

chapter, we analyze and test methods to select subsets in order to reduce these problems.

87

88 Subset selection from large datasets for Kriging modeling

Large non-uniform datasets can occur in several situations. The first situation occurs

when there is a set of “legacy” data (Srivastava et al. 2004). Legacy datasets contain

results of experiments, simulations or measurements performed in the past. These results

are stored for future use to avoid having to generate them again. This is especially useful

if there are many results or if the expenses to obtain these results are high. As this data is

not generated especially for making a global model, it is often not uniformly distributed

over the whole design space. Another cause of non-uniformity in legacy datasets can be

that they contain measurements of a system that cannot be fully controlled.

A second situation occurs when the data is the result of a sequential optimization

method. These methods often generate more data points near potential optima than in

other regions (Booker et al. 1999). If we want to use this data to fit a global metamodel,

we should account for clusters of points.

Thirdly, non-uniform data occurs if models are “coupled” (Husslage et al. 2003).

We call two models coupled if the output of the first model is input for the second. If

we want to construct a metamodel of both models, we can use a space-filling design of

experiments for the first model. It could be argued that we could also do this for the

second model. In some cases, however, it is better to use the output of the first model.

Although the input of the first model is space-filling, its output is often not. When we

want to construct a metamodel of the second model, we thus have to use a non-uniform

dataset.

Altogether, these are a number of situations where we can come across large non-

uniform datasets. Using these sets directly to build our model can impose problems that

can often be solved by using a uniform subset. We call a subset uniform if the input

data of the data points in the subset are “evenly spread” over the entire design space.

Whether or not using a uniform subset is better, depends not only on the dataset but

also on the chosen modeling method.

Important reasons for using a subset instead of the complete dataset are the following:

• Creating training and validation set

Validation is the most common reason for using only part of the data as train-

ing data. Splitting a dataset into a training and a validation set is a well-known

validation method and is often done randomly (Cherkassky and Mulier 1998, Gol-

braikh and Tropsha 2002). In the field of design of computer experiments (DoCE),

however, a consensus has been reached that designs used for deterministic com-

puter experiments should be space-filling (Simpson et al. 2001). A design is called

space-filling if it fills the whole design space. For a given number of design points,

the design space is best filled if the design points are evenly spread over the whole

design space. Therefore, it would be a good idea to also take a uniform subset when

selecting a training set from an existing dataset (Golbraikh et al. 2003).

5.1 Introduction 89

• Time savings

A second reason could be the reduction in time necessary to fit the Kriging model.

This is certainly an important issue as its time-consumption is generally regarded

as one of the main drawbacks of the Kriging method (Jin et al. 2001). With

current implementations and computing power, it is sometimes even impossible to

fit a Kriging model using all available data. For instance, when using the Matlab

toolbox DACE provided by Lophaven et al. (2002) on a PC with a 2.4 GHz Pentium

4 processor, we encountered problems for datasets containing 3000 points or more.

Especially the inversion of the correlation matrix that is part of Kriging can impose

problems as this requires much time and memory capacity. Kriging, however, is

not the only method that can benefit from using less data. Genetic programming

could also significantly benefit as it requires a lot of models to be fitted to a training

set (Koza 1992, Banzhaf et al. 1998). Often this forms a large part of the total

computation time and is thus worthwhile to reduce.

Besides fitting a Kriging model, the prediction of new points also requires less time

because using less training data results in simpler models. This is mainly because

the number of terms in the Kriging model depends on the size of the training set.

The same holds for Lagrange interpolation. Especially for on-line monitoring and

optimization, finding a fast and simple model is important (Kordon 2006).

• Avoiding numerical inaccuracies

A common property of large datasets is that they are non-uniform, which implies

that they may contain points that lie very close together. This property can make

the corresponding correlation matrix ill-conditioned (Davis and Morris 1997, Booker

et al. 1999). Solving a linear system with an ill-conditioned matrix can cause major

numerical inaccuracies. The optimization of the Kriging parameters requires solving

a linear system and can thus be inaccurate when data points lie close together.

Removing points from the dataset can avoid an ill-conditioned correlation matrix

and can, therefore, improve the numerical accuracy of the Kriging model.

• Improving robustness

Robustness of the Kriging model with respect to errors in the output data can be

negatively influenced when data points lie close together. Siem and Den Hertog

(2007) show that points that are close together can get assigned relatively large

Kriging weights. Due to these large weights, errors in the output values at these

points can have a large influence on the output value of the Kriging model at other

points. Removing some of the points may result in lower weights for the remaining

points and thus a smaller effect of errors. Therefore, we can sometimes improve

this kind of robustness by using only a subset instead of the whole dataset.

90 Subset selection from large datasets for Kriging modeling

These different motivations for subset selection require us to look at different performance

criteria. In Section 5.4.2, we describe the criteria used in this chapter to measure the

effects of subset selection on the four aspects: accuracy, CPU-time, susceptibility to

numerical inaccuracies, and robustness with respect to errors in the output data.

For most of these aspects, it is important that the selected subset is uniform. Selecting

a uniform set of points also occurs in other problems like Design of Computer Experiments

(DoCE) and the dispersion problem. Although these are different problems, we can use

some ideas from the fields of DoCE and dispersion problems in determining our subset.

To see why and how we can use these ideas, we look at the similarities and differences

between the problems in the following two sections.

5.1.2 Design of Computer Experiments

The main reason for using ideas from DoCE is that DoCE has the same aim as subset se-

lection. In both problems the aim is to select a training set that will produce a model that

most accurately approximates the function or process underlying the data. In practice,

however, we do not have an explicit description of the underlying function or process,

which makes it impossible to directly optimize this objective. Instead, we optimize cer-

tain properties of the training set that generally improve the quality of the resulting

model. Of these properties, the most frequently used is space-fillingness (Simpson et al.

2001).

Another similarity is that in both problems we often have a restriction on the number

of points we can use. In DoCE the restriction is caused by the large computation time

per design point. The reasons for limiting the number of points through subset selection

were given in Section 5.1.1.

Besides similarities, there are also differences between the two problems. The first

difference is the set of points we can choose from. In DoCE, we can select all points

in the design space. Sometimes we choose to restrict ourselves to points with a certain

structure or property, such as a Latin hypercube (McKay et al. 1979, Stein 1987) or

an orthogonal array (Owen 1992, Tang 1993), but even then we are free to select a

structure or property. In subset selection, we can only choose from the points in the

original dataset. This implies that the subset can cover the design space only as well as

the original dataset does. It could be argued that sometimes additional points can be

evaluated to improve for instance uniformity. Nevertheless, we do not take this option

into account, as it is beyond the scope of this chapter.

The second difference is that the output values of all possible points are known in the

case of subset selection. This in contrast to DoCE where we have to select our points

without knowing their output values. Even in sequential DoCE, only the output values

of previously selected and evaluated points are known. Using the output information in

5.1 Introduction 91

subset selection will most likely result in training sets that give more accurate models.

These differences show that we cannot directly use results from DoCE. In the paper

by Srivastava et al. (2004), however, a method is described that uses a space-filling DoCE

to determine a uniform subset. The main idea is to take a randomized orthogonal array

and to select for each point of this orthogonal array, the data point closest to it. This

idea can also be applied to other types of space-filling DoCEs. However, to limit the

number of methods compared in this chapter, we consider only orthogonal arrays. In

Section 5.3.1, the method of Srivastava et al. (2004) is described in more detail.

5.1.3 Dispersion problems

The dispersion problem can be described as follows. Given n possible locations, locate

m < n facilities such that some function of the distances between the facilities is max-

imized (Ravi et al. 1994). Two commonly used functions are the minimum and the

sum of the distances (Erkut and Neuman 1989). The first case is often referred to as

MAXMIN and the second as MAXSUM. Both versions of the dispersion problem are

strongly NP-hard. This was independently proven by Erkut (1990) and Ghosh (1996) for

the MAXMIN problem and by Hansen and Moon (1994) and Kuo et al. (1993) for the

MAXSUM problem. MAXMIN is also used as a measure of space-fillingness in DoCE.

When we see locations as points, we can thus reformulate the problem as follows. Given

n possible points, select a uniform subset of m points.

If we focus only on uniformity when selecting our subset and use MAXSUM or

MAXMIN to measure the uniformity then subset selection is the same as the MAX-

SUM or MAXMIN dispersion problem. Even so, this does not mean that we can directly

apply all facility location algorithms and heuristics to the problem of subset selection.

The two main reasons are the following.

Firstly, we have to consider the dimensionality of the design space. In dispersion

problems, the locations are often points in two- or three-dimensional space. Subset selec-

tion on the other hand applies to datasets of any dimension. In practice, the dimension

is often considerably larger than 3. This means that we have to determine whether an

algorithm for the dispersion problem extends to higher dimensions, before we can use it

in subset selection.

Secondly, many algorithms give only a solution in a reasonable amount of time for

sets containing relatively few (a couple of dozen or a few hundred) points (Agca et al.

2000, Pisinger 2006). Subset selection on the other hand may be necessary when there are

thousands of points. Ideas that give no computational problems for dispersion problems

could require too much time or memory capacity for subset selection.

Keeping these two aspects in mind, we can apply some methods originally developed

for the dispersion problem directly to subset selection. The greedy MAXMIN method

92 Subset selection from large datasets for Kriging modeling

(Ravi et al. 1991) is one such method. It starts by selecting for the subset the two

points furthest away from each other. Then iteratively, the point furthest away from the

already selected points is added to the subset. Although this method is quite simple,

Ravi et al. (1991) have shown that if the triangle inequality holds, the heuristic gives an

approximation ratio of 2; i.e., the MAXMIN distance of the resulting subset is at most

twice the MAXMIN distance of the optimal subset. Furthermore, due to its simplicity

the method is quite fast and thus suitable for large datasets. Therefore, we also use this

method for uniform subset selection and describe it in more detail in Section 5.3.3.

5.1.4 Overview

The structure of the rest of this chapter is as follows. In Section 5.2, we show through a

simple example that taking a subset can indeed improve the aspects mentioned in this in-

troduction. New and current methods to select a subset are described in Section 5.3. The

main difference between the new and current methods is that the new methods also use

the output data. To determine whether this method results in subsets that produce beter

Kriging models, we compare the methods in Section 5.4. Furthermore, we compare our

Kriging models with radial basis function (RBF) models fitted to the complete dataset.

The advantage of RBF models is that they have shown good fits for both stochastic

and deterministic functions (Powell 1987) and that they require significantly less time

to be fitted than Kriging models (Jin et al. 2001). RBF models can therefore be fitted

to datasets for which Kriging models would be too time-consuming. In Section 5.4, we

also compare the performance, in terms of CPU-time and accuracy, of Kriging models

fitted to a subset and RBF models fitted to the complete dataset. A basic description

of RBF models can be found in Appendix 5.F. Finally, Section 5.5 contains conclusions

and suggestions for further research.

5.2 Example

To show that selecting a subset can really improve the aspects mentioned in Section 5.1.1,

we introduce the following simple artificial example. We try to approximate the six-hump

camel-back function (Dixon and Szegö 1978):

f(x) = 4x2
1 − 2.1x4

2 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2,

with x1 ∈ [−2, 2] and x2 ∈ [−1, 1]. As our dataset, we take a maximin LHD of 20 points

(Van Dam et al. 2007) with four additional points close to an existing point as depicted

in Figure 5.1. By adding these four points, we create a cluster of points in the dataset.

As we mentioned in Section 5.1.1, this can cause several problems.

5.2 Example 93

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.1: Maximin LHD of 20 points with 4 additional points.

We test the effect of selecting a uniform subset by fitting Kriging models to the

datasets with and without the four additional points. To measure the effects of taking

a subset, we use the performance measures described in Section 5.4.2. The results for

both Kriging models are given in Table 5.1. For all measures it holds that a lower value

is better.

Without four With four
additional points additional points

RMSE 0.48 0.51
Maximum Error 2.03 2.46
Condition Number 76 1491564
Average Robustness 0.97 8.36
Max. Robustness 1.57 100.66

Table 5.1: Performance of Kriging models fitted to the datasets with and without the
four additional points.

Both the Root Mean Squared Error (RMSE) and the Maximum Error show that

the accuracy of the Kriging model without the four points is better than that of the

model with the additional four points. The latter Kriging model focusses more on fitting

accurately in the region of these additional points and, as a result, is more accurate in

this subregion. However, this additional accuracy is at the expense of accuracy in other

regions, which deteriorates the overall accuracy. When optimization is the goal of the

Kriging metamodel and the cluster is close the optimum, this behavior is often not a

problem. However, when we are still exploring the design space for potential optima or if

we are interested in a globally accurate metamodel, this behavior may be less desirable.

94 Subset selection from large datasets for Kriging modeling

When we compare the condition numbers, we see a very large difference. This shows

that the additional four points make the resulting Kriging model much more susceptible

to numerical inaccuracies. Finally, the larger maximal and average robustness values

indicate that this model is also less robust with respect to errors in the output data.

This simple example thus shows that removing some points can improve the quality

of the resulting Kriging model. Determining which points to remove is quite easy in

this case. In practice when the number of points is much larger, this becomes less

straightforward. Therefore, in the next section, we introduce some current and new

methods to select points from a dataset.

5.3 Subset selection methods

5.3.1 Orthogonal Array Selection

Srivastava et al. (2004) discuss the problem of selecting 500 or fewer points from a dataset

containing 2490 points in 25-dimensional space. The selected points are used to create

a Kriging model and the remaining points are used to check the accuracy of this model.

Results are compared for different numbers of selected points and compared with results

for quadratic response-surface models.

To select the points, first a randomized orthogonal array is constructed. Then for

each point of the orthogonal array a “nearest neighbor” is determined, i.e., the data

point closest to the orthogonal array point. All “nearest neighbors” together form the

set of selected points. It is possible that this set contains fewer points than the orthogonal

array because one point in the dataset can be the “nearest neighbor” of several points of

the orthogonal array. As we do not know in advance how often this happens, we cannot

set the subset size exactly. However, we do know that the size of the orthogonal array is

an upper bound for the subset size.

The idea of selecting “nearest neighbors” to points of an orthogonal array can be

extended to other types of space-filling DoCEs. For instance, we could use maximin LHDs

instead of orthogonal arrays. In order to limit the number of methods compared in this

chapter, we do not use Maximin LHD Selection as a separate method. We do, however,

use it to generate starting solutions for the Sequential Selection methods described in

Section 5.3.5. The (approximate) maximin LHDs we use are obtained through the ESE

algorithm of Jin et al. (2005).

Another reason for using Orthogonal Array Selection is that it enables us to compare

our results with those found by Srivastava et al. (2004). However, it is unclear which

method they exactly used to construct the randomized orthogonal arrays. We have

decided to use the method described on page 131 in Hedayat et al. (1999) to construct

61- and 113-dimensional orthogonal arrays of respectively 250 and 686 points. Using

5.3 Subset selection methods 95

a uniform distribution, we randomly select 6 or 25 dimensions to obtain randomized

orthogonal arrays that are suitable for our test problems. As different orthogonal arrays

may result in different subsets, the choice of orthogonal array could affect the quality

of the resulting subset. For each dataset, we therefore determine ten subsets using ten

different orthogonal arrays. We thus hope to determine whether the choice of orthogonal

arrays indeed affects the quality of the subset and the resulting model.

Notice, that this method requires us to find a suitable orthogonal array. This could

be a problem as an orthogonal array of the desired number of points and dimensions

might not be known. However, due to the flexibility in the desired number of points of

the orthogonal array, this problem can be easily resolved in most cases.

5.3.2 Fast Exchange Algorithm

The Fast Exchange Algorithm was introduced by Lam et al. (2002) to select a subset from

a very large database containing characteristics of molecules. The goal of the algorithm

is to select a subset that covers the numerical space described by the database. However,

as this space is often high-dimensional, nearly all these databases are sparse. This makes

it impossible to densely cover the whole space with a reasonably sized subset of points.

The algorithm therefore focusses on selecting the subset such that it is space-filling in

low-dimensional projections of the space.

Globally, the algorithm works as follows. First, sets of bins are constructed for all

1-D, 2-D and 3-D projections. These bins form a partition of the projected design spaces

and their sizes depend partly on the distribution of the data. The aim is now to select a

subset such that each bin contains approximately the same number of points. To measure

how close a certain subset is to this aim, the uniform cell coverage criterion is used. This

criterion has the advantage that we can easily calculate the effect of adding or removing

a particular point from the subset on the criterion value.

The Fast Exchange Algorithm now tries to find the best subset by exchanging points

that are inside and outside the subset. This is done in two steps. In the first step, the

best point to add to the current subset is determined. The resulting subset thus has a

size of n+1. In the second step, the best point to remove from this subset is determined.

The main difference with the basic exchange algorithm is in these two steps. In the basic

exchange algorithm, all possible points outside the subset are tried in the first step, and

all points inside the subset are tried in the second step. As a result, the basic exchange

algorithm loops through all points in the dataset, before an exchange is made. The Fast

Exchange Algorithm, on the other hand, uses a distribution of the improvements to select

the exchange. At the beginning of the algorithm, one hundred additions and removals

of points are tried to estimate the two distributions of the improvements in Steps 1 and

2. During the algorithm when more additions and removals are tried, this estimated

96 Subset selection from large datasets for Kriging modeling

distribution is updated. A point is added or removed if it belongs to the upper tail of

this distribution. This often implies that we loop through much fewer points before an

exchange is made.

5.3.3 Greedy MAXMIN Selection

The greedy MAXMIN method comes from the field of dispersion problems. The k-

dimensional data points are therefore seen as points in k-dimensional space. As the

name indicates, it seeks to maximize the minimal Euclidean distance between any two

points in the chosen subset. It does this in essentially the same way as the “furthest

point outside the neighborhood” heuristic described in Steuer (1986).

Let us denote the total dataset by N and the Euclidean distance between points i

and j by di,j. We can then describe this simple heuristic as follows (Ravi et al. 1991):

1. Take S = ∅.

2. Let (i, j) be such that di,j is maximal.

3. Add i and j to the set S.

4. Find a point i ∈ N\S such that minj∈S di,j is maximum among the points in N\S.

5. Add point i to S.

6. Repeat Steps 4 and 5 until the set S contains the desired number of points.

In Step 4, we thus determine the point farthest away from the already chosen points.

Although the heuristic is quite simple, Ravi et al. (1991) have shown that if the triangle

inequality holds, the heuristic gives an approximation ratio of 2. Furthermore, they have

proven that, unless P=NP, no polynomial-time relative approximation algorithm can

provide a better performance.

Notice, that if the domains of the input variables are of different magnitudes, it is

better to normalize the domains in order to obtain a uniform subset. For all datasets in

this chapter, we therefore normalize the domains before applying this method.

5.3.4 Greedy DELETION Algorithm

Besides MAXMIN Selection, we use another simple greedy algorithm. This method

constructs a subset by iteratively removing one point of the pair of points with the

smallest Euclidean distance between them. To decide which of the two points should be

removed, we look for each point at the distance to its second closest point. The point for

which this distance is smallest is removed from the dataset.

5.3 Subset selection methods 97

Using the same notation as for MAXMIN Selection, we can describe the DELETION

Algorithm as follows:

1. Take S = N .

2. Let (i, j) be such that di,j is minimal.

3. Determine ci = mink∈S/{i,j} di,k and cj = mink∈S/{i,j} dj,k.

4. Remove the point with the lowest c value from the set S.

5. Repeat Steps 2, 3, and 4 until the set S contains the desired number of points.

As this method constructs a subset through the removal of points from the total

dataset, the method requires fewer iterations for larger subsets—unlike, for instance,

MAXMIN and Sequential Selection, which build a subset by adding points to an initially

empty set. Furthermore, for this method it is also useful to normalize the domains of the

variables in order to obtain a uniform subset.

5.3.5 Sequential Selection

In the four methods discussed in the previous subsections, the output values of the points

are not used in the selection process. However, as the selected points are used to determine

a model of the output, it seems a good idea to explicitly use the output information in

selecting the training points. As we previously mentioned, this is an important difference

with DoCE where generating the output values is expensive. In our situation, we work

with a given dataset with known output values and can thus use the output values at no

additional computational costs.

We use the output values in the following way. First, we apply Maximin LHD Selection

(see Section 5.3.1) using only the input values to determine an initial training set. Then

we fit a Kriging model to the training set and calculate the prediction error at the non-

selected points. The idea is now to add non-selected points with a large error to the

training set. However, if the Kriging model is inaccurate in a certain region, all points

in that region have a large error. Consequently, simply selecting, for instance, n1 points

with the highest error might result in adding points that are clustered together in one or

a few regions.

To reduce this problem, we use two methods. The first method is to add one point at

a time. This means that the point with the largest error is added to the training set and

then the Kriging model is refitted. This method completely solves the above problem, but

is unfortunately rather time-consuming as we fit a new Kriging model after every added

point. Therefore, we also develop a second method. This method determines the n2 > n1

worst points and then uses the greedy MAXMIN heuristic described in Section 5.3.3 to

98 Subset selection from large datasets for Kriging modeling

select a uniform subset of n1 points. These n1 points are then added to the training set.

In this chapter, we use n1 = 10 and n2 = 40 to test this method. We have not tested the

influence of the choice of n1 and n2 on the quality of the resulting subset. Determining

this possible influence and a suitable method for selecting these values remain topics for

further research. To determine whether the above problem really occurs and results in

worse models, we also test the method where we simply add the n1 = 10 worst points.

For each method, the selection and addition steps are repeated until the desired

number of points are selected. Because we use Maximin LHD Selection to determine the

initial training set, the initial training set might not always be equal to the size of the

LHD. We take this into account when determining the number of selection and addition

steps. As we add 10 points per step in the second method, it is not always possible to

determine this such that we exactly get the desired number of points. In these cases, we

select the largest attainable number of points smaller than the desired number of points.

As these methods are sequential methods, we might decide to use another stopping

criterion to determine how often we repeat the steps. An example would be to stop when

the maximum error in the non-selected points is below a certain predefined value. In

this chapter, however, we choose to predefine the number of selected points for easier

comparison between the different methods.

Finally, we want to make a remark on the implementation of this method. As men-

tioned, the method requires that a new Kriging model is fitted in every iteration. As

this is the most time consuming part of the method, we try to speed up the optimization

of the Kriging parameters. We manage to do this by using the fact that subsets in con-

secutive iterations are quite similar because each set is obtained by adding points to the

previous set. This makes it quite plausible that the optimal parameter settings of the

Kriging models fitted to both subsets are also similar. The optimal parameter setting of

the Kriging model in the previous iteration therefore seems a good starting solution for

fitting the Kriging model in the current iteration. Some tests show that using the optimal

parameters of the previous iteration instead of a fixed starting solution, can indeed reduce

the time needed to select a subset by 15 percent. Therefore, we use this implementation

for the Sequential Selection method in the remainder of the chapter.

5.4 Computational results

5.4.1 Subset selection methods

We compare the following eight methods:

• Random Selection (RS).

• Orthogonal Array Selection (OAS).

5.4 Computational results 99

• Fast Exchange Algorithm (FEX).

• Greedy MAXMIN Selection (MAXMIN).

• Greedy DELETION Algorithm (DELETION).

• Sequential Selection adding one point at a time (SS1).

• Sequential Selection adding ten worst points at a time (SS10).

• Sequential Selection adding ten uniform points from the 40 worst points at a time

(SS1040).

The first method randomly selects the required number of points without taking into

account any of their properties. The performance of this method is used as a reference

for the performance of the other methods.

To test the effect of the training set size on the resulting Kriging model, we select

subsets of 250, 350, and 500 points from the datasets that are described in Section 5.4.3.

As the SS1 method is rather time-consuming, we generate only subsets of 250 and 350

points using this method. Furthermore for Orthogonal Array Selection, we cannot deter-

mine the exact subset size in advance. By using orthogonal arrays of 250 and 686 points,

we get subsets of at most these amounts of points. As mentioned in Section 5.3.1, we

generate subsets using ten different orthogonal arrays to test the effect of the choice of

orthogonal array on the resulting subset. For each performance measure, we therefore

report the average, minimum, and maximum over these ten subsets.

5.4.2 Performance measures

The different reasons for selecting a subset require that we use several performance mea-

sures to determine how good a certain subset is. We describe these performance measures

and our motivation for choosing them.

RMSE and Maximum Error

Our first reason is the selection of a subset that results in an accurate model. We thus

need to measure the accuracy of the resulting Kriging model. Common measures are the

Average Error, Root Mean Squared Error (RMSE), and Maximum Error. We do not

measure these on the training data because the Kriging model interpolates through the

training data, so these measures are always zero. Instead, we need a validation set, which

could either be the remaining dataset or a separately generated set.

In the case of a real-life dataset, we have only the first option. If the original dataset

is non-uniform, the remaining dataset might not be particularly suited to measure the

100 Subset selection from large datasets for Kriging modeling

overall accuracy of the model as the accuracy in densely populated regions weighs heavier

than accuracy in sparsely populated regions. This problem could be reduced by taking the

Weighted Average Error or Weighted RMSE with weights determined such that errors in

points in sparse regions get more weight than errors in points in dense regions. However, it

is unclear how exactly the weights should be determined to achieve this effect. Therefore,

we use the usual RMSE in this chapter, although we are aware of its deficiency. Finding

a method for determining the weights remains a worthwhile subject for further research.

Besides the RMSE, we will also use the Maximum Error to compare the accuracy of

different Kriging models.

For artificial datasets, the best option is to separately generate a uniform validation

set. This way we avoid any problems caused by densely versus sparsely populated regions.

In this chapter, a uniform grid is therefore used as the validation set.

Time for model fitting

To determine the reduction in time necessary to fit the Kriging model, we simply use

the amount of required CPU time. For fitting the Kriging model, we used the Matlab

toolbox DACE provided by Lophaven et al. (2002). All calculations were performed on

a PC with a 2.4 GHz Pentium 4 processor; the CPU times are reported in minutes.

Time for subset selection

Besides fitting the Kriging model, the time necessary for constructing the subset is also

measured. This is needed to determine whether the time gained for model fitting is not

outweighed by the additional time needed to select a good subset. Note that we coded

all subset selection methods in Matlab. By using the same program for each method,

we aim to make a fair comparison between the different methods. The results are again

reported in minutes.

Condition number

We also want to avoid ill-conditioned correlation matrices by selecting a subset. To

determine if a correlation matrix is ill-conditioned, we use its condition number. The

condition number κ of a square matrix C is defined as (Golub and Van Loan 1996):

κ(C) =
σmax(C)

σmin(C)
,

where σmax(C) and σmin(C) are the largest and smallest singular values of C. A nonneg-

ative scalar σ is a singular value of C is there exist two nonzero vectors u and v such that

Cv = σu and C>u = σv. The condition number is a measure of the worst case loss in

precision when solving a linear system. A matrix with a large condition number is called

5.4 Computational results 101

ill-conditioned and is thus susceptible to numerical inaccuracies. An orthogonal matrix

has κ equal to 1.

Average and maximum robustness

Finally, we want to measure the influence of errors in the output data on the resulting

Kriging model. Depending on the kind of data we are dealing with, these errors can

have different causes. If, for instance, the data is obtained using a simulation model, the

error in the output can result from model errors or numerical errors. If a Kriging model

is robust, a small inaccuracy in the output data does not cause the Kriging model to

deviate much from the Kriging model fitted to the correct data.

To measure the robustness of a Kriging model with respect to errors in the output

data, Siem and Den Hertog (2007) suggest to use ||c(x)|| as a measure of robustness

at the point x, where c(x) is the vector of Kriging weights and ||.|| is the Euclidean

norm. (See Appendix 5.E for a basic description of the Kriging method.) The general

idea behind this measure is the following. Let us assume that we have a training dataset

x1, . . . , xn for which the true output values are y1, . . . , yn, but the measured output values

are y1 +ε1, . . . , yn +εn. An upper bound for the deviation from the true Kriging model at

point x is then approximated by ||ε||||c(x)|| where ε = [ε1 . . . εn]>. The measure ||c(x)||
thus gives an indication of the factor by which errors in the output values of the dataset

are multiplied when calculating the output value of the Kriging model at point x.

This robustness-criterion determines the robustness only at a certain point x. To

measure the overall robustness, we use the maximal and average value of the robustness

values at a set of points. As we do not need to know the true output values at these

points, we select them on a rectangular grid—even in the case of a real-life dataset.

5.4.3 Datasets

To test the different selection methods, we use two types of datasets: artificial datasets

with known underlying function and real-life datasets for which the underlying function

is unknown. For real-life datasets, it is clearly more difficult to judge the accuracy of

the resulting model, especially as these datasets are often unstructured and non-uniform.

This also holds for the real-life dataset used in this chapter. The dataset was originally

used in the design of the High Speed Civil Transport (HSCT) aircraft and contains 2490

points in 25-dimensional space (Padula et al. 1996). As this dataset is used by Srivastava

et al. (2004), we use it to make a comparison with their results. Before using the dataset,

we first remove the duplicate points, which leaves us with a dataset of 2487 unique points.

Artificial datasets are generally constructed by drawing points from the design space

and calculating their value for a known function. In this chapter, we use the six-variable

102 Subset selection from large datasets for Kriging modeling

Hartman-6 function (Dixon and Szegö 1978) which is defined as follows:

f(x) = −
4∑

i=1

ci exp

(
−

6∑
j=1

αij(xj − pij)
2

)

with xj ∈ [0, 1], j = 1, . . . , 6, and where the parameters are given in Table 5.2. The

i αij, j = 1, . . . , 6 ci pij, j = 1, . . . , 6

1 10 3 17 3.5 1.7 8 1 .1312 .1696 .5569 .0124 .8283 .5886
2 .05 10 17 0.7 8 14 1.2 .2329 .4135 .8307 .3736 .1004 .9991
3 3 3.5 1.7 10 17 8 3 .2348 .1451 .3522 .2883 .3047 .6650
4 17 8 .05 10 0.1 14 3.2 .4047 .8828 .8732 .5743 .1091 .0381

Table 5.2: Parameter values of the six-variable Hartman-6 function.

output values of the Hartman-6 function range between approximately −3.23 and 0. The

Hartman-6 function is chosen because it is a widely used test problem with a relatively

large number of dimensions (Wang et al. 2001, Jin et al. 2002). As most real-life

datasets are high-dimensional, we prefer this test problem over other widely used but

lower-dimensional test problems.

To sample the points from the design space, the following methods are used:

1. Sample the points from a uniform distribution on the ranges of the variables xj,

j = 1, . . . , 6.

2. Divide the design space into mk equally sized cells, where k is the dimension.

Determine mk numbers that sum up to the total size of the dataset. Randomly

assign these numbers to the cells. For each cell use a uniform distribution to sample

the assigned number of points within the cell. By adjusting the distribution of the

number of points, we can vary the uniformity of the dataset.

We refer to datasets constructed with the first method as uniform datasets. We use the

second method to construct non-uniform datasets of 2000, 5000, and 10000 points. For

all sizes, m is set equal to 3 which means that we have 729 cells. The distributions of the

number of points per cell are given in Table 5.3.

For 2000 points, it is still possible to fit a Kriging model and a RBF model to the

complete dataset. Therefore, we use these datasets to test if taking a subset is really

better than using the complete set. For the datasets of 5000 points, we were no longer

able to fit a Kriging model to the complete dataset with the DACE toolbox. A RBF

model, however, could still be fitted to the complete dataset. Hence, we use these datasets

to test how a Kriging model fitted to a subset compares to a RBF model fitted to the

complete set. When using 10000 points, we could no longer fit a RBF model to the

5.4 Computational results 103

Number of cells 30 30 74 238 431 595

Points per cell for
dataset of 2000 points

20 10 1 2

Points per cell for
dataset of 5000 points

50 25 5 4

Points per cell for
dataset of 10000 points

100 50 10 8

Table 5.3: Distributions of the number of points per cell used to construct non-uniform
datasets of 2000, 5000, and 10000 points.

complete dataset. We thus use these datasets to compare the results of the different

subset selection methods for Kriging only.

For each size and type of artificial dataset, we randomly generated 50 datasets. In

the comparisons, we use the average, minimum, and maximum performance over these

datasets for all performance measures.

5.4.4 Results for artificial datasets of 2000 points

For datasets of 2000 points, it is still possible to fit a Kriging and a RBF model to

the complete dataset. By taking a subset, we aim to improve the different performance

measures. In Table 5.4 in Appendix 5.A, we give detailed results of the performance

measures.

When looking at the RMSE and the Maximum Error, the Kriging model fitted to the

complete dataset is the most accurate model for both uniform and non-uniform datasets.

Unfortunately, it requires by far the most time to fit. Fitting a RBF model is much faster

than Kriging and also faster than most subset selection methods if we take into account

the times necessary to select the subsets. However, some of the Kriging models fitted to

a subset are more accurate than the RBF model. For subsets of 200 points, the RMSE

of most Kriging models is still worse, but SS1, SS10, and SS1040 produce almost equally

good or even slightly better Kriging models. For 350, points SS1, SS10, and SS1040

result in Kriging models with a much lower RMSE than the RBF model. When using

500 points, these methods result in Kriging models with even lower RMSE values, as

expected. For non-uniform datasets, the best subsets obtained with OAS also result in

Kriging models with a lower RMSE. The Maximum Error shows even more cases where

Kriging models fitted to subsets are better than the RBF model.

When we consider the subset selection times, two methods that require hardly any

time are RAND and OAS. Nevertheless, using RAND is not a very good choice, as the

resulting Kriging models are rather inaccurate. The OAS method results in considerably

more accurate Kriging models. Subset methods that result in even more accurate Kriging

models are SS1, SS10, and SS1040. When we compare these methods for each subset

104 Subset selection from large datasets for Kriging modeling

size separately, SS1 results in the lowest RMSE and SS1040 in the lowest Maximum

Error. However, when we take into account the time to select the subset, SS1 is the

least attractive method. Selecting a subset of 350 points requires even more time than

fitting a Kriging model to the complete dataset. The methods SS10 and SS1040 are also

relatively time-consuming compared with RAND, MAXMIN, FEX, and OAS, but they

are more accurate and still have a considerable time reduction compared with Kriging

fitted to the complete dataset.

Considering the condition numbers, SS1, SS1040, MAXMIN, DELETION, and OAS

perform very well. The good performance of the latter two methods might be explained

by the fact that they only focus on optimizing the uniformity of the input data which

influences the condition number of the correlation matrix. In contrast, it is remarkable

that the FEX method, which has the same focus, performs considerably worse. This

seems to indicate that FEX does not succeed as well in selecting a uniform subset as

SS1, SS1040, MAXMIN, DELETION, and OAS do. Furthermore, we see that SS1040

gives better result than SS10, as expected. Taking 10 uniformly selected points from

the 40 worst instead of just taking the 10 worst points, thus seems to result in a more

uniform subset. Most important, however, is that all subset selection methods result

in a correlation matrix with a considerably better condition number than that of the

correlation matrix of the complete dataset. Therefore, taking a subset clearly reduces

the chance of numerical inaccuracies.

For robustness, taking a subset also considerably improves the performance measure.

When we look at the maximum robustness, then SS1, SS1040, MAXIMIN, DELETION,

and OAS perform best. For the average robustness SS10 also performs well.

Besides these performance measures, we present the actual sizes of the subsets, be-

cause for OAS the number of points in the subset is not known exactly in advance. The

results show that for 250 points, the number of selected points is quite close to the size

of the orthogonal array. For the orthogonal arrays of 686 points, the difference is much

larger. As we mentioned in Section 5.3.5, SS10 and SS1040 may result in slightly different

subset sizes as Maximin LHD Selection is used for the initial training set. Even so, the

results show that this does not occur for the tested datasets.

When we compare uniform and non-uniform datasets, we see almost the same results

for most performance measures. The ranking of the different methods is generally the

same. The main differences are between the condition number and robustness of the

Kriging models fitted on the complete dataset. On these aspects, the Kriging models

fitted on the uniform datasets perform better than the Kriging models fitted on the non-

uniform datasets. For the Kriging models fitted on the subsets, the differences are much

smaller. This seems to indicate that the difference in uniformity between the subsets is

smaller than the difference in uniformity between the two types of complete sets.

5.4 Computational results 105

The subset size is also a factor that influences the performance measures. When

we compare the performance measures, we see two opposite effects. The RMSE and

Maximum Error improve when larger subsets are used, whereas the other performance

measures worsen. To determine the ‘best’ subset size, we thus have to make a trade-off

between accuracy and robustness, computer time, and numerical accuracy. Which trade-

off is best depends on the importance of these aspects and the estimated accuracy of the

dataset.

Finally, we examine the effect of the choice of an orthogonal array on the results of

the OAS method. Therefore, we compare the mean, minimum, and maximum of the

performance measures over ten subsets obtained with ten different orthogonal arrays.

The differences in these results show that the choice of an orthogonal array has a clear

effect on the quality of the resulting subset and Kriging model. When using the OAS

method, it is therefore better not to use a single random orthogonal array. It would be

better to carefully choose a suitable orthogonal array or to create multiple subsets using

different (random) orthogonal arrays, and then select the best subset. Which option

works best and how exactly we should implement them, is not immediately clear and are

thus interesting subjects for further research.

5.4.5 Results for artificial datasets of 5000 and 10000 points

For datasets of 5000 points, we could no longer fit a Kriging model to the complete

dataset. A RBF model, on the other hand, could still be fitted. As most results are quite

similar to the results of the datasets containing 2000 points, we focus on the differences.

Detailed results can be found in Table 5.5 in Appendix 5.B.

When comparing the RMSE, we see that now only SS10 and SS1040 with a subset of

500 points result in Kriging models with RMSE values approximately to the RBF model.

The Maximum Error, however, is considerably lower for all subsets of SS1, SS10, and

SS1040 and for the large subsets obtained with OAS. Combining these two measures, the

Kriging models based on subsets of 500 points obtained with SS10 and SS1040 seem to

be most accurate. Unfortunately, the time required to select these subsets and to fit the

model is considerably more than for the RBF model. We thus have a trade-off between

accuracy and the required time. For the condition number and robustness, we see the

same result as for the datasets of 2000 points. Considering the subset sizes, the only

difference is that the subsets obtained with OAS have become larger.

The above results also apply to the datasets of 10000 points. The only difference is

that for 10000 points, it was not possible to fit a RBF model. A comparison with a model

fitted to the complete dataset could therefore no longer be made. All the results can be

found in Table 5.6 in Appendix 5.C.

106 Subset selection from large datasets for Kriging modeling

5.4.6 Results for HSCT dataset of 2487 points

To make a comparison with the results of Srivastava et al. (2004) for the HSCT dataset,

we have to use some different performance measures. Srivastava et al. (2004) measure

the accuracy through the Root Mean Squared Percentage Error (RMSPE), the Average

Percentage Error and the Maximum Percentage Error. We therefore report these accuracy

measures for the different subsets instead of the Maximum Error and the RMSE.

Another difference is in the subset sizes as Srivastava et al. (2004) find subsets of 126,

283, and 372 points. To make a fair comparison, we compare our subsets of 250 points

with Srivastava’s subset of 283 points and our subsets of 350 points with Srivastava’s

subset of 372 points. The subsets of 500 points are thus used only for the comparison

between the different methods in this chapter.

When comparing the results of Srivastava with our results, one of the surprising

results is the difference in subset sizes when using the OAS method. Srivastava reports

that using random orthogonal arrays of 250 and 686 points results in subsets of 126

and 283 points, respectively. However, when we use orthogonal arrays of these sizes, we

obtain subsets of approximately 225 and 500 points. We tried to determine the cause of

this large difference, but were not able to find a satisfying explanation. Use of different

orthogonal arrays could be one explanation, but it seems unlikely that this alone causes

such a large difference.

Examining the other performance measures for the subsets of 250 and 283 points, we

see that the RMSPE and the Average Percentage Error obtained by Srivastava are equal

to the results obtained with RAND. This is surprising as RAND is a very naive method.

Furthermore, SS1, SS10, and SS1040 perform better on these two performance measures.

For the Maximum Percentage Error, SS1, SS10, SS1040, MAXMIN, and OAS all give

better results. Although OAS is also applied by Srivastava, these results are difficult to

compare because of the difference in the resulting subset sizes.

For the subsets of 350 an 372 points, Srivastava obtained the best results for the

RMSPE and Average Percentage Error. Of the other methods, SS1 and SS1040 also

perform well on these measures. The Maximum Percentage Error is lowest for the SS1

method, followed by Srivastava’s results and SS1040. Notice, that SS10 scores rather

poorly on the Maximum Percentage Error and—to a lesser extend—on the RMSPE.

This could indicate that indeed a cluster of points is selected, which negatively affects

the overall accuracy.

As the other performance measures are not calculated by Srivastava, we can only

compare them over the different methods we implemented ourselves. For the condition

number and average robustness, SS1, SS1040, MAXMIN, DELETION, and OAS give

good results. The high values for the condition number and the average robustness

measure for the SS10 method are again a sign of possible clustering.

5.5 Conclusions and further research 107

The subset selection times are again lowest for RAND and OAS, followed by MAXMIN

and DELETION. The time needed to fit the model is lowest for SS1, SS10, and SS1040.

This is the result of using the optimal parameters settings of previous iterations of the

algorithm. If we would not have used this information and instead used a standard

starting vector, then the time to fit the model would be comparable to those of the RAND

method. All in all, the results are similar to our results for the three artificial datasets.

Although we used some different performance measures for this dataset, the ranking of

the different methods for most aspects is the same. This increases our confidence that

results obtained by the artificial datsets can also be obtained for real life datasets.

5.5 Conclusions and further research

In this chapter, we show that fitting a Kriging model to a smaller but more uniform

dataset can result in better Kriging models. Especially for large non-uniform datasets

using a uniform subset can have several advantages; we can reduce the time necessary to

fit the model, avoid numerical inaccuracies and improve the robustness with respect to

errors in the output data.

To select a uniform subset, we consider several new and current methods. All these

methods are tested on artificial subsets of three different sizes and two levels of unifor-

mity. Furthermore, tests are performed on the HSCT dataset, which was also used by

Srivastava et al. (2004). The tests show that by using uniform subsets, we can indeed find

accurate Kriging models in less time. Furthermore, these Kriging models are more robust

and less susceptible to numerical inaccuracies. When comparing the different methods

for finding subsets, there is no overall winner. SS1040 generally performs well on accu-

racy, robustness, and numerical accuracy. Subsets obtained with SS1040 even result in

Kriging models that are more accurate than RBF models fitted on the complete dataset.

Compared with the other methods, SS1040, however, is relatively time consuming, but

still considerably faster than fitting a Kriging model to the complete dataset. The OAS

method is much faster, but has lower accuracy, robustness, and numerical accuracy. De-

ciding which method is best for a practical application, thus depends on how the different

aspects are valued. The comparison made in this chapter can be used to help the user to

make a good choice.

Further research could aim at finding new methods for selecting a subset. These

new methods could, for instance, try to find better subsets by using a different objective

to obtain a uniform subset or by taking into account other properties of the dataset.

Another option would be to develop methods that dynamically determine a suitable

subset size. Furthermore, it would be interesting to determine whether the results found

in this chapter also apply to other modeling methods than Kriging.

108 Subset selection from large datasets for Kriging modeling

5.A Results for artificial datasets of 2000 points

U
n
if
o
rm

D
a
ta

se
ts

N
o
n
-U

n
if
o
rm

D
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

K
ri

g
in

g
0.

06
0.

08
0.

06
0.

07
0.

08
0.

06
R

B
F

0.
10

0.
11

0.
10

0.
11

0.
12

0.
10

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
17

0.
15

0.
13

0.
21

0.
18

0.
16

0.
14

0.
13

0.
11

0.
18

0.
15

0.
13

0.
22

0.
18

0.
17

0.
15

0.
13

0.
11

S
S
1

0.
10

0.
08

0.
11

0.
10

0.
09

0.
08

0.
10

0.
09

0.
11

0.
10

0.
09

0.
08

S
S
10

0.
11

0.
09

0.
08

0.
12

0.
10

0.
08

0.
10

0.
08

0.
07

0.
11

0.
09

0.
08

0.
15

0.
10

0.
09

0.
09

0.
08

0.
07

S
S
10

40
0.

10
0.

09
0.

08
0.

19
0.

10
0.

08
0.

09
0.

08
0.

07
0.

10
0.

09
0.

08
0.

12
0.

10
0.

09
0.

09
0.

08
0.

07
M

A
X

M
IN

0.
16

0.
14

0.
11

0.
19

0.
19

0.
14

0.
14

0.
12

0.
10

0.
17

0.
14

0.
12

0.
20

0.
17

0.
14

0.
14

0.
12

0.
10

D
E

L
E

T
IO

N
0.

16
0.

14
0.

12
0.

20
0.

16
0.

14
0.

14
0.

12
0.

10
0.

17
0.

14
0.

12
0.

20
0.

18
0.

14
0.

15
0.

13
0.

10
F
E

X
0.

17
0.

15
0.

12
0.

21
0.

19
0.

15
0.

14
0.

13
0.

11
0.

17
0.

15
0.

13
0.

20
0.

17
0.

14
0.

15
0.

13
0.

11
O

A
S

m
ea

n
0.

17
0.

11
0.

19
0.

12
0.

17
0.

11
0.

17
0.

11
0.

18
0.

12
0.

16
0.

11
O

A
S

m
in

0.
15

0.
10

0.
17

0.
11

0.
14

0.
10

0.
15

0.
10

0.
17

0.
11

0.
14

0.
09

O
A

S
m

ax
0.

20
0.

13
0.

24
0.

14
0.

18
0.

11
0.

19
0.

13
0.

21
0.

14
0.

17
0.

12

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

K
ri

g
in

g
0.

76
1.

05
0.

50
0.

85
1.

29
0.

54
R

B
F

1.
31

1.
58

0.
96

1.
36

1.
68

1.
09

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

1.
62

1.
41

1.
28

2.
05

1.
98

1.
74

1.
15

0.
85

0.
86

1.
65

1.
54

1.
42

2.
02

1.
96

1.
81

1.
12

0.
99

0.
84

S
S
1

0.
96

0.
94

1.
48

1.
43

0.
56

0.
53

1.
04

1.
02

1.
53

1.
47

0.
71

0.
67

S
S
10

0.
96

0.
92

0.
88

1.
39

1.
37

1.
34

0.
60

0.
52

0.
49

1.
03

1.
00

0.
97

1.
43

1.
43

1.
42

0.
67

0.
61

0.
65

S
S
10

40
0.

94
0.

90
0.

87
1.

30
1.

35
1.

34
0.

63
0.

54
0.

48
1.

00
0.

98
0.

96
1.

53
1.

45
1.

41
0.

71
0.

67
0.

60
M

A
X

M
IN

1.
54

1.
40

1.
20

1.
95

1.
71

1.
64

1.
18

0.
92

0.
92

1.
53

1.
37

1.
21

2.
27

1.
82

1.
65

1.
13

0.
99

0.
81

D
E

L
E

T
IO

N
1.

53
1.

34
1.

22
1.

97
1.

77
1.

56
1.

11
0.

93
0.

83
1.

55
1.

41
1.

22
2.

00
1.

89
1.

70
1.

02
0.

98
0.

82
F
E

X
1.

56
1.

44
1.

28
2.

05
1.

87
1.

74
1.

12
0.

88
0.

85
1.

57
1.

46
1.

34
1.

99
1.

85
1.

82
1.

03
0.

99
0.

86
O

A
S

m
ea

n
1.

60
1.

18
1.

72
1.

40
1.

39
1.

01
1.

59
1.

25
1.

74
1.

47
1.

47
1.

02
O

A
S

m
in

1.
28

0.
93

1.
51

1.
23

0.
98

0.
71

1.
30

1.
00

1.
59

1.
30

0.
99

0.
78

O
A

S
m

ax
1.

92
1.

45
2.

22
1.

72
1.

67
1.

20
1.

88
1.

50
2.

09
1.

85
1.

75
1.

29

T
im

e
S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

S
S
1

9.
56

24
.1

5
10

.1
8

24
.9

1
9.

39
23

.6
7

9.
52

24
.0

5
10

.1
2

24
.8

9
9.

35
23

.6
3

S
S
10

0.
92

2.
33

6.
82

0.
95

2.
38

7.
38

0.
90

2.
28

6.
69

0.
92

2.
32

6.
81

0.
96

2.
39

7.
40

0.
90

2.
26

6.
67

S
S
10

40
0.

92
2.

32
6.

79
0.

95
2.

77
7.

24
0.

86
2.

26
6.

64
0.

92
2.

32
6.

80
0.

95
2.

37
7.

39
0.

89
2.

25
6.

67
M

A
X

M
IN

0.
02

0.
02

0.
02

0.
02

0.
02

0.
03

0.
01

0.
01

0.
01

0.
02

0.
02

0.
02

0.
02

0.
02

0.
03

0.
01

0.
01

0.
01

D
E

L
E

T
IO

N
0.

07
0.

07
0.

06
0.

08
0.

07
0.

07
0.

06
0.

06
0.

06
0.

07
0.

07
0.

07
0.

08
0.

08
0.

07
0.

06
0.

06
0.

06
F
E

X
0.

21
0.

28
0.

33
0.

37
0.

47
0.

70
0.

08
0.

09
0.

11
0.

24
0.

30
0.

39
0.

35
0.

42
0.

57
0.

15
0.

17
0.

20
O

A
S

m
ea

n
0.

00
0.

01
0.

00
0.

01
0.

00
0.

01
0.

00
0.

01
0.

00
0.

01
0.

00
0.

01
O

A
S

m
in

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

O
A

S
m

ax
0.

00
0.

01
0.

01
0.

01
0.

00
0.

01
0.

00
0.

01
0.

00
0.

01
0.

00
0.

01

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

K
ri

g
in

g
15

.0
9

15
.8

1
14

.8
7

15
.0

2
15

.4
0

14
.8

7
R

B
F

0.
25

0.
26

0.
25

0.
25

0.
26

0.
25

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
10

0.
21

0.
51

0.
11

0.
23

0.
53

0.
09

0.
20

0.
48

0.
10

0.
21

0.
51

0.
11

0.
23

0.
53

0.
10

0.
20

0.
48

S
S
1

0.
08

0.
16

0.
09

0.
17

0.
07

0.
14

0.
08

0.
16

0.
15

0.
17

0.
08

0.
15

S
S
10

0.
08

0.
16

0.
40

0.
09

0.
19

0.
44

0.
07

0.
14

0.
38

0.
08

0.
16

0.
40

0.
10

0.
19

0.
44

0.
07

0.
14

0.
37

S
S
10

40
0.

08
0.

16
0.

40
0.

09
0.

17
0.

44
0.

07
0.

15
0.

37
0.

08
0.

16
0.

41
0.

10
0.

17
0.

71
0.

07
0.

14
0.

36
M

A
X

M
IN

0.
05

0.
10

0.
22

0.
05

0.
11

0.
23

0.
05

0.
09

0.
21

0.
05

0.
10

0.
22

0.
05

0.
11

0.
24

0.
05

0.
09

0.
21

D
E

L
E

T
IO

N
0.

05
0.

10
0.

22
0.

05
0.

10
0.

23
0.

05
0.

09
0.

21
0.

05
0.

10
0.

22
0.

05
0.

11
0.

23
0.

04
0.

09
0.

21
F
E

X
0.

10
0.

21
0.

51
0.

11
0.

25
0.

53
0.

10
0.

21
0.

48
0.

10
0.

21
0.

51
0.

11
0.

23
0.

54
0.

09
0.

20
0.

48
O

A
S

m
ea

n
0.

08
0.

62
0.

08
0.

70
0.

08
0.

59
0.

08
0.

59
0.

08
0.

62
0.

08
0.

57
O

A
S

m
in

0.
07

0.
50

0.
08

0.
60

0.
06

0.
47

0.
07

0.
47

0.
07

0.
53

0.
06

0.
42

O
A

S
m

ax
0.

08
0.

71
0.

09
0.

85
0.

08
0.

66
0.

08
0.

68
0.

10
0.

72
0.

08
0.

64

Table 5.4: Average, minimum, and maximum of all performance measures over 50 artifi-
cial datasets of 2000 points. (Table continued on next page).

5.A Results for artificial datasets of 2000 points 109

U
n
if
o
rm

D
a
ta

se
ts

N
o
n
-U

n
if
o
rm

D
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

K
ri

g
in

g
23

78
59

93
52

01
66

96
4

42
06

61
14

09
59

0
95

17
5

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

18
26

53
67

85
92

19
83

5
47

33
9

47
92

7
35

5
49

5
65

1
19

86
41

94
11

18
3

98
79

17
80

1
38

23
0

31
4

11
10

23
84

S
S
1

28
8

57
9

67
9

10
24

13
7

33
3

34
9

81
1

98
3

25
39

18
8

40
3

S
S
10

62
5

11
19

19
99

18
69

32
92

47
92

25
9

38
7

77
8

74
8

14
61

30
12

25
96

85
34

16
39

5
28

5
58

7
13

90
S
S
10

40
26

6
49

3
11

00
13

61
10

14
19

56
15

7
31

4
72

8
28

6
63

3
16

45
66

7
12

75
37

44
15

5
32

6
97

7
M

A
X

M
IN

15
0

35
5

90
4

73
1

20
62

37
50

31
10

2
18

8
14

5
33

2
92

5
47

5
91

6
30

62
28

10
0

23
7

D
E

L
E

T
IO

N
18

7
43

0
11

67
45

7
14

18
40

19
42

10
1

17
2

23
5

40
5

99
8

65
6

10
23

35
14

68
11

2
21

4
F
E

X
91

9
22

67
48

98
23

90
12

66
5

14
52

2
28

0
24

2
11

99
92

2
26

34
51

59
37

17
87

39
27

24
9

21
8

44
8

89
2

O
A

S
m

ea
n

47
3

39
91

10
90

69
02

27
3

25
24

50
5

42
22

95
8

91
99

22
8

20
72

O
A

S
m

in
14

8
13

51
27

1
25

31
74

51
4

17
2

14
19

29
9

25
26

79
58

6
O

A
S

m
ax

12
32

96
68

47
87

28
86

6
43

4
43

20
12

75
96

28
33

44
28

25
6

34
2

39
72

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

K
ri

g
in

g
45

.7
3

10
7.

39
22

.9
0

73
.7

9
25

9.
69

35
.7

4
S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

7.
27

10
.1

2
12

.6
0

21
.3

4
29

.2
6

56
.4

0
3.

53
4.

03
4.

01
9.

98
12

.4
3

18
.9

7
24

.4
0

26
.6

2
42

.5
2

3.
91

4.
40

7.
23

S
S
1

1.
75

1.
95

2.
33

2.
54

1.
41

1.
50

1.
85

2.
14

2.
76

3.
44

1.
45

1.
72

S
S
10

2.
38

2.
61

2.
74

4.
52

4.
77

4.
63

1.
53

1.
95

2.
02

2.
48

2.
90

3.
29

4.
15

10
.5

0
11

.5
7

1.
72

2.
02

2.
24

S
S
10

40
1.

72
1.

93
2.

20
2.

49
2.

67
2.

86
1.

38
1.

65
1.

68
1.

85
2.

08
2.

50
2.

76
3.

29
3.

52
1.

39
1.

65
1.

96
M

A
X

M
IN

1.
35

1.
45

1.
64

1.
78

1.
89

2.
22

1.
10

1.
21

1.
30

1.
35

1.
44

1.
67

1.
66

1.
83

2.
24

1.
10

1.
21

1.
30

D
E

L
E

T
IO

N
1.

43
1.

56
1.

76
1.

84
2.

00
2.

34
1.

12
1.

25
1.

37
1.

51
1.

58
1.

74
1.

96
1.

98
2.

28
1.

25
1.

24
1.

38
F
E

X
5.

25
6.

47
8.

59
13

.7
2

13
.1

9
16

.3
6

2.
51

3.
24

4.
53

5.
33

8.
19

9.
66

14
.6

1
30

.6
7

24
.3

4
2.

86
4.

19
3.

81
O

A
S

m
ea

n
2.

18
3.

13
2.

59
3.

68
1.

92
2.

64
2.

25
3.

26
2.

85
3.

98
1.

91
2.

71
O

A
S

m
in

1.
64

2.
33

2.
02

2.
87

1.
41

1.
82

1.
68

2.
40

2.
06

2.
91

1.
43

1.
97

O
A

S
m

ax
2.

96
4.

37
4.

01
7.

11
2.

23
2.

98
3.

21
4.

74
5.

38
8.

11
2.

25
2.

99

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

K
ri

g
in

g
6.

33
10

.6
2

4.
52

8.
48

11
.9

2
6.

08
S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

1.
11

1.
57

1.
94

2.
29

5.
01

3.
97

0.
60

0.
73

0.
78

1.
19

1.
55

2.
19

2.
33

3.
38

4.
32

0.
55

0.
81

1.
19

S
S
1

0.
67

0.
76

0.
74

0.
81

0.
61

0.
70

0.
69

0.
78

0.
74

0.
83

0.
65

0.
74

S
S
10

0.
74

0.
81

0.
93

0.
82

0.
89

1.
00

0.
64

0.
73

0.
87

0.
76

0.
85

0.
97

0.
83

0.
90

1.
02

0.
69

0.
79

0.
91

S
S
10

40
0.

71
0.

79
0.

90
0.

84
0.

86
0.

94
0.

64
0.

71
0.

83
0.

73
0.

80
0.

92
0.

81
0.

85
0.

97
0.

68
0.

75
0.

89
M

A
X

M
IN

0.
82

0.
89

1.
01

1.
04

1.
11

1.
25

0.
66

0.
76

0.
81

0.
81

0.
89

1.
00

0.
99

1.
03

1.
21

0.
63

0.
75

0.
82

D
E

L
E

T
IO

N
0.

84
0.

93
1.

05
1.

00
1.

12
1.

28
0.

64
0.

73
0.

78
0.

87
0.

92
1.

03
1.

05
1.

09
1.

28
0.

70
0.

77
0.

82
F
E

X
0.

98
1.

28
1.

70
1.

47
2.

94
2.

53
0.

60
0.

56
1.

00
0.

98
1.

39
1.

65
1.

79
2.

35
3.

98
0.

52
0.

57
0.

79
O

A
S

m
ea

n
0.

94
1.

27
1.

05
1.

38
0.

88
1.

17
0.

94
1.

27
1.

03
1.

44
0.

83
1.

14
O

A
S

m
in

0.
79

1.
08

0.
88

1.
21

0.
67

0.
93

0.
79

1.
08

0.
87

1.
22

0.
63

0.
96

O
A

S
m

ax
1.

12
1.

48
1.

49
1.

78
0.

98
1.

31
1.

11
1.

47
1.

34
1.

69
0.

94
1.

29

R
e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

S
S
1

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

S
S
10

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

S
S
10

40
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
M

A
X

M
IN

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

D
E

L
E

T
IO

N
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
F
E

X
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
O

A
S

m
ea

n
23

7
57

8
23

9
58

3
23

5
57

1
23

6
56

5
23

8
57

2
23

3
56

0
O

A
S

m
in

22
7

53
3

23
3

55
2

21
9

51
7

22
5

51
8

23
1

54
2

21
7

49
4

O
A

S
m

ax
24

4
61

0
24

8
62

4
24

1
59

6
24

3
60

1
24

8
61

6
23

9
58

7

Table 5.4: Average, minimum, and maximum of all performance measures over 50 artifi-
cial datasets of 2000 points. (Continued).

110 Subset selection from large datasets for Kriging modeling

5.B Results for artificial datasets of 5000 points

U
n
if
o
rm

D
a
ta

se
ts

N
o
n
-U

n
if
o
rm

D
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

R
B

F
0.

07
0.

08
0.

07
0.

08
0.

08
0.

07
S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
17

0.
14

0.
12

0.
19

0.
17

0.
15

0.
14

0.
12

0.
11

0.
18

0.
15

0.
13

0.
22

0.
18

0.
16

0.
15

0.
13

0.
11

S
S
1

0.
10

0.
08

0.
11

0.
08

0.
09

0.
07

0.
10

0.
08

0.
11

0.
09

0.
09

0.
07

S
S
10

0.
11

0.
09

0.
07

0.
14

0.
09

0.
07

0.
10

0.
08

0.
06

0.
11

0.
09

0.
07

0.
13

0.
09

0.
07

0.
10

0.
08

0.
07

S
S
10

40
0.

10
0.

08
0.

07
0.

19
0.

09
0.

07
0.

09
0.

08
0.

06
0.

10
0.

08
0.

07
0.

11
0.

09
0.

07
0.

09
0.

08
0.

06
M

A
X

M
IN

0.
17

0.
14

0.
11

0.
23

0.
19

0.
14

0.
14

0.
12

0.
10

0.
17

0.
14

0.
11

0.
21

0.
17

0.
13

0.
14

0.
12

0.
10

D
E

L
E

T
IO

N
0.

17
0.

14
0.

12
0.

19
0.

17
0.

15
0.

14
0.

12
0.

10
0.

17
0.

14
0.

12
0.

20
0.

18
0.

15
0.

14
0.

12
0.

10
F
E

X
0.

17
0.

15
0.

12
0.

20
0.

18
0.

15
0.

15
0.

13
0.

10
0.

17
0.

15
0.

13
0.

23
0.

18
0.

15
0.

14
0.

13
0.

11
O

A
S

m
ea

n
0.

17
0.

11
0.

18
0.

11
0.

16
0.

10
0.

17
0.

11
0.

18
0.

11
0.

16
0.

10
O

A
S

m
in

0.
15

0.
10

0.
16

0.
11

0.
14

0.
09

0.
15

0.
10

0.
17

0.
11

0.
14

0.
09

O
A

S
m

ax
0.

19
0.

12
0.

22
0.

14
0.

17
0.

11
0.

19
0.

12
0.

21
0.

14
0.

17
0.

11

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

R
B

F
1.

06
1.

30
0.

79
1.

09
1.

33
0.

86
S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

1.
59

1.
45

1.
33

1.
96

1.
90

1.
79

1.
14

1.
05

0.
95

1.
63

1.
48

1.
36

2.
12

1.
97

1.
92

1.
07

1.
01

0.
98

S
S
1

0.
76

0.
74

1.
04

1.
09

0.
51

0.
52

0.
81

0.
77

1.
18

1.
13

0.
51

0.
48

S
S
10

0.
77

0.
72

0.
69

1.
02

1.
01

0.
97

0.
55

0.
48

0.
50

0.
80

0.
76

0.
73

1.
14

1.
10

1.
07

0.
47

0.
51

0.
45

S
S
10

40
0.

74
0.

70
0.

68
1.

31
0.

97
0.

90
0.

53
0.

50
0.

45
0.

78
0.

75
0.

73
1.

21
1.

13
1.

04
0.

54
0.

47
0.

49
M

A
X

M
IN

1.
58

1.
39

1.
15

2.
29

2.
08

1.
39

1.
09

1.
11

0.
84

1.
47

1.
28

1.
10

1.
90

1.
72

1.
42

1.
11

1.
00

0.
77

D
E

L
E

T
IO

N
1.

56
1.

41
1.

17
2.

21
2.

19
1.

84
1.

14
0.

87
0.

84
1.

59
1.

40
1.

19
2.

13
1.

88
1.

75
1.

15
1.

06
0.

81
F
E

X
1.

61
1.

50
1.

29
1.

95
2.

01
1.

76
1.

23
0.

92
0.

74
1.

59
1.

47
1.

33
1.

92
1.

93
1.

70
1.

07
1.

00
0.

96
O

A
S

m
ea

n
1.

59
1.

15
1.

75
1.

36
1.

48
0.

97
1.

58
1.

14
1.

68
1.

36
1.

42
1.

01
O

A
S

m
in

1.
30

0.
88

1.
51

1.
07

1.
07

0.
68

1.
25

0.
87

1.
43

1.
11

0.
92

0.
74

O
A

S
m

ax
1.

92
1.

46
2.

24
1.

78
1.

70
1.

24
1.

87
1.

45
2.

19
1.

70
1.

60
1.

21

T
im

e
S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

S
S
1

14
.3

7
30

.6
6

14
.7

8
31

.3
8

14
.1

0
29

.9
1

14
.3

2
31

.0
1

14
.7

4
31

.6
8

13
.9

3
30

.6
0

S
S
10

1.
44

3.
04

7.
36

1.
54

3.
24

7.
57

1.
35

2.
89

7.
06

1.
43

3.
05

7.
23

1.
50

3.
16

7.
52

1.
37

2.
97

7.
00

S
S
10

40
1.

39
2.

97
7.

18
1.

56
3.

14
7.

36
1.

34
2.

85
6.

98
1.

43
3.

05
7.

35
1.

57
3.

26
7.

74
0.

88
1.

87
4.

60
M

A
X

M
IN

0.
19

0.
19

0.
20

0.
25

0.
26

0.
27

0.
09

0.
10

0.
11

0.
18

0.
18

0.
19

0.
24

0.
25

0.
26

0.
09

0.
09

0.
10

D
E

L
E

T
IO

N
0.

73
0.

72
0.

70
0.

94
0.

93
0.

91
0.

51
0.

50
0.

48
0.

72
0.

71
0.

69
0.

89
0.

88
0.

87
0.

39
0.

38
0.

37
F
E

X
0.

45
0.

52
0.

72
0.

62
0.

72
1.

11
0.

30
0.

38
0.

44
0.

57
0.

77
1.

06
0.

72
1.

03
1.

47
0.

38
0.

53
0.

77
O

A
S

m
ea

n
0.

01
0.

03
0.

01
0.

03
0.

01
0.

03
0.

01
0.

03
0.

01
0.

03
0.

01
0.

03
O

A
S

m
in

0.
01

0.
03

0.
01

0.
03

0.
01

0.
02

0.
01

0.
03

0.
01

0.
03

0.
01

0.
03

O
A

S
m

ax
0.

01
0.

03
0.

01
0.

04
0.

01
0.

03
0.

01
0.

03
0.

01
0.

04
0.

01
0.

03

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

R
B

F
1.

86
2.

14
1.

79
1.

84
2.

08
1.

77
S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
10

0.
21

0.
51

0.
11

0.
22

0.
53

0.
09

0.
19

0.
49

0.
10

0.
21

0.
51

0.
11

0.
22

0.
53

0.
09

0.
20

0.
48

S
S
1

0.
06

0.
13

0.
08

0.
14

0.
05

0.
12

0.
06

0.
13

0.
07

0.
15

0.
06

0.
08

S
S
10

0.
06

0.
13

0.
28

0.
07

0.
15

0.
34

0.
05

0.
11

0.
26

0.
06

0.
13

0.
28

0.
07

0.
15

0.
35

0.
06

0.
11

0.
25

S
S
10

40
0.

06
0.

12
0.

27
0.

06
0.

14
0.

29
0.

05
0.

11
0.

26
0.

06
0.

13
0.

29
0.

09
0.

16
0.

35
0.

04
0.

08
0.

19
M

A
X

M
IN

0.
07

0.
16

0.
35

0.
09

0.
18

0.
40

0.
07

0.
14

0.
32

0.
08

0.
16

0.
34

0.
10

0.
19

0.
40

0.
05

0.
10

0.
23

D
E

L
E

T
IO

N
0.

08
0.

16
0.

35
0.

10
0.

20
0.

40
0.

06
0.

14
0.

32
0.

08
0.

16
0.

34
0.

10
0.

19
0.

40
0.

05
0.

10
0.

22
F
E

X
0.

10
0.

21
0.

51
0.

11
0.

23
0.

54
0.

10
0.

20
0.

49
0.

10
0.

21
0.

52
0.

11
0.

22
0.

54
0.

10
0.

20
0.

50
O

A
S

m
ea

n
0.

09
0.

92
0.

10
0.

93
0.

09
0.

90
0.

09
0.

89
0.

10
0.

91
0.

09
0.

87
O

A
S

m
in

0.
09

0.
82

0.
09

0.
87

0.
08

0.
77

0.
09

0.
79

0.
09

0.
83

0.
08

0.
75

O
A

S
m

ax
0.

10
1.

00
0.

10
1.

05
0.

10
0.

96
0.

10
0.

97
0.

10
1.

02
0.

09
0.

92

Table 5.5: Average, minimum, and maximum of all performance measures over 50 artifi-
cial datasets of 5000 points. (Table continued on next page).

5.B Results for artificial datasets of 5000 points 111

U
n
if
o
rm

D
a
ta

se
ts

N
o
n
-U

n
if
o
rm

D
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

15
16

32
42

58
73

71
40

25
24

1
26

97
9

21
7

71
8

17
24

20
28

41
15

10
18

5
10

35
1

11
53

4
28

27
7

34
3

78
3

15
84

S
S
1

24
5

48
5

10
23

13
37

11
5

23
1

27
0

57
4

51
4

12
75

12
7

28
5

S
S
10

79
1

11
17

17
87

23
38

30
27

45
62

21
4

43
6

82
6

16
18

22
51

35
49

13
51

5
15

83
8

21
53

2
27

4
58

3
97

8
S
S
10

40
21

9
44

6
84

1
10

48
20

99
21

02
12

9
26

0
54

3
23

8
44

5
11

16
63

1
90

0
29

06
14

8
29

3
60

1
M

A
X

M
IN

12
9

28
3

60
2

42
2

87
7

16
76

31
55

18
6

12
6

26
7

72
5

48
9

11
14

32
77

32
67

19
0

D
E

L
E

T
IO

N
25

9
41

7
91

7
27

32
24

73
27

30
36

96
24

2
17

0
36

1
95

1
44

7
10

71
57

24
50

10
6

30
9

F
E

X
79

2
21

61
40

06
38

57
15

57
2

12
35

1
12

9
38

0
58

2
14

76
22

92
54

00
11

31
9

10
97

9
20

19
5

18
7

23
9

81
2

O
A

S
m

ea
n

46
2

41
56

16
89

65
10

26
9

24
97

49
7

45
90

84
8

13
71

9
26

6
25

99
O

A
S

m
in

14
4

15
88

26
5

27
14

59
63

7
16

3
15

66
28

4
30

07
71

71
0

O
A

S
m

ax
11

94
97

64
73

57
23

80
7

48
8

38
04

13
26

13
11

3
39

73
93

52
6

56
6

42
54

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

5.
96

8.
39

10
.5

4
15

.5
0

21
.8

8
34

.1
2

2.
03

2.
13

2.
97

8.
51

11
.2

8
15

.6
7

30
.6

2
35

.5
2

61
.6

4
2.

33
3.

03
3.

20
S
S
1

1.
64

1.
78

2.
52

2.
42

1.
31

1.
50

1.
70

1.
93

2.
23

2.
78

1.
32

1.
58

S
S
10

2.
63

2.
71

2.
80

5.
07

5.
15

5.
09

1.
77

1.
76

1.
97

3.
15

3.
36

3.
63

9.
76

10
.4

8
10

.4
1

1.
64

2.
02

2.
25

S
S
10

40
1.

71
1.

85
2.

06
3.

46
2.

74
2.

83
1.

33
1.

51
1.

65
1.

69
1.

91
2.

27
2.

26
2.

95
3.

47
1.

41
1.

55
1.

76
M

A
X

M
IN

1.
33

1.
41

1.
52

1.
60

1.
74

1.
92

1.
07

1.
19

1.
28

1.
32

1.
42

1.
57

1.
61

1.
85

2.
02

1.
09

1.
23

1.
30

D
E

L
E

T
IO

N
1.

45
1.

54
1.

72
2.

26
2.

32
2.

31
1.

13
1.

26
1.

36
1.

45
1.

53
1.

72
1.

94
1.

95
2.

60
1.

16
1.

24
1.

50
F
E

X
3.

81
4.

95
6.

75
7.

82
15

.3
3

18
.5

5
1.

55
2.

13
2.

10
5.

47
5.

77
7.

59
20

.3
7

11
.1

0
15

.5
6

1.
97

2.
16

2.
25

O
A

S
m

ea
n

2.
15

3.
14

2.
78

3.
58

1.
84

2.
75

2.
22

3.
21

2.
80

3.
97

1.
92

2.
79

O
A

S
m

in
1.

62
2.

39
2.

05
2.

65
1.

32
1.

71
1.

65
2.

41
1.

99
2.

82
1.

34
2.

00
O

A
S

m
ax

3.
15

4.
48

6.
98

7.
80

2.
28

3.
35

3.
17

4.
55

4.
74

7.
40

2.
22

3.
40

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

1.
11

1.
35

1.
66

2.
35

2.
63

3.
35

0.
51

0.
91

1.
09

1.
22

1.
56

1.
98

2.
37

2.
50

3.
46

0.
69

0.
87

1.
09

S
S
1

0.
63

0.
70

0.
68

0.
73

0.
59

0.
66

0.
64

0.
71

0.
68

0.
74

0.
60

0.
68

S
S
10

0.
74

0.
79

0.
88

0.
89

0.
86

0.
94

0.
67

0.
72

0.
83

0.
75

0.
82

0.
91

0.
94

0.
91

1.
03

0.
67

0.
74

0.
83

S
S
10

40
0.

67
0.

72
0.

80
0.

71
0.

87
0.

86
0.

58
0.

68
0.

77
0.

67
0.

73
0.

82
0.

77
0.

78
0.

87
0.

64
0.

68
0.

78
M

A
X

M
IN

0.
81

0.
87

0.
95

0.
94

1.
02

1.
08

0.
67

0.
71

0.
83

0.
80

0.
87

0.
97

0.
95

1.
09

1.
19

0.
67

0.
73

0.
83

D
E

L
E

T
IO

N
0.

84
0.

92
1.

03
1.

24
1.

23
1.

24
0.

66
0.

76
0.

87
0.

83
0.

91
1.

03
0.

99
1.

11
1.

34
0.

67
0.

76
0.

90
F
E

X
0.

91
1.

19
1.

48
1.

46
2.

93
2.

33
0.

54
0.

71
0.

87
1.

12
1.

23
1.

64
3.

22
2.

02
2.

81
0.

52
0.

55
0.

90
O

A
S

m
ea

n
0.

93
1.

28
1.

04
1.

37
0.

88
1.

21
0.

94
1.

29
1.

02
1.

41
0.

88
1.

20
O

A
S

m
in

0.
78

1.
12

0.
89

1.
26

0.
62

0.
95

0.
80

1.
11

0.
88

1.
25

0.
67

1.
01

O
A

S
m

ax
1.

10
1.

46
1.

41
1.

76
0.

96
1.

30
1.

11
1.

51
1.

36
1.

75
0.

97
1.

30

R
e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

S
S
1

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

S
S
10

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

S
S
10

40
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
M

A
X

M
IN

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

D
E

L
E

T
IO

N
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
F
E

X
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
O

A
S

m
ea

n
24

5
64

2
24

7
64

6
24

4
64

0
24

4
63

4
24

6
63

9
24

3
62

8
O

A
S

m
in

24
0

61
4

24
3

62
7

23
6

60
0

23
8

60
4

24
3

61
7

23
3

58
7

O
A

S
m

ax
24

9
66

4
25

0
67

2
24

7
65

3
24

9
65

7
25

0
66

9
24

7
64

6

Table 5.5: Average, minimum, and maximum of all performance measures over 50 artifi-
cial datasets of 5000 points. (Continued).

112 Subset selection from large datasets for Kriging modeling

5.C Results for artificial datasets of 10000 points
U

n
if
o
rm

D
a
ta

se
ts

N
o
n
-U

n
if
o
rm

D
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
17

0.
15

0.
13

0.
21

0.
18

0.
15

0.
15

0.
13

0.
11

0.
17

0.
15

0.
13

0.
22

0.
20

0.
16

0.
14

0.
13

0.
10

S
S
1

0.
10

0.
08

0.
11

0.
08

0.
09

0.
07

0.
10

0.
08

0.
21

0.
09

0.
09

0.
07

S
S
10

0.
12

0.
09

0.
07

0.
14

0.
10

0.
07

0.
10

0.
08

0.
06

0.
11

0.
09

0.
07

0.
13

0.
10

0.
07

0.
09

0.
08

0.
06

S
S
10

40
0.

10
0.

08
0.

06
0.

21
0.

10
0.

07
0.

09
0.

07
0.

06
0.

10
0.

08
0.

06
0.

11
0.

09
0.

07
0.

09
0.

07
0.

06
M

A
X

M
IN

0.
17

0.
14

0.
11

0.
20

0.
17

0.
15

0.
14

0.
12

0.
10

0.
17

0.
14

0.
11

0.
21

0.
18

0.
14

0.
14

0.
12

0.
10

D
E

L
E

T
IO

N
0.

17
0.

14
0.

12
0.

20
0.

17
0.

15
0.

14
0.

12
0.

10
0.

17
0.

15
0.

12
0.

20
0.

17
0.

14
0.

15
0.

12
0.

10
F
E

X
0.

17
0.

14
0.

13
0.

20
0.

16
0.

14
0.

14
0.

13
0.

10
0.

17
0.

15
0.

13
0.

22
0.

19
0.

15
0.

15
0.

13
0.

11
O

A
S

m
ea

n
0.

17
0.

10
0.

18
0.

11
0.

16
0.

10
0.

17
0.

10
0.

18
0.

11
0.

16
0.

10
O

A
S

m
in

0.
15

0.
09

0.
17

0.
10

0.
14

0.
09

0.
15

0.
10

0.
16

0.
10

0.
14

0.
09

O
A

S
m

ax
0.

19
0.

12
0.

21
0.

13
0.

18
0.

11
0.

19
0.

12
0.

21
0.

13
0.

17
0.

11

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

M
a
x
im

u
m

E
rr

o
r

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

1.
56

1.
48

1.
35

2.
12

2.
01

1.
95

1.
16

0.
94

0.
83

1.
55

1.
52

1.
32

1.
92

2.
17

1.
78

1.
06

0.
95

0.
89

S
S
1

0.
59

0.
54

0.
90

0.
88

0.
45

0.
38

0.
69

0.
62

1.
46

0.
84

0.
45

0.
44

S
S
10

0.
64

0.
56

0.
50

0.
87

0.
84

0.
73

0.
49

0.
37

0.
36

0.
69

0.
62

0.
58

0.
97

0.
98

0.
94

0.
51

0.
41

0.
37

S
S
10

40
0.

63
0.

54
0.

50
1.

48
0.

78
0.

71
0.

45
0.

38
0.

38
0.

65
0.

62
0.

57
0.

99
0.

99
0.

85
0.

49
0.

43
0.

38
M

A
X

M
IN

1.
61

1.
39

1.
11

2.
37

1.
92

1.
79

1.
12

1.
06

0.
78

1.
58

1.
34

1.
11

1.
95

1.
84

1.
50

1.
10

0.
76

0.
76

D
E

L
E

T
IO

N
1.

59
1.

42
1.

23
2.

04
1.

84
1.

60
1.

12
0.

88
0.

82
1.

58
1.

39
1.

10
2.

03
1.

99
1.

47
1.

21
1.

01
0.

69
F
E

X
1.

60
1.

40
1.

32
1.

99
1.

87
1.

86
1.

12
1.

01
0.

91
1.

64
1.

45
1.

38
1.

92
1.

86
1.

74
1.

25
1.

00
0.

87
O

A
S

m
ea

n
1.

60
1.

11
1.

75
1.

25
1.

45
0.

96
1.

58
1.

13
1.

75
1.

24
1.

40
1.

00
O

A
S

m
in

1.
29

0.
85

1.
54

1.
08

1.
10

0.
73

1.
27

0.
85

1.
48

1.
10

1.
00

0.
65

O
A

S
m

ax
1.

93
1.

42
2.

33
1.

70
1.

71
1.

15
1.

89
1.

42
2.

15
1.

72
1.

63
1.

25

T
im

e
S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n
T

im
e

S
u
b
se

t
S
e
le

ct
io

n

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

S
S
1

24
.1

7
52

.3
9

27
.9

4
55

.1
5

23
.5

9
50

.2
3

24
.2

1
52

.3
3

25
.6

8
55

.1
5

22
.9

4
49

.6
7

S
S
10

2.
39

5.
17

11
.6

7
2.

74
5.

51
12

.3
3

2.
30

4.
87

11
.2

1
2.

38
5.

16
11

.6
9

2.
78

5.
76

12
.3

0
2.

32
4.

89
11

.2
4

S
S
10

40
2.

36
5.

10
11

.5
7

2.
73

5.
53

12
.0

1
2.

29
4.

83
11

.1
8

2.
37

5.
15

11
.6

0
2.

73
5.

66
12

.2
6

2.
31

4.
82

11
.1

9
M

A
X

M
IN

0.
78

0.
79

0.
82

0.
87

0.
89

0.
92

0.
55

0.
57

0.
59

0.
79

0.
81

0.
84

1.
16

1.
18

1.
20

0.
66

0.
67

0.
70

D
E

L
E

T
IO

N
3.

55
3.

53
3.

49
3.

68
3.

65
3.

60
3.

08
3.

06
3.

02
3.

62
3.

59
3.

55
4.

02
3.

99
3.

96
3.

27
3.

24
3.

20
F
E

X
0.

83
0.

95
1.

18
1.

16
1.

40
1.

92
0.

59
0.

74
0.

93
1.

10
1.

41
1.

93
1.

36
1.

77
2.

40
0.

86
0.

97
1.

61
O

A
S

m
ea

n
0.

02
0.

05
0.

02
0.

05
0.

02
0.

05
0.

02
0.

05
0.

02
0.

05
0.

02
0.

05
O

A
S

m
in

0.
02

0.
05

0.
02

0.
05

0.
01

0.
04

0.
02

0.
05

0.
02

0.
05

0.
02

0.
04

O
A

S
m

ax
0.

02
0.

05
0.

03
0.

07
0.

02
0.

05
0.

02
0.

05
0.

03
0.

06
0.

02
0.

05

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

T
im

e
M

o
d
e
l
F
it
ti
n
g

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

0.
10

0.
20

0.
50

0.
10

0.
22

0.
52

0.
09

0.
19

0.
48

0.
10

0.
20

0.
50

0.
11

0.
22

0.
52

0.
09

0.
19

0.
48

S
S
1

0.
08

0.
17

0.
09

0.
18

0.
07

0.
15

0.
08

0.
17

0.
09

0.
18

0.
08

0.
16

S
S
10

0.
08

0.
17

0.
40

0.
09

0.
19

0.
46

0.
07

0.
15

0.
37

0.
08

0.
17

0.
40

0.
09

0.
19

0.
50

0.
07

0.
15

0.
36

S
S
10

40
0.

08
0.

17
0.

41
0.

09
0.

18
0.

45
0.

07
0.

14
0.

37
0.

08
0.

17
0.

41
0.

09
0.

19
0.

46
0.

07
0.

15
0.

37
M

A
X

M
IN

0.
10

0.
21

0.
50

0.
11

0.
22

0.
52

0.
09

0.
19

0.
46

0.
10

0.
21

0.
51

0.
11

0.
22

0.
87

0.
09

0.
19

0.
48

D
E

L
E

T
IO

N
0.

10
0.

21
0.

50
0.

11
0.

23
0.

53
0.

09
0.

19
0.

48
0.

10
0.

21
0.

50
0.

11
0.

23
0.

54
0.

09
0.

20
0.

47
F
E

X
0.

10
0.

21
0.

50
0.

10
0.

26
0.

55
0.

09
0.

20
0.

48
0.

10
0.

21
0.

50
0.

11
0.

22
0.

54
0.

09
0.

20
0.

48
O

A
S

m
ea

n
0.

09
0.

98
0.

10
1.

00
0.

09
0.

96
0.

09
0.

96
0.

10
0.

97
0.

09
0.

94
O

A
S

m
in

0.
09

0.
92

0.
09

0.
96

0.
08

0.
85

0.
09

0.
89

0.
09

0.
93

0.
08

0.
84

O
A

S
m

ax
0.

10
1.

03
0.

11
1.

09
0.

10
0.

99
0.

10
1.

01
0.

10
1.

05
0.

10
0.

97

Table 5.6: Average, minimum, and maximum of all performance measures over 50 artifi-
cial datasets of 10000 points. (Table continued on next page).

5.C Results for artificial datasets of 10000 points 113

U
n
if
o
rm

D
a
ta

se
ts

N
o
n
-U

n
if
o
rm

D
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

A
v
e
ra

g
e

o
v
e
r

d
a
ta

se
ts

M
a
x
im

u
m

o
v
e
r

d
a
ta

se
ts

M
in

im
u
m

o
v
e
r

d
a
ta

se
ts

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

C
o
n
d
it
io

n
n
u
m

b
e
r

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

15
53

28
24

62
39

64
62

12
48

6
31

34
3

34
3

47
3

11
79

20
83

56
11

11
94

5
89

90
61

45
6

52
45

6
45

9
11

65
21

94
S
S
1

21
7

43
2

61
2

92
5

11
5

26
1

34
1

59
0

45
18

42
83

13
4

24
4

S
S
10

11
53

15
46

25
09

40
13

36
82

93
62

29
3

59
6

10
95

16
05

21
39

31
53

61
11

94
42

11
22

8
57

4
83

1
10

45
S
S
10

40
21

4
46

3
76

2
56

8
56

98
63

18
11

6
20

6
47

6
21

2
42

3
84

9
31

4
79

8
18

83
13

2
26

8
44

5
M

A
X

M
IN

10
9

22
1

68
5

30
2

85
5

20
31

31
78

16
7

12
1

27
3

60
7

28
3

94
0

21
42

32
72

15
0

D
E

L
E

T
IO

N
18

3
35

6
81

3
69

3
13

78
22

89
36

13
1

23
1

18
6

35
9

96
1

63
8

16
24

45
93

56
59

24
8

F
E

X
10

12
18

86
50

69
52

71
55

48
23

54
4

23
4

53
3

73
2

12
09

29
37

41
49

89
44

14
05

1
18

49
7

22
6

46
9

12
30

O
A

S
m

ea
n

44
8

42
96

89
1

69
21

23
6

29
90

44
7

44
87

90
9

84
39

25
7

28
31

O
A

S
m

in
14

1
14

35
23

2
26

53
55

61
4

14
5

15
81

32
2

25
17

83
59

9
O

A
S

m
ax

12
26

10
10

7
53

48
33

05
8

40
8

52
88

11
72

11
15

6
38

12
44

76
1

43
5

45
09

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

M
a
x
im

u
m

R
o
b
u
st

n
e
ss

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

7.
39

9.
09

11
.9

1
22

.7
7

22
.4

8
24

.2
6

3.
66

4.
25

4.
12

9.
88

14
.7

6
19

.6
6

30
.4

6
37

.1
2

56
.8

6
4.

41
6.

41
8.

52
S
S
1

1.
64

1.
77

2.
54

2.
56

1.
31

1.
50

1.
70

1.
93

3.
87

4.
41

1.
35

1.
48

S
S
10

3.
05

3.
24

3.
41

7.
21

6.
96

6.
60

1.
91

1.
99

2.
10

3.
39

3.
37

3.
50

8.
03

5.
55

5.
95

2.
00

2.
36

2.
49

S
S
10

40
1.

67
1.

79
1.

90
2.

28
3.

43
3.

50
1.

33
1.

50
1.

61
1.

67
1.

85
1.

99
2.

11
2.

60
2.

90
1.

35
1.

52
1.

59
M

A
X

M
IN

1.
35

1.
36

1.
53

1.
77

1.
62

1.
92

1.
08

1.
19

1.
30

1.
32

1.
40

1.
50

1.
68

1.
71

2.
01

1.
06

1.
16

1.
23

D
E

L
E

T
IO

N
1.

41
1.

53
1.

68
1.

83
1.

80
1.

97
1.

12
1.

27
1.

36
1.

45
1.

53
1.

71
2.

05
1.

98
2.

45
1.

15
1.

26
1.

36
F
E

X
5.

23
5.

65
8.

26
17

.9
3

10
.2

5
19

.5
3

2.
69

3.
58

3.
49

5.
31

7.
48

8.
71

12
.8

4
14

.0
1

20
.4

2
2.

29
3.

50
4.

93
O

A
S

m
ea

n
2.

15
3.

19
2.

75
3.

79
1.

80
2.

77
2.

14
3.

25
2.

70
4.

41
1.

78
2.

89
O

A
S

m
in

1.
61

2.
39

1.
91

2.
77

1.
37

1.
97

1.
64

2.
39

1.
88

2.
86

1.
45

1.
84

O
A

S
m

ax
3.

14
4.

53
6.

02
8.

86
2.

01
3.

42
3.

06
4.

72
8.

58
10

.4
2

2.
08

3.
26

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

A
v
e
ra

g
e

R
o
b
u
st

n
e
ss

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

1.
13

1.
37

1.
76

2.
61

2.
23

3.
01

0.
69

0.
60

1.
03

1.
25

1.
72

2.
24

2.
38

5.
04

4.
15

0.
60

1.
06

1.
11

S
S
1

0.
60

0.
66

0.
65

0.
69

0.
57

0.
64

0.
61

0.
67

0.
75

0.
90

0.
57

0.
64

S
S
10

0.
76

0.
81

0.
88

1.
01

0.
94

1.
01

0.
67

0.
72

0.
82

0.
78

0.
83

0.
91

0.
87

0.
90

0.
99

0.
70

0.
76

0.
86

S
S
10

40
0.

64
0.

69
0.

76
0.

73
0.

84
0.

83
0.

50
0.

65
0.

72
0.

64
0.

69
0.

77
0.

68
0.

74
0.

80
0.

60
0.

65
0.

73
M

A
X

M
IN

0.
80

0.
86

0.
96

0.
92

1.
00

1.
10

0.
68

0.
77

0.
84

0.
80

0.
88

0.
95

0.
91

1.
02

1.
13

0.
67

0.
74

0.
82

D
E

L
E

T
IO

N
0.

84
0.

91
1.

01
1.

04
1.

06
1.

17
0.

63
0.

78
0.

86
0.

84
0.

89
1.

02
1.

04
1.

13
1.

30
0.

69
0.

68
0.

85
F
E

X
1.

02
1.

25
1.

67
2.

05
2.

07
3.

49
0.

59
0.

82
0.

90
1.

06
1.

42
1.

63
2.

45
3.

04
3.

04
0.

56
0.

72
1.

01
O

A
S

m
ea

n
0.

92
1.

29
0.

99
1.

35
0.

84
1.

23
0.

93
1.

29
1.

00
1.

36
0.

86
1.

20
O

A
S

m
in

0.
78

1.
11

0.
87

1.
23

0.
67

1.
00

0.
79

1.
11

0.
87

1.
25

0.
71

0.
95

O
A

S
m

ax
1.

08
1.

46
1.

31
1.

68
0.

98
1.

34
1.

09
1.

49
1.

25
1.

84
0.

90
1.

32

R
e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e
R

e
a
l
S
u
b
se

t
S
iz

e

S
u
b
se

t
si

ze
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0

R
A

N
D

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

S
S
1

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

25
0

35
0

S
S
10

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

S
S
10

40
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
M

A
X

M
IN

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

25
0

35
0

50
0

D
E

L
E

T
IO

N
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
F
E

X
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
25

0
35

0
50

0
O

A
S

m
ea

n
24

8
66

6
24

9
66

9
24

7
66

3
24

7
66

0
24

8
66

3
24

6
65

6
O

A
S

m
in

24
5

65
0

24
7

66
0

24
2

63
6

24
4

64
0

24
6

65
2

24
1

62
9

O
A

S
m

ax
25

0
67

8
25

0
68

3
24

9
67

0
25

0
67

5
25

0
68

0
24

8
66

8

Table 5.6: Average, minimum, and maximum of all performance measures over 50 artifi-
cial datasets of 10000 points. (Continued).

114 Subset selection from large datasets for Kriging modeling

5.D Results for HSCT dataset of 2487 points

Results Srivastava

Subset size 283 372

RMSPE 1.00 0.24
Avg. Perc. Err. 0.59 0.17
Max. Perc. Err. 6.12 2.02

HSCT Dataset

RMSPE Condition number

Subset size 250 350 500 250 350 500

RAND 1.00 0.93 0.86 712731778 341942761 3072209097
OAS mean 1.30 1.11 112944986 1047914507
OAS min 1.05 0.86 2213 3344
OAS max 1.50 1.38 447474975 2377979099
FEX 1.72 1.73 1.73 2035776984 2328684961 1600933318
MAXMIN 1.31 1.14 1.22 68976 69945 55685
DELETION 1.70 1.83 1.46 29772 22407 69130
SS1 0.66 0.65 69777 197848
SS10 0.60 1.28 0.68 1568232546 7678597938 9457605211
SS1040 0.58 0.44 0.36 162191 183002 108242

Average Percentage Error Average Robustness

Subset size 250 350 500 250 350 500

RAND 0.59 0.52 0.52 43.08 15.11 27.80
OAS mean 0.85 0.69 19.06 63.38
OAS min 0.73 0.57 0.87 0.75
OAS max 0.95 0.81 62.81 117.07
FEX 1.19 1.17 1.21 177.70 182.17 142.40
MAXMIN 0.92 0.81 0.91 0.84 0.85 0.77
DELETION 1.22 1.33 1.08 1.61 1.66 1.06
SS1 0.53 0.51 1.50 1.35
SS10 0.46 0.76 0.53 126.76 85.95 106.68
SS1040 0.44 0.35 0.27 1.17 1.03 0.91

Maximum Percentage Error Real Subset Size

Subset size 250 350 500 250 350 500

RAND 9.37 8.96 7.65 250 350 500
OAS mean 5.77 5.67 226 505
OAS min 4.75 4.97 224 494
OAS max 7.11 6.82 230 515
FEX 8.59 9.19 8.45 250 350 500
MAXMIN 5.60 5.44 5.32 250 350 500
DELETION 7.55 7.76 6.51 250 350 500
SS1 2.02 2.34 250 350
SS10 2.37 13.73 2.13 250 350 500
SS1040 2.36 1.76 2.50 250 350 500

Time Subset Selection Time Model Fitting

Subset size 250 350 500 250 350 500

RAND 0.00 0.00 0.00 0.41 0.84 1.92
OAS mean 0.01 0.04 0.42 2.40
OAS min 0.01 0.04 0.23 2.23
OAS max 0.01 0.05 0.78 2.55
FEX 7.29 7.81 7.97 0.41 0.85 1.93
MAXMIN 0.12 0.12 0.13 0.38 0.56 1.21
DELETION 0.47 0.45 0.42 0.34 0.72 1.63
SS1 21.30 57.15 0.27 0.45
SS10 2.64 6.08 16.72 0.23 0.43 0.97
SS1040 2.31 5.74 17.12 0.23 0.41 0.98

Table 5.7: Results for HSCT-dataset of 2487 points

5.E Kriging model 115

5.E Kriging model

As we focus on Kriging, we summarize some theory according to Sacks et al. (1989b).

In Kriging, the output data y(x) is treated as a realization of a random function Y (x).

This random function is divided into a regression part and a stochastic part:

Y (x) =
k∑

j=0

βjfj(x) + Z(x),

where k +1 is the number of regression functions including f0(x) = 1. In this chapter for

the regression part, we use the linear functions fj(x) = xj for j = 1, . . . , k where k is the

number of dimensions. The stochastic part Z(x) is assumed to be a gaussian stationary

process with zero mean and a covariance between Z(x) and Z(w) of the form

V (w, x) = σ2R(w, x),

where σ2 is the constant process variance and R(w, x) is the correlation between Z(x) and

Z(w). To fit the Kriging model, we use a dataset with input data X = [x1, . . . , xn] and

corresponding output data yX = [y(x1), . . . , y(xn)]. In Kriging, the vector yX is assumed

to be a realization of the stochastic vector [Y (x1), . . . , Y (xn)].

To predict the output value at a new point x, Kriging uses the Best Linear Unbiased

Predictor (BLUP). This means that ŷ(x), the predicted output value at point x, is given

by

ŷ(x) = c>(x)yX ,

where the Kriging weights c(x) are determined such that they minimize

MSE(ŷ(x)) = E(c>(x)YX − Y (x))2 (5.1)

under the unbiasedness constraint

E(c>(x)YX) = E(Y (x)). (5.2)

Let us now introduce the following notation:

f(x) = [f0(x), f1(x), . . . , fk(x)] = [1, x1, . . . , xd]
>

F =

f>(x1)
...

f>(xn)

r(x) = [R(x, x1), . . . , R(x, xn)]>

R =

r>(x1)
...

r>(xn)

 =

R(x1, x1) R(x1, x2) . . . R(x1, xn)
R(x2, x1) R(x2, x2) . . . R(x2, xn)

...
...

. . .
...

R(xn, x1) R(xn, x2) . . . R(xn, xn)

 .

116 Subset selection from large datasets for Kriging modeling

The matrix R is thus the correlation matrix containing the correlations between Z(xi)

and Z(xj) for all i, j ∈ {1, . . . , n}, so R is positive semi-definite and symmetric with ones

on the diagonal.

Classical Kriging assumes that the Kriging weights c(x) are independent of the output

data. Therefore, we can rewrite the MSE in (5.1) as (Santner et al. 2003)

MSE(ŷ(x)) = σ2(1 + c>(x)Rc(x)− 2c>(x)r(x)) (5.3)

and the constraint in (5.2) as

F>c(x) = f(x).

Using Lagrange multipliers λ(x), the MSE in (5.3) can be minimized by solving the

following system of equations:

[
0 F>

F R

] [
λ(x)
c(x)

]
=

[
f(x)
r(x)

]
.

Solving this system gives the following expressions for λ(x) and c(x):

λ(x) = (F>R−1F)−1(F>R−1r(x)− f(x))

c(x) = R−1(r(x)− Fλ(x)).

We see that determining the prediction of the output at point x requires solving a linear

system containing the n × n matrix R. If the size of the dataset, n, becomes very large

this can be rather time consuming and we can thus save time by using less data.

Thus far, we have not specified the form of the correlation function R(x,w). For the

correlation function, there are a number of alternatives. We choose to use the Gaussian

correlation function:

Rθ(w, x) =
d∏

j=1

exp (−θj|wj − xj|2)

as this is the most frequently used correlation function for Kriging (Jin et al. 2001).

We now still have to determine β, σ, and θ such that the Kriging model interpolates

the training data. For this, we use the Maximum Likelihood Estimator (MLE). For β,

this gives the generalized least-squares estimate:

β̂ = (F>R−1F)−1F>R−1yX .

The MLE of σ2 is given by:

σ̂2 =
1

n
(yX − Fβ̂)>R−1(yX − Fβ̂).

5.F Radial basis functions 117

To determine the MLE of θ, we must solve the following minimization problem (Sacks

et al. 1989b):

min
θ
|R|1/nσ̂2.

Unfortunately, we do not have an analytic expression for the θ̂ that solves this problem.

We thus need some numerical optimization procedure to determine θ̂. As mentioned

in Section 5.4, we use the DACE toolbox of Lophaven et al. (2002). Notice that this

minimization problem also contains R−1 as it is part of the expression for θ̂. The numerical

optimization procedure has to determine R for multiple values of θ in order to find the

solution to the minimization problem. This can become very time-consuming if R is

very large. As R is an n × n matrix, the size of the training set n directly affects the

time-consumption of this step.

5.F Radial basis functions

Besides Kriging models, we can also use radial basis function (RBF) models to construct

a model. RBF models have been developed by Hardy (1971) to interpolate a training set

of multi-dimensional data. To approximate the output value at a point x, RBF uses the

distances between this point and the training points. Each distance value is used as the

input of a radially symmetric function. A linear combination of the output values of this

function forms the approximation of the output value in x. The simple RBF model used

in this chapter to approximate y is

ŷ =
∑

i

βi||x− xi||,

where ||x − xi|| denotes the Euclidean distance between the training point xi and the

approximation point x. When we fill in all training points (xi, yi) for i = 1, . . . , n, we

obtain a set of linear equations. By solving this system, we can determine the coefficients

βi.

The advantage of RBF models is that they have shown good fits to both stochastic

and deterministic functions (Powell 1987) and that fitting them requires much less time

than Kriging models (Jin et al. 2001). Therefore, they are more suitable for larger

datasets. However, by combining subset selection and Kriging, we aim to make Kriging

equally, or even more, suitable for large datasets. We therefore compare Kriging models

fitted on a subset with an RBF fitted on the complete dataset. As some performance

measures cannot be calculated for radial basis functions, we only compare the accuracy

and the time required to fit the model. For the Kriging models, this time also includes

the time necessary to select the subset.

118 Subset selection from large datasets for Kriging modeling

Part III

Complexity control
in symbolic regression

Chapter 6

Metamodeling by
symbolic regression and

Pareto simulated annealing

Essentially, all models are wrong,
but some are useful.

(George E.P. Box)

6.1 Introduction

In many scientific areas, it is important to relate output of a system to its input. Getting

insight into the sensitivities of outputs with respect to inputs or finding the best input

values with respect to the outputs may require a large number of system evaluations.

In many applications, the number of evaluations that can be used to do this is limited.

Therefore, metamodels (also called approximating models, compact models or response-

surface models) are used to approximate the behavior of the system.

A typical example of such a process can be found in virtual prototyping tools, such as

finite element analysis (FEA) software. These tools are used to predict physical properties

of a product. Such simulations often require much computation time. A simulation run

that takes hours is no exception, so the number of experiments may be very limited.

Parameters that are input to the simulation software are referred to as design parameters.

Parameters that quantify the simulated physical behavior are called response parameters.

In simulation-based optimization, values for the design parameters are searched, such that

the response parameters are in some sense optimal; see, e.g., Barthelemy and Haftka

(1993), Alexandrov et al. (1998), Jones et al. (1998), and Simpson et al. (2004).

In literature, many types of metamodels are used. The most obvious choice is the first-

degree or second-degree polynomial model (see Montgomery (2009)). More complicated

121

122 Metamodeling by symbolic regression and Pareto SA

model structures include rational functions (Cuyt and Verdonk (1992)), Kriging models

(Sacks et al. (1989b)), support vector regression machines (Vapnik et al. (1997)), neural

network structures like RBFs (Powell (1987)), and symbolic regression (Koza (1992)).

Comparative studies on metamodel types can be found in Jin et al. (2001, 2003).

Symbolic regression searches for the best metamodel by systematically altering oper-

ators in a set of explicit formulas. These formulas are represented using a tree structure.

The best tree structure is found through a combinatoric optimization technique, An im-

portant advantage of symbolic regression is its flexibility. A metamodel that is found

by symbolic regression is not restricted to a certain class of functions. Symbolic regres-

sion models can be used for extrapolation, because they capture the underlying physics,

which is an advantage in comparison to, e.g., Kriging models. Furthermore, symbolic

regression models are usually better interpretable, which makes it easier to extract new

knowledge from symbolic regression models. To the best of our knowledge, symbolic

regression models are always used in combination with genetic programming (e.g., see

Koza (1992), and, for an example in engineering, Gambling et al. (2001)). This chapter

introduces a symbolic regression approach that is not based on genetic programming, but

on simulated annealing (see Aarts and Korst (1989)). This optimization technique usu-

ally requires fewer iterations than genetic algorithms to converge to an optimal solution.

The algorithm is extended with a number of new concepts. Complexity control is used

to ensure interpretability of the resulting model. Pareto simulated annealing is used to

find not only one best model, but a range of models on a best fit/complexity trade-off

curve (see also Smits and Kotanchek (2004)). The best-fit metamodel may not be the

metamodel that eventually will be chosen, because it may be less intuitive than meta-

models that have a worse fit. Further, linear regression (see Montgomery (2009)) is used

to fit coefficients in the formulas. Finding the best coefficient values is often recognized

as a difficult problem in symbolic regression. A binary tree data structure is used for fast

neighborhood exploration. The resulting approximating model is compared with Kriging

models and genetic-programming-based symbolic regression through a number of typical

cases from simulation-based optimization.

The remainder of this chapter is organized as follows. In Section 6.2, we describe the

basic approach. Section 6.3 describes a number of extensions to the basic algorithm. In

Section 6.4, we test our approach on several cases and compare the results with other

metamodel types. In Section 6.5, we draw conclusions.

6.2 Symbolic regression approach

Symbolic regression is a technique for finding the best model in a very large class of

candidates. The candidates are explicit symbolic formulas. In this section, we first

6.2 Symbolic regression approach 123

describe the set of all possible approximating models. After that, we describe how to

find the best approximating model. The approach assumes that all simulation data are

already generated.

6.2.1 Model structure

The set of functions in which we search for the best metamodel consists of all func-

tions that can be described as a linear combination of transformation functions. Each

transformation function defines a transformation of the original parameters into a trans-

formed parameter, using operators such as addition, subtraction, multiplication, division,

exponents, sines, and cosines. Thus, an approximating model can be written as:

f(x1, . . . , xn) =
∑

i

aigi(x1, . . . , xn), (6.1)

where xi is the ith input parameter and ai is the multiplier of transformation function

gi(x). Suppose for example, we have a problem with three inputs, x1, x2, and x3, with

the following approximating model:

f(x1, x2, x3) = 0.341 + 1.231 sin

(
x1 +

x2

x3

)
− 2.114 exp (x3). (6.2)

Once we know the transformation functions, the coefficients ai can be calculated using

linear regression. The problem remains to find suitable transformation functions gi that

lead to a model that fits the data well and is not too complex.

Operator Formula Operator Formula

Sum R+L RootB
√

R
DiffA L-R LogA log(L)
DiffB R-L LogB log(R)
Mult R*L ExpA eL

DivA L/R ExpB eR

DivB R/L SinA sin(L)
PowerA LR SinB sin(R)
PowerB RL Left L

RootA
√

L Right R

Table 6.1: The operators that are used in the transformation functions. L refers to the
value of the left subtree, and R refers to the value of the right subtree.

Each transformation function can be represented by a binary tree, consisting of nodes

that represent (binary or unary) operators, input parameters, or constants. The operators

that we can select for a transformation tree are listed in Table 6.1. A root node can only

be a constant or an input parameter; other nodes can only be operators. The second

transformation function of example 6.2 is depicted in Figure 6.1.

124 Metamodeling by symbolic regression and Pareto SA

Figure 6.1: Example of the transformation function sin
(
x1 + x2

x3

)
.

To make reference to a node in the parse tree easier, we assign an index to each node.

The assignment is done from left to right as depicted in Figure 6.2. This numbering has

the advantage that we can distinguish between function and terminal nodes simply by

looking at the index. All function nodes have an odd numbered index, and all terminal

nodes have an even numbered index. Since terminal nodes have a distinct application in

our algorithm (they can contain only variables or constants), this property speeds up the

algorithm.

Figure 6.2: The data structure of the model tree.

6.2.2 Finding the best transformation functions

In this section, we describe how to find good transformation functions that make up

the metamodel. First, we describe the basic algorithm. Then, we zoom into details on

data representation, the quality aspects of the model that we want to optimize, and their

calculation. The simulated-annealing-based algorithm is formulated in Algorithm 6.1.

For a general description of simulated annealing, we refer to Aarts and Korst (1989).

In the following, we describe each of these steps:

0. Initialization

The transformation function i is initialized as depicted in Figure 6.3. The abbrevi-

ations “r.o.” and “r.v.” mean random operator and random variable, respectively.

The number of transformation trees and their depth are user-defined and fixed

during the algorithm. Not all trees need to have the same depth.

6.2 Symbolic regression approach 125

Algorithm 6.1 The Symbolic Regression algorithm based on Simulated Annealing.

0: Initialize: select a good initial set of transformation functions
Repeat

1: Adapt annealing temperature
2: Select a transformation function
3: Change the selected transformation function
4: Check the integrity of the model

If the integrity-check is OK then
5: Calculate the coefficients of the model
6: Evaluate the quality of the approximating model
7: Accept the change if the model is better, or accept with probability

based on annealing temperature when the model is worse
If the model is changed

8: Simplify the selected transformation function
Endif

Endif
9: Until stopping criterion is reached

Figure 6.3: The initialized transformation function.

1. Adapting the annealing temperature

We describe the changing of the annealing temperature in Step 7.

2. Selecting a transformation function

A transformation function is randomly selected for change.

3. Changing a transformation function

A transformation function is changed by randomly selecting a position in the func-

tion tree, i.e., by drawing a random integer between 0 and 2T+1−1 where T is equal

to the tree depth. If the selected integer is odd, its contents are set to a randomly

chosen operator. If the selected integer is even, its contents are set to a random

input parameter or a constant. In case a constant is set, the value of this constant

is chosen randomly. An example of such a change is the following. Suppose that at

some point during the algorithm, a transformation function has the form depicted

126 Metamodeling by symbolic regression and Pareto SA

in Figure 6.1. This tree evaluates to

f(x1, x2, x3) = sin

(
x1 +

x2

x3

)
. (6.3)

After changing the node containing the operator DIVA to ROOTA, the transfor-

mation function becomes

f(x1, x2, x3) = sin (x1 +
√

x2). (6.4)

4. Integrity checking

Since the transformation functions are changed randomly, it is possible that a pro-

posed transformation cannot be evaluated in one or more points of the domain

for which the model is used. Examples are division by zero and square roots of a

negative number. To avoid this, we restrict the algorithm to those transformation

functions that can be evaluated on the entire domain. The validity on a domain

can be calculated using interval arithmetic (see Keijzer (2003)).

The basic idea is the following: Given the domain of the input parameters, we can

easily calculate a (sometimes conservative) domain for each node in the function

tree. Using these node domains, we can easily verify whether a function is valid on

the domain; for example, a partly negative domain in combination with a square

root leads to an invalid function.

Operator Lower bound Upper bound Invalid if

Sum lb1 + lb2 ub1 + ub2

DiffA lb1 − ub2 ub1 − lb2

DiffB lb2 − ub1 ub2 − lb1

Mult min{lb1lb2, lb1ub2, ub1lb2, ub1ub2} max{lb1lb2, lb1ub2, ub1lb2, ub1ub2}
DivA min{lb1/lb2, lb1/ub2, ub1/lb2, ub1/ub2} max{lb1/lb2, lb1/ub2, ub1/lb2, ub1/ub2} 0 ∈ [lb2, ub2]
DivB min{lb1/lb2, lb1/ub2, ub1/lb2, ub1/ub2} max{lb1/lb2, lb1/ub2, ub1/lb2, ub1/ub2} 0 ∈ [lb1, ub1]

PowerA min
{
lblb2

1 , lbub2
1 , ublb2

1 , ubub2
1 , 0

}
if 0 ∈ [lb1, ub1] max

{
lblb2

1 , lbub2
1 , ublb2

1 , ubub2
1 , 0

}
if 0 ∈ [lb1, ub1] lb1 < 0

min
{
lblb2

1 , lbub2
1 , ublb2

1 , ubub2
1

}
otherwise max

{
lblb2

1 , lbub2
1 , ublb2

1 , ubub2
1

}
otherwise

PowerB min
{
lblb1

2 , lbub1
2 , ublb1

2 , ubub1
2 , 0

}
if 0 ∈ [lb2, ub2] max

{
lblb1

2 , lbub1
2 , ublb1

2 , ubub1
2 , 0

}
if 0 ∈ [lb2, ub2] lb2 < 0

min
{
lblb1

2 , lbub1
2 , ublb1

2 , ubub1
2

}
otherwise max

{
lblb1

2 , lbub1
2 , ublb1

2 , ubub1
2

}
otherwise

RootA
√

lb1

√
ub1 lb1 < 0

RootB
√

lb2

√
ub2 lb2 < 0

LogA log(lb1) log(ub1) lb1 < 0
LogB log(lb2) log(ub2) lb2 < 0
ExpA exp(lb1) exp(ub1)
ExpB exp(lb2) exp(ub2)
SinA -1 1
SinB -1 1
Left lb1 ub1

Right lb2 ub2

Table 6.2: Rules for interval arithmetic.

The interval arithmetic rules are denoted in Table 6.2. The columns called “lower

bound” and “upper bound” describe the formulas needed to calculate the domain

6.2 Symbolic regression approach 127

of the function represented by a (sub) tree based on the domain of the left and the

right subtree. The “invalid if” column describes when a (sub) tree is considered to

be possibly invalid.

As we mentioned, this approach may be quite conservative: Valid functions may be

rejected on the basis of the above rules. For example, consider Figure 6.4. Suppose

that variable x1 has a range of [−1, 1]. Using the rules, the domain of the subtree

starting at “mult” is estimated at [−1, 1]. Therefore, this tree will be considered

invalid because the square root could be taken of a negative number. However, the

real range of the subtree starting at “mult” should be [0, 1], leading to a valid tree.

This is not a big problem though, because we simplify the function and check again

if the function is considered invalid.

Figure 6.4: Example of a model tree for which the interval arithmetic rules are too strict.

5. Calculating the coefficients

After the transformation functions are determined, calculating the coefficients is

a linear regression problem. Note that only the linear constants by which the

transformation functions are multiplied can be calculated; the remaining constants

are entered randomly during a transformation function change.

6. Evaluating the quality of a metamodel

The quality of the changed metamodel is evaluated on the basis of two criteria.

First, the metamodel should fit well to the data in the training set. For this

criterion, we calculate the root mean squared error (RMSE):

RMSE =

√√√√ 1

m

m∑
i=1

(yi − f(xi))2, (6.5)

in which yi represents the output of simulation i, xi represents the input of the

model of simulation i, m the number of simulations, and f(x) the approximating

model. Since trying to find a perfect RMSE does not prevent overfitting, we use

the leave-one-out cross-validation measure, which is defined as

CV −RMSE =

√√√√ 1

m

m∑
i=1

(yi − f−i(xi))2, (6.6)

128 Metamodeling by symbolic regression and Pareto SA

where f−i denotes the metamodel obtained by fitting all simulation data except

simulation i. Therefore, a fit is made m times based on m−1 simulations, where the

remaining simulation is used only for model validation. Note that the CV-RMSE

can be quickly evaluated using the projection matrix (this method uses only one

calculation of a solution to a system of linear equations, whereas m solutions to a

linear system of equations are needed in the straightforward method for calculating

formula (6.6):

CV −RMSE =

√√√√ 1

m

m∑
i=1

(
yi − f(xi)

1−Hi,i

)2

, (6.7)

where

H = X(X>X)−1X>. (6.8)

Note that for the calculation of the CV-RMSE, we refit only the linear coefficients

and not the model structure.

Further, the metamodel should be interpretable, i.e., not too complex. A measure

that estimates this quality is described in Section 6.3.2. For now, we consider

only the objective function as a user-specified linear combination of the RMSE and

the CV-RMSE. In Section 6.3.3, we describe how the approach handles multiple

objectives.

7. Acceptance of a change

If the change in the transformation function results in an improvement of the ob-

jective function, the change is always accepted. To avoid getting stuck in a local

minimum, we sometimes have to accept a deterioration of the objective. The greater

the deterioration, the smaller is the probability of acceptance. The probability of

acceptance is given by

P = e−|∆objective|/c, (6.9)

where ∆objective is the change in the quality of the metamodel compared with

the previous iteration, and parameter c is the annealing temperature. In simulated

annealing, this parameter gradually decreases in each iteration, which decreases the

probability of accepting big deteriorations of the objective. The general idea is that

at the start of the search, we would like to have a broad look at all parts of the

solution space. Thus, we have to accept relatively large deteriorations. The closer

we get to the end of the search, the smaller the chance that a large deterioration

will eventually lead to an improvement of the objective; hence, the smaller the

probability should be that large deteriorations are accepted.

6.2 Symbolic regression approach 129

A difficulty using simulated annealing is determining an initial value for the anneal-

ing temperature c, because this choice implies that we have to quantify a “large

deterioration”. This is particularly difficult in symbolic regression because this

means that we need to be able to tell beforehand how well the quality of a func-

tion may become. Therefore, we introduce the new concept of reannealing: the

annealing is started with a temperature that is a percentage of the first objective

value. After a number of iterations, it is checked how often a change is accepted or

rejected. If too many changes are accepted, the starting temperature was too high,

so we start the annealing again with half the temperature. If on the other hand too

few changes were accepted, the temperature was too low and we start with double

the temperature. We continue this process until a suitable temperature is found.

8. Simplification

Obviously, random changes in the transformation functions may lead to functions

that can be simplified. Symbolic simplification requires much computation time

though. Therefore, only some simple rules are checked after each iteration:

(a) If a function node evaluates to a constant, the subtree starting at that node

is replaced by a constant term. The value of the constant term is equal to the

constant output of the function node.

(b) If the left and right arguments of a function node are equal, we can make

replacements for certain functions. For example:

• f(x) + f(x) is replaced by 2f(x).

• f(x)− f(x) is replaced by 0.

• f(x)/f(x) is replaced by 1.

• f(x)f(x) is replaced by f 2(x).

These simplifications are carried out only if the changed solution is accepted by

the simulated annealing algorithm. The simplification rules are applied as long

as changes are made during the previous application of the simplification rules.

Whether this simplification step has a positive effect on the search varies very

much with the application. The effect may be negative as simplifications make the

transformation functions smaller, causing a change to be relatively large on average.

Future research should show whether this step is beneficial for the search.

9. Stopping criterion

If either the maximum number of iterations is reached or the approximation is

evaluated as good enough, then the algorithm stops. The maximum number of

iterations is typically 200, 000.

130 Metamodeling by symbolic regression and Pareto SA

6.3 Extensions to the basic algorithm

6.3.1 Reasons for extension

As we mentioned in the introduction, metamodels are often used when getting data

through the actual model is too time consuming. Fitting functions on these data sets

implies the risk of finding a function that fits well only on this particular data set but

does not describe the general behavior of the system. This problem is called overfitting.

Using the CV-RMSE instead of only the RMSE to measure the quality of the metamodel

reduces the risk of overfitting, but it does not eliminate it.

Furthermore, to improve interpretability of the metamodel, it is usually wise to limit

the depth of the function trees. However, this has two drawbacks. Firstly, the function-

tree depth does not always represent the complexity of a function; e.g., a sine operator

is often considered more difficult to interpret than a plus-operator although they both

require one function node. Secondly, the upper bound on the tree depth has to be set by

the user, but is difficult to set beforehand.

The extensions we describe in the next subsections are meant to reduce overfitting

and improve interpretability. First, we introduce a complexity measure that aims to

measure interpretability and penalize possible overfitting. Second, instead of putting an

upper bound on the complexity value we add minimization of complexity as a second

objective. To deal with these two objectives, we use an algorithm based on Pareto

simulated annealing.

6.3.2 Complexity measure

The basic idea of the complexity measure is that the complexity of a model is measured

by the minimal degree of the polynomial necessary to approximate the model with a

precision ε in a set of points S. The idea is that overfitted metamodels often have high

oscillation. This makes them difficult to approximate, and results in a polynomial of a

high degree to obtain the required precision.

To determine the necessary complexity of the approximating polynomial, we use the

function-tree representation. We calculate the complexity in every node from the termi-

nal nodes to the root node. We use calculation rules for the binary and nested operators.

For the unary operators, we calculate the complexity by successively approximating the

function through a polynomial of increasing degree. This method is based on Garishina

and Vladislavleva (2004). However, we use different calculation rules and a different

method for approximation of unary operators. The main difference is the method for

approximation of unary operators. In the measure of Garishina and Vladislavleva, a

polynomial with increasing degree is fitted in a fixed number of points until the approx-

imation of the polynomial to the unary operator in these points is accurate enough. In

6.3 Extensions to the basic algorithm 131

our approach, we apply polynomial interpolation through an increasing number of train-

ing points until the accuracy in a certain test set is high enough. Other differences are

that we use some different calculation rules and take the number of nodes in a function

explicitly into account to make the measure more discriminative.

To determine the complexity of the terminal and binary function nodes, we use a set

of calculation rules. The complexity of a constant node is zero, and the complexity of a

variable node is one. The rules for binary and nested operators are derived from relations

between polynomial interpolations and are listed in Table 6.3.

Operator Complexity rule

f(x) + g(y) max{compl(f(x)), compl(g(y))}
f(x)− g(y) max{compl(f(x)), compl(g(y))}
f(x) ∗ g(y) compl(f(x)) + compl(g(y))
f(x)/g(y) compl(f(x)) + compl(1/g(y)) (special case of f(x) ∗ g(y))
f(g(y)) compl(f(x)) ∗ compl(g(y))
f(x)const compl(f(x)) ∗ const if const ≥ 0 ∧ const ∈ N (special case of f(x) ∗ g(y))

compl(f(x)) ∗ compl(yconst) otherwise, where y is a variable with the same range as f(x)
constf(x) compl(f(x)) ∗ compl(consty) where y is a variable with the same range as f(x)
f(x)g(y) Use the relation f(x)g(y) = exp(g(y) ∗ log(f(x))) in combination with the previous rules

Table 6.3: Complexity rules for binary and nested operators.

Let us consider the formula h(x) = x6+6x. This formula can be written as f(x)+g(x)

with f(x) = x6; and g(x) = 6x. With the sixth rule, we can find that f(x) has complexity

6 and g(x) has complexity 1. The first rule now tells us that h(x) has complexity 6.

The complexity rules serve as an approximation of the complexity defined by the

minimal degree of the polynomial necessary to approximate the model. To explain these

calculation rules, let us first define PS(f(x)) as a polynomial that interpolates f(x) in a

set of points S. The function PS(f(x))+PT (g(y)) then forms a polynomial interpolation

of f(x) + g(y) in the set of points S × T because the sum of two polynomials is again

a polynomial. The degree of this polynomial is at most the maximum of the degrees of

PS(f(x)) and PT (g(y)). This explains the calculation rule for addition.

The calculation rule for nested functions follows from replacing every x in PS(f(x))

by PT (g(y)). This gives a polynomial with a degree equal to the product of the degrees of

PS(f(x)) and PT (g(y)). The other rules are obtained in a similar way and are therefore

not discussed.

The complexity of a unary function node is determined in the following way. First, we

determine the minimal size of the training set such that the unique polynomial interpo-

lation through the data in the training set approximates the unary operator well enough.

The polynomial interpolation is considered only on the range of the input argument of the

unary operator. This range is determined by the interval arithmetic (see Section 6.2.2,

step 3). The approximation is considered good enough if the maximum approximation

error on a test set is below a user-defined threshold ε. The test set consists of a number

132 Metamodeling by symbolic regression and Pareto SA

of data points located between the interpolation points.

The algorithm to determine the complexity of a unary function node is described in

Algorithm 6.2.

Algorithm 6.2 Method to determine the complexity of a unary operator.

Initialize: Approximate the range of the input values with interval arithmetic
Set k = 1

Repeat
Increase k by 1
Create a training set consisting of k Chebyshev points
Find the interpolating polynomial of degree at most k-1
Create a test set

Until the maximum error on the test set is below ε

Complexity of the unary operator is k-1

The reason for sampling Chebyshev points instead of equidistant points for the train-

ing set is avoiding Runge’s phenomena, which states that for some functions, the ap-

proximation by a polynomial interpolation through an increasing number of equidistant

points on a fixed interval gets worse when the number of points increases. However, in

Algorithm 6.2, we assume that the approximation does get better as we use more points.

Fortunately, this does hold for Chebyshev points because they do not suffer from Runge’s

phenomena (Mathews and Fink (2004)).

The procedure to determine the complexity of binary operators might seem time

consuming. However, when using it in our simulated-annealing-based algorithm, it can be

calculated quite efficiently. After changing one node in a function, we have to recalculate

only the complexity of the nodes between (and including) the changed node and the root

node of the transformation function. This limits the number of times we have to use

Algorithm 6.2 per iteration of the simulated annealing algorithm. The computation time

can also be limited by setting a maximum to the value of k in Algorithm 6.2.

6.3.3 Pareto simulated annealing

Now that we have determined a complexity measure, we still need a method for finding a

function with a desired quality and complexity. The main problem is that functions with

better fit generally have a higher complexity. The trade-off decision between fit and com-

plexity is difficult to make before we have any results. We regard maximizing metamodel

quality and minimizing complexity as two separate objectives and use a multiobjective

combinatorial optimization (MOCO) method to find multiple good solutions.

The use of simulated annealing in the basic algorithm makes it a natural choice

to use the multiobjective extension called Pareto simulated annealing (see Czyżak and

6.3 Extensions to the basic algorithm 133

Jaszkiewicz (1998)). Pareto simulated annealing does not try to find a solution that

is optimal according to one objective, but finds an approximation of the Pareto set.

The Pareto set is the set of Pareto optimal solutions. In our situation, Pareto optimal

solutions are metamodels for which the fit cannot be improved without deteriorating the

complexity and vice versa.

The two main differences between “standard” simulated annealing and Pareto sim-

ulated annealing are the method for comparing two solutions and the method for de-

termining the performance difference of two solutions. In Pareto simulated annealing,

comparing two solutions f1(x) and f2(x) leads to four possible scenarios:

• f1(x) and f2(x) are equally good: f1(x) and f2(x) are equally good on all objectives.

• f1(x) dominates f2(x): f1(x) is at least equally good as f2(x) on all objectives and

better on at least one.

• f1(x) is dominated by f2(x): f1(x) is at most equally good as f2(x) on all objectives

and worse on at least one.

• f1(x) and f2(x) are mutually non-dominating: f1(x) is worse than f2(x) on at least

one objective and better on at least one other objective.

We choose to always accept f2(x) if it dominates f1(x) or if it is equally good as f1(x).

We accept f2(x) only with a certain probability if it is dominated by f1(x) or if f1(x)

and f2(x) are mutually non-dominating.

The acceptance probability depends on the performance difference of the two solu-

tions. To determine this difference, we need to convert the performances on multiple

objectives into a single measure. We choose to use the dominance-based performance

measure, introduced in Smith et al. (2004), which solves some drawbacks of more tra-

ditional measures like the weighted sum. The dominance-based performance measure is

defined by:

∆E(f1(x), f2(x)) =
1

|ÃPF |
(
|ÃPF f1(x)| − |ÃPF f2(x)|

)
(6.10)

with:

• APF : set of solutions that approximate the Pareto front.

• ÃPF : APF ∪ {f1(x), f2(x)}.

• ÃPF f(x): set of solutions in ÃPF that dominate f(x).

134 Metamodeling by symbolic regression and Pareto SA

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Complexity

F
it

Figure 6.5: Example of the APF and the attainment surface.

An example of an APF is depicted in Figure 6.5 by the circles. When we let the triangle

depict f1(x) and the star depict f2(x), then |ÃPF | = 11, |ÃPF f1(x)| = 5 and |ÃPF f2(x)| =
2. The value of the dominance-based performance measure thus becomes 3/11.

Therefore, the performance of a solution is measured by the percentage of solutions

in ÃPF that it dominates. An advantage of this measure is that we always accepted

solutions that are not dominated by a solution in the current APF—which is not always

the case with other measures. Furthermore, solutions in sparsely populated areas of the

APF generally have a better performance than solutions in densely populated areas.

This stimulates the search of a set of solutions that is evenly spread over the APF .

The main drawback of the measure is that performance differences may be relatively

high when the APF contains few points. This may result in a coarse acceptance proba-

bility distribution, implying that a slightly worse fit or complexity may result in a large

reduction in acceptance probability. Smith et al. (2004) present several methods to alle-

viate this problem. The solution we choose is to create extra points evenly spread on the

“attainment surface of the APF” described in Smith et al. (2004), which is the boundary

of the area containing all points dominated by the points in the APF . The points in

the APF are thus on the attainment surface. In Figure 6.5, the attainment surface is

depicted by the black line. The extra points are created on the part of the attainment

surface that lies between the solution with the highest complexity and the solution with

the lowest complexity. This part of the attainment surface is depicted in Figure 6.5 by

the thick part. Half of the extra points are now evenly spread over the horizontal parts

and the other half over the vertical parts. An important advantage of this solution is

that it maintains both advantages of the dominance-based performance measure.

The Pareto simulated annealing version of Algorithm 1 is described in Algorithm 3.

Note that steps 6 and 7 are adapted and step 9 is added. To efficiently store and update

the APF , we use two vectors containing the complexities and fits of the functions in the

APF , respectively. In these vectors, the functions are ordered according to increasing

6.4 Numerical comparison to other metamodel types 135

complexity. For functions in the APF , this is equivalent to sorting them according to

decreasing fit. Through these two vectors, we can easily determine if the current solution

dominates or is dominated by solutions in the APF . We change the APF only in two

ways. Firstly, if some solutions in the APF are dominated by the current solution,

we remove these solutions. Secondly, if no solution in the APF dominates our current

solution, the current solution is added to the APF .

Algorithm 6.3 The Pareto simulated annealing version of the symbolic regression algo-
rithm. The differences to Algorithm 6.2 are noted in italics.

0: Initialize: find a good initial set of transformation functions
Repeat

1: Adapt annealing temperature
2: Select a transformation function
3: Change the selected transformation function
4: Check the integrity of the model

If the integrity-check is OK then
5: Calculate the coefficients of the model
6: Evaluate the quality and complexity of the approximating model

7: Always accept the change if the model dominates its predecessor or if it

is equally good.

Otherwise, accept the change with a probability based on the performance

difference and the annealing temperature.

If the model is accepted
8: Simplify the selected transformation function
9: Compare the model with the current APF and update the APF if necessary

Endif
Endif

10: Until stopping criterion is reached

6.4 Numerical comparison to other metamodel types

In this section, we present a comparison between our suggested approach and two other

metamodels approaches. First of all, we compare the results of our algorithm to the

Kriging model (for details on fitting Kriging models, see Sacks et al. (1989b)). Secondly,

we compare the results to symbolic regression based on genetic programming. We use

the implementation of Smits and Kotanchek (2004) to compare our results.

Sections 6.2 and 6.3 show that there are many parameters in our algorithm that

may influence the numerical results. However, the reannealing concept takes care of the

simulated annealing parameters. Most other parameters that we varied turned out to

have no important effect on the quality of the model, except the tree depth and the

number of trees. We varied these parameters in the first case.

136 Metamodeling by symbolic regression and Pareto SA

6.4.1 The six-hump-camel-back function

The first case is called the six-hump-camel-back function; see Figure 6.6. This is an

explicit formula, which has the advantage that we can accurately assess how the ap-

proximations compare with the real function. For the training set, we created a two-

dimensional space-filling latin hypercube design (LHD) containing 30 experiments in the

range [−2, 2]× [−1, 1]. Using 30 experiments, it should be possible to build an accurate

model. A space-filling (Maximin) LHD is often used for the approximation of determin-

istic simulation models. For details on the construction of such LHDs, we refer to Morris

and Mitchell (1995).

Figure 6.6: The six-hump camel back function (left) and the metamodel (right).

The explicit formula for the six-hump-camel-back function is given by:

f(x1, x2) = x2
1

(
4− 2.1x2

1 +
x4

1

3

)
+ x1x2 + x2

2

(−4 + 4x2
2

)
. (6.11)

The best symbolic regression function that was found is selected by choosing the

function with the lowest RMSE with an acceptable complexity from the Pareto front.

This selection process depends on the preferences of the user; e.g., if a simple model is

requested, then a worse model fit would be accepted. The chosen metamodel is given by

f(x1, x2) = c1 + c2 cos (x1) + c3 cos (2x1) + c4 (x1x2) + c5 cos (x2) + (6.12)

c6 sin
(
c7x

2
1

)
+ c8

(
x2

1

)
,

where ci is a constant. Note that all constants ci can be fit using linear regression except

c7, which was randomly entered by our algorithm. Further note that formula (12) has

very little resemblance to formula (11). If we would have carried out enough iterations,

and the original function would fit in the model trees that we would have used (i.e.,

enough terms and tree depth), then the algorithm would probably have come up with

the original function.

The APF after 200, 000 iterations was calculated in a few minutes on a PC with

2.00 GHz Intel Pentium M processor. The time intensive part of each iteration is the

6.4 Numerical comparison to other metamodel types 137

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Complexity

F
it

Figure 6.7: A linear interpolation of the points in the APF for the six-hump camel back
case after 200,000 iterations, in which the crosses represent the Pareto optimal solutions.
Note that this is not the attainment surface of the APF . The fit on the vertical axis is
a linear combination of CV-RMSE and RMSE.

calculation of the least squares coefficients and the cross validation statistic. This is an

o(n3 + m2) operation where n is equal to the number of transformation functions and m

is equal to the number of experiments. The APF is depicted in Figure 6.7. To evaluate

the actual quality of the metamodel, we created another test set of 30 experiments by

extending the original LHD to a new space-filling LHD consisting of 60 experiments. The

results are shown in Table 6.4.

Metamodel Training set RMSE Test set RMSE

Kriging 0.000 0.112
Symbolic regression model/SA 0.037 0.039
Symbolic regression model/GP 0.114 0.141

Table 6.4: Results for the metamodels on the six-hump-camel-back case.

These results were found with a maximal tree depth of 4. Increasing the tree depth

to 6 led to considerably more complex metamodels, but also to better results on the test

and training set.

6.4.2 The Kotanchek formula

The second test case is also based on an explicit formula. This example originates from

Smits and Kotanchek (2004). The data consists of five input variables (x1, . . . , x5) ∈ [0, 4]5

of which only the first two (x1 and x2) are significant. The output variable (y) consists

of two parts. The first part is an explicitly known formula; the second part is noise. The

138 Metamodeling by symbolic regression and Pareto SA

former formula is given by

y(x1, x2, x3, x4, x5) =
e−(x2−1)2

1.2 + (x1 − 2.5)2
, (6.13)

to which we refer as the Kotanchek formula. In Figure 6.8, a plot of the Kotanchek

formula is depicted.

Figure 6.8: The Kotanchek formula (6.13).

We assume the noise to be uniformly distributed in the interval [−0.05, 0.05]. On

100 data points (again a spacefilling LHD), four Pareto fronts were created in 200, 000

iterations using different settings of the algorithm: two or six terms and a tree depth

of four or seven. For each of the settings, a function was chosen from the Pareto front

by selecting a function with a low RMSE and an acceptable complexity, for which the

RMSE cannot be improved much by selecting a function with higher complexity. Then,

a test set of 50 data points is generated by extending the LHD.

Metamodel No. terms Tree depth Training set RMSE Test set RMSE

Symbolic regression model/SA 1 2 4 0.111 0.090
Symbolic regression model/SA 2 2 7 0.104 0.088
Symbolic regression model/SA 3 6 4 0.056 0.052
Symbolic regression model/SA 4 6 7 0.041 0.037
Kriging 0.000 0.039
Symbolic regression model/GP 0.033 0.048

Table 6.5: The training set and test set results for the five symbolic regression models
and the Kriging model.

Table 6.5 contains the results for this experiment. The results are compared with

the Kriging model. On the test set, the result of the Kriging model is comparable

to the best symbolic regression model. It is far less interpretable though, because it

consists of 100 terms in which all 5 dimensions are present. To detect the redundant

variables and improve the interpretability, we could test the magnitudes of the correlation

6.5 Conclusions 139

parameters of the Kriging model. For the symbolic regression models, the minimization

of the complexity measure for a given RMSE should prevent that the resulting models

contain redundant variables. When we consider the four symbolic regression models, we

see that metamodels 1, 2 and 4 indeed consist of only variables x1 and x2. Metamodel 3

consists of variables x1, x2 and x3, so it contains only one of the three redundant variables.

The four metamodels are depicted in Figure 6.9. We conclude that in this experiment,

even the model with six terms and a tree depth of seven did not overfit the data.

2 terms, depth 4 2 terms, depth 7

6 terms, depth 4 6 terms, depth 7

Figure 6.9: The four metamodels for the Kotanchek set. The variable x3 is fixed to 0.

6.5 Conclusions

In this chapter, we have described a simulated-annealing-based approach to symbolic

regression. We have elaborated on the algorithm and data structures, and have pre-

sented the results based on two cases. We conclude that although it requires some effort

to find the best symbolic regression model, the quality of the metamodels that can be

found is very promising. A major advantage of symbolic regression compared with Krig-

ing is interpretability. The complexity measure described in this chapter quantifies the

interpretability. Although the expressions used by the symbolic regression metamodels

140 Metamodeling by symbolic regression and Pareto SA

are less complex, the fit results are comparable with or better than the Kriging mod-

els. Compared with genetic programming approaches, our method offers a better way

of dealing with constants in the model via linear regression. In genetic programming,

estimating constants is a major issue. Furthermore, the number of models that need

to be evaluated in a simulated annealing method will on average be smaller compared

with the tens of thousands of models that need to be evaluated in each generation of

Genetic Programming. Usually, many generations are needed to come up with an ac-

ceptable model. However, further testing on a wider variety of test functions needs to be

performed to validate these claims. The Pareto simulated annealing algorithm produces

a list of solutions with different fit/complexity trade-offs. This gives users the flexibility

to choose the metamodel that best fits their preferences.

Nevertheless, there are still some open issues. One significant improvement of the

algorithm might be found by first applying a number of transformations of the response

data. Next, the search procedure can check the metamodel on all transformation without

much computational effort, and select not only the best transformation functions for the

input parameters, but also the best transformation for the output parameter. Another

interesting extension of the algorithm could be fitting rational functions of transformation

functions. This would increase the number of parameters in the metamodel that can be

efficiently calculated, and thus probably increase the quality of the model. Finally, it

would be beneficial to be able to dynamically alter the number of terms and the depth

of the trees during the search, so the users would not need to make these decisions

themselves.

Part IV

Sandwich algorithms for
approximating convex Pareto sets

Chapter 7

Enhancement of sandwich
algorithms for approximating multi-

dimensional convex Pareto sets

The Bureau of Incomplete Statistics
reports that one out of three.

(Unknown)

7.1 Introduction

In many fields, we come across problems where we want to optimize several conflicting

objectives simultaneously. An engineering example is the optimization of ride safety

and ride comfort when designing car suspensions (Nguyen (2007)). But also in health

care, optimization of multiple objectives can be an issue. When treating cancer tumors,

maximizing the probability of eradicating a tumor and minimizing the probability of

damaging healthy tissue are two conflicting objectives. These are just two of many

possible applications of multi-objective optimization. For a comprehensive overview of

the range of applications, we refer to White (1990), which lists 500 papers describing

different applications in various fields.

Given the large number of applications, it is not surprising that multi-objective op-

timization is an active field of research. Many approaches have been developed to deal

with optimizing multiple objectives. When there exists no solution that optimizes all

objectives simultaneously, the concept of Pareto optimality is often used to find a solu-

tion for a multi-objective problem (MOP). A solution is called Pareto optimal if it is not

possible to improve an objective without worsening one or more of the other objectives.

The set of all Pareto optimal solutions is called the Pareto set or Pareto frontier. Many

multi-objective optimization techniques focus on approximating (part of) this Pareto set.

Such an approximation can be used by human decision makers to get insight into the

143

144 Enhancement of sandwich algorithms for convex Pareto sets

trade-offs among the various objectives and to select a solution that best satisfies their

preferences. For a general discussion of multi-objective optimization techniques, we re-

fer to the books of Hwang and Masud (1979), Steuer (1986), Miettinen (1999), Ehrgott

(2005), and Branke et al. (2008), and the survey papers of Ruzika and Wiecek (2003),

Marler and Arora (2004), and Ehrgott and Wiecek (2005).

In this chapter, we consider the class of multi-dimensional convex MOPs. By multi-

dimensional we mean that the MOP has more than two objectives. We make this dis-

tinction because many methods apply only to two objectives. Nevertheless, the methods

discussed in this chapter can also be applied to bi-objective convex MOPs. An MOP

is called convex if all objective functions and the set of all feasible solutions are convex

(Miettinen (1999)). Romeijn et al. (2004) have shown that for these problems the Pareto

set is also convex. The choice for this class of problems was inspired by the intensity-

modulated radiation therapy (IMRT) optimization problem. This problem deals with

designing a beam fluence map that delivers enough radiation dose to a cancer tumor to

eradicate it, while keeping the dose in other tissue low enough to avoid damage. Differ-

ent objective functions can be used to formulate this problem as an MOP. Romeijn et al.

(2004), Hoffmann et al. (2006), and Siem et al. (2008) have shown that many commonly

used objective functions are convex or can be transformed into convex functions without

changing the Pareto set. For an overview of papers treating the IMRT problem as an

MOP, we refer to Romeijn and Dempsey (2008) and the references therein. Note that

although our research was inspired by the IMRT problem, the methods discussed in this

chapter apply to all convex MOPs and even to certain non-convex MOPs.

There exists a wide variety of methods for approximating multi-dimensional convex

Pareto sets (see, e.g., Ruzika and Wiecek (2003), Marler and Arora (2004), Ehrgott

and Wiecek (2005), and Karasakal and Koksalan (2009)). However, we focus on multi-

dimensional sandwich algorithms because they have several interesting and useful prop-

erties. Sandwich algorithms approximate the Pareto set by iteratively improving an inner

and outer approximation. As the real Pareto set is sandwiched between the inner and

outer approximation, an upper bound on the approximation error can be determined.

We consider this property to be a major advantage over other types of methods as the

latter generally cannot provide information on the accuracy of the approximation. The

availability of this information has two benefits. Firstly, most sandwich algorithms use

this information to determine which part of the approximation needs to be improved

in each step of the algorithm. By improving the part where the upper bound on the

approximation error is largest, sandwich algorithms efficiently improve the approxima-

tion. Secondly, the decision maker can use this approximation error to determine if a

certain approximation is accurate enough. However, in order for the error to be useful in

practice, the error measure should be easy to calculate and interpret.

7.1 Introduction 145

As with general MOP-algorithms, many sandwich algorithms are developed for the

bi-objective cases only and cannot directly be extended to higher dimensions. How-

ever, there are several sandwich algorithms that can deal with multi-dimensional MOPs.

Solanki et al. (1993), for instance, have extended their bi-objective method to make it

suitable for higher dimensions. Although their method is described for multi-objective

linear programming problems, it can also be applied to general convex MOPs. Klamroth

et al. (2002) also introduced methods for generating outer and inner approximations.

The sandwich method of Craft et al. (2006) was introduced for multi-dimensional IMRT

problems, but can also be applied to other convex MOPs. Lastly, Shao and Ehrgott

(2008) also developed a sandwich algorithm motivated by the IMRT problem. However,

their method deals with it as a multi-objective linear programming problem and cannot

easily be extended to general convex MOPs.

We extend multi-dimensional sandwich algorithms in three different ways. Firstly,

we introduce the new concept of adding dummy points to the inner approximation of a

Pareto set. By using these dummy points we can determine accurate inner and outer

approximations more efficiently, i.e., using fewer time-consuming optimizations. We il-

lustrate this result by enhancing the method of Solanki et al. (1993) with dummy points

and comparing this method with existing sandwich algorithms on a number of test cases.

Furthermore, certain points of the inner approximation might be irrelevant as they are

dominated by other points of the inner approximation. The detection of the relevant

points can also be simplified by the use of dummy points.

Secondly, we introduce an error measure, which determines the quality of an approxi-

mation based on the concept of ε-dominance. An important benefit of this error measure

is that it provides the decision maker with quality guarantees that are easy to inter-

pret. However, the calculation of this error measure is not straightforward. Therefore,

we introduce a new calculation method that simplifies the calculations by using dummy

points. When calculating an upper bound for this measure using the inner and outer

approximations, the method simplifies the calculations to solving a number of relatively

simple LP problems. As the measure thus becomes easy to calculate, it can also be used

in sandwich algorithms to determine which part of the approximation should be improved

in each iteration. In this way, we are likely to obtain an accurate approximation more effi-

ciently. Furthermore, it enables the decision maker to easily evaluate the accuracy of the

approximations at each iteration of the algorithm. The combination of easy calculation

and easy interpretation thus makes it a very suitable measure for sandwich algorithms.

Thirdly, we show how transforming certain objective functions can improve the results

of sandwich algorithms or extend their applicability. Approximations of convex Pareto

sets can be improved if we can find a strictly increasing concave transformation func-

tion such that the transformed objective is still convex. We prove that both inner and

146 Enhancement of sandwich algorithms for convex Pareto sets

outer approximations can be improved in this way. The improved accuracy means that

even fewer time-consuming optimizations are needed to achieve a certain accuracy. By

using transformation functions, we also extend the application of sandwich algorithms

to certain non-convex MOPS. We show that if we can find a strictly increasing transfor-

mation function which transforms the non-convex objective functions into convex ones,

we can use the sandwich algorithms to determine inner and outer approximations for

non-convex Pareto sets. We also discuss the calculation of the introduced error measure

when using transformations. For bi-objective MOPs, Siem et al. (2008) have already

shown similar results by using transformations. Our results thus extend their findings to

multi-dimensional MOPs.

To show the effect of these enhancements, we make a numerical comparison using four

test cases. The set of cases consists of a three-dimensional strictly convex MOP, a five-

dimensional linear MOP, a four-dimensional IMRT case, and a three-dimensional geomet-

ric programming case. The results of these cases show that we indeed need substantially

fewer optimizations to achieve an accurate approximation when using the enhancements.

This chapter is organized as follows. In Section 7.2, we give a formal definition of

the convex MOP and introduce the necessary notation. Section 7.3 contains descriptions

of the above mentioned multi-dimensional sandwich algorithms. The concept of dummy

points and their application is introduced in Section 7.4. In Section 7.5, we motivate

and define the previously mentioned error measure and show how we can easily calculate

it by using dummy points. The transformation of objective functions is discussed in

Section 7.6. Calculation of the error measure when using transformations is also discussed

in this section. In Section 7.7, we describe how the dummy points, error measure, and

transformation functions can be applied in several sandwich and non-sandwich algorithms

for approximating MOPs. To compare the sandwich algorithms and to show the effect of

the above enhancements, Section 7.8 contains a numerical comparison consisting of four

test cases. Finally, Section 7.9 finishes with concluding remarks.

7.2 Problem definition and notation

Throughout this chapter, we use the following orderings of vectors. Let x, y ∈ Rn with

n ≥ 2. By xi we denote the ith element of the vector x. To enumerate different vectors,

we use superscripts. When ordering two vectors, we use:

• x < y ⇔ xi < yi for all i = 1, . . . , n.

• x ≤ y ⇔ xi ≤ yi for all i = 1, . . . , n and x 6= y.

• x 5 y ⇔ xi ≤ yi for all i = 1, . . . , n.

7.2 Problem definition and notation 147

The symbols >, ≥, = are defined accordingly. We furthermore define the set Rn
5 = {x ∈

Rn : x 5 0}. If X ⊂ Rn, then we define X + Rn
5 = {y | ∃x ∈ X : y 5 x}. The sets Rn

=,

Rn
≤, and Rn

≥ and the sets X + Rn
= X + Rn

≤, and X + Rn
≥ are again defined accordingly.

In this chapter, we consider the following multi-objective optimization problem (MOP):

min
x

f(x) = [f1(x), . . . , fk(x)]>

s.t. x ∈ X (7.1)

f(x) 5 zub,

where X is the feasible set, f : X → Rk
= is the vector of k real valued objective functions

and zub is an upper bound on the objective function values. Note that this definition

differs in two ways from the common MOP. Firstly, we assume that all objective functions

give values greater than or equal to zero. This is no practical limitation as adding a fixed

constant to each objective value does not essentially change the problem or solution set.

By simply adding the utopia point, which we define further on, we can ensure that an

arbitrary objective function satisfies this condition. Secondly, the problem is usually

formulated without the upper bound restriction on the objectives. In practice, however,

the decision makers generally have an idea of the maximal value they are willing to accept

for the different objectives. Solutions with higher objective values are irrelevant and can

thus be avoided using this restriction.

As it is generally impossible to find an x ∈ X that minimizes all objectives at the

same time, our aim is to find a set of so-called Pareto optimal or non-dominated solutions.

Definition 7.1.

An objective vector f(x) for x ∈ X is (strongly) dominated if there exists an x̃ ∈ X such

that f(x̃) < f(x).

An objective vector f(x) for x ∈ X is weakly dominated if there exists an x̃ ∈ X such

that f(x̃) ≤ f(x).

Definition 7.2.

An objective vector f(x) for x ∈ X is (strongly) Pareto optimal if there exists no x̃ ∈ X

such that f(x̃) ≤ f(x).

An objective vector f(x) for x ∈ X is weakly Pareto optimal if there exists no x̃ ∈ X

such that f(x̃) < f(x).

Pareto optimality thus implies that it is not possible to improve one objective without

deteriorating at least one other objective. If, on the other hand, such an improvement

is possible, then f(x) is weakly dominated. When it is possible to improve all objectives

simultaneously, then f(x) is strongly dominated. The concept of Pareto optimality is also

known under the names efficiency and non-dominance. The different terms are sometimes

148 Enhancement of sandwich algorithms for convex Pareto sets

used to distinguish between points in the design space and objective space, but—as

Ehrgott (2005) points out—there is no consensus on which term should be used for which

space. In this chapter, we choose to use efficiency for points in the design space and Pareto

optimality for points in the objective space. The set of all feasible efficient solutions is

thus a subset of X and is denoted by XE. The set containing all the Pareto optimal

vectors corresponding to the efficient solutions, i.e., PS := {f(x) | x ∈ XE, f(x) 5 zub},
is called the Pareto set. The set PS is a subset of the set Z of all feasible criterion

vectors, which is defined as Z := {f(x) | x ∈ X, f(x) 5 zub}. We denote vectors in the

solution space by x and vectors in the objective space by z. Furthermore, we refer to

vectors x as solutions and to vectors z as points.

We assume that the decision maker has selected the upper bounds zub such that all

solutions in PS are viable solutions. The decision maker is thus interested in the complete

Pareto set. However, as determining the complete Pareto set is generally impossible, we

try to approximate it. To determine Pareto optimal points, an often used method is to

solve the following weighted sum problem:

z∗ = arg min{w>z | z ∈ Z} (7.2)

where w ∈ Rk
≥. Advantages of this problem formulation are that it is often easy to

implement and that the problem is convex for convex MOP. Furthermore for w > 0,

solving this problem always produces a Pareto optimal point. If wi = 0 for one or more

i ∈ {1, . . . , k}, then the resulting point is also guaranteed to be Pareto optimal if all

corresponding objective functions fi(x) are strongly convex. However, when some of the

corresponding objective functions fi(x) are weakly convex, the resulting point can be

weakly Pareto optimal (see, e.g., Miettinen (1999)). To determine a point z∗∗ that is

guaranteed to be Pareto optimal and that weakly dominates or is equal to z∗, we can

solve the following additional optimization problem:

z∗∗ = arg min{(w′)>z | z 5 z∗, z ∈ Z},
where w′ > 0. However, as we assume that the optimizations require much computation

time and the benefit of this additional optimization may be relatively small, we do not

perform this step for the test cases in this chapter.

A common approach to approximate a Pareto set is to solve the weighted sum problem

for weight vectors w which are evenly spread over the set {w | w ≥ 0,
∑k

i=1 wi = 1}.
However, Das and Dennis (1997) have shown that this method does not generally give

an even spread of points from a Pareto set. We therefore need a more advanced method

to efficiently determine a good approximation of the Pareto set.

Besides Pareto points, several auxiliary points in the objective space are often used

to approximate the Pareto set. An anchor point zAi of an MOP is defined as

zAi = arg min{zi | z ∈ Z} for i = 1, . . . , k,

7.2 Problem definition and notation 149

which implies that one of the objectives is minimized without taking the other objectives

into account. Note that anchor points can be found by solving the weighted sum problem

with w equal to the ith unit vector. The results concerning Pareto optimality of solutions

of the weighted sum problem thus also apply to anchor points.

The utopia point zU is found by taking the minimal values of all the objectives:

zU
i = zAi

i for i = 1, . . . , k.

The utopia point is thus the best possible point for each objective, but in general it is

infeasible. The nadir point is the opposite of the utopia point and obtained by

zN
i = max{zi | z ∈ PS} for i = 1, . . . , k.

Even though the addition of the upper bound zub to the common MOP formulation can

simplify the computations, determining the nadir point for k > 2 remains in general hard

as we have to optimize over the unknown set PS (see, e.g., Miettinen (1999)). In Schandl

et al. (2002), the following generalization of the nadir-point concept is proposed:

zpN
i = max{zAj

i | j = 1, . . . , k} for i = 1, . . . , k.

We refer to this point as the pseudo-nadir point.

Furthermore, as we stated in the introduction, we assume that the MOP is convex,

i.e., all objective functions fi(x) and the set X are convex. According to Romeijn et al.

(2004), this implies that the set

Z + Rk
= = {z | ∃z̃ ∈ Z : z = z̃}

of dominated points is also convex. In Jin and Sendhoff (2004), the convexity of a Pareto

set is formulated as follows.

Definition 7.3. A set PS is convex if for all u, v ∈ PS and for all λ ∈ (0, 1), there

exists a vector w ∈ PS such that λu + (1− λ)v ≥ w.

The result of Romeijn et al. (2004) implies that also convexity according to the definition

of Jin and Sendhoff (2004) is satisfied for convex MOP.

To approximate a convex Pareto set, we often use the convex hull of a set of points in

Z. For Y ⊂ Z, the convex hull conv{Y } is defined as the set of all convex combinations

of points in Y . All points in conv{Y } that cannot be written as a convex combination

of other points in Y , are called extreme points of the convex hull. If Y is a finite set of

points, the convex hull of Y can also be described through a finite set of hyperplanes in

the objective space. Similar to Solanki et al. (1993), we use the following definitions.

150 Enhancement of sandwich algorithms for convex Pareto sets

Definition 7.4. A hyperplane in the objective space is given by H(w, b) = {z | w>z = b}
with w ∈ Rk\{0} and b ∈ R. The vector w is a normal of the hyperplane. If ‖w‖ = 1,

the vector w is a unit normal.

Definition 7.5. The set HS(w, b) = {z | w>z ≥ b} is the half-space given by w ∈ Rk\{0}
and b ∈ R. The vector w is an inner normal of the half-space. If ‖w‖ = 1, the vector w

is the inner unit normal of the half-space. The vector w̄ = −w is an outer normal of the

half-space.

In this chapter, the vector w always refers to an inner unit normal, unless explicitly

specified otherwise.

Definition 7.6. If V ⊂ C where C is a convex set, then a hyperplane H(w, b) supports

C at V if V ⊂ H(w, b) and C ⊂ HS(w, b).

Definition 7.7. A set of points F is a m-face of C if F has dimensionality m and there

exists a supporting hyperplane H(w, b) that supports C at F and for which holds that

H(w, b) ∩ C = F . If C ⊂ Rk, its (k − 1)-faces are facets and its 0-faces are the extreme

points.

In this chapter, we mainly consider convex sets C with a finite number of facets. We

denote the n facets belonging to a certain convex set C by F 1, . . . , F n and the set of

extreme points by CE. When H(wi, bi), i = 1, . . . , n, are the supporting hyperplanes at

these faces, then every point z ∈ C must satisfy (wi)>z ≥ bi for i = 1, . . . , n. If z satisfies

any of these inequalities with equality, then z is on the corresponding facet. By taking

the intersection of the half spaces HS(wi, bi), i = 1, . . . , n, defined by the facets, we can

describe the convex hull as an intersection of half spaces.

To determine the convex hull, we use the function “convhulln” in Matlab, which uses

the Qhull algorithm (Barber et al. (1996)). For convex hulls of dimensions at least five,

the output of this function may contain facets with empty areas or volumes. These facets

are removed because they are redundant.

In all algorithms used in this chapter, we approximate the Pareto set by a set of faces

of conv{Y } with Y ⊂ Z. For this set Y it holds that conv{Y } = conv{Y E} and that

we know the corresponding x ∈ X for all points z ∈ Y E. However, we do not know the

corresponding x ∈ X for all other vectors z ∈ conv{Y }. For these vectors, we can use

the following method to determine a vector x∗ ∈ X such that z∗ 5 z for z∗ = f(x∗). As

z ∈ conv{Y }, the vector z can be written as a convex combination of k vectors in Y E.

Let us denote these vectors by z1, . . . , zk and the weights defining the convex combination

by λ1, . . . , λk. If x1, . . . , xk are the (known) vectors such that zi = f(xi) for i = 1, . . . , k,

then we can define x∗ =
∑k

i=1 λixi. Because of the convexity of X and f(x), it is now

easy to prove that x∗ ∈ X and z∗ 5 z for z∗ = f(x∗).

7.3 Sandwich algorithms 151

7.3 Sandwich algorithms

7.3.1 Inner and outer approximations

In the introduction, we mentioned that we want to find an accurate approximation of

the complete relevant part of the Pareto set using as few optimizations as possible.

Furthermore, we would also like to be able to give quality guarantees on the accuracy of

the approximation. For both aims, sandwich algorithms seem to be very suitable. The

main characteristic of sandwich algorithms is that they provide two approximations that

sandwich the set PS of Pareto optimal points. In the case of an MOP where all objectives

must be minimized, these two approximations can be defined as follows.

Definition 7.8. A set IPS ⊆ Z is an inner approximation of PS if it satisfies IPS ⊆
PS + Rk

=.

Definition 7.9. A set OPS ⊆ Z is an outer approximation of PS if it satisfies PS ⊆
OPS + Rk

=.

The inner and outer approximations are sometimes called the upper and lower bounds

or approximations. However, to avoid confusion with other upper and lower bounds, we

choose to use the terms inner and outer approximations.

As the true Pareto set lies between the inner and outer approximations, we can use

them to determine an upper bound on the approximation error. This upper bound can be

used to guide the algorithm and to give guarantees. Guiding can be done by generating

new points in areas of the Pareto set where the upper bound on the approximation error

is relatively large. In this way, we are likely to gain more in terms of accuracy than

by generating points in areas where the upper bound is much smaller. By generating

new points where the potential for improvement is highest, sandwich algorithms try

to accurately approximate a Pareto set through as few optimization runs as possible.

Furthermore, the upper bound on the approximation error gives the decision makers the

guarantee that by using the approximation, they will never select a solution of which the

objective vector z is more than a certain amount worse than an objective vector z̃ that

is an element of the true Pareto set.

In the next three sections, we describe four different sandwich methods.

7.3.2 Algorithm of Solanki et al.

The main steps of the XNISE1 algorithm in Solanki et al. (1993) are:

1. Find all anchor points zA1, . . . , zAm, and all points zMi = arg max{zi | z ∈ PS} for

i = 1, . . . , k. Initialize IPS = conv{zA1, . . . , zAm, zM1, . . . , zMm}.

152 Enhancement of sandwich algorithms for convex Pareto sets

2. Initialize OPS = {z | zAi
i 5 zi 5 zMi

i , i = 1 . . . , k}.

3. Calculate the error for each facet (see below).

4. Select the facet F ∗ with the largest error. If this error is below a certain value, we

stop. Otherwise, let H(w, b) be a supporting hyperplane at F ∗ and go to Step 5.

5. Determine z∗ by solving:

z∗ = arg min{w>z | z ∈ Z}.

6. If w>z∗ = b, then no new extreme point is found. Change the error of this facet to

zero, and return to Step 4 if this happens. Otherwise, go to Step 7.

7. Update IPS by replacing it with conv{z∗, IPS}.

8. Update OPS by adding the inequality w>z ≤ b.

9. Return to Step 3.

In Step 3, the error of the facet is calculated by first solving the following problem:

w>z̄ = min{w>z | z ∈ OPS}. (7.3)

Notice that (7.3) is a (simple) LP problem because OPS can be described by a set of

linear inequalities. The error is calculated as the distance between z̄ and the hyperplane

defined by the facet. Because w satisfies ‖w‖ = 1, this distance can easily be calculated

as b− w>z̄.

Determining zM1, . . . , zMn in Step 1 is not straightforward, because we have no ex-

plicit description of PS and there exist no suitable weight vectors to determine these

points through the weighted sum method. Moreover, the maximal values of the individ-

ual objectives can be attained at one or more of the anchor points. For example, the

maximum of objective z1 can be attained by the anchor points zA2 or zA3. Therefore, we

choose to change the algorithm by leaving out zM1, . . . , zMn in Step 1, and replacing zMi
i

by zub
i in Step 2.

The set IPS obtained with this algorithm forms an inner approximation of PS.

However, not all points of this convex hull are useful as an approximation of PS as

some are (weakly) dominated by other points in IPS. Solanki et al. (1993) developed

the XNISE2 algorithm to remove all points in IPS that are weakly dominated by other

points in IPS. The remaining set is used as the final approximation.

As mentioned by Solanki et al. (1993), taking the weight vector w equal to the

normal of a facet can be problematic when the normal contains both positive and negative

7.3 Sandwich algorithms 153

elements. In that case, minimizing the weighted sum in Step 5 could result in a non-

Pareto optimal point, i.e., a point that is not part of PS. To avoid the resulting point

to be too far away from PS, Solanki et al. (1993) put upper and lower bounds on the

objective values in their approach. In Sections 7.3.4 and 7.4, we discuss other methods

for dealing with this situation.

7.3.3 Algorithm of Klamroth et al.

The algorithm in Klamroth et al. (2002) uses two separate algorithms for generating the

inner and outer approximation of the Pareto set. They combine the two algorithms by

alternatingly performing one iteration of each algorithm.

The algorithm for the inner approximation also starts with a facet defined by the an-

chor points. For this facet, the algorithm tries to find the point in the Pareto set furthest

away from this facet through the so-called gauge-method. This method determines a new

point z∗ by solving the following problem:

γ(z∗) = max
m∑

i=1

λi

s.t. z 5 zpN +
m∑

i=1

λi(z
i − zpN) (7.4)

λi ≥ 0 for i = 1, . . . , m

z ∈ Z,

where the vectors z1, . . . , zm are the extreme points of the facet. The deviation of the

new point z∗ is subsequently calculated by |γ(z∗) − 1|. The new point with the largest

deviation is added to the inner approximation, and new facets are determined by updating

the convex hull. The gauge method is performed for all new facets, and again the point

with the largest deviation is added. This last step is repeated until some stopping criterion

is met.

This inner approximation method of Klamroth et al. (2002) is based on earlier re-

search of Schandl et al. (2002), who formulate the gauge method slightly differently.

In their formulation, the first inequality constraint in problem (7.4) is formulated as

an equality constraint. We tested both methods and refer to them as Klamroth≤ and

Klamroth=, respectively.

Our tests with both methods showed that—in certain situations—the point with the

largest deviation can be a point that is already part of the IPS. If this happens, the

same point is added in every subsequent step of the algorithm, so the IPS no longer

changes. To avoid this behavior, we add a tabu list to the algorithm. If applying the

gauge-method for a certain facet results in an already found point, the facet is added to

the tabu list and is no longer evaluated in subsequent steps of the algorithm.

154 Enhancement of sandwich algorithms for convex Pareto sets

The outer approximation method is formulated as follows. First the utopia and

pseudo-nadir point are determined. The hypercube defined by the utopia and pseudo-

nadir point is taken as the initial outer approximation. The outer approximation is thus

a convex polytope. We call the extreme points of this polytope the fundamental vectors

and denote them by v1, . . . , vm. Next, for every fundamental vector vi 6= zpN , we solve

the problem

δi = max λ

s.t. f(x)− (zpN + λ(vi − zpN)) 5 0 (7.5)

λ ≥ 0

x ∈ X,

and denote the optimal Lagrange multiplier of the first constraint by ui and the optimal

value of f(x) by zi. The fundamental vector with the minimal value of δi is now used

to update the outer approximation. If m is the index of this vector, then the outer

approximation is thus updated by adding the inequality (um)>z ≥ (um)>zm. After

determining the fundamental vectors of this updated polytope, we solve problem (7.5)

for all new vectors and again update the outer approximation using the vector with the

largest δi. We repeat solving problem (7.5) and updating the outer approximation, until

some stopping criterion is satisfied.

7.3.4 Algorithm of Craft et al.

Craft et al. (2006) introduce the PGEN algorithm to approximate a convex Pareto

set. The algorithm is similar to the algorithm of Solanki et al. (1993), except for two

important characteristics.

The first characteristic is the way the error is calculated. Instead of solving an LP

problem, the error is calculated by looking at the hyperplanes of the outer approximation

going through the corner points of a facet. If these planes intersect in a point, this point

is called the lower distal point. The error is defined as the distance between the facet

and its lower distal point.

Secondly, the algorithm differs in the way it deals with facets that have a normal with

both positive and negative elements. Whereas Solanki et al. (1993) choose to put upper

and lower bounds on the objective values, the PGEN algorithm deals with this problem

by using a different weight vector. Instead of using the normal of the facet, the weight

vector is determined by taking a linear combination of the weight vectors used to obtain

the corner points of the facet.

7.4 Adding dummy points to IPS 155

7.4 Adding dummy points to IPS

7.4.1 Motivation of dummy points

As we mentioned in the previous section, the weighted sum method used in the algorithms

of Solanki et al. (1993) and Craft et al. (2006), can give non-Pareto points if the weight

vector has both positive and negative components. Unfortunately, facets of the convex

hull may have normals with this property. Using these ‘undesirable’ normals as weight

vectors may result in non-Pareto points. Solanki et al. (1993) and Craft et al. (2006)

developed different ways of dealing with this problem, as we described in Section 7.3.4.

The drawback of the approach of Solanki et al. (1993) is that it may still produce non-

Pareto points, although there is a limit on how far the non-Pareto point is from PS. The

approach of Craft et al. (2006) does not have this drawback because it always uses a

non-negative weight vector. However, tests with this algorithm show that sometimes the

same facet with ‘undesirable’ normal is selected in subsequent iterations. This implies

that solving the weighted sum problem for the alternative weight vector does not always

produce a point that reduces the error measure used by Craft et al. (2006). As we assume

that every optimization is CPU-time consuming, this is not a desirable property.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A

B

C
D

E

zub

Figure 7.1: Example of facets with
‘undesirable’ normals.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

zub

Figure 7.2: Example of avoiding facets
with ‘undesirable’ normals by adding
dummy points.

In this section, we introduce a new way of dealing with the problem of ‘undesirable’

normals. By taking the convex hull of IPS and a set of dummy points, we ensure that all

relevant facets have a ‘desirable’ inner normal with only non-negative elements. Besides

solving the problem of obtaining non-Pareto points, this approach has a number of other

benefits. In Section 7.4.3, we show that the dummy points help us to determine the IPS

points that are not dominated by other IPS points. Furthermore, we introduce an error

measure in Section 7.5 that has a number of desirable properties, including the property

156 Enhancement of sandwich algorithms for convex Pareto sets

that calculating an upper bound for this measure based on IPS and OPS can be done

by solving a number of simple LP problems when using dummy points.

To explain the general idea behind these dummy points and their advantages, we use

the bi-criteria example in Figure 7.1. Although the problem with ‘undesirable’ normals

does not occur for bi-criteria problems, we use a bi-criteria example to simplify the

explanation of the general idea behind the dummy points. In Figure 7.1, the shaded

area represents Z and the points A, B, C, D, and E are the current extreme points of

IPS. As the arrows indicate, facets AB and DE both have ‘undesirable’ normals. Using

these normals in the weighted sum method means that we search in the direction of

the arrows for the point farthest away from the facet. In both cases, this results in a

non-Pareto solution. In Figure 7.2, two dummy points are added for each extreme point

z ∈ IPSE. These dummy points are created by replacing one of the two coordinates of z

by a large value (an exact definition of the dummy points is given in Section 7.4.2). Once

the dummy points are created, the set IPS is replaced by the convex hull of IPS and all

its dummy points. All facets containing at least one IPS-point now have a normal with

non-negative elements only. All other facets, which contain only dummy points, do not

satisfy the upper bound constraint on the objectives, so they are irrelevant.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

0

0.1

0.2 C
D

E

z1

z2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

0

0.1

0.2 C
D

E

z1

z2

Figure 7.3: Example of improved error calculation with dummy points.

Besides solving the problem of ‘undesirable’ normals, adding dummy points helps us

to determine the approximation error. To explain this property, we use the points z1

and z2 in Figure 7.3. When the error in a certain point is calculated by the Euclidean

distance to the approximation, point z1 will be considered more accurately approximated

than point z2. Point D, however, approximates z2 quite closely as it is only slightly worse

in objective 2 and better in objective 1. The distance between z2 and the facet between

D and the corresponding dummy point is therefore a better error measure. Now point z2

has a slightly better error value than z1, which seems a much better representation of the

approximation accuracy. So, adding dummy points to the approximation also improves

the usefulness of the Euclidean distance as an error measure. In Section 7.5, we introduce

α(PS, IPS) and α(OPS, IPS) to measure the approximation error and show how we can

easily calculate this measure using the dummy points.

7.4 Adding dummy points to IPS 157

Finally, the IPS obtained by any of the sandwich algorithms may contain points that

are weakly or strongly dominated by other IPS points. As it is not optimal for the

decision maker to choose any of these points, we want to detect and remove these points

before presenting IPS to the decision maker. As we mentioned before, Solanki et al.

(1993) presented the XNISE2 algorithm for this purpose. Using dummy points, however,

we can use an easier approach for finding these points. We introduce and discuss this

new approach in Section 7.4.3.

7.4.2 Effect of dummy points on inner normals

To prove that dummy points also work in higher dimensions, we first give a formal

definition of the dummy points. For a fixed and small θ > 0 and for each extreme point

z ∈ IPSE, the dummy points d1(z), . . . , dk(z) are defined in the following way.

Definition 7.10. Let θ > 0. The dummy point di(z) generated from z ∈ Z is given by

di
j(z) =

{
zj if j 6= i

kzub
j + θ if j = i

for j = 1, . . . , k.

Definition 7.11. The set D is defined as

D = {di(z) | z ∈ IPSE, i = 1, . . . , k}.

Note that all dummy points are weakly dominated by the points they are generated from.

They thus never dominate any of the Pareto optimal points in IPS. Furthermore, in

many instances, dummy points can be written as a convex combination of other dummy

points. In the example of Section 7.4.1, this is true for six of the ten generated dummy

points. The points for which this happens can be easily detected. As we always use

D to determine conv{IPS, D}, these points can be removed from D, which reduces the

computation costs of determining conv{IPS, D}. Lastly, because the dummy points are

not smaller or equal to zub, certain facets of conv{IPS, D} may contain no points z̃ for

which z̃ 5 zub. As all points z ∈ PS do satisfy z 5 zub, these facets are not relevant

when approximating PS. In the example in the previous section, we thus have only four

relevant facets. To distinguish between relevant and irrelevant facets, we introduce the

following formal definitions.

Definition 7.12. A facet F of conv{IPS,D} is a relevant facet if at least one of its

extreme points is in IPS. The set of all relevant facets is denoted by RF .

Definition 7.13. A hyperplane H(w, b) is a relevant hyperplane if it supports the set

conv{IPS,D} at a relevant facet. The set of all relevant hyperplanes is denoted by RH.

158 Enhancement of sandwich algorithms for convex Pareto sets

As we assume that z 5 zub for every z ∈ IPS, all relevant facets contain points that

are smaller or equal than zub and can thus approximate PS. The following lemma shows

that all facets of conv{IPS, D} not satisfying the above definition are not relevant.

Lemma 7.7. Consider a facet F of conv{IPS, D}. If F is not a relevant facet, then

there is no point z on F with z 5 zub.

Proof. As F is not a relevant facet, all extreme points must be dummy points. Further-

more, any point z on F can be written as z =
∑k

i=1 λiz
i with z1, . . . , zk being extreme

points of F ,
∑k

i=1 λi = 1 and λi ≥ 0 for i = 1 . . . , k. Assume without loss of generality

that λ1 = maxi λi. From
∑k

i=1 λi = 1 and λi ≥ 0 for i = 1 . . . , k, it follows that λ1 ≥ 1
k
.

As zi ≥ 0 for all i = 1, . . . , k, this gives the following inequality:

z = λ1z
1 +

k∑
i=2

λiz
i ≥ λ1z

1 ≥ 1

k
z1. (7.6)

As z1 is a dummy point, z1
j = kzub

j + θ must hold for one element j. Combining this

property with inequality (7.6) gives

zj ≥ 1

k
z1

j =
1

k
(kzub

j + θ) > zub
j .

This shows that there is no point on F for which z 5 zub.

In Section 7.4.1, we have already mentioned that by using conv{IPS, D} instead of IPS,

we want to ensure that all relevant facets have an inner normal with only non-negative

elements. Lemma 7.8 shows that for the above defined relevant facets and set D this

indeed holds.

Lemma 7.8. Consider conv{IPS,D} and F ∈ RF . If H(w, b) ∈ RH is a supporting

hyperplane at F , then w ≥ 0.

Proof. Let z be an extreme point of F that is in IPS. Suppose by contradiction that

there is an i such that wi < 0. Then for the dummy point di(z) it holds that

w>di(z) = w>z + wi(kzub
i + θ − zi) < w>z = b.

This inequality is a contradiction, because di(z) is in conv{IPS, D}, which has H(w, b)

as a supporting hyperplane.

7.4.3 Determining non-IPS-dominated points of IPS

When we have determined an inner approximation IPS of PS, some points in IPS may

be dominated by other points in IPS. For a decision maker it is not optimal to choose

7.4 Adding dummy points to IPS 159

one of these dominated points. Therefore, we want to determine all points in IPS that

are not strongly or weakly dominated by other points in IPS. We refer to these points

as non-IPS-dominated points and denote the set of all non-IPS-dominated points by

IPSnId. The set conv{IPS,D} and the following lemma and proposition can be used to

determine IPSnId.

Lemma 7.9. Consider z ∈ conv{IPS,D} with z /∈ IPS. Then z is weakly dominated

by a point in IPS.

Proof. Let us denote all points in IPSE by z1, . . . , zm. As z ∈ conv{IPS, D}, we know

that z can be written as z =
∑

i λiz
i +

∑
i,j µi,jd

j(zi) with
∑

i λi +
∑

i,j µi,j = 1, λi ≥ 0

and µi,j ≥ 0 for i = 1, . . . , m, j = 1, . . . , k. Furthermore, because z /∈ IPS, we know that

µi,j > 0 must hold for at least one combination of i and j. By definition, each dummy

point dj(zi) ∈ D is weakly dominated by the point zi ∈ IPSE from which it is generated.

Define z∗ =
∑

i λiz
i +

∑
i,j µi,jz

i as the point obtained by replacing each dummy point

dj(zi) with zi in the convex combination that formed z. Then this point z∗ is an element

of IPS and weakly dominates z.

The above lemma thus shows that we should only consider points z ∈ IPS, even when

using z ∈ conv{IPS, D} as an inner approximation.

Proposition 7.18. Consider zIPS ∈ IPS. Then zIPS is not strongly dominated by

another point in IPS if and only if zIPS is on a relevant facet of conv{IPS,D}.

Proof. Assume that zIPS is not strongly dominated by another point in IPS. This implies

that there exists no ẑ ∈ conv{IPS,D} such that ẑ < zIPS and that zIPS should thus be

part of a facet F of conv{IPS, D}. As zIPS ∈ IPS, we know that zIPS 5 zub must hold

and—according to Lemma 7.7—facet F should be a relevant facet of conv{IPS, D}.
Let us now assume that zIPS is on a relevant facet F of conv{IPS,D} and, by

contradiction, that there exists a point z̃ ∈ IPS such that z̃ strongly dominates zIPS. If

H(w, b) is a supporting hyperplane at F , then all points z ∈ conv{IPS, D} must satisfy

w>z ≥ b. Furthermore, because of Lemma 7.8, w>zIPS = b and w ≥ 0. So

w>z̃ < w>zIPS = b.

This inequality shows that z̃ cannot be an element of IPS. By contradiction, we have

thus proven that zIPS cannot be strongly dominated by another point in IPS.

Taking the points on the relevant facets of conv{IPS,D} that are also in IPS, we obtain

a set of points in IPS that are not strongly dominated by any other point in IPS. The

added dummy points thus make it quite easy to detect and discard the strongly dominated

points. However, the set can still contain points that are weakly dominated by a point

160 Enhancement of sandwich algorithms for convex Pareto sets

in IPS. Consider, for instance, the points z1 = (1, 0, 1)>, z2 = (0, 1, 1)> and z3 =

(0.5, 0.5, 0)>. For an MOP with three objectives, these points could be elements of IPS

and be on a facet of conv{IPS, D}. However, the point z̃ = 0.5z1 + 0.5z2 = (0.5, 0.5, 1)>

then also has these properties, but is weakly dominated by z3. Therefore, we need a

different criterion to discard the weakly dominated points. The following proposition

provides such a criterion.

Proposition 7.19. Consider zIPS ∈ IPS. Let W be the set of inner unit normals of the

relevant facets of conv{IPS, D} containing zIPS and let w+ be the sum of all w ∈ W .

Then zIPS is not weakly dominated by a point in conv{IPS, D} if and only if w+ > 0.

Proof. Assume w+ > 0. This implies that for each dimension d = 1, . . . , k, there exists an

inner normal wd ∈ W for which it holds wd
d > 0. Let H(wd, bd) be the corresponding sup-

porting hyperplane of the facet, so that, by definition, wd>z ≥ bd for z ∈ conv{IPS,D}
and wd>zIPS = bd. As wd is an inner normal of a relevant facet, Lemma 7.8 implies

wd ≥ 0. If ẑ is a point that weakly dominates zIPS, then there is a dimension d such that

ẑd < zIPS
d . Because wd ≥ 0 and wd

d > 0, it follows that wd>ẑ < wd>zIPS = bd, so ẑ is not

an element of conv{IPS,D}. Since w+ > 0, there thus exists no ẑ in conv{IPS,D} that

weakly dominates zIPS.

Let us now assume that zIPS is not weakly dominated by a point in conv{IPS,D}.
This implies that any point z̃ satisfying z̃d < zIPS

d and z̃i = zIPS
i for i 6= d is not in

conv{IPS,D}. As this result holds for any such point z̃, there must exist a supporting

hyperplane H(wd, bd) of conv{IPS, D} such that wd>zIPS = bd and wd>z̃ < bd. Because

z̃d − zIPS
d < 0 and

wd
d(z̃d − zIPS

d) = wd>(z̃ − zIPS) < bd − bd = 0,

it follows that wd
d > 0. The vector wd must be in W as only relevant facets can contain

points zIPS 5 zub. Furthermore, w ≥ 0 for all w ∈ W and wd
d > 0 implies that w+

d

must also be greater than zero. This result holds for every dimension d = 1, . . . , k, so

w+ > 0.

To determine IPSnId, we can check all points on relevant facets of IPS with the criterion

in Proposition 7.19. However, as the relevant facets of IPS contain infinitely many points,

determining IPSnId requires a more efficient method. The set W used in Proposition 7.19,

however, is the same for all points on a face of IPS. This implies that we can check all

points on a face simultaneously. If IPS is the convex hull of a finite number of points,

the number of faces of IPS is also finite. As this is true for all previously discussed

sandwich algorithms, we can use the following algorithm, inspired by XNISE2 in Solanki

et al. (1993), to determine IPSnId:

7.4 Adding dummy points to IPS 161

1. Set d = k and IPSnId = ∅.

2. Denote by P d the set of all (d− 1)-faces of conv{IPS, D} having d extreme points

in IPS.

3. For each face in P d, determine if it is a subset of a multi-dimensional face in IPSnId.

If so, remove the face from P d.

4. For each remaining face in P d, calculate the vector w+ by taking the sum of the

inner unit normals of the facets of which this (d − 1)-face is a subset. If w+ > 0,

add the face to IPSnId.

5. Set d = d− 1.

6. If d ≥ 1, return to Step 2. Otherwise, stop.

To illustrate the above algorithm, we use the example in Figure 7.4. When we take

IPS = conv{z1, z2, z3, z4} and zub = [1 1 1]>, the figure shows all relevant facets of

conv{IPS, D}. The Pareto optimal points are on the facet with extreme points z1, z2,

and z3, and on the edge with extreme points z1 and z4. In the algorithm, we look at the

2-, 1- and 0-faces, which in three dimensions correspond to facets, edges, and extreme

points, respectively.

0
1

2
3

0
1

2
3
0

1

2

3

z2

z3

z1

d3(z1)

z4

d3(z4)

d1(z1)

d1(z4)

Figure 7.4: Example of determining non-IPS-dominated points in IPS.

We start by looking at all facets in the set P 3, which in this example contains only the

facet with extreme points z1, z2, and z3. As the inner normal w of this facet satisfies w >

0, we have w+ > 0 and the facet is added to IPSnId in Step 4. Next, we take d = 2 and

continue with the set P 2 containing all edges of conv{IPS,D} connecting two extreme

points of IPS. This implies that P 2 = {(z1, z2), (z1, z3), (z2, z3), (z1, z4)}. As the first

three edges are part of the facet which we have already added to IPSnId, they are removed

162 Enhancement of sandwich algorithms for convex Pareto sets

in Step 3. For the remaining edge (z1, z4), we determine vector w+ by summing the inner

normals of the facets defined by {z1, z4, d1(z4), d1(z1)} and {z1, z4, d3(z4), d3(z1)}. The

first facet has an inner unit normal w1 with w1
1 = 0 and w1

2, w
1
3 > 0. For the inner unit

normal w2 of the second facet it holds that w2
3 = 0 and w2

1, w
2
2 > 0. For all points on

the edge (z1, z4), the vector w+ is equal to w1 + w2 > 0. The edge (z1, z4) should thus

be added to the set IPSnId according to Proposition 7.19, and this is exactly what the

algorithm does. Finally, we look at all points in P 1 = {z1, z2, z3, z4}. As all these point

are already in IPSnId, the set P 1 becomes empty in Step 3 and the algorithm stops.

7.5 Error measure

7.5.1 Motivation and definition of α(PS, IPS) and α(OPS, IPS)

To assess the quality of outer and inner approximations, we need a measure to quantify

the accuracy of the approximation. There exist many different measures and methods

that can be used to determine the quality of an approximation. Carlyle et al. (2003) and

Zitzler et al. (2003) provide two extensive reviews and analyses of different comparison

methods. In most sandwich algorithms, the accuracy is measured by the distance between

the inner approximation and the true Pareto set. However, there are differences in the

exact definition of this distance and in the way it is calculated.

To decide which definition to use, we first discuss the definition of the accuracy of an

approximation. Recall that we assume that the user is interested in the complete Pareto

set. Therefore, we could call an approximation accurate if each point of the Pareto set

is represented accurately by a point on the approximation. Note that this definition

is essentially different from measuring if each point on the approximation accurately

represents a point of the Pareto set. Consider, for instance, an approximation that

consists of only one point that is an element of the Pareto set PS. According to the second

definition, this would be a very accurate approximation as all points of the approximation

are in PS. However, using the first definition, the approximation is probably not very

accurate as this one point is not likely to be an accurate approximation of all points in

PS. Consider, on the other hand, an approximation that consists of all points in PS

plus a point that does not accurately represent a point in PS. Now the approximation is

very accurate according to the first definition but not according to the second. As these

examples illustrate, we could say that the first definition determines if an approximation

is not too small, whereas the second definition determines if an approximation is not too

large. Ideally, a measure should indicate when an approximation is accurate according

to both definitions.

When using these definitions, we still have to specify when a point in PS is accurately

represented and when a point of the approximation is an accurate representation of a

7.5 Error measure 163

point in PS. To decide on these definitions, we also take into account the final user of

the approximation. In our opinion, the measure should not only measure the accuracy

in an adequate way but it should also be easy to understand by the user. The second

aspect implies that the interpretation of the measure should be easy to explain. This is

not only important because it helps the user to accept the approximation; the user must

also be able to specify a desired accuracy. We assume that most users prefer to specify

their desired accuracy in terms of a maximum percentage or absolute amount of allowed

inaccuracy per objective.

Taking this assumption into account, ε-dominance seems to be a suitable way to

measure whether a point in the Pareto set is accurately represented. This measure has two

different variants: additive and multiplicative. The additive variant was simultaneously

introduced by Evtushenko and Potapov (1987) and Reuter (1990); the multiplicative

variant was introduced by Ruhe and Fruhwirth (1990). The additive ε-dominance is

defined as follows.

Definition 7.14. Let ε ∈ Rk
=. A point z is ε-dominated by a point ẑ if:

ẑ 5 z + ε.

This definition implies that a point is ε-dominated if there exists a point that is at most

εi worse in each objective i = 1, . . . , k. For multiplicative ε-dominance, z + ε is replaced

by z(1 + ε), which implies that there must exist a point that is at most a factor εi worse

in each objective i = 1, . . . , k. So, these variants impose an upper bound on either the

absolute error or the relative error per objective. Which variant to use, depends mainly

on the kind of guarantee the user prefers. Note, however, that using the multiplicative

variant may be difficult if objective values can get close or equal to zero. In this chapter,

we therefore use the additive variant.

When all points in PS are ε-dominated by points in IPS, we call IPS an ε-approxima-

tion. If IPS is not an ε-approximation, we wish to know how far off it is from an

ε-approximation. We can measure this by determining the smallest multiple of ε for

which PS is ε-dominated. Therefore, we introduce the following definitions.

Definition 7.15. For a fixed ε ∈ Rk
=, the error measure α(z, T) is the minimal α for

which point z is αε-dominated by a point in the set T . For the set S, the measure α(S, T)

is defined as maxz∈Sα(z, T).

The value of α(PS, IPS) is thus a measure of how close the approximation IPS is to

being an ε-approximation of PS. In Section 7.8, we use the value of α to compare different

IPSs.

When we do not know PS as is usually the case, in practice, we can still use the

inner and outer approximation of PS to determine upper bounds on the above accuracy

164 Enhancement of sandwich algorithms for convex Pareto sets

measure. If all points in OPS are ε-dominated by points in IPS, then all points in PS

must also be ε-dominated by points in IPS. Therefore, α(OPS, IPS) is an upper bound

for α(PS, IPS). Furthermore, note that α(z, IPS) = α(z, IPSnId), which implies that

IPSnId is an ε-approximation of PS if and only if IPS is an ε-approximation of PS.

To determine whether a point of the approximation is an accurate approximation of

a point in PS, we use a concept similar to ε-dominance, called ε-Pareto optimality or

ε-efficiency. This concept was introduced by Loridan (1984), and is defined as follows.

Definition 7.16. Let ε ∈ Rk
=. A point z ∈ Z is ε-Pareto optimal if there is no ẑ ∈ Z

such that

ẑ ≤ z − ε.

This definition implies that a point is ε-Pareto optimal if there exists no point that is

more than εi better in each objective (i = 1, . . . , k).

To satisfy both definitions of accuracy discussed at the beginning of this section, we

wish to find approximations IPS and OPS such that each point of PS is ε-dominated by

a point of IPSnId and each point of IPSnId is ε-Pareto optimal. As we have illustrated

in the examples at the beginning of this section, an approximation that satisfies the first

criterion does not necessarily satisfy the second criterion. However, if ε = ε, we can show

that all points of IPSnId are ε-Pareto optimal when IPSnId is an ε-approximation. We

prove this result in the following proposition.

Proposition 7.20. Let ε ∈ Rk
= and let IPSnId be an ε-approximation of PS. Then all

points z ∈ IPSnId are ε-Pareto optimal.

Proof. Assume, by contradiction, that there exists a point ẑ ∈ PS such that ẑ ≤ z−ε. As

IPSnId is an ε-approximation of PS, there must exist a z̃ ∈ IPSnId such that z̃ 5 ẑ + ε.

Combining these inequalities gives z̃ ≤ z. As z̃ and z are both elements of IPS, this

implies that z cannot be an element of IPSnId as it is (weakly) dominated by z̃ ∈ IPS.

This contradiction shows that there exists no point ẑ ∈ PS such that ẑ ≤ z−ε and hence

that z is ε-Pareto optimal.

7.5.2 Calculating α(PS, IPS) and α(OPS, IPS)

In this section, we introduce a method to calculate α(PS, IPS) and α(OPS, IPS) for

a fixed ε ∈ Rk
> when |RH| is finite. For all IPSs obtained by the discussed sandwich

algorithms, this last condition is satisfied as IPS is the convex hull of a finite number

of points and thus has a finite number of facets. One main advantage of the method

introduced in this section is that α(OPS, IPS) can be calculated by solving a number

of LP problems. These LP problems are the same as the ones used in the algorithm of

7.5 Error measure 165

Solanki et al. (1993) to determine the error of a facet. As the proofs and reasoning for

α(PS, IPS) and α(OPS, IPS) are similar, we give them only for the first.

The general idea behind the method is the following. We first prove that for each

z ∈ PS and H(w, b) ∈ RH it holds that α(z, IPS) ≥ α(z, H(w, b)). Furthermore,

we show that for each z ∈ PS, equality in the above expression holds for at least one

hyperplane in RH, which implies that

α(z, IPS) = max
H(w,b)∈RH

α(z, H(w, b)). (7.7)

Instead of solving problem (7.7) for every z ∈ PS, we determine maxz∈PS α(z,H(w, b))

for every H(w, b) ∈ RH. Thus, we have to solve |RH| weighted sum problems. Using

α(PS, IPS) = max
z∈PS

α(z, IPS) = max
z∈PS

max
H(w,b)∈RH

α(z, H(w, b)) (7.8)

= max
H(w,b)∈RH

max
z∈PS

α(z, H(w, b)),

we can determine α(PS, IPS) by taking the maximum over all solutions of these weighted

sum problems. As we mentioned before, the weighted sum problems become LP problems

when calculating α(OPS, IPS).

To prove the various steps in the above algorithm, we first need to prove the following

lemma.

Lemma 7.10. Let ε ∈ Rk
> and H(w, b) ∈ RH. For every z ∈ PS, we have that

α(z, H(w, b)) is equal to the unique α̂ for which the point z + α̂ε is on the hyperplane

H(w, b).

Proof. The existence and uniqueness of α̂ such that z+α̂ε is on H(w, b) follows easily from

the fact that w>ε 6= 0 because w ≥ 0 and ε > 0. As z is αε-dominated by z+α̂ε ∈ H(w, b),

we know that α(z, H(w, b)) ≤ α̂. If α(z, H(w, b)) < α̂, there must exist a ẑ ∈ H(w, b)

such that ẑ < z + α̂ε. However, this would imply:

b = w>ẑ < w>(z + α̂ε) = b.

Because of this contradiction, we conclude that α(z, H(w, b)) = α̂.

Using the results of Lemmas 7.7, 7.8, and 7.10, we can prove the following two lemmas.

Lemma 7.11. Consider ε ∈ Rk
>, z ∈ PS and H(w, b) ∈ RH. Then α(z, IPS) ≥

α(z, H(w, b)).

166 Enhancement of sandwich algorithms for convex Pareto sets

Proof. Lemma 7.8 implies w ≥ 0. Assume by contradiction that z is α̂ε-dominated by

IPS with α̂ < α(z, H(w, b)). This implies that there should exist a point ẑ ∈ IPS such

that ẑ 5 z + α̂ε. For this point ẑ it holds that

w>ẑ 5 w>z + α̂(w>ε) < w>z + α(z, H(w, b))(w>ε) = w>(z + α(z,H(w, b))ε) = b,

where the last equality follows from Lemma 7.10. As H(w, b) is a supporting hyperplane

of a relevant facet of conv{IPS,D}, for all points in IPS it must hold that w>z ≥ b.

This implies that ẑ cannot be an element of IPS. Therefore, z can only be αε-dominated

by IPS with α ≥ α(z, H(w, b)).

Lemma 7.12. Consider ε ∈ Rk
>, z ∈ PS. Then α(z, IPS) = α(z, H(w, b)) must hold

for at least one H(w, b) ∈ RH.

Proof. Define zα = z + α(z, IPS)ε and let zIPS ∈ IPS be such that α(z, {zIPS}) =

α(z, IPS). By the definition of α(z, ·), we know that zIPS 5 zα where the equality holds

for at least one coordinate. Furthermore, there cannot exist a point ẑ ∈ IPS such that

ẑ < zIPS or ẑ < zα. Because all points in D are weakly dominated by points in IPS,

the same is true for all points ẑ in conv{IPS,D}. This implies that zIPS must lie on

one or more facets of conv{IPS, D}. Let F be one of these facets. Because zIPS 5 zub

and zIPS ∈ F , F must be a relevant facet of conv{IPS, D} according to Lemma 7.7.

Let H(w̃, b̃) ∈ RH be a supporting hyperplane of F . For this hyperplane it holds that

zIPS ∈ F ⊂ H(w̃, b̃). Using this property, we can show the following relation:

α(z, H(w̃, b̃)) ≤ α(z, {zIPS}) = α(z, IPS).

The inequality follows from the definition of α(z, ·) and the fact that zIPS ∈ H(w̃, b̃).

The equality follows from the definition of zIPS. Combining the above equation with

Lemma 7.11 gives that α(z, IPS) = α(z,H(w̃, b̃)) must hold for H(w̃, b̃) ∈ RH.

Combining Lemmas 7.11 and 7.12, we obtain equation (7.7), which gives an expression

for α(z, IPS). To determine α(PS, IPS), we must take the maximum of α(z, IPS)

over all z ∈ PS by definition. However, determining α(z, IPS) explicitly for every

z ∈ PS is not an option as there are an infinite number of vectors in the set PS.

The number of H(w, b) ∈ RH, on the other hand, is finite. Therefore, we decide to

calculate maxz∈PS α(z, H(w, b)) for every H(w, b) ∈ RH and use these results to calculate

α(PS, IPS). Another difficulty is that an explicit description of the set PS is often not

known. However, the set Z can be described using the objectives and constraints of the

MOP. The following proposition shows that determining maxz∈PS α(z, H(w, b)) can be

done by solving a weighted sum problem over the set Z.

7.5 Error measure 167

Proposition 7.21. Consider a hyperplane H(w, b) ∈ RH, a vector ε ∈ Rk
> and the

following two optimization problems:

β∗ = minz w>z
s.t. z ∈ Z,

(7.9)

and

α∗ = maxα,z α
s.t. z ∈ PS

w>(z + αε) = b.
(7.10)

The values α∗ and β∗ are related by α∗ = b−β∗
w>ε

and α∗ is equal to maxz∈PS α(z, H(w, b)).

Proof. Because H(w, b) ∈ RH, w ≥ 0 according to Lemma 7.8. Using this property, we

can easily show that problem (7.9) always has at least one solution ẑ such that ẑ ∈ PS.

This implies that replacing the constraint z ∈ Z by z ∈ PS gives the same value of

β∗. Furthermore, the proof of Lemma 7.10 implies that for every z ∈ PS there exists a

unique α that satisfies w>(z + αε) = b. Using these two properties, we can change the

first problem into the following problem that gives the same value of β∗:

β∗ = min
α,z

w>z

s.t. z ∈ PS

w>(z + αε) = b.

Because w>ε > 0, the last constraint can also be written as α = b−w>z
w>ε

. This relation

implies that a vector ẑ ∈ PS that maximizes w>z also maximizes α. We thus obtain the

relation α∗ = b−β∗
w>ε

between α∗ and β∗.

Lastly, for every combination of z and α that satisfies the two constraints of prob-

lem (7.10) it holds that α is equal to α(z, H(w, b)), according to Lemma 7.10. Therefore,

α∗ is equal to maxz∈PS α(z, H(w, b)).

Solving the above problem for every H(w, b) ∈ RH, we can determine the value of

maxz∈PS α(z, H(w, b)) explicitly for every H(w, b) ∈ RH. Equation (7.8) shows that

taking the maximum over all these solutions gives α(PS, IPS).

By replacing Z and PS by OPS in the above equations and lemmas, we derive a

similar method for determining α(OPS, IPS). Notice, that problems (7.3) and (7.9) then

become the same. Calculating α(OPS, IPS) thus requires no more effort than calculating

the error measure of Solanki et al. (1993). However, the advantage of using α(OPS, IPS)

is that we can give an interpretation of this measure in terms of ε-dominance. Therefore,

we expect that this measure is easier to understand by the user than the measures used

in the other sandwich algorithms.

168 Enhancement of sandwich algorithms for convex Pareto sets

7.6 Transformations

7.6.1 Notation

Up to now, we have assumed that all objective functions fi, i = 1, . . . , k, are convex. In

practice, however, there are many multi-objective optimization problems for which one

or more objectives are not convex. For bi-criteria problems, Siem et al. (2008) have

shown that, under certain conditions, it is possible to transform non-convex objective

functions in such a way that an IPS and OPS can be determined for a non-convex set

PS. Moreover, they show that if both objective functions are convex, transforming the

objective functions may result in better IPS and OPS.

In this section, we show that similar results can be obtained for multi-objective op-

timization problems. To show these results, we introduce the following notation. The

transformation function h : Rk 7→ Rk is defined as h([z1, . . . , zk]
>) = [h1(z1), . . . , hk(zk)]

>.

The function hi thus only transforms the output of the ith objective function fi; i.e., the

vector function h consists of k functions hi : R 7→ R. Similarly, the inverse transfor-

mation function h−1 : Rk 7→ Rk is a vector function consisting of the inverse functions

of h1, . . . , hk. When discussing properties of these vector functions, we also consider the

properties componentwise; e.g., we call h convex if all hi, i = 1, . . . , k, are convex. We call

the set of vectors {h(z) | z ∈ Z} the transformed objective space. To obtain the results

mentioned above, we require that the transformation function h is strictly increasing. For

the remainder of this chapter, we therefore assume that h is strictly increasing. The cor-

responding inverse function h−1 is then also strictly increasing. Furthermore, to improve

IPS and OPS for convex PS, we require that h is strictly increasing and concave. This

implies that h−1 exists, is strictly increasing, and convex. We mention explicitly when

concavity of h is also required.

To distinguish between equivalent concepts in the transformed and original objective

spaces, we use a different font to indicate concepts in the transformed space; e.g., PS :=

{h(f(x)) | x ∈ XE, h(f(x)) ≤ h(zub)} where XE is the set of solutions x for which there

exists no x̃ ∈ X such that h(f(x̃)) ≤ h(f(x)). The dummy points d i(h(z)) in the

transformed space are defined as:

d i
j (h(z)) =

{
hj(zj) if j 6= i

khj(z
ub
j) + θ if j = i

for j = 1, . . . , k.

Furthermore, sets obtained by applying the inverse transformation h−1 to points in the

transformed space are indicated by−1 as a superscript. This implies that conv−1{IPS , D}
is defined as {z | h(z) ∈ conv{IPS , D}}. Similarly, applying h−1 to all points in H (w, b) =

{h(z) | w>h(z) = b} gives us H −1(w, b) = {z | w>h(z) = b}, which we call an inverted

hyperplane. The set RH −1
is defined as {H −1(w, b) | H (w, b) ∈ RH } where RH is a

7.6 Transformations 169

set containing all relevant hyperplanes of conv{IPS , D}. Lastly, when F is a facet of

conv{IPS , D}, we refer to F −1 as an inverted facet of conv−1{IPS , D}.

7.6.2 Non-convex objectives

To obtain inner and outer approximations of PS in case of non-convex objectives, we

use the transformations in the following way. First, we have to find a transformation

function h(z) that is strictly increasing in z and for which h(f(x)) is convex in x. In

order to use results proven in previous sections, we also assume that h(f(x)) ≥ 0 for all

x ∈ X. This assumption is no real limitation as we can always satisfy this condition

if the previous two conditions are met. If we have found a transformation function h

satisfying these properties, the transformed Pareto set PS is convex. This implies that

the sets IPS and OPS can be determined using one of the previously discussed sandwich

algorithms. Because the transformation function is strictly increasing, the corresponding

sets IPS−1 and OPS−1 are inner and outer approximations of PS−1. Finally, we can

show that PS = PS−1, which implies that IPS−1 and OPS−1 are also inner and outer

approximations of PS. We prove that the above method indeed produces inner and outer

approximations of PS through the following proposition.

Proposition 7.22. Let h : Rk 7→ Rk be a strictly increasing transformation function.

If IPS and OPS are inner and outer approximations of PS , then IPS−1 and OPS−1 are

inner and outer approximations of PS. Furthermore, PS = PS−1.

Proof. As h is strictly increasing, h−1 exists and is also strictly increasing. By definition,

IPS satisfies IPS ⊆ PS + Rk
=. So for every h(z) ∈ IPS there exists a h(ẑ) ∈ PS such

that h(ẑ) 5 h(z). Because h−1 is strictly increasing, this condition implies that for every

z ∈ IPS−1, there exists a vector ẑ ∈ PS−1 such that ẑ 5 z, and so IPS−1 ⊆ PS−1 + Rk
=.

In the same way, we can also show that OPS−1 satisfies PS−1 ⊆ OPS−1 + Rk
=. The sets

IPS−1 and OPS−1 are thus inner and outer approximations of PS−1.

To complete the proof, we show that PS−1 = PS. Because h is strictly increasing,

XE is equal to XE and PS is equal to {h(z) | z ∈ PS}. Using this formulation of PS , we

conclude that PS−1 = {z | h(z) ∈ PS} is equal to PS.

The above results show how we can use IPS and OPS to find approximations IPS−1 and

OPS−1 for PS. Similar to the untransformed case, we still need to determine which points

of IPS−1 are non-IPS−1-dominated. As IPS−1 is in general not a convex hull of a finite

number of points, we cannot directly use the method introduced in Section 7.4.3. The set

IPS , on the other hand, does satisfy this condition. Therefore, we can use the method of

Section 7.4.3 to determine the non-IPS -dominated points of IPS . The following lemma

shows that this method also gives us the non-IPS−1-dominated points of IPS−1.

170 Enhancement of sandwich algorithms for convex Pareto sets

Lemma 7.13. Let h : Rk 7→ Rk be a strictly increasing transformation function. Then

z ∈ IPS−1 is a non-IPS−1-dominated point if and only if the corresponding h(z) ∈ IPS
is a non-IPS -dominated.

Proof. This result follows easily from the strict increasingness of h.

7.6.3 Improving IPS and OPS

To improve IPS and OPS when all objectives are convex, we also have to find a transfor-

mation function h that satisfies several properties. Similar to the transformation function

in Section 7.6.2, h(z) must be strictly increasing in z and h(f(x)) must be convex in x.

An additional property is that h must be a concave function. If we can determine a

function h satisfying these properties, the following proposition shows how to improve

IPS.

Proposition 7.23. Let f : Rk 7→ Rk be convex and h : Rk 7→ Rk be a strictly increas-

ing and concave transformation function such that h ◦ f is convex. Consider an inner

approximation IPS = conv{z1, . . . , zn} of PS. If IPS = conv{h(z) | z ∈ IPS} and

IPS−1 = {z | h(z) ∈ IPS}, then α(z, IPS−1) ≤ α(z, IPS) for every z ∈ PS.

Proof. Because h is strictly increasing, we can easily see that the set {h(z) | z ∈ IPS}
is an inner approximation of PS . Because h ◦ f is convex, PS must be a convex set.

Hence, IPS = conv{h(z) | z ∈ IPS} is also an inner approximation of PS . According to

Proposition 7.22, the corresponding set IPS−1 must be an inner approximation of PS.

For a point z ∈ PS, let ẑ ∈ IPS be a point that αε-dominates z with α = α(z, IPS).

Because IPS = conv{z1, . . . , zn}, we can write ẑ as
∑n

i=1 λizi with
∑n

i=1 λi = 1 and

λi ≥ 0 for i = 1, . . . , n. As h(zi) ∈ IPS for all i = 1, . . . , n, the point
∑n

i=1 λih(zi) is an

element of IPS . Subsequently, the point z̃ = h−1 (
∑n

i=1 λih(zi)) is an element of IPS−1.

Note that the inverse function h−1 exists and is strictly increasing and convex because h

is strictly increasing and concave. Using the convexity of h−1, we can show the following:

z̃ = h−1

(
n∑

i=1

λih(zi)

)
≤

n∑
i=1

λih−1(h(zi)) =
n∑

i=1

λizi = ẑ.

Because z̃ ∈ IPS−1 and z̃ ≤ ẑ, this proves that α(z, IPS−1) ≤ α(z, IPS).

Note that when we take an IPS obtained with one of the sandwich algorithms, the set

conv{IPS,D} also forms an inner approximation of PS. Therefore, the above lemma

also holds when we replace IPS by conv{IPS, D}.
To show that OPS can also be improved through this transformation, we first prove

the following lemma, which shows how we can find a supporting hyperplane of PS when

we have a supporting hyperplane of PS.

7.6 Transformations 171

Lemma 7.14. Let f : Rk 7→ Rk and X be convex and h : Rk 7→ Rk be a strictly increasing

and concave transformation function such that h ◦ f is convex. Consider a hyperplane

H(w, b) that supports PS at z̄ ∈ Z. Then hyperplane H (w̃, b̃) with w̃i = wi(h
−1
i)′(ȳi) for

i = 1, . . . , k and b̃ = w̃>ȳ supports PS at ȳ = h(z̄).

Proof. Let p(z) be a continuous non-decreasing function such that PS = {z | p(z) =

0, z ∈ Z}. Note that such a function exists because f and X are convex, which implies

that PS is convex, non-decreasing, and connected (see, e.g., Miettinen (1999)). As

PS = PS−1 according to Proposition 7.22, this expression for PS implies that PS = {y |
p(h−1(y)) = 0, y ∈ Y } where Y := {h(z) | z ∈ Z}. As H(w, b) supports PS at z̄, we

know that w is a subgradient of p(z) at z̄, i.e., ∂p(z̄)
∂z

= w. Using the following chain rule

for subgradients (see Theorem 10.6 of Rockafellar and Wets (1998)) at ȳ = h(z̄):

∂p(h−1(ȳ))i

∂yi

=
∂p(z̄)

∂zi

(h−1
i)′(ȳi) for i = 1, . . . , k,

we obtain that w̃ with w̃i = wi(h
−1
i)′(ȳi) for i = 1, . . . , k is a subgradient of PS . Therefore,

we conclude that H (w̃, b̃) is a supporting hyperplane of PS at ȳ.

In Proposition 7.24, we show that the back-transformation of the supporting hyperplane

of PS obtained in Lemma 7.14 gives a better OPS.

Proposition 7.24. Let f : Rk 7→ Rk and X be convex and h : Rk 7→ Rk be a strictly

increasing and concave function such that h◦f is convex. Consider a hyperplane H(w, b)

that supports PS at z̄ ∈ Z and the corresponding hyperplane H (w̃, b̃) that supports PS
at ȳ = h(z̄), with w̃i = wi(h

−1
i)′(ȳi) for i = 1, . . . , k and b̃ = w̃>ȳ. Then H −1(w̃, b̃) is a

tighter outer approximation of PS than H(w, b); i.e., H −1(w̃, b̃) is an outer approxima-

tion of PS and H(w, b) is an outer approximation of H −1(w̃, b̃).

Proof. First we show that H −1(w̃, b̃) is an outer approximation of PS. Since H (w̃, b̃)

supports PS at ȳ, it follows that

∀y1 ∈ PS , ∃y2 ∈ H (w̃, b̃) : y2 5 y1.

Because h−1 is strictly increasing and PS = PS−1, this inequality is equivalent to

∀z1 ∈ PS, ∃z2 ∈ H −1(w̃, b̃) : z2 5 z1.

Hence H −1(w̃, b̃) is an outer approximation of PS.

Now we prove that H(w, b) is an outer approximation of H −1(w̃, b̃). Let p(z) be

a non-decreasing function such that PS = {z | p(z) = 0, z ∈ Z}. This implies that

PS = {y | p(h−1(y)) = 0, y ∈ Y } where Y := {h(z) | z ∈ Z}. The supporting hyperplane

H (w̃, b̃) at ȳ = h(z̄) of Lemma 7.14 can now be written as

H (w̃, b̃) =

{
y

∣∣∣∣∣
∑

i

wi(h
−1
i)′(ȳi)[yi − ȳi] = 0

}
, (7.11)

172 Enhancement of sandwich algorithms for convex Pareto sets

where w = ∂p(z̄)
∂z

is a subgradient of p(z) at z̄. Transforming H (w̃, b̃) back, we get

H −1(w̃, b̃) = {z | p2(z) = 0} where

p2(z) =
∑

i

wi(h
−1
i)′(ȳi)[hi(zi)− hi(z̄i)].

Moreover, we have H(w, b) = {z | p1(z) = 0}, where

p1(z) =
∑

i

wi[zi − z̄i].

For the ith term of p2(z), we have

(h−1
i)′(ȳi)[hi(zi)− hi(z̄i)] ≤ (h−1

i)′(ȳi)[hi(z̄i) + h′i(z̄i)(zi − z̄i)− hi(z̄i)] = zi − z̄i,

where the inequality holds because hi is concave and the equality holds because (h−1
i)′ =

1
h′i

and h−1
i is strictly increasing. Since p(z) is non-decreasing and thus ∂p(z̄)

∂zi
≥ 0, we have

p2(z) ≤ p1(z). We thus have p1(z) ≥ 0, ∀z ∈ H −1(w̃, b̃), which means that H(w, b) is an

outer approximation of H −1(w̃, b̃).

7.6.4 Calculating α(PS, IPS−1) and α(OPS−1, IPS−1)

The general idea behind the method for calculating α(PS, IPS−1) and α(OPS−1, IPS−1)

is the same as for α(PS, IPS) and α(OPS, IPS) described in Section 7.5.2. The main

difference is that in all steps we must replace H(w, b) by H −1(w, b). This has the drawback

that maxz∈OPS−1 α(z, H −1(w, b)) can no longer be calculated as an LP problem. Instead,

we have to solve a non-convex problem. To prove that all steps made in the algorithm

still hold, we first prove the following lemma, which is similar to Lemma 7.10.

Lemma 7.15. Let ε ∈ Rk
>, h : Rk 7→ Rk be a strictly increasing and continuous trans-

formation function and H −1(w, b) ∈ RH −1
. For every z ∈ PS, α(z, H −1(w, b)) is equal

to the unique α̂ for which the point z + α̂ε is on H −1(w, b).

Proof. Let ẑ be an arbitrary point on H −1(w, b). As ε ∈ Rk
>, we can always determine

an α such that z + αε > ẑ. Because h is strictly increasing and w ≥ 0, w>h(z + αε) >

w>h(ẑ) = b. Similarly, we can prove that there must exist an α such that w>h(z +αε) <

b. As h is a strictly increasing continuous function, there must exist a unique α̂ such

that w>h(z + α̂ε) = b. As z is αε-dominated by z + α̂ε ∈ H −1(w, b), we know that

α(z, H −1(w, b)) ≤ α̂. If α(z, H −1(w, b)) < α̂, there must exist a z̃ ∈ H −1(w, b) such that

z̃ < z + α̂ε. However, this would imply

b = w>h(z̃) < w>h(z + α̂ε) = b.

Because of this contradiction, we conclude that α(z, H −1(w, b)) = α̂.

7.6 Transformations 173

Using the results of Lemma 7.7, 7.8 and 7.15, we prove the following two lemmas.

Lemma 7.16. Let ε ∈ Rk
> and h : Rk 7→ Rk be a strictly increasing transformation func-

tion. Consider z ∈ PS and H −1(w, b) ∈ RH −1
. Then α(z, IPS−1) ≥ α(z, H −1(w, b)).

Proof. Lemma 7.8 implies w ≥ 0. Assume by contradiction that z is α̂ε-dominated by

IPS−1 with α̂ < α(z, H −1(w, b)). This implies that there should exist a point z̃ ∈ IPS−1

such that z̃ 5 z + α̂ε. For this point z̃ it holds that

w>h(z̃) 5 w>h(z + α̂ε) < w>h(z + α(z, H −1(w, b))ε) = b,

where the last equality follows from Lemma 7.15. As H −1(w, b) ∈ RH −1
, for all points

z in IPS−1 it must hold that w>h(z) ≥ b. This implies that z̃ cannot be an element of

IPS−1. Therefore, z can be αε-dominated only by IPS−1 with α ≥ α(z, H −1(w, b)).

Lemma 7.17. Consider ε ∈ Rk
>, a strictly increasing transformation function h : Rk 7→

Rk, and z ∈ PS. Then α(z, IPS−1) = α(z, H −1(w, b)) must hold for at least one

H −1(w, b) ∈ RH −1
.

Proof. Define zα = z +α(z, IPS−1)ε and let zIPS−1 ∈ IPS−1 be such that α(z, {zIPS−1}) =

α(z, IPS−1). By the definition of α(z, ·), we know that zIPS−1 5 zα with equality for

at least one coordinate. Furthermore, there cannot exist a point ẑ ∈ IPS−1 such that

ẑ < zIPS−1
or ẑ < zα. Because all points in D are weakly dominated by points in IPS

and h−1(z) is strictly increasing, the same is true for all points ẑ in conv−1{IPS , D}.
This implies that zIPS−1

must lie on one or more inverted facets of conv−1{IPS , D}. Let

F −1 be one of these inverted facets and F be the associated facet in the transformed

space. Because h(zIPS−1
) 5 h(zub) and h(zIPS−1

) ∈ F , F must be a relevant facet

of conv{IPS , D} according to Lemma 7.7. Consequently, F −1 is a relevant inverted

facet, which has a supporting inverted hyperplane H −1(w̃, b̃) ∈ RH −1
. For this inverted

hyperplane it holds that zIPS−1 ∈ F −1 ⊂ H −1(w̃, b̃). Using this property, we derive the

following relation:

α(z, H −1(w̃, b̃)) ≤ α(z, {zIPS−1}) = α(z, IPS−1).

The inequality follows from the definition of α(z, ·) and the fact that zIPS−1 ∈ H −1(w̃, b̃).

The equality follows from the definition of zIPS−1
. Combining the above equation with

Lemma 7.16 gives that α(z, IPS−1) = α(z, H −1(w̃, b̃)) must hold for this H −1(w̃, b̃) ∈
RH −1

.

By combining Lemmas 7.16 and 7.17, we obtain the following equation:

α(z, IPS−1) = max
H −1(w,b)∈RH −1

α(z, H −1(w, b)), (7.12)

174 Enhancement of sandwich algorithms for convex Pareto sets

which gives an expression for α(z, IPS−1). By definition, to determine α(PS, IPS−1), we

must take the maximum of α(z, IPS−1) over all z ∈ PS. However determining α(z, IPS−1)

explicitly for every z ∈ PS is not an option as there are an infinite number of vectors in

the set PS. The number of H −1(w, b) ∈ RH −1
, on the other hand, is finite. Therefore, we

decide to calculate maxz∈PS α(z, H −1(w, b)) for every H −1(w, b) ∈ RH −1
and use these

results to calculate α(PS, IPS−1). The following lemma gives a method for determining

maxz∈PS α(z, H −1(w, b)) without knowing PS explicitly.

Lemma 7.18. Consider a hyperplane H −1(w, b) ∈ RH −1
, a strictly increasing transfor-

mation function h : Rk 7→ Rk, and ε ∈ Rk
>. Then maxz∈PS α(z, H −1(w, b)) can be found

by solving the following optimization problem:

maxα,z α
s.t. z ∈ Z

w>h(z + αε) ≤ b.
(7.13)

Proof. Let us define g(z, α) = w>h(z +αε). As w ≥ 0, ε > 0, and h is strictly increasing,

g is a strictly increasing function in α. Because we maximize α, this implies that we can

replace the last inequality constraint by the equality constraint w>h(z + αε) = b.

We now show that there always exists a solution ẑ ∈ PS for this problem. Let us

denote an optimal z and α of problem 7.13 by z∗ and α∗. We can easily show that there

cannot exist an z ∈ Z such that z < z∗ as this would imply that α∗ is not optimal.

Therefore, either z∗ is in PS or z∗ is weakly dominated by another point ẑ ∈ PS. In the

first case, we can simply take ẑ = z∗. In the second case, because w ≥ 0 and h is strictly

increasing, we can show the following:

w>h(ẑ + α∗ε) ≤ w>h(z∗ + α∗ε) = b.

When α̂ satisfies w>h(ẑ + α̂ε) = b, then α̂ ≥ α∗ because g(z, α) is strictly increasing in α.

However, α̂ > α∗ cannot hold because α∗ is optimal. We can thus conclude that α̂ = α∗

and that ẑ ∈ PS is also an optimal solution. The constraint z ∈ Z can thus be replaced

by z ∈ PS. We know from Lemma 7.15 that for every z ∈ PS, α(z, H −1(w, b)) is equal

to the unique α that satisfies the equality constraint w>h(z + αε) = b. This proves that

we can determine maxz∈PS α(z, H −1(w, b)) by solving the above problem.

Solving problem (7.13) for every the value of H (w, b) ∈ RH , we can determine

maxz∈PS α(z, H (w, b)) explicitly for every H (w, b) ∈ RH . Combining the above results,

we can use the following equation to calculate α(PS, IPS−1):

α(PS, IPS−1) = max
z∈PS

α(z, IPS−1) = max
z∈PS

max
H (w,b)∈RH

α(z, H (w, b))

= max
H (w,b)∈RH

max
z∈PS

α(z, H (w, b)).

7.7 Application of enhancements 175

7.7 Application of enhancements

7.7.1 Application of dummy points

In previous sections, we have seen that adding dummy points to IPS has several benefits.

These benefits are not just for one specific sandwich algorithm but apply to various sand-

wich algorithms. Some benefits even apply to general MOP methods for approximating

a convex set PS. To illustrate this, we describe various possible applications of dummy

points.

Adding dummy points to IPS to solve the problem of ‘undesirable’ normals can

be useful for any MOP algorithm that uses normals of facets as weights to determines

Pareto points. The algorithms of Solanki et al. (1993) and Craft et al. (2006) are only

two examples of such algorithms. By eliminating the relevant facets with ‘undesirable’

normals, no special rules have to be constructed to deal with these facets.

The dummy points can be used to determine IPSnId when IPS is a convex hull of a

finite number of points. Besides this condition on the form of IPS, no other conditions

have to be satisfied in order to apply the dummy points for this purpose. After adding

the dummy points to IPS, we can simply use the algorithm described in Section 7.4.3

to determine all non-IPS-dominated points.

7.7.2 Application of error measure

Calculating α(PS, IPS) by using conv{IPS, D} can be done for any IPS that is the

convex hull of a finite number of points. The calculation of α(PS, IPS) is mainly useful

if we want to know the true approximation error of IPS. In real life applications, however,

the method in Section 7.5 for calculating α(PS, IPS) is generally too time consuming as

it requires solving a large number of weighted sum problems. Furthermore, the outcomes

of these weighted sum problems could be used to improve IPS and OPS. After this

improvement, the calculated value of α(PS, IPS) is probably not the real accuracy of

the new IPS but only an upper bound.

The calculation of α(OPS, IPS) does not have the above mentioned problems. As

the weighted sum problems become LP problems, calculating α(OPS, IPS) can be done

much faster. Another difference is that the outcomes of these optimizations cannot be

used to improve IPS. Because the measure α(OPS, IPS) obviously requires an IPS

and OPS, we can calculate it only for sandwich algorithms. Furthermore, we can use

the measure also within a sandwich algorithm to decide which facet to use for a next

optimization. In Section 7.7.4, we describe how this can be done in the algorithm of

Solanki et al. (1993).

176 Enhancement of sandwich algorithms for convex Pareto sets

7.7.3 Application of transformations

The transformations described in Section 7.6 can be divided into two classes. Firstly, we

can use transformations to determine OPS and IPS if we have non-convex objectives. In

this case, we must determine for each non-convex objective fi a transformation function

hi that is strictly increasing and for which hi ◦ fi is convex. When this is possible, we

can use any of the sandwich algorithms to determine IPS and OPS , which approximate

PS . These approximations can subsequently be used to determine IPS−1 and OPS−1 as

approximations of PS.

Secondly, we can transform objectives to obtain tighter OPS and IPS for a convex

PS. To do this, we must find a strictly increasing and concave function h such that h◦f is

convex. We can use this transformation to improve the final IPS and OPS obtained with

any of the sandwich algorithms. Furthermore, instead of using α(OPS, IPS) to select

a next facet, we can use α(OPS−1, IPS−1). However, a drawback of α(OPS−1, IPS−1) is

that it is more time-consuming to calculate than α(OPS, IPS). We thus have to decide

whether the additional calculation time is justified by a possibly better choice of facets.

Objectives to which we can apply the above transformations can, among others, be

found in geometric programming and IMRT optimization. An example in geometric

programming is treated in Section 7.8.5. For transformations of IMRT objectives, we

refer to the paper of Hoffmann et al. (2008).

7.7.4 Enhanced version of algorithm of Solanki et al.

All enhancements described above are aimed at determining an accurate approximation

of a convex (or non-convex) PS more efficiently. To test whether these enhancements

can indeed improve efficiency, we enhance the algorithm of Solanki et al. (1993) by

adding dummy points and changing the error measure. We do not include the use of

transformations as this is not possible for all (convex) MOPs. More specifically, the

enhanced version of the algorithm of Solanki et al. (1993) differs from the original version

in the following ways.

In every step of the algorithm, IPS is replaced by conv{IPS,D}. As shown in

Section 7.5.2, this enables us to easily calculate α(OPS, IPS) by solving problem (7.3)

for all relevant facets. According to the result of Proposition 7.21, we must use b−w>z̄
w>ε

instead of b − w>z̄ as the error of a facet where z̄ is the solution of problem (7.3). By

calculating the error of the facets in this way, α(OPS, IPS) is equal to the maximum of

the errors of all relevant facets.

Although the algorithms of Craft et al. (2006) and Klamroth et al. (2002) can also

be enhanced, we have not tested the enhanced versions of these algorithms. If we would

enhance the algorithm of Craft et al. (2006) through dummy points, the algorithm would

7.8 Numerical comparison of sandwich algorithms 177

become very similar to the enhanced version of the algorithm of Solanki et al. (1993).

The only difference that would remain is the difference in the error used to select the

facets. Enhancing the algorithm of Craft et al. (2006) with both the dummy points

and the error measure would make the algorithms completely the same. The algorithms

of Klamroth et al. (2002) were not enhanced because initial tests showed that these

algorithms are much less efficient than the algorithms of Solanki et al. (1993) and Craft

et al. (2006). A main reason for this is that not all obtained Pareto points are added to

IPS. As this drawback is not reduced by our enhancements, it seems unlikely that an

enhanced version of the algorithm of Klamroth et al. (2002) would become more efficient

than the other sandwich algorithms.

7.8 Numerical comparison of sandwich algorithms

7.8.1 Comparison method

In our numerical comparison, we consider the following five algorithms:

• Solanki et al. (1993) (SOLANKI).

• Klamroth et al. (2002) with equality constraint (KLAMROTH=).

• Klamroth et al. (2002) with inequality constraint (KLAMROTH≤).

• Craft et al. (2006) (CRAFT).

• Enhanced version of Solanki et al. (1993) (ENHANCED).

To compare these algorithms, we use three different test cases. The first two cases

are artificial; the third case is an IMRT problem. To show the effect of transforming

convex objective functions, a fourth case is used that consists of a geometric programming

problem. A more elaborate description of these four cases is given in Sections 7.8.2, 7.8.3,

7.8.4, and 7.8.5.

For all cases, we must set a number of parameters. The parameter zub is taken equal

to the pseudo-nadir point zpN , defined in Section 7.2. To calculate the error measure, we

must also set the vector ε that specifies for each objective a maximal allowable error. As

the objectives in cases 1 and 2 have no practical interpretation, it is not immediately clear

how to select values for ε. A reasonable choice could be to take ε equal to the difference

between the vectors zU and zub, which contain the minimal and maximal possible values

of all objectives. By setting ε in this way, we try to give each objective equal importance.

However, we are not interested in an ε-approximation for this particular ε, because any

point z ∈ Z forms an ε-approximation of PS. Instead, we are interested in reaching a

certain value for α(PS, IPS) and α(OPS, IPS). For example, if we want a maximal

178 Enhancement of sandwich algorithms for convex Pareto sets

error of 5 percent of the difference between the minimal and maximal objective values,

then we want to determine when α(PS, IPS) ≤ 0.05 or α(OPS, IPS) ≤ 0.05 is reached.

Note, that this is not the same as putting a bound on the relative error discussed in

Section 7.5.1. The relative error in a point z ∈ IPS is a percentage of the value of

z, whereas the above bound is a percentage of the difference between zU and zub. The

maximal absolute error allowed by this bound is thus the same for all points z ∈ IPS.

Therefore, it is a bound on the absolute error and not on the relative error.

To measure the efficiency, we assume that solving an optimization problem to find

a Pareto point is a difficult problem and relatively the most time intensive part of each

approximation algorithm. Because the optimizations in the first two test cases are quite

easy to solve, the used CPU-time is not representative for real-life cases. Therefore, we

measure the computational effort by the number of performed optimizations. In CRAFT,

SOLANKI, and ENHANCED, we thus measure the number of weighted sum problems. In

KLAMROTH≤ and KLAMROTH=, we measure the number of runs of problems (7.4) and

(7.5). For each algorithm, we denote the number of optimizations performed at a certain

stage of the algorithm by nopt. Although the anchor points must also be determined by

solving optimization problems, these optimizations are not included in nopt as they are

often easier to solve and they are the same for all algorithms.

As we mentioned in the description of KLAMROTH≤ and KLAMROTH= in Sec-

tion 7.3.3, not all points and inequalities determined by problems (7.4) and (7.5) are

used to improve IPS and OPS. This does not seem very efficient, as determining these

points and inequalities is time-consuming. Therefore, we also determine the inner and

outer approximations that use all available points and inequalities; we denote these ap-

proximations by IPS∗ and OPS∗.

Lastly, using only α(PS, IPS) and α(OPS, IPS) to measure the accuracy seems to

give an unfair advantage to ENHANCED as this algorithm uses α(OPS, IPS) to select

a facet in each iteration. Therefore, we also calculated the accuracy of the different

IPS and OPS using the error measures used in SOLANKI and CRAFT. However, the

measure used in SOLANKI also calculates the distance between IPS and OPS for facets

with an ‘undesirable’ normal. The maximum of all distances was often attained by one

of these facets. A large distance for one of these facets does not necessarily imply a large

inaccuracy near these facets. Especially for IPSs obtained by CRAFT, the measure of

SOLANKI often returned the same value for IPSs with significantly different values for

α(PS, IPS) and α(OPS, IPS). Because of this drawback, we decided not to use this

measure. The measure used in CRAFT has a different drawback. When adding a new

point to IPS to obtain a new inner approximation IPS∗, the measure could give a higher

value for IPS∗ than for IPS. As an improvement of IPS could result in a deterioration

of this error measure, we also decided not to use this measure in our comparison.

7.8 Numerical comparison of sandwich algorithms 179

7.8.2 Test case 1: artificial 3-dimensional case

The first test case has the following three objectives and three constraints:

f1(x) = x1

f2(x) = x2

f3(x) = x3

x1 ≥ (x2 − 9)2 + (x3 − 3)2

x2 ≥ (x1 − 4)2 + (x3 − 3)2

x3 ≥ (x1 − 4)2 + (x2 − 9)2.

It is easy to see that all objectives and the feasible region are convex.

We compare the IPS and OPS of the different algorithms on both α(PS, IPS) and

α(OPS, IPS). The first measure is important because it shows the real accuracy of IPS.

In practice, however, we usually have only α(OPS, IPS) as calculating α(PS, IPS) is

too time-consuming. The decision maker will thus use α(OPS, IPS) to determine if a

certain approximation is accurate enough.

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

nopt

α(
P

S
,IP

S
)

ENHANCED
SOLANKI
CRAFT

KLAMROTH=

KLAMROTH≤

Figure 7.5: α(PS, IPS) of test case 1 as
function of nopt.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

nopt

α(
O

P
S

,IP
S

)

ENHANCED
SOLANKI
CRAFT

KLAMROTH=

KLAMROTH≤

Figure 7.6: α(OPS, IPS) of test case 1
as function of nopt.

In Figures 7.5 and 7.6, we show the achieved accuracy of the five algorithms for

different values of nopt. As mentioned before, the inefficiency of adding only a selection

of the obtained points and inequalities to IPS and OPS, make KLAMROTH≤ and

KLAMROTH= the least efficient. When considering IPS∗ and OPS∗, the results improve

but remain considerably worse than the results of the other algorithms. Therefore, we

did not plot α(PS, IPS∗) and α(OPS∗, IPS∗) in the above figures. The algorithms

CRAFT, SOLANKI and ENHANCED perform considerably better. For most values of

nopt, ENHANCED performs the best of the five tested algorithms.

180 Enhancement of sandwich algorithms for convex Pareto sets

2 3 4 577.588.59

1

2

3

4

5

Figure 7.7: PS of test case 1.

2 3 4 577.588.59

1

2

3

4

5

Figure 7.8: Approximation of CRAFT.

2 3 4 577.588.59

1

2

3

4

5

Figure 7.9: Approximation of
SOLANKI.

2 3 4 577.588.59

1

2

3

4

5

Figure 7.10: Approximation of
ENHANCED.

As this MOP has three objectives, it is possible to draw PS and compare the different

results graphically. In Figure 7.7, we show the set PS of this problem. In Figures 7.8,

7.9 and 7.10, the lines and shaded area show IPSnId obtained when nopt = 50. The dots

represent the anchor points and all points found by the optimizations in the sandwich

algorithms. When looking at the approximation obtained with CRAFT in Figure 7.8, we

notice that there are some clusters of points. These clusters may be caused by the method

used in CRAFT for selecting a next weighting vector for the weighted sum method. The

approximations of SOLANKI and ENHANCED also appear to contain a cluster of points

in the lower left part of the figure. These points, however, only appear to be clustered

due to the angle at which we view the approximation and are thus not really clustered.

Although SOLANKI generates no clusters, it does have another drawback as we can see

in Figure 7.9. Of the 50 points found by the optimizations, 14 are IPS-dominated and

thus no element of IPSnId. All these points are obtained by using the weighted sum with

an ‘undesirable’ normal. Figure 7.10 shows that the IPS obtained through ENHANCED

does not have these drawbacks as all points are nicely distributed and are part of IPSnId.

7.8 Numerical comparison of sandwich algorithms 181

7.8.3 Test case 2: artificial 5-dimensional case

To test the performance for MOPs with more dimensions, we use a linear five-dimensional

MOP as the second test case. Similar to the first case, we set the objective functions

equal to the variables. To determine the constraints, 30 points were randomly drawn

from a uniform distribution on the interval [0, 1]5. The convex hull of these points was

taken as the feasible region X.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

nopt

α(
P

S
,IP

S
)

ENHANCED
SOLANKI
CRAFT

KLAMROTH=

KLAMROTH≤

Figure 7.11: α(PS, IPS) of test case 2
as function of nopt.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

nopt

α(
O

P
S

,IP
S

)

ENHANCED
SOLANKI
CRAFT

KLAMROTH=

KLAMROTH≤

Figure 7.12: α(OPS, IPS) of test case
2 as function of nopt.

In Figures 7.11 and 7.12, we plot the values of α(PS, IPS) and α(OPS, IPS) for

different values of nopt. Again KLAMROTH≤ and KLAMROTH= are the least efficient

algorithms. CRAFT initially performs better than SOLANKI, but for nopt above 34 and

45 SOLANKI performs better on α(PS, IPS) and α(OPS, IPS), respectively. However

for almost all values of nopt, ENHANCED performs considerably better than the four

other algorithms. If, for instance, we want a quality guarantee of α(OPS, IPS) ≤ 0.1,

ENHANCED needs only 15 optimizations. SOLANKI, on the other hand, needs 56

optimizations and the other three algorithms need more than 70 optimizations. These

figures show that our enhancements can improve the efficiency considerably. Furthermore,

Figure 7.11 shows that not only the upper bound α(OPS, IPS) found by ENHANCED is

better but also the true accuracy α(PS, IPS). Although a better α(OPS, IPS) generally

implies a better α(PS, IPS), this is not always true as we can see when comparing the

values of α(OPS, IPS) and α(PS, IPS) at nopt = 40 for SOLANKI and CRAFT.

7.8.4 Test case 3: IMRT problem

As IMRT is one of the common application areas, we also include a test case from this

field to compare the algorithms. The IMRT optimization problem used in this comparison

is a 2D phantom pancreas case. Figure 7.13 shows the tumor and the five nearby organs.

The high-energy photon beams used in radiation therapy to treat cancer tumors have

182 Enhancement of sandwich algorithms for convex Pareto sets

to pass through surrounding tissue to reach the tumor. To reduce the risk of damaging

healthy tissue, the radiation dose delivered to this tissue should be minimized. The five

organs indicated in Figure 7.13 are especially sensitive to radiation and are therefore

referred to as the organs-at-risk (OARs). The radiation dose delivered to these OARs

should be limited, while enough radiation should be delivered to the tumor to eradicate

it. To calculate these doses, the relevant part of the body of the patient is discretized

by dividing it into voxels. Using a dose influence matrix, the radiation dose delivered

to each voxel can be calculated for a specific radiation plan. The objectives are often

formulated in terms of the mean and maximum dose delivered to all voxels belonging to

a tumor or OAR.

Figure 7.13: 2D pancreatic phantom case.

Dose in Gy
Min. Max.

Tumor 50 75
Left kidney 70
Right kidney 70
Spinal cord 45
Small bowel 75
Liver 75
Other tissue 75

Table 7.1: Minimal and maximal dose
allowed for the tumor, OARs and
other tissue.

In our problem, we consider four objectives. The first objective is aimed at delivering

a dose of 60 Gray (Gy) to the tumor. Any voxel of the tumor that receives less than 60

Gy is penalized; the mean of these penalties forms the first objective. The three other

objectives measure the maximum dose delivered to any of the voxels belonging to the left

kidney, right kidney, or spinal cord, respectively. Furthermore, constraints are added to

ensure a minimal or maximal dose for the OARs and other tissue. The values for these

bounds can be found in Table 7.1. As all constraint and objectives are linear, this IMRT

problem is a multi-objective LP problem and thus convex.

Figures 7.14 and 7.15 again contain the values of α(PS, IPS) and α(OPS, IPS).

KLAMROTH≤ and KLAMROTH= are not used in this test case as they performed con-

siderably worse than the other algorithms in the previous two test cases. For this IMRT

case, CRAFT performs better than SOLANKI for all nopt, but ENHANCED still performs

better than the former two algorithms. The quality guarantee of α(OPS, IPS) ≤ 0.1

is reached by CRAFT after 42 optimizations whereas ENHANCED needs only 14 op-

timizations. After 24 optimizations, ENHANCED even gives a quality guarantee of

α(OPS, IPS) ≤ 0.05.

7.8 Numerical comparison of sandwich algorithms 183

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

nopt

α(
P

S
,IP

S
)

ENHANCED
SOLANKI
CRAFT

Figure 7.14: α(PS, IPS) of test case 3
as function of nopt.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

nopt

α(
O

P
S

,IP
S

)

ENHANCED
SOLANKI
CRAFT

Figure 7.15: α(OPS, IPS) of test case
3 as function of nopt.

7.8.5 Test case 4: geometric programming problem

In the fourth and final test case, we consider the effect of transforming convex objectives

through a geometric programming example. For a general introduction to geometric

programming, we refer to Boyd et al. (2007). Although we use only one example to

show the effects of transforming the objectives, the transformation described below can

be applied to any geometric program.

In this test case, we consider the following geometric programming problem:

f1(x) = e−x1−x2−x3

f2(x) = ex4

f3(x) = ex5

2e−x4+x1 (ex2 + ex3) ≤ 1

e−x5+x2+x3 ≤ 1

e|x(2)−x(1)| ≤ 2

e|x(2)−x(3)| ≤ 2

f(x) ≤ [e3 e3 e3]>

This problem corresponds to Example 5 in Boyd et al. (2007) after applying the logarith-

mic change of variables and adding the upper bound zub = [e3 e3 e3]>. We can easily show

that this MOP is convex. When applying the transformation function h(z) = log(z), the

function h ◦ f becomes a linear function and thus remains convex. As h(z) = log(z) is

a strictly increasing and concave transformation, we can apply the results attained in

Section 7.6. In this test case we did not use the transformation for the selection of facets.

Furthermore, as this test case is intended to show the benefits of applying transformations

and not to compare different algorithms, we used only the ENHANCED-algorithm.

184 Enhancement of sandwich algorithms for convex Pareto sets

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

nopt

α

α(OPS
−1

, IPS
−1

)

α(PS, IPS)

α(PS, IPS
−1

)

α(OPS, IPS)

Figure 1: α-values of test case 4 as function of n
opt.

1

Figure 7.16: α-values of test case 4 as function of nopt.

Figure 7.16 shows the values of α(OPS, IPS), α(PS, IPS), α(OPS−1, IPS−1), and

α(PS, IPS−1) for different values of nopt. Comparing α(OPS, IPS) with α(OPS−1, IPS−1)

and α(PS, IPS) with α(PS, IPS−1) shows that both the upper bound and the real accu-

racy improves considerably by applying the transformation. At nopt = 4, the real accuracy

α(PS, IPS−1) is already equal to 0.0025. After three more optimizations, the value of

α(OPS−1, IPS−1) is almost the same as the real accuracy. Without the transformations,

more than 25 optimizations are needed to reach the same level of accuracy.

7.9 Conclusions and future research

In this chapter, we have introduced several enhancements to improve sandwich algorithms

for approximating multi-dimensional convex Pareto sets. Firstly, dummy points were

introduced to overcome the problem of ‘undesirable’ normals of IPS-facets. Adding these

dummy points, we can determine also the set IPSnId of non-IPS-dominated points more

easily. Secondly, we introduced α(PS, IPS) and α(OPS, IPS), which can be used to

determine when a set IPSnId is both an ε-approximation and ε-optimal. As both concepts

of ε-approximation and ε-optimal have a clear interpretation, these two measures provide

quality guarantees that are easy to understand by a decision maker. Furthermore, we

introduced a method to calculate α(PS, IPS) and α(OPS, IPS). This method simplifies

the calculation of α(OPS, IPS) to solving a finite number of simple LP problems and

thus improves the practical applicability of this error measure. Thirdly, we showed that

transformations of the objective functions can improve OPS and IPS for certain convex

MOPs and to extend the application of sandwich algorithm to certain non-convex MOPs.

The calculation of the error measure when using these transformations was also discussed.

To test the benefits of these enhancements, we constructed the algorithm ENHANCED

7.9 Conclusions and future research 185

by enhancing SOLANKI with dummy points and the error measure α(OPS, IPS). Three

test cases showed a considerable efficiency improvement of ENHANCED compared with

the other four tested methods. A fourth test case shows that using suitable transforma-

tions can still further improve the efficiency.

A limitation of these comparisons is that they consider only sandwich algorithms.

Generally non-sandwich algorithms for approximating convex Pareto sets cannot provide

quality guarantees, but they still can provide good approximations of the Pareto set.

Therefore, it would be interesting to perform more extensive comparisons among different

methods for approximating multi-dimensional convex Pareto sets.

Another interesting subject for further research would be to determine if the efficiency

could be further improved by using a more interactive approach. Klamroth and Miettinen

(2008) describe an approach where decision makers can refine their preferences to identify

regions of PS where the approximation should be improved. A similar refinement might

also be incorporated into the sandwich approaches by allowing the decision maker to

change zub. However, more research is necessary to determine the effects and benefits of

such an interactive approach.

Bibliography

Aarts, E.H.L. and J. Korst (1989). Simulated annealing and Boltzmann machines: A

stochastic approach to combinatorial optimization and neural computing. New York,

NY, USA: John Wiley & Sons, Inc.

Agca, S., B. Eksioglu, and J.B. Ghosh (2000). Lagrangian solution of maximum dis-

persion problems. Naval Research Logistics , 47(2), 97–114.

Alam, F.M., K.R. McNaught, and T.J. Ringrose (2004). A comparison of experimental

designs in the development of a neural network simulation metamodel. Simulation

Modelling: Practice and Theory , 12(7-8), 559–578.

Alexandrov, N.M., J.E. Dennis, R.M. Lewis, and V. Torczon (1998). A trust-region

framework for managing the use of approximation models in optimization. Struc-

tural and Multidisciplinary Optimization, 15(1), 16–23.

Audze, P. and V. Eglais (1977). New approach for planning out of experiments. Prob-

lems of Dynamics and Strengths , 35, 104–107.

Baer, D. (1992). Punktverteilungen in Würfeln beliebiger Dimension bezüglich der

Maximum-norm. Wissenschaftliche Zeitschrift der Pädagogischen Hochschule Er-

furt/Mühlhausen, Mathematisch-Naturwissenschaftliche Reihe, 28, 87–92.

Banzhaf, W., F.D. Francone, R.E. Keller, and P. Nordin (1998). Genetic Program-

ming: An introduction on the automatic evolution of computer programs and its

applications. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Barber, C.B., D.P. Dobkin, and H. Huhdanpaa (1996). The quickhull algorithm for

convex hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469–

483.

Barthelemy, J.F.M. and R.T. Haftka (1993). Approximation concepts for optimum

structural design – A review. Structural and Multidisciplinary Optimization, 5(3),

129–144.

Bates, R.A., R.J. Buck, E. Riccomagno, and H.P. Wynn (1996). Experimental design

and observation for large systems. Journal of the Royal Statistical Society: Series

B , 58, 77–94.

187

188 Bibliography

Bates, S.J., J. Sienz, and V.V. Toropov (2004). Formulation of the optimal Latin

hypercube design of experiments using a permutation genetic algorithm. In 45th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials

Conference, 1–7.

Beers, W.C.M. van and J.P.C. Kleijnen (2008). Customized sequential designs for ran-

dom simulation experiments: Kriging metamodeling and bootstrapping. European

Journal of Operational Research, 186(3), 1099–1113.

Bermond, J.C. and D. Sotteau (1976). Graph decompositions and G-designs. In Nash-

Williams and Sheehan (Eds.), Proceedings of the 5th British Combinatorial Con-

ference 1975, Winnipeg, Canada, 53–72. Utilitas Mathematica Publishing Inc.

Bisschop, J. and R. Entriken (1993). AIMMS: The Modeling System. Haarlem, The

Netherlands: Paragon Decision Technology.

Booker, A.J., J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset

(1999). A rigorous framework for optimization of expensive functions by surrogates.

Structural and Multidisciplinary Optimization, 17(1), 1–13.

Boyd, S., S.J. Kim, L. Vandenberghe, and A. Hassibi (2007). A tutorial on geometric

programming. Optimization and Engineering , 8(1), 67–127.

Branke, J., K. Deb, K. Miettinen, and R. Slowinski (2008). Multiobjective Optimization

- Interactive and Evolutionary Approaches. New York, NY, USA: Springer-Verlag.

Bulik, M., M. Liefvendahl, R. Stocki, and C. Wauquiez (2004). Stochastic simulation

for crashworthiness. Advances in Engineering Software, 35(12), 791–803.

Bursztyn, D. and D.M. Steinberg (2006). Comparison of designs for computer experi-

ments. Journal of Statistical Planning and Inference, 136(3), 1103–1119.

Campos, T.P.R. (2006). Computational simulations in medical radiation - a new ap-

proach to improve therapy. Boletim da Sociedade Brasileira de Matemática VII , 2,

7–20.

Carlyle, W.M., J.W. Fowler, E.S. Gel, and B. Kim (2003). Quantitative comparison

of approximate solution sets for bi-criteria optimization problems. Decision Sci-

ences , 34(1), 63–82.

Chen, V.C.P., K.L. Tsui, R.R. Barton, and M. Meckesheimer (2006). A review on de-

sign, modeling and applications of computer experiments. IIE Transactions , 38(4),

273–291.

Cherkassky, V. and F. Mulier (1998). Learning from data : Concepts, theory, and

methods. New York, NY, USA: John Wiley & Sons, Inc.

Bibliography 189

Cioppa, T.M. and T.W. Lucas (2007). Efficient nearly orthogonal and space-filling

Latin hypercubes. Technometrics , 49(1), 45–55.

CPLEX (2005). ILOG CPLEX 9.1 User’s Manual. Gentilly Cedex, France: ILOG S.A.

Craft, D.L., T.F. Halabi, H.A. Shih, and T.R. Bortfeld (2006). Approximating convex

Pareto surfaces in multiobjective radiotherapy planning. Medical Physics , 33(9),

3399–3407.

Craft, D.L., T.F. Halabi, H.A. Shih, and T.R. Bortfeld (2007). An approach for prac-

tical multiobjective IMRT treatment planning. International Journal of Radiation

Oncology, Biology, Physics , 69(5), 1600–1607.

Crary, S.B. (2002). Design of computer experiments for metamodel generation. Analog

Integrated Circuits and Signal Processing , 32(1), 7–16.

Crary, S.B. (2008). WebDOETM. http://www.webdoe.cc, January 2008.

Crary, S.B., P. Cousseau, D. Armstrong, D.M. Woodcock, E.H. Mok, O. Dubochet,

P. Lerch, and P. Renaud (2000). Optimal design of computer experiments for

metamodel generation using I-OPTTM. Computer Modeling in Engineering & Sci-

ences , 1(1), 127–139.

Cressie, N.A.C. (1993). Statistics for Spatial Data (revised ed.), Volume 605. New

York, NY, USA: John Wiley & Sons, Inc.

Cuyt, A. and B. Verdonk (1992). Multivariate rational data fitting: general data struc-

ture, maximal accuracy and object orientation. Numerical Algorithms , 3(1), 159–

172.

Czyżak, P. and A. Jaszkiewicz (1998). Pareto simulated annealing - a metaheuris-

tic technique for multiple-objective combinatorial optimization. Journal of Multi-

Criteria Decision Analysis , 34–47.

Dam, E.R. van (2008). Two-dimensional minimax Latin hypercube designs. Discrete

Applied Mathematics , 156(18), 3483–3493.

Dam, E.R. van, B.G.M. Husslage, and D. den Hertog (2009a). One-dimensional nested

maximin designs. Journal of Global Optimization. To appear.

Dam, E.R. van, B.G.M. Husslage, D. den Hertog, and J.B.M. Melissen (2007). Maximin

Latin hypercube designs in two dimensions. Operations Research, 55(1), 158–169.

Dam, E.R. van, G. Rennen, and B.G.M. Husslage (2009b). Bounds for maximin Latin

hypercube designs. Operations Research, 57, 595–608.

Das, I. (1999a). An improved technique for choosing parameters for Pareto surface

generation using Normal-Boundary Intersection. In Proceedings of WCSMO-3, Vol-

ume 2, Buffalo, NY, USA, 411–413.

190 Bibliography

Das, I. (1999b). A preference ordering among various Pareto optimal alternatives.

Structural and Multidisciplinary Optimization, 18(1), 30–35.

Das, I. and J.E. Dennis (1997). A closer look at drawbacks of minimizing weighted

sums of objectives for Pareto set generation in multicriteria optimization problems.

Structural and Multidisciplinary Optimization, 14(1), 63–69.

Davis, G.J. and M.D. Morris (1997). Six factors which affect the condition number of

matrices associated with Kriging. Mathematical Geology , 29, 669–683.

Dimnaku, A., R. Kincaid, and M.W. Trosset (2005). Approximate solutions of contin-

uous dispersion problems. Annals of Operations Research, 136(1), 65–80.

Dixon, L.C.W and G.P. Szegö (1978). The global optimization problem: An introduc-

tion. In L.C.W Dixon and G.P. Szegö (Eds.), Toward Global Optimization, Vol-

ume 2, 1–15. Amsterdam, The Netherlands: North-Holland.

Driessen, L.T. (2006). Simulation-based optimization for product and process design.

Ph. D. thesis, CentER for Economic Research, Tilburg University, Tilburg, The

Netherlands.

Driessen, L.T., H.P. Stehouwer, and J.J. Wijker (2002). Structural mass optimization

of the engine frame of the Ariane 5 ESC-B. In Proceedings of the European Con-

ference on Spacecraft, Structures, Materials & Mechanical Testing, Toulouse, 1–9.

Toulouse, France.

Ehrgott, M. (2005). Multicriteria Optimization. Berlin, Germany: Springer-Verlag.

Ehrgott, M. and M.M. Wiecek (2005). Multiobjective Programming. In J. Figueira,

S. Greco, and M. Ehrgott (Eds.), Multiple Criteria Decision Analysis: State of the

Art Surveys, 667–722. New York, NY, USA: Springer-Verlag.

Erkut, E. (1990). The discrete p-dispersion problem. European Journal of Operational

Research, 46(1), 48–60.

Erkut, E. and S. Neuman (1989). Analytical models for locating undesirable facilities.

European Journal of Operational Research, 50, 275–291.

Eskelinen, P., K. Miettinen, K. Klamroth, and J. Hakanen (2007). Interactive learning-

oriented decision support tool for nonlinear multiobjective optimization: Pareto

navigator. Technical report, Working Paper W-439, Helsinki School of Economics,

Helsinki.

Evtushenko, Y.G. and M.A. Potapov (1987). Methods of numerical solution of multi-

criterion problem. Soviet mathematics – doklady , 34, 420–423.

Fang, K.T., D.K.J. Lin, P. Winker, and Y. Zhang (2000). Uniform design: Theory and

application. Technometrics , 42(3), 237–248.

Bibliography 191

Fang, K.T. and A. Sudjianto (2006). Design and Modeling for Computer Experiments.

Boca Raton, FL, USA: Chapman & Hall/CRC.

Fejes Tóth, L. (1971). Punktverteilungen in einem Quadrat. Studia Scientiarum Math-

ematicarum Hungarica, 6, 439–442.

Florian, A. (1989). Verteilung von Punkten in einem Quadrat. Sitzungsberichte,

Abteilung II, Österreichische Akademie der Wissenschaften, Mathematisch-

Naturwissenschaftliche Klasse, 198, 27–44.

Fonseca, C.M. and P.J. Fleming (1995). An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary computation, 3(1), 1–16.

Forrester, A.I.J., A.J. Keane, and N.W. Bressloff (2006). Design and analysis of ”noisy”

computer experiments. AIAA journal , 44(10), 2331–2339.

Forrester, A.I.J., A. Sóbester, and A.J. Keane (2007). Multi-fidelity optimization via

surrogate modelling. In Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, Volume 463, 3251–3269. The Royal Society.

Forrester, A.I.J., A. Sóbester, and A.J. Keane (2008). Engineering Design via Surrogate

Modelling: A Practical Guide. Chichester, UK: Wiley.

Gambling, M., R.D. Jones, V.V. Toropov, and L.F. Alvarez (2001). Application of

optimization strategies to problems with highly non-linear response. In Proceedings

of the 3rd ASMO-UK/ISSMO Conference on Engineering Design Optimization,

Harrogate, UK, 249–256.

Garishina, N.V. and C.J. Vladislavleva (2004). On development of a complexity mea-

sure for symbolic regression via genetic programming. Technical report, Mathe-

matics for industry program of the Stan Ackermans Institute, Eindhoven, The

Netherlands.

Ghosh, J.B. (1996). Computational aspects of the maximum diversity problem. Oper-

ations Research Letters , 19, 175–181.

Giunta, A.A., S.F. Wojtkiewicz, and M.S. Eldred (2003). Overview of modern design

of experiments methods for computational simulations. AIAA 2003 , 649, 1–17.

Goel, T., R.T. Haftka, W. Shyy, and L.T. Watson (2008). Pitfalls of using a single

criterion for selecting experimental designs. International Journal for Numerical

Methods in Engineering , 75(2), 127–155.

Golbraikh, A., M. Shen, Z. Xiao, Y.D. Xiao, K.H. Lee, and A. Tropsha (2003). Rational

selection of training and test sets for the development of validated QSAR models.

Journal of Computer-Aided Molecular Design, 17(2), 241–253.

192 Bibliography

Golbraikh, A. and A. Tropsha (2002). Predictive QSAR modeling based on diversity

sampling of experimental datasets for the training and test set selection. Journal

of Computer-Aided Molecular Design, 16(5–6), 357–369.

Golub, G.H. and C.F. van Loan (1996). Matrix computations (3th ed.). Baltimore,

MD, USA: Johns Hopkins University Press.

Grosso, A., A.R.M.J.U. Jamali, and M. Locatelli (2009). Finding maximin Latin hyper-

cube designs by Iterated Local Search heuristics. European Journal of Operational

Research, 197(2), 541–547.

Haimes, Y.Y., L.S. Lasdon, and D.A. Wismer (1971). On a bicriterion formulation of

the problems of integrated system identification and system optimization. IEEE

Transactions on Systems, Man, and Cybernetics , 1(3), 296–297.

Hansen, P. and I.J. Moon (1994). Dispersing facilities on a network. Cahiers du

CERO , 36, 221–234.

Hardy, R.L. (1971). Multiquadratic equations of topography and other irregular sur-

faces. Journal of Geophysical Research, 76(8), 1905–1915.

Hedayat, A.S., N.A.J. Sloane, and J. Stufken (1999). Orthogonal Arrays: Theory and

Applications. New York, NY, USA: Springer.

Heinrich, K. (1996). Graph decompositions and designs. In Colbourn and Dinitz (Eds.),

Handbook of Combinatorial Designs, Boca Raton, FL, USA, 361–365. CRC Press.

Hertog, D. den and H.P. Stehouwer (2002). Optimizing color picture tubes by high-

cost nonlinear programming. European Journal of Operational Research, 140(2),

197–211.

Hino, R., F. Yoshida, and V.V. Toropov (2006). Optimum blank design for sheet

metal forming based on the interaction of high-and low-fidelity FE models. Archive

of Applied Mechanics , 75(10), 679–691.

Hoffmann, A.L., D. den Hertog, A.Y.D. Siem, J.H.A.M. Kaanders, and H. Huizenga

(2008). Convex reformulation of biologically-based multi-criteria intensity-

modulated radiation therapy optimization including fractionation effects. Physics

in Medicine and Biology , 53(22), 6345–6362.

Hoffmann, A.L., A.Y.D. Siem, D. den Hertog, J.H.A.M. Kaanders, and H. Huizenga

(2006). Derivative-free generation and interpolation of convex Pareto optimal IMRT

plans. Physics in Medicine and Biology , 51, 6349–6369.

Husslage, B.G.M. (2006). Maximin Designs for Computer Experiments. Ph. D. thesis,

CentER for Economic Research, Tilburg University, Tilburg, The Netherlands.

Bibliography 193

Husslage, B.G.M., E.R. van Dam, and D. den Hertog (2005). Nested maximin Latin

hypercube designs in two dimensions. CentER Discussion Paper 2005-79 , 1–11.

Tilburg University, Tilburg, The Netherlands.

Husslage, B.G.M., E.R. van Dam, D. den Hertog, H.P. Stehouwer, and E.D. Stin-

stra (2003). Collaborative metamodeling: Coordinating simulation-based product

design. Concurrent Engineering: Research and Applications , 11(4), 267–278.

Husslage, B.G.M., G. Rennen, E.R. van Dam, and D. den Hertog (2006). Space-

filling Latin hypercube designs for computer experiments. CentER Discussion Pa-

per 2006-18 , 1–11. Tilburg University, Tilburg, The Netherlands.

Husslage, B.G.M., G. Rennen, E.R. van Dam, and D. den Hertog (2008). Space-

filling Latin hypercube designs for computer experiments. CentER Discussion Pa-

per 2008-104 , 1–14. Tilburg University, Tilburg, The Netherlands.

Hwang, C.L. and A.S.M. Masud (1979). Multiple Objective Decision Making-Methods

and Applications: A State of the Art Survey, Volume 164 of Lecture Notes in Eco-

nomics and Mathematical Systems. Berlin, Germany: Springer-Verlag.

Jin, R., W. Chen, and T.W. Simpson (2001). Comparative studies of metamodelling

techniques under multiple modelling criteria. Structural and Multidisciplinary Op-

timization, 23(1), 1–13.

Jin, R., W. Chen, and A. Sudjianto (2002). On sequential sampling for global metamod-

eling in engineering design. In Proceedings of the ASME 2002 Design Engineering

Technical Conferences and Computers and Information in Engineering Conference,

1–10. Montreal, Canada.

Jin, R., W. Chen, and A. Sudjianto (2005). An efficient algorithm for constructing

optimal design of computer experiments. Journal of Statistical Planning and Infer-

ence, 134(1), 268–287.

Jin, R., X. Du, and W. Chen (2003). The use of metamodeling techniques for opti-

mization under uncertainty. Structural and Multidisciplinary Optimization, 25(2),

99–116.

Jin, Y. and B. Sendhoff (2004). Constructing dynamic optimization test problems using

the multi-objective optimization concept. In G. Raidl et al. (Eds.), Applications of

Evolutionary Algorithms, Volume 3005 of LNCS, 525–536. Springer.

Johnson, M.E., L.M. Moore, and D. Ylvisaker (1990). Minimax and maximin distance

designs. Journal of Statistical Planning and Inference, 26, 131–148.

Jones, D.R. (2001). A taxonomy of global optimization methods based on response

surfaces. Journal of Global Optimization, 21(4), 345–383.

194 Bibliography

Jones, D.R., M. Schonlau, and W.J. Welch (1998). Efficient global optimization of

expensive black-box functions. Journal of Global Optimization, 13(4), 455–492.

Karasakal, E. and M. Koksalan (2009). Generating a representative subset of

the nondominated frontier in multiple criteria decision making. Operations Re-

search, 57(1), 187–199.

Keijzer, M. (2003). Improving Symbolic Regression with Interval Arithmetic and Linear

Scaling. In C. Ryan, Soule T., M. Keijzer, E. Tsang, R. Poli, and E. Costa (Eds.),

Genetic Programming, Proceedings of EuroGP 2003, Volume 2610 of LNCS, Berlin,

Germany, 71–83. Springer-Verlag.

Kennedy, MC and A. O’Hagan (2000). Predicting the output from a complex computer

code when fast approximations are available. Biometrika, 87(1), 1–13.

Kirchner, K. and G. Wengerodt (1987). Die dichteste Packung von 36 Kreisen in einem

Quadrat. Beiträge zur Algebra und Geometrie, 25, 147–159.

Klamroth, K. and K. Miettinen (2008). Integrating approximation and interactive de-

cision making in multicriteria optimization. Operations Research, 56(1), 222–234.

Klamroth, K., J. Tind, and M.M. Wiecek (2002). Unbiased approximation in multicri-

teria optimization. Mathematical Methods of Operations Research (ZOR), 56(3),

413–437.

Kleijen, J.P.C. (1999). Validation of models: statistical techniques and data availabil-

ity. In P.A. Farrington, H.B. Nembhard, D.T. Sturrock, and G.W. Evans (Eds.),

Proceedings of the 1999 Winter Simulation Conference, Volume 1, 647–654.

Kleijnen, J.P.C. (2005). Supply chain simulation tools and techniques: A survey. In-

ternational Journal of Simulation and Process Modelling , 1(1), 82–89.

Kleijnen, J.P.C. (2008). Design and Analysis of Simulation Experiments. Springer.

Kleijnen, J.P.C. (2009). Kriging metamodeling in simulation: A review, Volume 192.

Kleijnen, J.P.C. and W.C.M. van Beers (2004). Application-driven sequential designs

for simulation experiments: Kriging metamodelling. Journal of the Operational

Research Society , 55(8), 876–883.

Kleijnen, J.P.C., G. van Ham, and J. Rotmans (1992). Techniques for sensitivity anal-

ysis of simulation models: A case study of the CO2 greenhouse effect. Simula-

tion, 58(6), 410–417.

Kleijnen, J.P.C. and R.G. Sargent (2000). A methodology for fitting and validating

metamodels in simulation. European Journal of Operational Research, 120, 14–29.

Bibliography 195

Koehler, J.R. and A.B. Owen (1996). Computer experiments. In S. Ghosh and C.R. Rao

(Eds.), Design and analysis of experiments, Volume 13 of Handbook of Statistics,

261–308. Amsterdam, The Netherlands: North-Holland.

Kordon, A. (2006). Evolutionary computation at Dow Chemical. SIGEVOlution, 1(3),

4–9.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means

of Natural Selection. Cambridge, MA, USA: MIT Press.

Krige, D.G. (1951). A statistical approach to some basic mine valuation problems on

the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of

South Africa, 52(6), 119–139.

Kuo, C.C., F. Glover, and K.S. Dhir (1993). Analyzing and modeling the maximum

diversity problem by zero-one programming. Decision Sciences , 24, 1171–1185.

Lam, R.L.H., W.J. Welch, and S.S. Young (2002). Uniform coverage designs for

molecule selection. Technometrics , 44, 99–109.

Liefvendahl, M. and R. Stocki (2006). A study on algorithms for optimization of Latin

hypercubes. Journal of Statistical Planning and Inference, 136(9), 3231–3247.

Locatelli, M. and U. Raber (2002). Packing equal circles in a square: A deterministic

global optimization approach. Discrete Applied Mathematics , 122(1–3), 139–166.

Lophaven, S.N., H.B. Nielsen, and J. Sondergaard (2002). DACE: A Matlab Kriging

toolbox version 2.0. Technical Report IMM-TR-2002-12, Technical Univeristy of

Denmark, Copenhagen.

Loridan, P. (1984). ε-Solutions in vector minimization problems. Journal of Optimiza-

tion Theory and Applications , 43(2), 265–276.

Markót, M.C. and T. Csendes (2005). A new verified optimization technique for the

“packing circles in a unit square” problems. SIAM Journal on Optimization, 16(1),

193–219.

Marler, R.T. and J.S. Arora (2004). Survey of multi-objective optimization methods

for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.

Matheron, G. (1963). Principles of geostatistics. Economic Geology , 58(8), 1246–1266.

Mathews, J.H. and K.D. Fink (2004). Numerical Methods Using Matlab (4th ed.).

Upper Saddle River, NJ, USA: Prentice-Hall Inc.

McKay, M.D., R.J. Beckman, and W.J. Conover (1979). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer

code. Technometrics , 21(2), 239–245.

196 Bibliography

Melissen, J.B.M. (1997). Packing and Covering with Circles. Ph. D. thesis, Utrecht

University, Utrecht, The Netherlands.

Messac, A., A. Ismail-Yahaya, and C.A. Mattson (2003). The normalized normal con-

straint method for generating the Pareto frontier. Structural and Multidisciplinary

Optimization, 25(2), 86–98.

Messac, A. and C.A. Mattson (2002). Generating well-distributed sets of Pareto points

for engineering design using physical programming. Optimization and Engineer-

ing , 3(4), 431–450.

Messac, A. and C.A. Mattson (2004). Normal constraint method with guarantee of even

representation of complete Pareto frontier. AIAA Journal , 42(10), 2101–2111.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Boston, MA, USA:

Kluwer Academic Publishers.

Miller, G.A. (1956). The magical number seven plus or minus two: some limits on our

capacity for processing information. Psychological review , 63(2), 81.

Montgomery, D.C. (2009). Design and Analysis of Experiments (7th ed.). New York,

NY, USA: John Wiley & Sons, Inc.

Monz, M. (2006). Pareto Navigation - Interactive multiobjective optimisation and its

application in radiotherapy planning. Ph. D. thesis, Department of Mathematics,

University of Kaiserslautern, Kaiserslautern, Germany.

Morris, M.D. and T.J. Mitchell (1995). Exploratory designs for computer experiments.

Journal of Statistical Planning and Inference, 43, 381–402.

Myers, R.H. (1999). Response surface methodology – Current status and future direc-

tions. Journal of Quality Technology , 31, 30–74.

Nguyen, T.A. (2007). Application of optimization methods to controller design for

active suspensions. Mechanics Based Design of Structures and Machines , 35(3),

291–318.

Nurmela, K.J. and P.R.J. Österg̊ard (1999). More optimal packings of equal circles in

a square. Discrete and Computational Geometry , 22, 439–547.

Oden, J.T., T. Belytschko, J. Fish, T.J.R. Hughes, C. Johnson, D. Keyes, A. Laub,

L. Petzold, D. Srolovitz, and S. Yip (2006). Simulation-Based Engineering Science:

Revolutionizing Engineering Science through Simulation. Technical report, Report

of the National Science Foundation Blue Ribbon Panel on Simulation-Based Engi-

neering Science.

Oler, N. (1961). A finite packing problem. Canadian Mathematical Bulletin, 4(2),

153–155.

Bibliography 197

Owen, A.B. (1992). Orthogonal arrays for computer experiments, integration and vi-

sualization. Statistica Sinica, 2, 439–452.

Padula, S.L., N. Alexandrov, and L.L. Green (1996). MDO test suite at NASA Lan-

gley Research Center. 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisci-

plinary Analysis and Optimization, 410–420.

Palmer, K. and K.L. Tsui (2001). A minimum bias Latin hypercube design. IIE Trans-

actions , 33(9), 793–808.

Peikert, R., D. Würtz, M. Monagan, and C. den Groot (1991). Packing circles in a

sphere: A review and new results. In Proceedings of the 15th IFIP Conference on

System Modeling and Optimization, Springer Lecture Notes in Control and Infor-

mation Sciences, Volume 180 of Springer Lecture Notes in Control and Information

Sciences, 111–124.

Pisinger, D. (2006). Upper bounds and exact algorithms for p-dispersion problems.

Computers and Operations Research, 33(5), 1380–1398.

Powell, M.J.D. (1987). Radial basis functions for multivariable interpolation: A review.

Clarendon Press Institute of Mathematics and its Applications Conference Series ,

143–167.

Qian, Z., C.C. Seepersad, V.R. Joseph, J.K. Allen, and C.F.J. Wu (2006). Building

surrogate models based on detailed and approximate simulations. Journal of Me-

chanical Design, 128(4), 668–677.

Queipo, N.V., R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P.K. Tucker

(2005). Surrogate-based analysis and optimization. Progress in Aerospace Sci-

ences , 41(1), 1–28.

Ravi, S.S., D.J. Rosenkrantz, and G.K. Tayi (1991). Facility dispersion problems:

Heuristics and special cases (extended abstract). In Algorithms and Data Struc-

tures, 2nd Workshop WADS ’91, Ottawa, Canada, August 14-16, 355–366.

Ravi, S.S., D.J. Rosenkrantz, and G.K. Tayi (1994). Heuristic and special case algo-

rithms for dispersion problems. Operations Research, 42, 299–310.

Reuter, H. (1990). An approximation method for the efficiency set of multiobjective

programming problems. Optimization, 21(6), 905–911.

Rikards, R. and J. Auzins (2004). Response surface method for solution of structural

identification problems. Inverse Problems in Engineering , 12(1), 59–70.

Rikards, R., A. Chate, and G. Gailis (2001). Identification of elastic properties of

laminates based on experiment design. International Journal of Solids and Struc-

tures , 38(30–31), 5097–5115.

198 Bibliography

Rockafellar, R.T. and R.J.B. Wets (1998). Variational Analysis. Berlin, Germany:

Springer-Verlag.

Romeijn, H.E. and J. Dempsey (2008). Intensity modulated radiation therapy treat-

ment plan optimization. TOP: An Official Journal of the Spanish Society of Statis-

tics and Operations Research, 16(2), 215–243.

Romeijn, H.E., J.F. Dempsey, and J.G. Li (2004). A unifying framework for multi-

criteria fluence map optimization models. Physics in Medicine and Biology , 49(10),

1991–2013.

Ruhe, G. and B. Fruhwirth (1990). ε-Optimality for bicriteria programs and its appli-

cation to minimum cost flows. Computing , 44(1), 21–34.

Ruzika, S. and M.M. Wiecek (2003). A survey of approximation methods in multiob-

jective programming. Journal of Optimization Theory and Applications , 126(3),

473–501.

Saaty, T.L. and M.S. Ozdemir (2003). Why the magic number seven plus or minus

two. Mathematical and Computer Modelling , 38(3-4), 233–244.

Sacks, J., S.B. Schiller, and W.J. Welch (1989a). Designs for computer experiments.

Technometrics , 31, 41–47.

Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn (1989b). Design and analysis of

computer experiments. Statistical Science, 4, 409–435.

Santner, Th.J., B.J. Williams, and W.I. Notz (2003). The Design and Analysis of

Computer Experiments. Springer Series in Statistics. New York, Ny, USA: Springer-

Verlag.

Schandl, B., K. Klamroth, and M.M. Wiecek (2002). Norm-based approximation in

multicriteria programming. Computers and Mathematics with Applications , 44(7),

925–942.

Shao, L. and M. Ehrgott (2008). Approximately solving multiobjective linear pro-

grammes in objective space and an application in radiotherapy treatment planning.

Mathematical Methods of Operations Research, 68(2), 257–276.

Siem, A.Y.D. and D. den Hertog (2007). Kriging models that are robust with respect

to simulation errors. CentER Discussion Paper 2007-68 , 1–28. Tilburg University,

Tilburg, The Netherlands.

Siem, A.Y.D., D. den Hertog, and A.L. Hoffmann (2008). The effect of transformations

on the approximation of univariate (convex) functions with applications to Pareto

curves. European Journal of Operational Research, 189(2), 347–362.

Bibliography 199

Simpson, T.W., A.J. Booker, D. Ghosh, A.A. Giunta, P.N. Koch, and R.-J. Yang

(2004). Approximation methods in multidisciplinary analysis and optimization: A

panel discussion. Structural and Multidisciplinary Optimization, 27(5), 302–313.

Simpson, T.W., D.K.J. Lin, and W. Chen (2001). Sampling strategies for computer

experiments: Design and analysis. International Journal of Reliability and Appli-

cations , 2(3), 209–240.

Simpson, T.W., J. Peplinski, P.N. Koch, and J.K. Allen (2001). Metamodels for

computer-based engineering design: Survey and recommendations. Engineering

with Computers , 17, 129–150.

Simpson, T.W., V.V. Toropov, V. Balabanov, and F.A.C. Viana (2008). Design and

Analysis of Computer Experiments in Multidisciplinary Design Optimization: A

Review. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, 1–22.

Smith, K.I., R.M. Everson, and J.E. Fieldsend (2004). Dominance Measures for Multi-

Objective Simulated Annealing. In Proceedings of the 2004 IEEE Congress on Evo-

lutionary Computation, 23–30. IEEE Press.

Smits, G.F. and M. Kotanchek (2004). Pareto-Front Exploitation in Symbolic Regres-

sion. In U. O’Reilly, T. Yu, R.L. Riolo, and B. Worzel (Eds.), Genetic Programming

Theory and Practice II, Chapter 17, 283–300. Ann Arbor, MI, USA: Kluwer Aca-

demic Publishers.

Sobieszczanski-Sobieski, J. and R.T. Haftka (1997). Multidisciplinary aerospace de-

sign optimization: Survey of recent developments. Structural and Multidisciplinary

Optimization, 14(1), 1–23.

Solanki, R.S., P.A. Appino, and J.L. Cohon (1993). Approximating the noninferior set

in multiobjective linear programming problems. European Journal of Operational

Research, 68(3), 356–373.

Specht, E. (2008). Packomania. http://www.packomania.com, January 2008.

Srivastava, A., K. Hacker, K. Lewis, and T.W. Simpson (2004). A method for us-

ing legacy data for metamodel-based design of large-scale systems. Structural and

Multidisciplinary Optimization, 28, 145–155.

Stehouwer, H.P. and D. den Hertog (1999). Simulation-based design optimisation:

Methodology and applications. Proceedings of the 1st ASMO-UK/ISSMO Confer-

ence on Engineering Design Optimization, 349–355. Ilkley, United Kingdom.

Stein, M. (1987). Large sample properties of simulations using Latin hypercube sam-

pling. Technometrics , 29(2), 143–151.

200 Bibliography

Steuer, R.E. (1986). Multiple Criteria Optimization: Theory and Application. New

York, NY, USA: John Wiley & Sons, Inc.

Stewart, T., O. Bandte, H. Braun, N. Chakraborti, M. Ehrgott, M. Göbelt, Y. Jin,

H. Nakayama, S. Poles, and D. Stefano (2008). Real-World Applications of Multiob-

jective Optimization. In J. Branke, K. Deb, K. Miettinen, and R. Slowinski (Eds.),

Multiobjective Optimization - Interactive and Evolutionary Approaches, 285–327.

New York, NY, USA: Springer-Verlag.

Stinstra, E.D. (2006). The meta-model Approach for simulation-based design optimiza-

tion. Ph. D. thesis, CentER for Economic Research, Tilburg University, Tilburg,

The Netherlands.

Stinstra, E.D., D. den Hertog, H.P. Stehouwer, and A. Vestjens (2003). Constrained

maximin designs for computer experiments. Technometrics , 45(4), 340–346.

Stocki, R. (2005). A method to improve design reliability using optimal Latin hyper-

cube sampling. Computer Assisted Mechanics and Engineering Sciences , 12(4),

393–412.

Tang, B. (1993). Orthogonal array-based Latin hypercubes. Journal of the American

Statistical Association, 88, 1392–1397.

Trosset, M.W. (1999). Approximate maximin distance designs. In Proceedings of the

Section on Physical and Engineering Sciences, Alexandria, VA, USA, 223–227.

Vapnik, V., S.E. Golowich, and A. Smola (1997). Support vector method for function

approximation, regression estimation, and signal processing. In Advances in Neural

Information Processing Systems 9, Cambridge, MA, USA, 281–287. MIT Press.

Viana, F.A.C., V. Balabanov, G. Venter, J. Garcelon, and V. Steffen (2007). Gen-

erating optimal Latin hypercube designs in real time. In 7th World Congress on

Structural and Multidisciplinary Optimization, 2310–2315.

Volgenant, A. (1990). Symmetric traveling salesman problems. European Journal of

Operational Research, 49(1), 153–154.

Volgenant, A. and R. Jonker (1982). A branch and bound algorithm for the symmetric

traveling salesman problem based on the 1-tree relaxation. European Journal of

Operational Research, 9, 83–89.

Wang, G., Z. Dong, and P. Aitchison (2001). Adaptive response surface method - A

global optimization scheme for approximation-based design problems. Journal of

Engineering Optimization, 33, 707–734.

Wang, G.G. and S. Shan (2007). Review of metamodeling techniques in support of

engineering design optimization. Journal of Mechanical Design, 129(4), 370–380.

Bibliography 201

White, D.J. (1990). A bibliography on the applications of mathematical programming

multiple-objective methods. Journal of the Operational Research Society , 41(8),

669–691.

Wilson, R.M. (1976). Decompositions of complete graphs into subgraphs isomorphic to

a given graph. In Nash-Williams and Sheehan (Eds.), Proceedings of the 5th British

Combinatorial Conference 1975, Winnipeg, Canada, 647–659. Utilitas Mathemat-

ica Publishing Inc.

Ye, K.Q., W. Li, and A. Sudjianto (2000). Algorithmic construction of optimal symmet-

ric Latin hypercube designs. Journal of Statistical Planning and Inference, 90(1),

145–159.

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Trans-

actions on Automatic Control , 8(1), 59–60.

Zheng, X, H. Yu, and A. Atkins (2008). An Overview of Simulation in Supply Chains. In

Advanced Design and Manufacture to Gain a Competitive Edge, 407–416. London,

UK: Springer.

Zitzler, E., L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca (2003).

Performance assessment of multiobjective optimizers: an analysis and review. IEEE

Transactions on Evolutionary Computation, 7(2), 117–132.

Samenvatting

Ja, ik ben gek op het citeren van mensen. Of zoals
president Kennedy al zei: “Was het Homerus niet
die schreef: ‘Originaliteit is het mooiste wat er is”’.

(Herman Finkers)

Computers zijn in de afgelopen decennia steeds krachtiger geworden en daardoor in staat

steeds complexere problemen op te lossen. Ondanks de toegenomen rekenkracht, vra-

gen bepaalde problemen nog steeds erg veel rekentijd. Twee voorbeelden zijn optimal-

isatieproblemen waarbij complexe simulatiemodellen of meerdere doelstellingsfuncties een

rol spelen. Bij het eerste type problemen valt bijvoorbeeld te denken aan het optimalis-

eren van de veiligheid van een auto met behulp van een simulatiemodel dat de effecten

van een botsing berekent. Als daarnaast ook het optimaliseren van het brandstofverbruik

een doelstelling is, is er sprake van het tweede type problemen. Aangezien beide typen

problemen erg tijdrovend kunnen zijn, is het vaak moeilijk om een optimale of goede

oplossing te vinden binnen een redelijke tijd. Het centrale onderwerp van dit proefschrift

is daarom het ontwikkelen en verbeteren van methodes die op een efficiënte manier om-

gaan met deze optimalisatieproblemen. Ondanks dat de gebruikte technieken voor deze

problemen verschillend zijn, hebben ze een belangrijke overeenkomst. Bij beide typen

problemen wordt een benadering bepaald aan de hand van datapunten die tijdrovend

zijn om te berekenen.

In het geval van complexe simulatiemodellen benaderen we de black-boxfunctie die de

relatie tussen input- en outputvariabelen van het simulatiemodel beschrijft. We beschou-

wen deze relatie als een black-boxfunctie omdat er geen expliciete wiskundige beschrijv-

ing bekend is, maar er wel uitkomsten (output) berekend kunnen worden voor bepaalde

waarden van de invoervariabelen (input). We benaderen deze black-boxfunctie met een

zogeheten “metamodel”. Dit metamodel heeft wel een expliciete wiskundige beschrijving

en kan zodoende gebruikt worden om de uitkomsten te optimaliseren of om inzicht te

krijgen in de relatie tussen de invoer en uitkomst. Voor het bepalen van een metamodel

zijn datapunten nodig die de outputwaarden bevatten bij bepaalde waarden van de in-

203

204 Samenvatting

putvariabelen. Wanneer voor het bepalen van de outputwaarde een complexe simulatie

uitgevoerd moet worden, kan het berekenen van deze datapunten erg tijdrovend zijn. Het

is daarom belangrijk deze datapunten zo efficiënt mogelijk te kiezen.

Bij multi-objective optimalisatieproblemen benaderen we de onbekende verzameling

van Pareto-oplossingen, d.w.z. oplossingen waarvoor het niet mogelijk is de waarde van

een doelstellingsfunctie te verbeteren zonder andere te verslechteren. Het kiezen van een

oplossing die niet aan deze eigenschap voldoet is sub-optimaal omdat we in dat geval

een doelstelling zouden kunnen verbeteren zonder dat dit ten koste gaat van anderen.

Het bepalen van de verzameling van Pareto-oplossingen is daarom een belangrijke stap

in het oplossen van een multi-objective optimalisatieprobleem. Het bepalen van Pareto-

oplossingen vereist echter het formuleren en oplossen van een, vaak tijdrovend, optimali-

satieprobleem waardoor het bepalen van de complete verzameling meestal niet haalbaar

is. In plaats daarvan kan een benadering van deze verzameling bepaald worden waaruit

een goede oplossing geselecteerd kan worden.

Aangezien het berekenen van de datapunten tijdrovend is voor beide typen problemen,

proberen we met zo min mogelijk datapunten een goede benadering te bepalen van de

black-boxfunctie of de verzameling van Pareto-oplossingen. In dit proefschrift ligt daarom

de nadruk op de efficiënte selectie van simulaties of optimalisaties voor het bepalen van

de datapunten. Door deze efficiënt te kiezen, streven we dus naar een kleiner aantal

benodigde datapunten voor het verkrijgen van een nauwkeurige benadering.

Bij de selectie van datapunten voor de constructie van een metamodel maken we

gebruik van een zogeheten “design of computer experiments”. Dit is een schema dat

bepaalt welke datapunten gesimuleerd gaan worden. Aangezien de keuze van het schema

invloed heeft op de kwaliteit van het metamodel, houden we ons in hoofdstukken 2 tot en

met 5 van dit proefschrift bezig met het bepalen van schema’s met verscheidene gunstige

eigenschappen.

In hoofdstuk 2 beschouwen we de zogeheten “space-filling Latin hypercube designs”

(LHDs). Schema’s uit deze klasse hebben twee belangrijke eigenschappen. Ten eerste

hebben LHDs de eigenschap dat voor elke inputvariabele geldt dat alle datapunten een

andere waarde hebben. Hiermee wordt voorkomen dat verschillende datapunten elkaar

overlappen als een of meerdere inputvariabelen geen (beduidende) invloed blijken te

hebben op de outputvariabele. Ten tweede zijn deze schema’s space-filling wat wil zeggen

dat de datapunten gelijkmatig verspreid zijn over de gehele inputruimte. De mate van

spreiding wordt in dit hoofdstuk gemeten met de `2-maximin en Audze-Eglais criteria.

Gebruikmakend van periodieke designs en het ESE algoritme bepalen we space-filling

LHDs voor maximaal 10 inputvariabelen en 300 datapunten.

Hoofdstuk 3 focust op de spreidingsmaten `2-, `1- en `∞-maximin. Om zo space-filling

mogelijke LHDs te vinden, wordt vaak geprobeerd deze maten te maximaliseren. Naar-

Samenvatting 205

mate het aantal inputvariabelen en het aantal datapunten toeneemt, wordt het echter

steeds moeilijker een LHD te vinden dat één van deze maten maximaliseert. In hoofd-

stuk 3 bepalen we daarom bovengrenzen voor de maximale waardes die deze maten kun-

nen aannemen. Deze bovengrenzen bepalen we voor LHDs met verschillende aantallen

variabelen en datapunten. Afhankelijk van deze eigenschappen en de spreidingsmaat

worden verschillende technieken en formuleringen gebruikt om goede bovengrenzen te

vinden. Voorbeelden hiervan zijn Mixed Integer Programming, het Traveling Salesman

Probleem en het Graph Covering Probleem.

In bepaalde situaties hebben we niet één schema nodig, maar twee schema’s met ver-

schillende aantallen datapunten. Wanneer het kleine schema een deelverzameling vormt

van het grote schema, spreken we van een genest schema. Deze geneste schema’s kunnen

bijvoorbeeld worden gebruikt wanneer er twee simulatiemodellen beschikbaar zijn die

eigenschappen van hetzelfde product of proces beschrijven maar met verschillende mates

van nauwkeurigheid. Aangezien het minder nauwkeurige simulatiemodel meestal min-

der rekentijd vergt, kunnen hiermee meer datapunten doorgerekend worden dan met het

nauwkeurigere model. Wanneer bepaalde datapunten door beide modellen worden door-

gerekend, kunnen de resultaten van de modellen gecombineerd worden om zo een beter

metamodel te verkrijgen dan mogelijk zou zijn met slecht één simulatiemodel. Naast de

geneste eigenschap willen we ook graag dat beide schema’s een space-filling LHD vormen.

In hoofdstuk 4 beschrijven we daarom verschillende methodes om geneste space-filling

LHDs te bepalen. Afhankelijk van het aantal datapunten in beide schema’s is het helaas

niet altijd mogelijk beide schema’s een LHD te laten zijn. We introduceren daarom drie al-

ternatieven waarbij de LHD-structuur zoveel mogelijk intact word gelaten. Voor alle drie

de alternatieven worden geneste space-filling LHDs bepaald met maximaal 50 datapunten

in het kleine schema en 60 in het grote schema. De gevonden schema’s en bovengrenzen

uit de hoofdstukken 2, 3 en 4 zijn beschikbaar op http://www.spacefillingdesigns.nl.

In hoofdstuk 5 gaan we uit van een andere situatie dan in de voorgaande hoofdstukken.

We bekijken hierin namelijk de situatie waarin een dataset beschikbaar is met de input-

en outputwaarden van een groot aantal simulaties of experimenten. Een grote dataset is

normaal gesproken een goed uitgangspunt voor het schatten van een nauwkeurig meta-

model. Wanneer de Kriging-methode gebruikt wordt om een metamodel te bepalen, kan

een grote dataset echter ook nadelen hebben. Met name als de datapunten in de dataset

niet gelijkmatig verspreid zijn over de inputruimte, kan dit de kwaliteit van het Kriging-

model negatief bëınvloeden. In hoofdstuk 5 laten we zien dat het soms beter is slechts een

deel van de dataset te gebruiken in plaats van de complete dataset. Ook hier proberen

we de datapunten zo te kiezen dat ze gelijkmatig verspreid liggen over de inputruimte.

Aangezien de datapunten waaruit we kunnen kiezen vastliggen en de outputwaarden

bekend zijn, gebruiken we hiervoor andere methodes dan voor het bepalen van space-

206 Samenvatting

filling LHDs. Vijf bestaande methodes en drie varianten van een nieuwe methode worden

vergeleken op vier soorten datasets. De vergelijking betreft nauwkeurigheid, robuustheid,

kans op numerieke onnauwkeurigheid, tijd voor het bepalen van de subset en tijd voor

het schatten van het Kriging-model. Aangezien geen methode het beste presteert op alle

criteria, hangt het van de situatie en gebruiker af welke methode het meest geschikt is.

Naast Kriging bestaan er nog vele andere technieken om een metamodel te schat-

ten. In hoofdstuk 6 beschouwen we “symbolic regression”. Deze techniek heeft het

voordeel dat er zeer weinig eisen opgelegd worden aan de vorm van het metamodel, wat

de mogelijkheid geeft om nauwkeurigere en beter interpreteerbare modellen te vinden.

Een nadeel is echter dat de modellen ook te ingewikkeld kunnen worden of ruis in de

data proberen te verklaren. Om dit te voorkomen, introduceren we een maat voor de

complexiteit van een functie. Deze maat is gebaseerd op het idee dat de complexiteit

gecorreleerd is met de minimale graad van een polynoom die nodig is om een functie met

een bepaalde nauwkeurigheid te benaderen. Met behulp van Pareto simulated annealing

proberen we metamodellen te vinden die een goede afweging vormen tussen complexiteit

en nauwkeurigheid.

In het laatste hoofdstuk van dit proefschrift behandelen we het benaderen van de

verzameling van Pareto-oplossingen. Aanleiding voor dit onderzoek is het probleem van

het bepalen van goede bestralingsplannen voor tumoren. Hierbij moet steeds een afweg-

ing gemaakt worden tussen de kans op succesvolle verwijdering van de tumor en het

risico op beschadiging van gezond weefsel. Dit afwegingsprobleem kan geformuleerd wor-

den als een convex multi-objective optimalisatieprobleem. Wanneer er geen oplossing

bestaat die alle doelstellingen tegelijk optimaliseert, zal er een goed compromis bepaald

moeten worden. Een benadering van de verzameling van Pareto-oplossingen kan de arts

in deze keuze ondersteunen. Voor convexe multi-objective optimalisatieproblemen is het

mogelijk om door middel van zogenaamde sandwich-algoritmes benaderingen te vinden

waarvoor garanties gegeven kunnen worden voor de nauwkeurigheid. In hoofdstuk 7

introduceren we verschillende verbeteringen voor bestaande sandwich-algoritmes. Ten

eerste voegen we dummy-punten toe aan de benadering om beter te kunnen bepalen welke

optimalisaties we moeten uitvoeren in verschillende stappen van de sandwich-algoritmes.

Ten tweede beschrijven we een foutmaat die ons in staat stelt goed interpreteerbare

kwaliteitsgaranties te geven voor de nauwkeurigheid van de benadering. We beschrijven

ook hoe deze foutmaat eenvoudig te berekenen is met behulp van de bovengenoemde

dummy-punten. Ten derde laten we zien hoe transformaties van doelstellingsfuncties de

nauwkeurigheid van de benadering kunnen vergroten. Door deze transformaties wordt

het verder ook mogelijk sandwich-algoritmes toe te passen bij bepaalde niet-convexe doel-

stellingsfuncties. Om het effect van deze verbeteringen te testen, vergelijken we bestaande

sandwich-algoritmes met een nieuw algoritme waarin bovenstaande verbeteringen zijn

Samenvatting 207

toegepast. Vergelijking aan de hand van vier testcases laat zien dat het nieuwe algoritme

inderdaad aanzienlijk efficiënter is, d.w.z. minder tijdrovende optimalisaties nodig heeft

om eenzelfde (gegarandeerde) nauwkeurigheid te bereiken.

