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Electricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity
consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to
address the concept of structuring the portfolio and focuses on how to optimally allocate positions in peak
and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk
premiums per unit of day-ahead risk as a measure of relative costs of hedging risk in the day-ahead markets.
The outcomes of the model are then applied to show (i) that it is typically not optimal to hedge a baseload
consumption profile with a baseload forward contract and (ii) that, under reasonable assumptions, risk
taking by the purchaser is rewarded by lower expected costs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In many countries electricity markets are liberalized. As a result
large electricity purchasers, e.g. large industrial consumers and
electricity retail distribution companies, need to contract the future
expected electricity consumption (load) for their own company or for
a pool of clients. In liberalized electricity markets, they can do so by
managing a hedging portfolio of contracts that involve delivery of
electricity in future time periods and/or financially settle the
difference between a fixed and a variable price. Examples of such
contracts are day-ahead contracts, derivatives such as forwards,
futures, swaps, variable volume or swing options and direct or
indirect investments in energy production facilities.1 Proper manage-
ment of the load hedging portfolio involves a continuous assessment
of (a) the types of instruments (contracts) to buy or sell and (b) at what
moment the portfolio needs to be rebalanced according to the risks
the electricity purchaser prefers to take. An obvious objective of the
purchaser is to incur the lowest expected costs for the expected
electricity load, given a specific risk target.

Since the beginning of the liberalization of energy markets,
researchers have primarily focused on the price characteristics of
different energy commodities and the valuation of derivative
contracts. Traditionally the academic literature has dealt with
proposing optimal hedging strategies using commodity futures.2 The
issue of constructing efficient portfolios for electricity purchasers has
received much less attention in the academic literature. Given the
sometimes extreme price fluctuations in energy commodities, we feel
that this issue is grossly undervalued. Poorly constructed portfolios
exhibit either too high expected costs at a given risk level or,
alternatively, toomuch risk for the current level of expected costs. This
paper focuses on optimal instrument selection for a rational electricity
purchaser that cares about the mean and variance of the future
sourcing costs. It specifically tackles the question how electricity
purchasers should choose between peak and off-peak forward
contracts in order to structure their portfolios optimally. To do so,
we construct a simple one-period framework and cast the allocation
problem in a portfolio framework to find the optimal allocations to the
forward contracts and the day-ahead market.

The paper is organized as follows. Section 2 discusses the literature
on energy portfolio management. In Section 3 we present our model.
Section 4 highlights some managerial implications of the model and
provides answers to the questions how a company should purchase a
baseload consumption profile and whether taking risk is rewarded by
lower expected costs. Section 5 concludes.

Energy Economics xxx (2008) xxx–xxx

⁎ Corresponding author. Erasmus University Rotterdam, Erasmus School of Econom-
ics, Applied Economics, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands. Tel.: +3110
408 1450.

E-mail addresses: rhuisman@few.eur.nl (R. Huisman), rmahieu@rsm.nl (R. Mahieu),
felixschlichter@gmail.com (F. Schlichter).
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2. Portfolio structuring in electricity markets

In order to facilitate trading of power contracts many countries
have established over-the-counter (OTC) and centralized markets. The
two most prevalent markets are the day-ahead and forward/futures
markets. On the day-ahead market, traders can submit bids and offers
for amounts of electricity to be delivered in the individual hours of the
next day. This market is the closest equivalent to a spot market.3

Electricity purchasers use day-ahead markets for buying (a part of)
their electricity consumption, but the amount of price variation in
these markets is substantial. As electricity cannot be stored in an
efficient way, prices are very volatile, and seasonal and price spikes
frequently occur.4

Instead of taking the risk of price variations in the day-ahead
market, purchasers seek protection, depending on their risk appetite,
and manage a portfolio of derivative contracts that involve delivery at
future dates against fixed prices. Popular contracts are the so-called
baseload and peakload forward and future contracts that can be traded
on all OTC markets (forwards) and exchanges (futures).5 On many
electricity markets around theworld electricity can be traded by using
contracts that apply specifically to peak and off-peak hours.6 Baseload
contracts involve the delivery of 1 MW in all hours of the delivery
period against a price fixated at the moment at which the transaction
occurs. Peakload contracts are defined similarly, but involve delivery
only in the peak hours of the delivery period. Delivery periods range
from weeks, months, quarters to calendar years, sometimes up to six
years ahead. By holding a portfolio of these contracts, the purchaser
can already lock in the acquisition of (a part of) the expected future
consumption long before the actual delivery and consumption period
against fixed prices and can thereby manage the risks faced from price
variations in the day-ahead market.

The prices of baseload and peakload forward contracts exhibit
different characteristics than day-ahead prices. According to the
expectation theory,7 forward prices for non-storable commodities
reflect the expectation of market participants on the (average) spot
price in the delivery period and a risk premium that compensates
producers for bearing the uncertainty of committing to sell against
fixed prices. In electricity markets, risk premiums can be positive and
negative. For instance, Bessembinder and Lemmon (2002) and
Karakatsani and Bunn (2005) find negative risk premiums in low-
demand off-peak hours due to power producers who are willing to
pay a premium for not having to cut down production from plants
with long ramp-up and ramp-down times in order to be able to
produce more in the high-demand and more expensive peak hours.

For the portfolio manager forward contracts make it possible to fix
delivery prices, thereby reducing the exposure to the price fluctua-
tions in the day-ahead market. Purchasing power with forward
contracts boils down to hedging the risk faced from the day-ahead
market with the expected hedging costs being equal to the risk
premium embedded in the forward price.

Given a set of forward and future contracts that can be traded every
day, the task of the portfolio manager is to determine the optimal

selection of forward contracts to hold for various delivery periods. The
optimal selection depends on a risk assessment of the day-ahead
market, an expectation regarding the expected price in the day-ahead
market in the delivery period, the amount of risk premium she needs
to pay and her personal (or the company's) appetite for taking risk.
The goal of the portfolio manager is to maintain such a portfolio that
yields lowest expected costs for electricity consumption while
respecting her risk appetite.

This paper builds on the original ideas from Markowitz (1952),
who proposes a methodology to construct efficient investment
portfolios based on investors' goal to maximize expected future
returns on their investments given a certain level of risk. The idea to
use portfolio theory to construct energy hedging portfolios is not new.
Several researchers have followed the Markowitz methodology to
address the hedging decision process, particularly Näsäkkälä and
Keppo (2005) and Woo et al. (2004). Both studies focus on the
interaction between stochastic consumption volumes and electricity
prices (day-ahead and forward contracts) and propose a Markowitz-
style mean-variance framework to determine optimal hedging
strategies. Näsäkkälä and Keppo (2005) apply static forward hedging
strategies in a representative agent setting. The main result from this
paper is that agents who are confronted with high load uncertainties
will postpone their hedging strategies in the expectation of load
uncertainties resolving over time. Their results crucially depend on
the assumption on the correlation between forward prices and load
estimates. In our view these correlation assumptions are difficult to
maintain, especially as we feel no direct causal relation between these
variables exists. In general, the relation between volumes, like load or
demand, and prices is weak in electricity markets. See for example the
evidence in Mount et al. (2006) and Kanamura and Ohashi (2007),
who show that only in very extreme cases, where demand is
extraordinarily high, that prices react substantially. In normal
circumstances the impact of load on day-ahead electricity prices is
statistically significant, but the economic significance of this result is
limited.

Vehviläinen and Keppo (2004) take the viewpoint of a generating
company and solve for hedging strategies using Value at Risk (VaR) as
a risk measure instead of standard deviation. Their analysis based on
both stochastic consumption and prices is meaningful, yet complex.
Even after a number of simplifying assumptions (Vehviläinen and
Keppo, 2004) need simulation techniques to solve for the optimal
hedging strategies. Again, it is questionable if electricity prices are
elastic with respect to consumption patterns. Furthermore, even if
prices would be elastic consumption patterns are highly persistent,
and therefore less informative for price explaining price behavior.

The paper that is closest to ours is Woo et al. (2004). These authors
provide a general strategy of hedging shorter-dated price exposures
with forward contracts. They also focus on finding the efficient
frontier for trading off expected costs and risks. Our approach is
different in the sense that we extend the set of hedging instruments
by differentiating between peak and off-peak hours during the day.
We find that this feature of the electricity market cannot be ignored.
As a result we expect that efficiency of the expected cost-risk trade-off
can be enhanced.

With respect to the studies mentioned above this paper focuses on
providing analytical insight in the optimal hedging amounts for an
electricity purchaser in a setting that allows for different types of
forward contracts, day-ahead prices and risk attitudes. Special
attention is given to the relative impact on the optimal hedging
decisions of forward risk premia.

3. The purchase decision in a one-period framework

At time t, consider an electricity purchaser who has to decide on
how to purchase the consumption for future delivery of electricity at
day T. We have that tbT−1, i.e. the hedging decision needs to be made

3 Many countries also run imbalance markets in which power changes hand in real-
time. The liquidity of these markets is rather limited and prices are in some cases set
by the imbalance operator at their discretion. Karakatsani and Bunn (2005) show that
there may be an effect of the imbalance market on the day-ahead market, although
they do not provide a clear economic rationale. In this paper we refrain from this
relation and leave the balancing markets out of the analysis.

4 We refer to Bunn and Karakatsani (2003), Huisman et al. (2007), among others, for
an overview on (hourly specific) day-ahead price characteristics.

5 In this paper, we do not differentiate between forwards and futures and only
mention forward contracts, although in reality small price differences might occur due
to differences in settlement procedures and margining schemes.

6 See for example the overview in Eydeland and Wolyniec (2003) regarding North-
American electricity markets. For Europe, see Brand et al. (2002).

7 We refer to Fama and French (1987) for an overview of forward premiums in
commodity markets.
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at least 2 days before the delivery period.8 Delivery takes place in all
hours of day T. The actual consumption volume during hour h on day
T equals v(h, T) MW h (h=1,…, 24).

At time t, the purchaser has the opportunity to enter in forward or
future contracts that facilitate delivery on day T at prices fixated at time
t. We assume that two forwards contracts exist that deliver in day T: a
peak contract that delivers 1 MW of electricity in all the peak hours of
day T and an off-peak contract that delivers 1 MW in all the off-peak
hours of day T.9 LetHp be the set of peak hours in day T and letHo be the
set of off-peak hours. The number of peak and off-peak hours at day T
equal Np and No, respectively. The purchaser has to decide upon the
number of peak contracts, θp, and off-peak contracts, θo.We assume that
the forward contracts can be traded in any size with perfect liquidity
with no short-sale constraints and zero transaction costs. At time t, the
observed market prices for the forward contracts equal fo(t, T) for the
off-peak contract and fp(t, T) for the peak contract.

In addition to entering in forward contracts, the purchaser can
purchase electricity for delivery during day T in the day-aheadmarket at
time T−1. We assume that the day-ahead market offers the last
opportunity before delivery to purchase electricity. Therefore, the
purchaserwill use thismarket to settle the difference between expected
consumption volume and the volume already contracted with forward
contracts.10 Let s(h, T−1) be the price in the day-aheadmarket at T−1 for
delivery of 1 MW in hour h of day T. Given the above assumptions, the
total costs for electricity consumption at day T, C(T), equals:

C Tð Þ=Noθofo t; Tð Þ+Npθpfp t; Tð Þ+ ∑
haHo

v h; Tð Þ−θoð Þs h; T−1ð Þ
+ ∑

haHp

v h; Tð Þ−θp
� �

s h; T−1ð Þ:
ð1Þ

The total cost function is equal to the sum of costs from the
volumes purchasedwith peak and off-peak forward contracts at time t
and the costs of the remaining purchases in the day-ahead market.
Note that we do not consider quantity risk, i.e. the possibility that
trading larger amounts of electricity would affect prices. We refer
again to Mount et al. (2006) and Kanamura and Ohashi (2007) who
show that only in extreme cases the underlying quantities will affect
day-ahead electricity prices.

At time t, the day-ahead prices and the consumption volumes are
uncertain. Therefore, the total costs C(T) are uncertain too. The
objective of the purchaser is then to construct an optimal allocation
over the peak and off-peak forward contracts that yield the lowest
expected costs. However, in dealing with the uncertainty, we assume
that the purchaser is not willing to take more risk than her risk
appetite specifies. This objective is in line with the framework initially
proposed byMarkowitz (1952) for investment portfolios. In that world
an investor first decides on the amount of risk he is willing to take and
then to find the portfolio that yields the highest expected return at
that risk level. In this paper, we assume that the goal of the purchaser
is to achieve lowest expected costs at a risk level that meets her risk

appetite. The risk appetite is defined in terms of a maximum variance
level σmax

2 . Then, the optimization problem of the purchaser becomes:

min
θo ;θp

Et C Tð Þf g

s:t: vart C Tð Þf g � σ2
max;

ð2Þ

where vart{C(T)} is the variance of the total costs anticipated at time t.
To further specify the optimization problem and the uncertainty from
variations in prices and volumes, we assume that the statistical
properties of day-ahead prices and volumes can be described by the
first two moments.11 For convenience, we switch to matrix notation.

Let s(T−1) be a 24×1 vector with the stacked day-ahead prices.
s(T−1) is distributed with a 24×1 mean vector µs and a 24×24
hourly covariance matrix Ωs. Let ft be a 2×1 vector with the
stacked forward prices (fo(t, T) fp(t, T))′. Likewise, let θt be the 2×1
vector (θo θp)′ and N the 2×1 vector with (No Np)′.

The hourly volumes v(h, T) are stacked in the 24×1 vector v(T). The
stochastic properties of the hourly volumes are represented by the
24×1 vector with hourly means µv and the hourly 24×24 covariance
matrix Ωv. Lastly, we introduce a 24×2 selection matrix B with row h
equalling (1 0) when h is an off-peak hour and (0 1) when h is a peak
hour (h=1… 24).

In matrix notation the cost function 0(T) from (1) can then be
written as

C Tð Þ=θ0t N � f t−B0s T−1ð Þ� �
+v Tð Þ0s T−1ð Þ; ð3Þ

with ‘·’ the element-wise matrix multiplication operator. In order to
proceed to an analytic solution we assume that the day-ahead prices
and the actual consumption volumes are expectation-independent
and variance-independent (Bohrnstedt and Goldberger, 1969). This
implies among others that all co-variances between day-ahead prices
and volumes are zero, i.e. a deviation in the actual consumption
volume from its expected value does not necessary lead to a change in
day-ahead prices. Of course, this assumption does not hold when a
large increase in volumeswould lead to a differentmarginal fuel in the
merit order. However, for relatively small changes and under normal
market conditions, the assumption is valid in our opinion. Using the
results from Bohrnstedt and Goldberger (1969), we have that Et{v(T)′s
(T−1)}=μv′μs and vart{v(T)′s(T−1)}=tr(ΩsΩv)+μs′Ωvμs+μv′Ωsμv, with
tr(·) the matrix trace operator. From Eq. (3) and the above statistical
properties, we canwrite the expectation and variance of the total cost,
conditional on information available at t, as:

Et C Tð Þf g=θ0t N � f t−B0μs

� �
+μ0vμs; ð4Þ

and

vart C Tð Þf g=θ0tB0WsBθt+tr WsWvð Þ+μ0sWvμs+μ0vWsμv+2θ0t B0μs

� �
μ0vμs

� �
:

ð5Þ

8 If the decision would be made at t=T−1 only the day-ahead market is available to
the purchaser. As a result the optimization problem becomes trivial.

9 In most electricity markets, off-peak contracts cannot be traded directly but can be
constructed synthetically by simultaneously buying one baseload contract (that
delivers a fixed volume in each hour of the delivery period) and selling one peak
contract. The assumption that an off-peak contract can be traded in the market is made
for simplicity and does not lead to a loss in generalization.
10 In real life, imbalance and other intraday markets exist where electricity can be
purchased that will be delivered in the same day. However, the liquidity of these
markets is thin relative to the day-ahead markets and practitioners use these intraday
markets to settle slight changes in volume that occur in the delivery day. Therefore, our
assumption that the purchaser uses the day-ahead to settle the differences between
consumption volume and previously contracted volume does not deviate too far from
reality.

11 Electricity prices exhibit strong higher moment characteristics, most noteworthy
skewness and strong leptokurtosis. See for example, Huisman and Mahieu (2003) and
Bunn and Karakatsani (2003). However, in this paper we concern with finding an
optimal allocation in a mean-variance (two moments) framework. We refer to Levy
and Markowitz (1979) and Kroll et al. (1984), who show that in many typical portfolio
optimization cases the first two moments suffice in determining the optimal
allocation. Building on these insights we assume that higher moment characteristics
of electricity prices do not play a role in our analysis. We leave the implication of
higher moments in the optimal allocation for further research.
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In order to solve Eq. (2) for the optimal allocations θtwe specify the
Lagrangian:

L=θ0 t N � f t−B0μs

� �
+μ0vμs

+λ θ0tB0WsBθt+tr WsWvð Þ+μ0sWvμs+μ0vWsμv+2θ0t B0μs

� �
μ0vμs

� �
−σ2

max

� �
;

ð6Þ

with λ a Lagrange multiplier. The first-order Karush–Kuhn–Tucker
conditions are

AL
Aθt j θ̂t ; λ̂=N � f t−B0μs+2λθ0tB0 WB+μs μ0vμs

� �� �
=0 ð7aÞ

AL
Aλ j

θ̂t ; λ̂
=θ0tB0WsBθt+tr WsWvð Þ+μ0sWvμs+μ0vWsμv+2θ0t B0μs

� �
μ0vμs

� �
−σ2

max � 0

ð7bÞ

θ0tB0WsBθt+tr WsWvð Þ+μ0sWvμs+μ0vWsμv+2θ0t B0μs

� �
μ0vμs

� �
−σ2

max

� �
λ̂=0

ð7cÞ

λ̂z0 ð7dÞ

If the Lagrange multiplier λ̂=0 then the variance restriction is not
binding. This implies that the risk limit σmax

2 cannot be met. In that
case the optimal allocation to forward contracts should be found from
Eq. (7a). Inspection of this condition shows that depending on the sign
of the composite forward premia No f o t; Tð Þ−∑24

h=1Bh1s h; T−1ð Þ for off-
peak hours and Np f p t; Tð Þ−∑24

h=1Bh2s h; T−1ð Þ for peak hours the
positions would become unlimited. Clearly this is not possible. As a
result the variance restriction is binding: λ̂N0. In that case we can
solve for the optimal allocation θ̂t from Eq. (7a) and the equality

θ0tB0WsBθt+tr WsWvð Þ+μ0sWvμs+μ0vWsμv+2θ0t B0μs

� �
μ0vμs

� �
=σ2

max:

An analytical solution could be found for θt, but these are not
straightforward and do not provide any intuition.12 In order to provide
analytical results that provide insight, we continue in a more stylized
setting.

3.1. One peak and one off-peak hour

Huisman et al. (2007) show that the covariance matrix of hourly
day-ahead prices exhibits a clear block structure of high correlations
among either the peak hours and the off-peak hours and near-zero
correlations between peak and off-peak hours. To some extent, hourly
day-ahead prices can be seen to behave in independent peak and off-
peak blocks. Motivated by this result, we simplify the above model by
bringing the number of hours back to just two: one representative off-
peak and one representative peak hour. Assuming 2 h in the delivery
day and zero correlation between the peak and off-peak hour, we
rewrite the model as follows. The expected cost function (4) becomes:

Et C Tð Þf g=θofo t; Tð Þ+θpfp t; Tð Þ+½μvo−θo�μso+ μvp−θp
h i

μsp; ð8Þ

with µvo(µvp) the mean of the volumes in the representative off-peak
(peak) hour and µo(µp) the mean of the day-ahead prices that are
representative for the off-peak (peak) hour. The variance Eq. (5)
becomes:

vart C Tð Þf g=μ2
soσ

2
vo+ðμvo−θoÞ2σ2

so+σ
2
voσ

2
so+μ

2
spσ

2
vp+ μvp−θp

� �2
σ2

sp+σ
2
vpσ

2
sp:

ð9Þ

In the above equation, σso and σsp represent the standard deviation
of the off-peak and peak prices and σvo and σvp reflect the standard
deviations of the off-peak and peak volumes. The first-order
conditions that result from the minimization of the expected cost
with respect to the variance restriction equal:

AL
Aθo j θ̂; λ̂=fo−μso−2 λ̂ μvo− θ̂o

� �
σ2

so=0; ð10aÞ

AL
Aθp j θ̂; λ̂=fp−μsp−2 λ̂ μvp− θ̂p

� �
σ2

sp=0; ð10bÞ

AL
Aλ j

θ̂
=μ2

soσ
2
vo+ μvo−θ̂o

� �2
σ2

so+σ
2
voσ

2
so+μ

2
spσ

2
vp+ μvp−θ̂p

� �2
σ2

sp+σ
2
vpσ

2
sp−σ

2
max=0:

ð10cÞ

Rearranging Eqs. (10a) and (10b) yields

μvp−θ̂p

μvo−θ̂o
=
ðfp−μspÞ=σ2

sp

fo−μsoð Þ=σ2
so
: ð11Þ

The righthandsideof Eq. (11) is the ratioof thehedging costs per unit
of (variance) risk in the peak hour over the off-peak hour. The hedging
costs per unit of risk equals the forward premium (f−µs) divided by the
amount of (variance) risk σs

2. The higher this number is, the more a
purchaser pays for hedging awayday-aheadprice risk. Eq. (11) yields the
intuitive result that the ratio of openpositions equals the ratio of relative
hedging costs: the more expensive it is to hedge in 1 h, the bigger the
open position in that hour relative to the other hour.

For convenience, we let η be the ratio of the hedging costs per unit
of (variance) risk in the peak hour over the off-peak hour, that is:

η=
ðfp−μspÞ=σ2

sp

fo−μsoð Þ=σ2
so
: ð12Þ

The ratio of expected open positions, the left-hand-side of Eq. (11),
shows how the purchaser will divide her resources over the off-peak
and peak hours in the day-ahead market. If this ratio equals one (η=1)
then

μvp− θ̂p=μvo− θ̂o () μvp−μvo= θ̂p− θ̂o:

The purchaser buys electricity in the forward market such that the
difference between the off-peak and peak hour volumes matches the
difference between the expected volumes in both hours. If the ratio is
higher (lower) than one, then hedging cost in the peak hour is
relatively higher (lower) than in the off-peak hour, which leads the
purchaser to a relatively smaller (larger) forward position in the peak
(off-peak) hour.

Eq. (11) reveals another important result. The risk appetite of the
purchaser, σmax

2 does not affect the ratio of the open positions. That is,
every purchaser will structure her optimal portfolio such that Eq. (11)
holds, given that they do not disagree on the first and second moments
of the electricity spot prices.13 Therefore, to determine the optimal
portfolio, the purchaser follows a two-step approach: firstly, she
determines the optimal relative allocations to the peak and off-peak
hour and, secondly, she will set the exact allocation levels based on her
risk appetite. This result is in line with the separation principle that

12 Note that one can easily find a numerical solution to the equality.

13 If purchasers hold heterogeneous beliefs then each of them will have a different η.
Note that in this paper we do not strive for finding allocations that hold in equilibrium;
our analysis is partial and applies in general to individual purchasers, unless we
assume that all purchasers have similar beliefs on the statistical distributions of
electricity spot prices and volumes.
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results from the modern portfolio theory of Markowitz (1952). The
optimal investment portfolio is constructed in two subsequent steps.
First, themost efficient portfolio is determined (referred to as themarket
portfolio by Markowitz). Secondly, the investor chooses between
investing in the market portfolio and the risk-free interest rate in such
a way that her resulting portfolio reflects her risk appetite.14

In order to determine the optimal allocations θ o and θ p, we first
define the excess risk appetite σe

2 being the difference between the risk
appetite of the electricity purchaser σmax

2 and the risks associated with
the variation in themax consumption volume that cannot be hedged by
taking positions in forward contracts (but could be managed by
improving consumption volume forecasting methods).

σ2
e=σ

2
max−ðμ2

so+σ
2
soÞσ2

vo− μ2
sp+σ

2
sp

� �
σ2

vp:

We assume that the purchaser is aware of the volume risk and that
she accounts for that in her risk appetite. Therefore, we assume that
σe
2≥0.
Substituting Eq. (11) in Eq. (10c) and solving for θp, we find that the

optimal allocation for the peak hour:

θ̂p=μvp−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

e

σ2
so=η2+σ2

sp
;

s
ð13Þ

and the optimal solution for the off-peak hour θ̂o:

θ̂o=μvo−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

e

σ2
so+σ2

spη2
:

s
ð14Þ

The optimal hedge ratios θo and θp depend on the hourly expected
consumption volumes, the excess risk appetite, the variances of the
hourly prices and the ratio of relative hedging costs η. Solving for the
optimal total expected costs, we insert the optimal hedging positions
θ̂o and θ̂p in the expected total cost function (8). We obtain:

Et C Tð Þf g=μvofo+μvpfp−
fo−μsoð Þσ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

so+σ2
spη2

q −
ðfp−μspÞσeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

so=η2+σ2
sp

q ð15Þ

From this expression we immediately see that positive risk premia
(f−µs) lead to lower expected costs.

4. Managerial implications

In this section, we apply the outcomes of the model from the
previous section to address two fundamental questions that purcha-
sers deal with in practice.

4.1. How to use baseload contracts to purchase a baseload profile?

Some electricity consumers have a baseload consumption profile;
they consume the same expected amount of electricity in each hour of
the day (i.e. µvo=µvp≡µv). Examples of such companies are chemical
plants and industrial companies that work 24 h per day or super-
markets that are open all day. Baseload contracts (OTC forwards or
futures) deliver in each hour of the delivery period and therefore
perfectly match the baseload consumption profile. At first glance it
seems straightforward to purchase the baseload profile directly with a
baseload contract. However, from Eq. (11) it appears that hedgingwith
baseload contracts exclusively (θ̂p= θ̂o) may not be the most optimal
strategy. For a baseload profile, Eq. (11) can be rewritten as:

θ̂p=μv− μv−θ̂o
� �

η; ð16Þ

with η as defined in Eq. (12). It is obvious that θ̂p only equals θ̂o when
η equals 1. The latter occurs when the relative risk-adjusted costs of
hedging is the same for both hours. In all other cases, a baseload
contract is not the optimal strategy and the purchaser would choose a
combination of peak and off-peak contracts and a position on the day-
ahead market instead. A purchaser who only uses baseload contracts
in a world where the relative costs of hedging are not equal, could
obtain lower expected costs level by applying a more differentiated
hedging strategy by using an appropriate combination of peak and off-
peak contracts.

4.2. Will taking more risk be rewarded with lower expected costs?

In order to provide insight in this issue, we need the first-order
partial derivative of the optimal expected costs function (15) with
respect to the risk appetiteσmax

2 of thepurchaser. Recall that in the above
formulas, we used the risk appetite in excess of the volumetric risk, σe

2,
instead of the risk appetite itself. As the excess risk appetite depends
linearly on the risk appetite, we will proceed with the excess risk
appetite. From Eq. (15), it can be seen that the first-order derivative of
the optimal total costs with respect to σe is negative assuming that the
expected risk premiums are positive. This implies that taking risk is
rewarded by lower expected costs when expected risk premiums are
positive, and vice versa.

14 Remember that these portfolio allocation separation results hold under the
assumption of a representative agent. For more information on these theorems in a
setting with heterogeneous beliefs, see Chabi-Yo et al. (2008).

Fig. 1. The relation between risk appetite and expected costs.
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The following real-life case providesmore insight in the risk versus
expected costs relation and the hedging decision of the purchaser.
Consider a power purchaser who needs to purchase the expected
consumption of 1MW in the off-peak hour and 2MW in the peak hour
of a specific delivery day in 2009. We assume that she faces no
volumetric risk: σvo

2=σvp
2=0. The delivery takes place in the American

South Californian SP-15 market and hence she considers the optimal
allocations in an off-peakload and peakload calendar year 2009 future
contract (CAL09), which we assume is representative for the delivery
day, or she can wait and purchase the electricity needed in the day-
ahead market. On the SP-15 market, among some other markets, one
can trade directly off-peak and peak contracts on both day-ahead and
longer term delivery bases and therefore exactly matches our
framework. We have, without any specific reason for selecting the
date, used prices observed on January 10th, 2008. On that day, the off-
peak futures CAL09 closed at $56.73 and the peak contract closed at
$80.34. If the purchaser would buy the total volume using one off-
peak contract and two peak contracts, her total cost equals $217.41
euros. This cost represents a zero-risk portfolio, assuming no volu-
metric risk. In order to examine whether the purchaser can improve
upon these expected expenditures, we apply the allocation model
from the previous section. To that endwe have to determine values for
the expected day-ahead prices and the associated standard deviations.
For simplicity reasons, we assume that the average day-ahead prices
on January 10th ($54.28 per MWh for off-peak delivery and $68.54 per
MWh for peak load hours) equal the expected day-ahead prices in the
delivery period. For the standard deviations of the prices, we
calculated the standard deviations of the daily average off-peak and
peak prices over the previous calendar year 2007. The standard
deviations are σsp=16.53 $ per MW h for the peak hours and σso=
7.10 $ per MWh for the off-peak hours. Fig. 1 presents the outcomes of
the model for different values for the risk appetite. The solid line in
Fig. 1 represents the expected cost. In case the risk appetite is zero,
σmax
2 =0, the purchaser is not willing to take risk and the total expected

cost equal 217.41 $ per MW h. In case the purchaser wants to take
more risk, the expected costs decline: taking more risk is rewarded by
lower expected cost. The lower expected costs are obtained by
lowering the number of forward contracts in the portfolio, to profit
from the lower expected prices in the day-ahead market. While
increasing the risk appetite, the optimal θo and θp decline, but the
extent to which they decline is different. This depends on the ratio of
relative risk premia η in Eq. (12). In our example, the value of this ratio
equals 0.89. This implies that the risk premium in the peak contract is
lower per unit of risk than the risk premium for the off-peak hours.
Therefore, the purchaser can takemore risk by lowering the number of
off-peak forward contracts faster than the number of peak contracts,
as the risk premium in the off-peak contract is higher per unit of risk.15

5. Concluding remarks

In this paper we have introduced a one-period framework to exa-
mine the optimal allocations to peak and off-peak forward contracts of a
rational electricity purchaser who wants to hedge both price and
volumetric risks. The results show that building an optimal portfolio
with electricity forward contracts is a two-step procedure. First, pur-
chasers find the optimal allocation to peak contracts relative to off-peak

contracts in order to profit from differences in the relative hedging cost
efficiency involved in both contracts. These relative positions are the
same for every purchaser as they are not influenced by individual risk
appetites. Secondly, the purchaser chooses the exact allocations,
including positions in the day-ahead market, to meet her risk appetite.

We apply the model to focus on two important empirical cases in
purchasing electricity. The first case shows that it is only optimal to
source a baseload consumption profile with a baseload forward
contract when the hedging costs per unit of day-ahead risk are the
same for both peak and off-peak contracts. In practice, these marginal
hedging costs are not likely to be the same at all times, indicating that
a purchaser would be better off in holding a different portfolio with
peak and off-peak contracts instead. The second case reveals that
purchasers with a higher risk appetite on the day-ahead market are
rewarded with lower expected purchasing costs, provided that
expected risk premiums are positive.
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