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SUMMARY

Efficient investment programmes in touristic infrastructure have to take into consideration that any kind of
tourism reduces the environmental quality. Since pollution shows negative repercussions as concerns the
attractiveness of a touristic region, tourism planners have to determine a trade-off between adequate
services for tourists and a clean environment, To deal with this problem in a dynamic context, a three-state
optimal control model! is formulated. It turns out that, even if pollution reduction is not a goal in itself, the
profit-maximizing tourism industry should care for ecological conservation. The paper further shows that
persistent periodic investment policies are optimal for realistic parameter sets, and provides an economic
intuition for such behaviour. From an economic point of view, this result implies that expansionary periods
with high investment are followed by periods of stagnation with low investment. Copyright © 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Since tourism is likely to become the largest single sector of world trade early in the next century
[1], it is important to establish.a theoretical framework for investment in the touristical
infrastructure. Nevertheless, in the literature no contributions can be found that address this
subject within a decision oriented optimization model. This paper is a first attempt to fill this
gap.

In reality, it is impossible to imagine that any kind of tourism activity is developed and then
operates without, in some way, reducing the quantity of natural resources somewhere. As a
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good example, the adverse environmental impact of tourism in mountains can be mentioned
(see, e.g. Reference [2]). Human activities, particularly tourism, have caused damages in the
fragile mountain ecosystem, especially in wetlands. In Reference [3] it is strongly argued that
there must be substantial changes in the way mountain regions are used by tourism if the
landscape, which forms the main resource for tourism, is not to be adversely and permanently
affected.

Another example of bad environmental impact by tourism is wildlife being harmed
by photographic tourism. As masses of tourism swarm around fewer and fewer animals
(see Reference [4]) can be observed. Although the Royal Bardia National Park in
Nepal is relatively inaccessible to tourists, their ecological impact, in terms of disturbance
of habitat and of wildlife, is significant in the accessible area around the phantas (see
Reference [3]).

All this inevitably leads to the conclusion that any meaningful analysis concerning investment
in tourism must take account of its environmental implications.

As argued in Reference [1], the question of who decides on the most appropriate pathway of
tourism development is crucial for the future development of this branch. Ecological
conservation objectives may not be compatible with the desire of local communities. It may
well be that different levels of community involvement in tourism development decision-making
are appropriate for different pathways of sustainable tourism.

In our framework we assume that a tourism planner decides about the investment strategy.
This planner represents different groups interested in attracting tourists, like private investors
and the (local) government, who generate conditions for touristic investment projects. The
objective of the planner then is to maximize revenues from the tourism industry, which implies
that reducing pollution is not a goal in itself. However, in the tourists’ decision-making process,
a clean environment plays a central role in the choice of destination.

For example, an exploratory study in Switzerland, Austria and Bavaria has shown that
traffic-free mountain holiday resorts have an above-average occupancy rate, and resorts where
the environmental burden due to traffic is relatively low have a higher occupancy rate than
comparable resorts where the burden is much higher. In hotels there are also some clearly noise-
related losses (see Reference [6]). Tourists visiting Sochi (Black Sea Coast, Russia) complain
about the high level of noise produced by the motorway, about aggressive odors, discomfort,
noise and vibration produced by railway and air routes, air pollution, etc. (see Reference [7]).

In our model, we take into account that pollution negatively affects the number of tourists,
and thus has an adverse impact on revenues from the tourist industry. Hence, in this respect it is
still in the interest of the planner to preserve a clean environment., We are able to take this aspect
into account by developing a dynamic model, since in such a model today’s actions influence the
state of the future. Thus, investments today attract more tourism. This, however, increases
environmental pollution which, in turn, has a negative impact on the number of tourists in the
future.

The paper is organized as follows. In Section 2 the model is formulated. Section 3 analyses the
first-order necessary optimality conditions. In order to gain further insights into the optimal
solution paths examples are studied in Section 4. The local stability analysis of the steady state
yields saddle points (Section 4.1) and limit cycles (Section 4.2), whose economic meaning is
discussed in Section 4.3. Bifurcation analysis in Section 4.4 gives some more general qualitative
insights as to how generic cyclical investment policies are. Finally, Section 5 contains some
concluding remarks as well as proposals for several extensions.

Copyright © 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23: 1-19
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2. THE MODEL

We consider the optimal investment path for a tourism planner who invests in touristic
infrastructure in order to attract tourists. Touristic infrastructure S(¢) evolves according to

S0 = 1(1) — 6S(8), S(0)= S,>0 (H

in which I(Y) equals investment in infrastructure and =0 is the depreciation rate, which is
assumed to be constant.

Not only a missing touristic infrastructure but also a polluted environment discourages
tourists from visiting a tourist area~—tourists are not only interested in touristic infrastructure
but are also attracted by a clean environment. Therefore, we suppose that both touristic
infrastructure as well as the stock of pollution P(r) affect the evolution of the number of tourists
T(¢), which we model mathematically by the following differential equation

T(t) = a(S(t), k1, P(t)) = b T(1), T(0)=Te>0 (2)

The attractiveness function «(S(t),k;, P(t)) satisfies as(-)> 0, ass (-)<0, i.e. touristic infra-
structure certainly attracts tourists, however, with diminishing intensity. The parameter 4
stands for service expenditures for personnel per unit of touristic infrastructure and we posit
a(S,0,P) =0. It is obvious that a stock of touristic infrastructure such as hotels or ski lifts
by itself does not attract tourists unless it is staffed. Therefore, service expenditures and
infrastructure are complementary and the service expenditures are proportional to the stock of
infrastructure. That means, we suppose that the stock of infrastructure S needs k; service
expenditures per unit in order to be operated efficiently.

Moreover, we assume that the stock of pollution negatively affects the number of tourists,
ap ()< 0 and that this function is S-shaped, i.e. app <0 for P small and app > 0 for P large. That
specification implies that an additional unit of pollution shows an increasing negative
repercussion to the attractiveness of the region as long as that region is relatively clean, but
small negative effects on the attractiveness, if pollution is relatively high. As to the cross-
derivative agp we assume agp <0, so that ag, which we assume to be positive, increases with
a decrease of P. From an economic point of view this means that additional touristic
infrastructure attracts more additional tourists the cleaner the environment is. Alternatively,
asp< 0 implies that for higher values of .S one additional unit of pollution has a higher negative
impact on the tourism increase. This is reasonable since, given P, more infrastructure, thus a
higher value of S, gives a higher value of a (S, k1, P). Now, if a marginal unit of P gives an x per
cent reduction in attractiveness, the absolute reduction in attractiveness is higher for larger
values of S. The parameter 6> 0 reflects the decline in the number of tourists due to crowding
effects. If a lot of tourists invade a region, congestion makes that region less attractive and will
lead to a decrease in tourists over time.

Furthermore, we suppose that both the touristic infrastructure as well as the number of
tourists lead to an increase in the stock of pollution. However, we also posit that the
environment is endowed with the ability to absorb a certain amount of polluting activities
without being harmed. Formally, that effect is modelled by introducing an absorption capacity.
The stock of pollution then evolves according to

P(t) = aS(f) + tT(1) — a(P(1)), PO) = Py>0 (3)

Copyright © 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23: 1-19
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>0 and 7> 0 represent the contribution of one additional unit of infrastructure and one
additional tourist to the stock of pollution, respectively. a(P(7)) reflects the absorption
capacity. One feasible specification as to the function «() is a linear relationship,
a(P(1)) = oy * P(f), implying that nature absorbs a constant proportion of the stock of
pollution (for a survey of how to model pollution in a formal model see e.g. Reference [8]).
A different plausible specification for pollution absorption capacity is a(P()) =
mP(e~PW/F with m>0 and P>0, i.e. a specification shaped akin to the shape of an
environmental Kuznets curve.

That implies that for values of P() lower than P the absorption capacity is low and rises
with P(z) or, formulated in a different way, if not much pollution is generated, then the
amount of cleaning can also be not that large. The absorption capacity reaches a peak
for P(t)= P and declines again, meaning that nature cannot regenerate if the stock of
pollution is high.

The objective of the tourism planner then is to maximize the discounted stream of cash
flows generated by the tourist industry. We suppose that the planner is composed of
different groups who are interested in attracting tourists, as mentioned in the introduction. So,
there are private investors, who decide about the total amount to be invested within a region,
and there are elected representatives of the inhabitants in that region, who try to attract private
investors and determine whether a certain project is carried out. Formally, the planner solves
(from now on we suppress the time argument £).

max /ooe""(pT — ()~ (ky + k) S) dt “)
I Jo

subject to (1)-(3). p represents the income generated by one tourist which is assumed to be given
exogenously. From the economic point of view, that assumption can be justified by strong
competition among different touristic regions. The service expenditures are equal to kS, and we
suppose that k) is not a control variable for our planner. We do that because total services
expenditures are completely determined by the stock of touristic infrastructure, since they are
proportional to it, as mentioned above.

We also posit that touristic infrastructure causes maintenance costs and brings about
pollution, which requires abatement activities, like refuse collection, water carriage system etc.
Both maintenance costs and abatement activities cause expenditures for the touristic region,
which we assume being linearly dependent on the stock of infrastructure and given by k»S. An
increase of k, would lead to a reduction of abatement activities and thus to an increase of the
parameter ¢ in (3). Operating sewage works, for instance, would decrease the parameter o and t
in (3) and increase the parameter k.

We would like to point out that the discount rate, denoted with r, can be conceived of as
composed of two factors: an interest factor and risk factor with the latter expressing the risk or
uncertainty of future periods’ profit flows.* In principle an infinite discount rate could be
imagined, too. Then, the planner’s objective would be equivalent to a static optimization
problem (see Reference [10]). Finally, we model the investment cost function ¢(I) to be
increasing and convex, L.e. ¢'(-) > 0; ¢"(:) > 0.

tFor the relation of risk and the discount factor of, Reference [9].
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3. THE DYNAMIC BEHAVIOUR

In what follows we apply Pontryagin’s maximum principle to derive insight into the structure of
an optimal trajectory.’ To do so, we start out by introducing the current-value Hamiltonian
H()=pT —c) = (k) + k2)S + 41(I — 38) + A2(a(S, k1, P) — b T) + A3(6S + =T — a( P))

where 4;, { = 1,2, 3, represent the co-stale variables belonging to S, T and P, respectively. The
necessary optimality conditions are then given by

) =4 (5)

M= (4 ) + ki +ka = has() — Aao (6)
Ay = (r+b)hs —p — Jat ¢

= (r+ (N3 — daap(?) (8)

From (5) it is obtained that infrastructure investment 7 is an implicit function of the shadow
price of touristic infrastructure A;, with d//dA; = 1/¢"(-) > 0. The higher the value of an
additional unit of touristic infrastructure, the higher the level of investment will be, which is
intuitively plausible.

Assuming that a stationary point exists, for our model the local stability properties can be
analysed by linearization around the rest point. A stationary point for our model has to satisfy
the following set of equations:

I(T) = 68* )

a(S*, ky, P*) = bT* (10)

a(P¥) = 0S* + 1T*, (11)

(r+ A = Bas() + o —k; — ka (12)
(r4+b)M3 =p+ 3t (13)

(r+ /()23 = A3ap(-) (14)

with = denoting stationary values.

The shadow pnce of touristic infrastructure and tourists at the stationary state, denoted by
the co-states AT and Ag, are expected to be positive because a rise in touristic infrastructure and
in the number of tourists increases the cash flow. But, of course, a better touristic infrastructure
by itself does not raise the cash flows directly but only indirectly through attracting more

$An introduction to the optimality conditions can be found in References [11,12].
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tourists. The shadow price of pollution at the stationary state, 13, is expected to be negative
since a marginal rise in pollution leads to a decline in the number of tourists, ceteris paribus,
and, thus, to a lower cash flow. A sufficient but not necessary condition for a negative A% is
a'()=0.

4. NUMERICAL EXAMPLES

The model is investigated for different functional specifications. However, it should be noted
that in the first two examples the attractiveness function a(S,k;, P) does not satisfy the
requirements as formulated in Section 2 (in the first example ags = 0 and agp = 0, while the
latter also holds in the second example). Still we studied these examples in order to gain insights
concerning the dynamic behaviour of the optimal trajectories. In particular it will be shown that
asp <0 is a necessary condition for the stable limit cycles to occur. Throughout all examples we
assume that ¢(P) is linear in P, i.e. a(P) = o P, oy > 0.

4.1. Steady states

Firstly, we investigate a simple framework. We specify the attractiveness function a (S, k,, P) =
k(@S — &P+ d3) = a1S — apP + a3 linearly in S and P, while the investment cost function is
given by a quadratic function ¢(7) = %l 2, Now the canonical system is a system of six linear
differential equations:

S =4 —-64S

T =a\S—wP+ay—bT

P=o¢S+1tT —oP
/i.] =@+0A +k +hk —ajdy—0ls
o =@+ b —p—th

/i3 = (r+ o)l + @i

[t is not difficult to show that for any reasonable set of parameters there is a unique steady state,
which is characterized by a three-dimensional stable invariant manifold (see Appendix A for the
eigenvalues, which we have symbolically computed with Mathematica, [13]). Concerning the
optimal trajectories it holds that with the aid of this stable invariant manifold the optimal
trajectories are defined, because sufficiency conditions are fulfilled. Let us formulate this result in
a less technical way: starting from an initial stock of service facilities, tourists and pollution, the
optimally controlled system osciflates to a unique steady state.

In our second mode! the attractiveness function a (S, ky, P) = a1 8" — aa P + a3,0<y <1 does
no longer depend linearly on S. However, the qualitative behavior of the canonical system does
not change (see Appendix A for the eigenvalues). Again, there is a unique steady state with a

Copyright © 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23: 1-19
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three-dimensional stable invariant manifold. The only difference with the linear case is that
formerly real eigenvalues can now become complex; in other words the optimal controlled
system may converge to the steady state in an oscillatory way.

Finally, we now consider specifications that fulfil all characteristics described in Section 2. We
define a more general cost function of cost investment, i.e. ¢ (I} = ¢;1 + (ca/ W', with ¢, ¢ > 0,
h > 1. More crucial, the attractiveness function « (S, k1, P) is assumed to be

a(S, ki, P) =1 (ki) S'e™*"

with £ ()=0, f/()>0, f(0)=0, v>0,0<y< 1. The maximum principle then gives

I=((A1/c2) = (e1/ea))! /D (15)
The resulting dynamic system is equal to
S =((Ai/e2) = (c1/e2)! /"D - 8 (16)
T =f(k)Ste™” —bT (17)
P=0¢S+1T — o P (18)
M=+ +k +k — ).2]"(7(1)))5?*](:‘“"’2 — o3 (19)
Ja= @+l —p—1h (20
Js = (4 a)s + 2f (k) v P77 ST 1 @)

Proposition 1.

The tourism optimal control model (1)-(4) has a unique steady state with a positive stock of
tourists.

Proof. See Appendix B.

Determining the eigenvalues of the Jacobian matrix (see Appendix A) is now a lot more
complicated than in the previous two examples. What we did is numerically computing
the steady-state values and the corresponding eigenvalues of the Jacobian matrix (which
we have done with the software package Mathematica [13]). We set the discount rate to 10 per
cent, i.e. ¥ = 0.1. The income generated by one tourist p equals 2.5, the convexity parameter of
the cost function 4 is 1.06, and ¢; and ¢, are set to 0.61 and 0.58, respectively. We assume
d =0.085, y =0.95,v = 0.086501,5 = 0.076,6 = 0.6, = 0.88 and oy = 0.064, The aggregated
per service unit cost k| + ky equals 0.3257323, and f(k;) = 0.9. For these parameter values
the stationary point is given by S* = 0.158268, T* = 0.250745, P* = 493151, 17 = 1.05787,
15 =9.49703, 2% = —0.941502. The steady state value of Investment in touristic infrastructure is
I* =0.0134527.

Copyright © 2002 John Wiley & Sons, Lid. Optim. Control Appl. Meth. 2002; 23: 1-19
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The eigenvalues of the Jacobian matrix evaluated at the steady-state show that the stationary
point is a saddle point with a three-dimensional stable-invariant manifold. From an economic
point of view, saddle point stability means that in the long run the region converges to a
stationary state where infrastructure investment just equals the depreciation of that stock.
Further, the number of tourists remains constant over time and the addition of new pollution to
the stock is neutralized by the absorptive capacity so that, in a way, we may speak of sustainable
development in our region. As the attractiveness function « is no longer concave in S and P, the
Hamiltonian is not concave in the state variables P and S; hence, we get here only candidates for
an optimal solution.

4.2. Limit cycles

Taking the discount rate as bifurcation parameter we observe that for re i = 0.0827797651 two
eigenvalues become purely imaginary and give rise to a Hopf bifurcation which leads to stable
limit cycles’{ for r<reg.

Making use of COLSYS [14] such a stable cycle can be calculated for r = 0.0824499. The
steady state is given by S* = 0.1540850, T* = 0.2512494, P* = 4.8992263, A} = 1.0571557, X,
¥ =9.7770773, A3 = —1.0804808, I* = 0.0130972. Figure 1 shows the limit cycle in the
P-T phase diagram. The next section provides a detailed economic explanation of this
solution.

When limit cycles occur in our model the touristic region does not converge to a situation
with a constant number of tourists in the long run. Instead, cyclical fluctuations in that
variable can be observed which may be explained as follows. Within a region with many
tourists much pollution is generated, which has a negative impact on the attractiveness
of that region. Further, a high stock of pollution also tends to lower investment in infra-
structure because one additional unit of touristic infrastructure attracts more additional
tourists the cleaner the environment is (follows from asp<0). As a consequence, the
number of tourists will diminish. A decline in the number of tourists, however, reduces
pollution which tends to attract more tourists. Moreover, a decline in the stock of pollution will
lead to a lower shadow price of pollution which for its part raises the shadow price of
infrastructure and, thus, investment activities. That causes a higher stock of infrastructure
capital which acts positively on the attractiveness of the region and the number of tourists will
rise again. In the next section, we give a more thorough discussion of the different regimes which
can be identified.

W})—DTIS] we were ablé to proof numerically the existence of stable cycles for r<ryi; the coefficients of the
canonical form are : )
A4 = -3.2903698 + 0.1330538
= —10,1109477 + 0.1376684
C = -0.0601466 + 3.8391187 x 10~°
= —3.9904840 + 1.7839538 x 1076

w = 0.2984661

Hence at rey; we observe a supercritical Hopf bifurcation.

Copyright © 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23: 1-19
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Figure 1. Phase portrait of the (S, T, P) state space.

4.3. Discussion of the limit cycles

In Figure 2 we depict the trajectories of S, T, and P corresponding to the cycle in Figure 1.
Furthermore, we add the corresponding (optimal) investment policy 1.

Given the initial values of S, T, and P at time f; as in Figure 1 and following the optimal
investment policy / the current cash flow follows the path of the curve, which is denoted by
‘cycle’ in Figure 3. The straight line in Figure 3 depicts the current cash flow, if the initial values
of touristic infrastructure S, pollution P and the number of tourists T are fixed to the values of
the steady-state equilibrium and the decision-maker follows the (constant) optimal investment
rule 7.

4.3.1. Prosperity regime. The cycle starts at time ¢;. Here, the environment is clean (i.e. low P),
the touristic infrastructure S is medium-sized, but the number of tourists T is still relatively low,
and, hence, the current cash flow is low, too, as Figure 3 shows. Relatively low environmental
pollution and satisfactory infrastructure attract many additional tourists, so the touristic
planner is eager to invest at a very high rate I casting a beady eye on huge cash flows in the near
future. Because infrastructure reaches a high standard, the tourism planner tends to cut down
investment. And in addition, he/she recognizes that the increasing touristic sector leads to
serious environmental pollution. He/she reduces infrastructural investment I, whether to
increase the current cash flow (cf. Figure 3) or to avoid an environmental (and touristic)
disaster. The latter argument is supported by the observation, that at time 1, # two turning-
points(increase to decrease for investment and decrease to increase for pollution) almost
coincide. There is now a period, in which investment decreases, but it is high enough to ensure
an increase in S, at least until £3. Aflterwards a low level investment is optimal, however, tourism
is booming due to a good infrastructure and——still—due to a relatively clean environment. Low
investment and a lot of tourists guarantee a high current cash flow, as we can see in Figure 3.
We denote this time period, that lasts until time t4, as prosperity regime, since the tourism
industry is expanding and prospering, which is seen from the increasing number of tourists.

Copyright © 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23: 119
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Figure 3. Current cash flow evaluated in the steady state equilibrium and along the cycle.

4.3.2. Saturation regime. It is pay-day—Figure 3 shows that during the time period beginning
at t4 and lasting till z5 current cash flow peaks. The number of tourists saturates, because the
accumulation of pollution limits its growth. More and more a reduction of the number of

Copyright © 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth, 2002; 23: 1-19
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tourists and touristic services is optimal in order to decrease the speed of the increase of
environmental pollution or even to reduce environmental pollution.

4.3.3. Declining regime. The recovery of the environment is the main topic of the time period
from tg to 5. With a very small lag behind the peak of pollution P, it is optimal to increase
investment in touristic infrastructure. The numerical example reveals the fact that cyclical
pattern of P and 7 is almost ‘opposite’ (with a very small lag of I behind P): if P is very high
(low), I is very low (high). Note that such behaviour makes economic sense and provides an
intuitively appealing managerial rule. Of course, increasing investments cut down current cash
flow—as Figure 3 depicts—especially in a time period, where the earnings from the tourism
decline. In the later part of this regime —i; to fg—increasing investment and increasing
infrastructure announce already the following phase of recovering.

4.3.4. Recovering regime. The low of the current cash flow is reached just after #, however,
increasing touristic infrastructure standard S——due to a high investment level /—and a clean
environment promise an increase in the near future. Finally, at ¢, the cycle start again.

4.4. Bifurcation diagram

In order to investigated when cyclical investment policies actually occur we provide a bifucation
diagram with y and v on the axes, while keeping the other parameters at the same level as before.
The parameters y and v govern the attractiveness function a (S, k1, P); 7 influences the increase
of tourists due to additional service facilities, whereas v influences the negative impact of
pollution on the attractiveness of existing service facilities. The bifurcation diagram in Figure 4
shows that for small y and v there exists a (unique) attracting steady state. Increasing both y and

AY
4t
5 |
o |
b
0 . , A . Y
0.93 0.935 0.94 0.945 0.95 0.955 0.96

Figure 4. Bifurcation diagram,
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v, i.e. raising the increase of tourists due to extra infrastructure and the impact of pollution,
eventually leads to cyclical optimal investment policies. Or, in other words, limit cycles
especially occur when the product of y and v is large, thus when Abs (asp) is large; as already
became clear from Section 4.1, asp being negative is a necessary condition for stable limit cycles
to occur.

5. CONCLUSIONS AND EXTENSIONS

Nowadays, the tourism industry has to deal with the following dilemma: on the one hand
tourists are attracted both by a clean environment and a good touristic infrastructure, but, on
the other hand, the tourism industry is one of the main polluters in the relevant regions. The aim
of this paper is to find optimal investment policies that guarantee a flourishing tourism industry.
Since polluted regions distract tourists, the tourism planner has to take care of the environment
at the same time. Our analysis is based on rather simple and general assumptions as concerns the
interactions between the three main components of the system: infrastructure, tourists, and
environment. While Reference [16] used a similar descriptive model to predict the economic and
environmental impact of given policies, the present analysis wants to determine optimal
investment policies for maximizing tourism industry profits, while taking into account the
negative effect of pollution on the number of tourists.

Essentially, two types of long-run behaviour turn out to be optimal. First, the long-run
equilibrium may be a saddle point. In this case, the touristic region converges to a situation with
constant investments, a constant number of tourists and a constant level of pollution, which
means that the instantaneous pollution flow is neutralized by the absorptive capacity. Thus, the
level of investment as well as all other variables are constant in the long-run.

Second, and more interesting, we identify a scenario under which persistent oscillations are
optimal. This means that the optimal investment rate fluctuates persistently over time implying
that not only the touristic infrastructure and the number of tourists oscillate but also the quality
of the environment. In this case, periods with over-investment in touristic infrastructure occur,
alternated by periods in which investments are lower than the level that maintains the steady
state.

It is a well-known fact that, due to environmental pollution, after a flourishing period tourists
avoid some regions to visit more attractive sites. In order to compensate this instability, tourism
managers could increase investment and develop special services to attract tourists. Sometimes
they are successful with such programs, but at the expense of the environment, which is heavily
deteriorated (see Reference [16]). Another policy, however, would be to reduce the touristic
activities to give the environment a chance to recover, which in fact happens in our cyclical
solution. Of course, environmentalists would advocate such behavior, but here we showed that
this could also be optimal from a profit maximizing point of view.

It would be an interesting task to derive general conditions under which persistent cycles turn
out to be optimal. However, we are rather skeptical that such conditions can be obtained in a
general setting. Thus, the only thing we can assert is that optimal cycles exist for certain
parameter constellations.

The problem that an infinitesimal change of a parameter (here: the discount rate) may lead to
a sudden change of the qualitative behaviour of the solution paths (from a saddle-point to a
limit cycle) is ubiquitous. Benhabib [17] wrote that there does not exist a real economic

Copyright © 2002 John Wiley & Sons, Ltd. Optim. Contral Appl. Meth, 2002; 23: [-19
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interpretation for a sudden qualitative change: “The Hopf Bifurcation Theorem brings out a
qualitative change in the topological structure of a dynamic system when a parameter is varied
continuously. However, there does not seem to be a corresponding qualitative change in the
economic structure as the orbits appear. We cannot associate the appearance of orbits with, say,
the emergence of the inferiority of present or past consumption or satiation in the utility
function’.

It is certainly admitted that the proposed model is highly stylized, and, probably much too
simple to model a concrete planning situation. It shows, however, that under some
circumstances alternating periods of high and low investment reassures environmental quality
without reducing touristic activities too much. Our analysis might be seen as a first step to prove
the superiority of cyclical investment strategies compared with a long-run steady control. Since
we do not deal with a concrete planning case, no effort has been made at this stage to validate
our model with empirical data. However, the latter task should clearly be a main issue of future
research. Another important extension would be to include another investment opportunity,
which is more costly but less deteriorating.

Our planner is a profit maximizing tourism manager. He/she cares on environmental quality
only insofar as pollution deters potential tourists. Most of the decision-making oriented
literature (cf. for example References [18-20], or for a survey [8] ) deals with abatement policies
or other activities to reduce environmental pollution, both on the micro- and macroeconomic
level. Thus, it would be quite natural to include those activities as a second control variable,
A(?), influencing the dynamics of the stock of environmental pollution, P(¢). Since abatement is
costly, an additional cost term has to be included in the objective functional. As a ‘subcase’ of
such an extension the optimal allocation of a budget between investment into services and
pollution control could be considered. This budget may be either constant or depend on the
income generated by the tourists.

Another variant of the endless story of tourism and environment would be the explicit
inclusion of the pollution disutility in the objective functional. We might consider a central
planner who pursues environmentalistic goals not only in order to maximize touristic revenues,
but who draws explicit utility [rom a clean environment since forests, lakes and mountains are
of value not only for tourists but also for local people. Then, an interesting question would be
how the optimal investment policy into touristic industry is affected by such an explicit negative
assessment of pollution.

APPENDIX A

The maximum principle results in
A= C/([) = I =[(4)
and the canonical system is equal to (¢« (P) = o P) :
S =1I(4)—58
T =a(S,ky,P)—bT

P=cS+1T —o P

Copyright © 2002 John Wiley & Sons, Ltd. Optim, Control Appl. Meth. 2002; 23: 1-19
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A=+ 8 + ki + ka — as (S, ky, Py — 643
Jo =(r+ b)Yy —th3—p
Ay = (r+ a)ds — ap(S, ki, P) Ja

Firstly, a linear: The six eigenvalues of the Jacobian matrix of the canonical system are:
—d
r+90

1 <—b—fx1 + \/(b—ocl)z—4wz>
% (b+2r+oc1 + \/(b—a1)2—4'ca2>

The canonical systems for different, reasonable set of parameters are topologically equivalent.
Secondly, a concave in S and linear in P: The six eigenvalues of the Jacobian matrix of the
canonical system evaluated at the steady state (S*, T*, P*, AT, A3, A%) are

i (r + \/(7'+25)2 +dy(y— 1)S*7"2,1§>
% (—b—al + \/(b——al)z—'4m2>
% <b+2r+a1 + \/(b—a1)2—4m2>

From the viewpoint of topological equivalence there is no change to the linear case.
Thirdly, a concave in S and concave-convex in P; agp<0: The Jacobian matrix of the

canonical system evaluated in (S, T, P, A1, 42, A3) is

- 0 0 d1/di, 0 0
FlkysS=leP —b —2PePf(k)ST 0 0 0
o T —0l 0 0 0
s | MG =1 0 2vPe~"P ], - r+6  —flk)y —o
S-2gvP fle)ysSr! Si=levP
0 0 0 0 r+b —1
2vPe" )y - 0 2%y (k)SeP. 0 2P r4y
SllyyySt! (1—2vP?) S (k1)S

Using the values of parameter specified in the text the eigenvalues of the Jacobian matrix
evaluated at the steady state are y; = 0.642595, u, = —0.542595, 34 = 0.140112 + 0.297614 i,
and psg = —0.0401124 + 0.297614i.
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APPENDIX B

Lemma Bl

At an interior steady state (S*, T*, P* JY, 25, 73) of the system of differential equations
(15)—(21) the steady state values S$*, P* are solutions of the following two equations:

F(S,P)=0 S+ % Fle)STe™ — P =0 (BI)
) cS 14 14 w(s)
Fe2 (E*%SU(S)) P T = B2

with
R(©S) =@ +8) B8 +k +ka

U(S) = 2vb (K(S) + ’i‘i)
T
V =>by(r+ ocl)erE

W(S) = K(S)(r+ o)) (r + b)
From S*, P* the remaining steady-state values are given as

T = 3 fk)S e

A= (08%
p _pltw)
2 T A(S®, P

o —~2vpP*f (k1)S* e~ P
3T A(S*, P%)

with
A(S*, P*) = (r + o) (r + ) + 2 v tP*/ (k) S*Te 2"
Proof. The equations 4> =0 and 13 = 0 are linear in 2, and A3, which implies

1, =P (r+ay)
YY)

= —2vpPf(k))STe"F
2T A(S, P)
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and from § =0 and 7 = 0 we get |
h=d0S) T=3 fk)STe™F

Substituting into £ = 0 and 4; = 0 yields
oS+ % FUe)S'e™ —a P =0 (B3)

pf(k)S e ((r + o))y — 20vPS)

kS - A(S, P)

0 (B4)

Taking only the numerator of (B4) gives
R(S) ((r o) (r+b)+ 2vzpf(k1)s7'e-”’2) — pfUe)S e ((r + )y — 20vPS) =0 (BS)
or
=W(S)

R(S) (r + ) (r + b) —f(k1)S™ &= (0 (r + ot1) 7 — 20vpPS — 20t PSK(S)) =0 (B6)

From (B3) it follows that

fk)STle™P = %(m —g - a> (B7)
Substituting (B7) into (B6) gives
w(S) — %(ocl—g —- a) (pr+a)y—2v@ER(S)+po)SP) =0 (B8)

which is for fixed S a quadratic equation in P. Expanding and collecting terms yields Equation
(B2). 0O

Lemma B2.

For fixed S the equation F(S,P) =0 implicitly defines a function P3(S), which has the
following properties:

P3(O) = lilns_,oopg,(S) = 00,

® P3(S) is monotonically increasing.

P5(S) is defined VS =0.

® P3(S) has a vertical asymptote at the origin for y<1.

Proof. The partial derivatives 0sF(S,P) =0 +§yf (k)S"'e™”* >0 and 8pF(S,P) = -1
(2 va(kl)SYe”“PZ) — o) <0 gives
ob+ 1y flk)ST e o
arh + 2 viPf(k))Sre—vF

Py(S) =
Obviously P4(S) — oo for (S, P) — (0,0) in case that y<1. O
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For fixed S the solutions of the quadratic equation (B2) are given by

_ oS v ) v LD
PS) = Yoot \/ (‘2‘0; B ZJSU(S)) oy U(S)

_ oS V as V 2 W(S)
PS) =5 Y 25y \f(z?l B 2o'SU(S)) o U(S)

For the functions P;(S) and Py(S) the following lemma holds:

Lemma B3,

There are two constants Sy and S such that

(1)  The term under the squareroot is positive and monotonically decreasing VS e (0, S\],
and negative V.S € (S, S»).

(2) oS V oS |4

Tm—m<o VSE(O,S]] and Tm—m>0 VSE[SZ,OO)

3
@) limgg+ P(S) = 400, limg_ o+ P2(S) =0, limg_o+ P’z(S)< -+ 00

Proof. Property (3) is obvious and to prove properties (1) and (2) it is enough to note that

lim ﬂ — v = —00
52050 T 208US) T
and that
S v W) (r+a)r+b  K(S)
e A I =
T 205U(S) BV TG Db, K(S) F (po)j<

are monotonically increasing in S. [J

Lemma B4,

The optimal control model (4) together with the dynamics (1)-(3) cannot have a steady state
with S*>S5.

Proof. Suppose that at the steady state S* >S5 holds. This implies

o5* Vv oS Vv 2 S*
*) N —F———— LY oty B
PZ(S ) PI(S ) 20, + ZO‘S*U(S*) + \/(20(1 20‘S*U(S*)> o
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and thus P*< o .S*«;. Hence,
F(S%P*) = 0 5% 4 = fk)S*e ™ — a1 P > T f(l)S*7e™7" >,
which is a contradiction to Equation (B1). [

Lemma BS.
The graphs of the functions P»(S) and P3(S) do not intersect for .S > 0.

Proof. The function P,(S) is defined on the interval [0, S}]; for any §* €0, S1] it holds:

oS* V |14 aS*\*  oS*
% g e A — — —— = —_—
Py(S¥) 2 + 20S*U(S%) \/<2GS*U(S*) 20‘1) x
Hence,
F(S*, Po(S*) = 0 5% + 7 f)S T3 — o) Po(S%) > (ki)™ e ™S,

which is positive, when S>0. [

Proposition I (equivalent formulation)

The dynamical system (15)-(21) has a unfque equilibrium with S > 0.

Proof. Lemma B4 says that steady-state values (S*, P*) have to lie in the region S< S, and
Lemma BS5 says, respectively, that they are given as intersections of P»(S) and P3(S). As Py(S)
decreases monotonically from co to Pi(Sy) and as P3(S) increases monotonically from 0 to co,
there is a unique steady state for S >0 (Figure Bl). (J

P

1
1
P,lis) P,(S)
D1!III|II!Illllllllllll_l_lIllllllllllllll:llllIlllill!Lllll S
0 42 3 4 5 &5 7 ' 9 10 1.1
s, s,

Figure B1. Graphs of the functions P;(S), Po(S) and P;(S).
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