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Abstract

In this paper a new decision rule for capital budgeting is consid-

ered. A firm has the opportunity to invest in a project of uncertain

profitability. Over time, the firm receives additional information in the

form of signals indicating the profitability of the project. The belief

that the firm needs to have in a profitable project for investment to be

optimal is calculated and analyzed. It is shown that the probability

of investing in a project with low profitability is larger when the firm

uses a conventional rule like the net present value rule. As a coun-

terintuitive result it is obtained that it can be optimal to undertake

the investment at a later point in time in case the expected number

of signals per time unit is higher. Also an error measure is discussed

that indicates the accuracy of capital budgeting rules in this stochastic

environment.
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1 Introduction

In this paper a firm is considered that faces the decision whether or not

to invest in a project. The project’s profitability is not known beforehand.

However, imperfect signals arrive over time indicating the project either to

be good or bad. These signals cause the firm to update its valuation of

the project. The aim is to determine the timing of investment as well as

the effects of the quantity and the quality of the signals on the investment

decision.

The problem can for example be the adoption of a technological innova-

tion whose effectiveness in unknown. One can also think of a firm having

the opportunity to enter a new market which involves sunk investment costs.

The uncertainty can then for instance be caused by unknown consumer in-

terest, e.g. demand can be favourable or not. Consider for instance the

telecommunication sector where there is one company that can supply a

new service to its customers. However, the company is uncertain about the

possible success of the new service. Occasionally, the firm receives signals

from its environment from which it can deduce information concerning the

profitability of the new service. Here we can think of market performance

of related products and also of more general economic indicators that may

influence the market performance of the new service. Another example is

given by a pharmaceutical firm that is developing a new drug. Test results

are coming in indicating whether the drug is effective or not.

This situation is modelled by considering a project that can be either

good or bad. If the project is bad, the optimal strategy is to refrain from

investment. Since the firm incurs sunk costs when investing in the project,

a loss is suffered in case the project is bad and the firm invests. At irregular

intervals, however, the firm receives a signal about the quality of the project.

The signals indicate whether the project is good or bad, but it is known to

the firm that the signal is imperfect. The points in time at which signals

arrive are unknown beforehand. Every time the firm receives a signal it

updates its belief that the project is good in a Bayesian way. Therefore,

by delaying investment and waiting for more signals to arrive, the firm can

predict with higher accuracy whether the market is good or bad. This

induces an option value of waiting. The question is how many good signals
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relative to bad signals the firm needs to observe, to justify investment in the

project. We show that this is equivalent to finding a critical level for the

belief that the project is good, given the available signals. This belief turns

out to depend critically on the quality of the signal, i.e. the probability with

which the signals reflect the true state of the world, as well as the frequency

at which signals occur over time.

The signals are modelled as two correlated binomially distributed ran-

dom variables. The first one models the arrival of signals while the latter

models its type, i.e. indicating that the project is good or bad. As soon as

the firm has invested, the true state of the world is revealed.

This paper is related to several strands of literature. First of all, our

model has strong similarities with the standard real options model as devel-

oped by McDonald and Siegel (1986) and for which Dixit and Pindyck (1994)

develop the basic framework. It is important to note that the way we deal

with uncertainty in our model differs crucially from this literature. Within

our framework more information becomes available over time, whereas in

the standard real-options literature uncertainty is constant over time caused

by, for instance, price uncertainty in an existing market. In other words,

whereas our model is a decision problem with incomplete information where

nature determines the state of the world only at the beginning with infor-

mation arriving to resolve uncertainty, the framework typically used in the

literature is a decision problem with complete information, where nature

determines the state of the world at each consecutive point in time. More

formally, the stochastic processes in these models have stationary increments

that are independent of the past. Examples of processes that are often used

are Brownian motion, Poisson process, and Lévy processes. In contrast, the

increments of the stochastic process that we consider are not stationary and

path-dependent. Typically, the variance of the stochastic process decreases

over time. This implies that the standard tools (cf. Oksendal (2000)) cannot

be used in our framework.

A second branch of literature to which our paper is related is the R&D

literature. In her seminal paper, Reinganum (1981) develops a model of

dynamic R&D competition. In this model technological innovations arrive

via a Poisson process and the influence of patents is analysed. Again, the

stochastic process driving the innovation process has stationary increments
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that are independent of the past. The paper by Malueg and Tsutsui (1997)

introduces learning into the Reinganum framework and is therefore more

closely related to this paper. In the endogenous growth literature, Aghion

and Howitt (1992) use a similar framework as Reinganum to model Schum-

peterian growth.

The papers mentioned above all consider a stream of technological in-

novations where there is uncertainty about when these innovations become

available. Moscarini and Smith (2001) consider a situation where a single

decision maker faces a project whose future stream of cash flow is uncer-

tain. The decision maker however receives a signal indicating the quality of

the project. This signal is assumed to follow a geometric Brownian motion

with (unknown) drift. The task of the decision maker is to infer the drift

term. He can reduce the variance of the signal by investing more in R&D

at a higher cost. So the decision maker faces an optimal stopping prob-

lem, i.e. when to invest (if at all), as well as an optimal control problem,

i.e. how much to invest in R&D. Again, the main difference with our ap-

proach is the way uncertainty is modelled. Since, in contrast to Moscarini

and Smith (2001), in our paper the stochastic increments are non-stationary

and path-dependent. For the sake of analytical tractability, we will assume

that signals are costless.

The way we model uncertainty is most related to Jensen (1982). The

main difference is that in Jensen’s model, signals only give information on

the probability of the project being good. The probability of a good project

is considered to be an unknown parameter. In each period one receives a

signal about the true value of the unknown parameter. This signal is used

to update the beliefs, just as in our model, i.e. the belief is a conditional

probability based on past information. In short, one forms a belief on the

belief in a good project. However, in Jensen’s model, a good signal not

only increases the belief in a good project, but it also increases the firm’s

probabilistic belief in receiving a good signal in the next period. In other

words, the firm not only updates its belief but also the odds of the coin

nature flips to determine the project’s profitability. In our model it holds

that the quality of the signal is independent of past realizations, i.e. the

investor exactly knows the odds of the coin that nature flips. Due to this

simplification the analysis of our framework provides an explicit expression
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for the critical value of the belief in a good project at which investing is op-

timal, contrary to Jensen (1982) who could only show existence. This is the

main contribution of the paper. Furthermore, it allows us to simulate the

investment problem and the effects of the model parameters on the invest-

ment timing. We show that given constant prior odds of a good project, the

probability of investment within a certain time interval need not increase in

quantity and quality of signals. Another counterintuitive result we obtain

is that, given that the project is good, the expected time before investment

need not be monotonous in the parameter governing the Poisson arrivals of

signals. In other words, it is possible that investment is expected to take

place later when the expected number of signals per time unit is higher.

The paper is organised as follows. In Section 2 the formal model is

described. After that, the optimal investment decision will be derived in

Section 3. In Section 4 an error measure for analysing the performance

of capital budgeting rules in this model of investment under uncertainty is

introduced. In Section 5 the decision rule from Section 3 will be interpreted

using some numerical examples. In the final section some conclusions are

drawn and directions for future research are discussed.

2 The Model

Consider a firm that faces the choice of investing in a certain project. The

project can be either good, leading to high revenues, UH , or bad, leading

to low revenues UL.1 Without loss of generality we assume that UL = 0.

The sunk costs involved in investing in the project are given by I > 0.

Furthermore, it is assumed that there is a constant discount rate, r.

It is assumed that when the firm receives the option to invest, it has a

prior belief about the investment project being good or bad. The ex ante

probability of high revenues is given by

IP(H) = p0.

Occasionally, the firm receives a signal indicating the project to be good

(denoted by h) or a signal indicating the project to be bad (denoted by l).

The probabilities with which these signals occur depend on the true state of

1The revenues represent an infinite cash flow discounted at rate r.
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project/signal h l

H λ 1− λ

L 1− λ λ

Table 1: Probability of a signal indicating a good or bad market, given the

true state of the project. The first row (column) lists the probabilities in

case of a good project (good signal) and the second row (column) in case

of a bad project (bad signal). A good (bad) project is denoted by H (L),

while a good (bad) signal is denoted by h (l).

the project. A correct signal occurs with probability λ > 1
2 , see Table 1. As

soon as the firm invests in the project, the state of the market is revealed.

In reality this may take some time, but we abstract from that. The signals’

arrivals are modelled via a Poisson process with parameter µ > 0. The

Poisson assumption is made to make the model analytically tractable when

using dynamic programming techniques. Hence, denoting the number of

signals by n, this boils down to

dn(t) =







1 with probability µdt,

0 with probability 1− µdt,

with

n(0) = 0.

Denoting the number of h-signals by g, the dynamics of g is then given by

dg(t) = udn(t),

with

u =







1 with probability λ if H and 1− λ if L,

0 with probability 1− λ if H and λ if L,

and

g(0) = 0.
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For notational convenience the time indices will be suppressed in the remain-

der of the paper. The belief that revenues are high, i.e. that the project is

good, given the number of signals n and the number of h-signals g ≤ n is

denoted by p(n, g). Now, the conditional expected payoff of the firm can be

written as,

IE(U |n, g) = p(n, g)(UH − I)− (1− p(n, g))I.

The structure of the model is such that with respect to the signals there

are two main aspects. The first one is the parameter which governs the

arrival of the signals, µ. This parameter is a measure for the quantity of

the signals, since 1/µ denotes the average time between two signals. The

other component is the probability of the correctness of the signal, λ. This

parameter is a measure for the quality of the signals. For the model to

make sense, it is assumed that λ > 1
2 .
2 In this paper learning – or belief

updating – takes place by using the Bayesian approach. This, together with

the condition λ > 1
2 , implies that the belief in high revenues converges to one

or to zero if the market is good or bad, respectively, in the long-run. As will

be shown in Section 3, quantity and quality together determine the threshold

belief in a good project the firm needs to have in order for investment to be

optimal.

3 The Optimal Investment Decision

In determining the optimal output level, the firm chooses the output that

maximizes its expected profit flow. Since the firm is risk-neutral, it is only

interested in the expected values of investing in the project and waiting for

more information.

The uncertainty about the true state of the project and the irreversibility

of investment induce an option value of waiting for more signals. In this

section we will show how to find the critical level for p(n, g) at which the

firm is indifferent between investing and waiting, while taking into account

2This assumption is not as strong as it seems, for if λ < 1
2
the firm can perform the

same analysis replacing λ with 1 − λ. If λ = 1
2
the signals are not informative at all

and the firm would do best by making a now-or-never decision, using its ex ante belief

p(0, 0) = p0.
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the option value of waiting. After having determined the critical level we

know that it is optimal to invest as soon as p(n, g) exceeds this level.

First, we explicitly calculate p(n, g). To simplify matters considerably,

define k := 2g − n, the number of good signals in excess of bad signals, and

ζ := 1−p0
p0

, the unconditional odds of the project being bad. By using Bayes’

rule we now obtain:

p(n, g) =
IP(n, g|H)IP(H)

IP(n, g|H)IP(H) + IP(n, g|L)IP(L)

=
λg(1− λ)n−gp0

λg(1− λ)n−gp0 + (1− λ)gλn−g(1− p0)

=
λk

λk + ζ(1− λ)k
≡ p(k).

(1)

The critical level of k where the firm is indifferent between investing and

not investing in the project is denoted by k∗. Note that at any arrival of

an h-signal k increases and at any arrival of an l-signal k decreases. Hence,

enough h-signals must arrive to reach the critical level. The critical level of

the conditional belief in high revenues is denoted by p∗ = p(k∗).

Suppose that the state of the process at a particular point in time is

given by k. Then there are three possibilities. First, k might be such that

k ≥ k∗ and p(k) ≥ p∗. Then it is optimal for the firm to directly invest in

the project. In this case the value of the project for the firm, denoted by Ω,

is given by

Ω(k) = UHp(k)− I. (2)

A second possibility is that, even after a new h-signal arriving, it is still

not optimal to invest, i.e. k < k∗ − 1. We assume that pricing with respect

to the objective probability measure implies risk-neutrality concerning the

information gathering process. Then the value of the opportunity to invest

for the firm, denoted by V1, must satisfy the following Bellman equation:

rV1(k) =
1
dt IE(dV1(k)). (3)

Departing from this equation the following second order linear difference
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equation can be constructed:

rV1(k) = µ
[

p(k)(λV1(k + 1) + (1− λ)V1(k − 1))+

+ (1− p(k))(λV1(k − 1) + (1− λ)V1(k + 1))− V1(k)
]

⇔ (r + µ)V1(k) = µ
[

(2p(k)λ+ 1− λ− p(k))V1(k + 1)+

+ (p(k) + λ− 2p(k)λ)V1(k − 1)
]

.

(4)

Eq. (4) states that the value of the option at state k must equal the dis-

counted expected value an infinitesimal amount of time later. Using eq. (1)

it holds that

2p(k)λ+ 1− λ− p(k) =
λk+1 + ζ(1− λ)k+1

λk + ζ(1− λ)k
(5)

and

p(k) + λ− 2p(k)λ =
λ(1− λ)(λk−1 + ζ(1− λ)k−1)

λk + ζ(1− λ)k
. (6)

Substituting eqs. (5) and (6) in (4), and defining F (k) := (λk + ζ(1 −
λ)k)V1(k), yields

(r + µ)F (k) = µF (k + 1) + µλ(1− λ)F (k − 1). (7)

Eq. (7) is a second order linear homogeneous difference equation which has

as general solution

F (k) = Aβk,

where A is a constant and β is a solution of the homogeneous equation

Q(β) ≡ β2 − r + µ

µ
β + λ(1− λ) = 0. (8)

Eq. (8) has two real roots,3 namely

β1,2 =
r + µ

2µ
± 1
2

√

( rµ + 1)2 − 4λ(1− λ). (9)

Note that Q(0) = λ(1 − λ) > 0 and Q(1 − λ) = − r
µ(1 − λ) ≤ 0. Since the

graph of Q is an upward pointing parabola we must have β1 ≥ 1 − λ and

0 < β2 < 1− λ (see Figure 1). The value function V1(·) is then given by

V1(k) =
F (k)

λk + ζ(1− λ)k
=

A1β
k
1 +A2β

k
2

λk + ζ(1− λ)k
. (10)

3It should be noted that for all λ it holds that 4λ(1− λ) ≤ 1. Since equality holds iff

λ = 1/2, the homogeneous equation indeed has two real roots for any λ ∈ (1/2, 1].
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β

Q(β)

0

1− λ
+

β2 β1

Figure 1: Graph of Q.

Here it is important to note that, when the number of l-signals relative to

h-signals tends to infinity, then the value of the firm should converge to zero,

i.e. lim
k→−∞

V (k) = 0. This implies that we only need to consider the larger

root β1, so that A2 = 0.4

In the final case, the value of k is such that it is not optimal to invest in

the project right away. However, if the following signal is an h-signal, it will

be optimal to invest, i.e k∗ − 1 ≤ k < k∗. In this region the value function

V2(·) for the firm must satisfy eq. (3) with V1(·) replaced by V2(·), i.e.

rV2(k) = µ
[

p(k)(λΩ(k + 1) + (1− λ)V1(k − 1)) + (1− p(k))

(λV1(k − 1) + (1− λ)Ω(k + 1))− V2(k)
]

⇔ (r + µ)V2(k) = µ
[

(2p(k)λ+ 1− λ− p(k))Ω(k + 1)+

+ (p(k) + λ− 2p(k)λ)V1(k − 1)
]

.

(11)

Substituting eqs. (2), (5), (6) and (10) into eq. (11) yields

V2(k) =
µ

r + µ

(

λUHp(k)− (λp(k) + (1− λ)(1− p(k)))I

+ λ(1− λ)
A1β

k−1
1

λk+ζ(1−λ)k

)

.
(12)

If an h-signal arrives, the process jumps to the region where k ≥ k∗ and if

an l-signal arrives the process jumps to the region where k < k∗. Therefore

the value V2 is completely determined by V1(k− 1) and Ω(k+1). The value

4This stems from the fact that β2 < 1−λ, so in V1(k) and V2(k) the term βk
2 dominates

(1− λ)k if k → −∞. Hence, if A2 6= 0, then V (k)→ ±∞ if k → −∞.
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function V is then given by

V (k) =



















V1(k) if k < k∗ − 1

V2(k) if k∗ − 1 ≤ k < k∗

UHp(k)− I if k ≥ k∗,

(13)

where V1(k) and V2(k) are given by (10) and (12), respectively.

To determine A1 and k∗ we solve the continuity condition V1(k
∗ − 1) =

V2(k
∗ − 1) and the value-matching condition V2(k

∗) = Ω(k∗).5 The latter

equation yields

A1 =
1

βk
∗−1
1 µλ(1− λ)

[UHλk
∗

(r + µ(1− λ))

− rI(λk
∗

+ ζ(1− λ)k
∗

)− µI(λζ(1− λ)k
∗

+ (1− λ)λk
∗

)].

Substituting A1 in the former equation leads to an expression for p∗ ≡ p(k∗):

p∗ =
1

Ψ(UH/I − 1) + 1
, (14)

where

Ψ =
β1(r + µ)(r + µ(1− λ))− µλ(1− λ)(r + µ(1 + β1 − λ))

β1(r + µ)(r + µλ)− µλ(1− λ)(r + µ(β1 + λ))
. (15)

The threshold number of h-signals relative to l-signals is then given by

k∗ =
log( p∗

1−p∗ ) + log(ζ)

log( λ
1−λ)

. (16)

From eq. (16) it is obtained that k∗ decreases with p0. Hence, less additional

information is needed when the initial belief in high revenues is already high.

Next, we check whether the optimal belief p∗ is a well-defined probability.

The following proposition establishes this result, which is proved in the

appendix. It furthermore shows the link between this approach and the

traditional net present value rule (NPV). Note that the critical belief under

the latter approach is obtained by solving IE(U |k) = 0. This yields pNPV =
I
UH .

5Note that, despite the fact that k is an integer variable, the continuity and the value

matching conditions should hold because the critical level k∗ can be any real number.

Since the realisations of k are discrete, the firm invests as soon as k = dk∗e.
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Proposition 1 For UH ≥ I it holds that p∗ ≤ 1. Furthermore, p∗ > pNPV .

So, the result that is obtained in the standard real option model, namely

that the criterion for investment to be undertaken is less tight under NPV

than under the optimal approach, carries over to this model. The reason

is the existence of a value of waiting for more information to arrive that

reduces uncertainty.

Using eq. (14), one can obtain comparative static results. These are

stated in the following proposition, the proof of which is given in the ap-

pendix.

Proposition 2 The threshold belief in a good project, p∗, increases with I,

r and λ and decreases with UH .

The fact that p∗ increases with r is caused by the so-called net present value

effect. If r increases, future income is valued less so that the net present value

decreases. Therefore, the firm is willing to wait longer with investment until

it has more information about the actual state of the project. An increase

in λ leads to an increase in p∗, which can be explained by the fact that

λ is a measure for the informativeness of the signal. Therefore, it is less

costly in terms of waiting time to require a higher level of p∗. This does not

necessarily imply that one should wait for more signals to arrive, a point

which we elaborate upon in Section 5. It is impossible to get a knife-edged

result on the comparative statics with respect to µ, although simulations

suggest that in most cases p∗ increases with µ, which confirms intuition.

The partial derivative of p∗ with respect to µ is negative if r ≈ µ
√
2λ− 1.

4 Error Analysis

An important question the firm faces is how likely it is that it makes a

wrong decision, in the sense that it invests while the project is bad. This

question can be answered quantitatively by calculating the probability that

k∗ is reached while the project is bad. In order to do so, define

P (k
∗)(k) := IP(∃t≥0 : kt ≥ k∗|k0 = k, L) (17)

Of course, for k ≥ k∗ it holds that P (k
∗)(k) = 1. A second order linear

difference equation can be obtained governing P (k
∗)(k). Notice that from
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k the process reaches either k − 1 or k + 1 with probabilities λ and 1 − λ,

respectively, given that the project is bad. Therefore, one obtains

P (k
∗)(k) = (1− λ)P (k

∗)(k + 1) + λP (k
∗)(k − 1). (18)

Using the boundary conditions P (k
∗)(k∗) = 1 and lim

k→−∞
P (k

∗)(k) = 0, one

can solve eq. (18), yielding

P (k
∗)(k) =

(

λ

1− λ

)k−k∗

. (19)

Hence, the probability of a wrong decision decreases when the quality of the

signals increases. The ex ante probability of a wrong decision is given by

P (k
∗)(k0).

The error measure P (k
∗)(·) gives a worst-case scenario: the probability

that a firm engages in an investment that has low profitability. Another

error measure would be given by the probability that the firm forgoes an

investment that would have generated a high profit stream, i.e. the proba-

bility that k∗ is not reached within a certain time T given that the project

is good. Note however that since λ > 1
2 this probability equals zero for

T =∞. For any finite time T it is possible to calculate the probability that

the firm has not invested before T given that the project is good. In order

to calculate this probability, denote for all k the pdf of the distribution of

the first passage time through k by fk(·). From Feller (1971, Section 14.6)

one obtains that

fk(t) =

(

1− λ

λ

)−
k
2 k

t
Ik

(

2µ
√

λ(1− λ)t
)

e−µt, (20)

where Ik(·) denotes the modified Bessel function with parameter k. This

is the unconditional density of first passage times. Given the first passage

time distribution it holds for all 0 < T <∞ and k < k∗ that

P̃
(k∗)
k (T ) := IP(¬∃t∈[0,T ] : kt ≥ k∗|H, k0 = k)

= IP(∀t∈[0,T ] : kt < k∗|H, k0 = k)

= 1−
∫ T

0
fk∗(t)dt.

Since there is a positive probability mass on the project being bad, the

expectation of the time of investment does not exist. However, conditional
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on the project being good, one can calculate the expected time of investment

using the conditional density of first passage times, which is obtained in a

similar way as eq. (20) and given by

f̃k(t) =
λk+ζ(1−λ)k

1+ζ

(

λ(1− λ)
)−k/2 k

t
Ik(2µ

√

λ(1− λ)t)e−µt. (21)

5 Economic Interpretation

As an example to see how UH and UL arise, consider a market where inverse

demand is assumed to be given by the following function,

P (q) =







Y − q if q ≤ Y and H

0 otherwise,

where q is the quantity supplied. There is only one supplier so that the

firm is a monopolist. The costs of producing q units are given by the cost

function

C(q) = cq, c ≥ 0.

The profit of producing q units is then given by

π(q) = P (q)q − C(q).

Suppose for a moment that the project is good, i.e. that demand is high.

Then the maximal revenue to the firm is given by,

Rg = max
q

{
∫ ∞

0
e−rtπ(q)dt

}

= max
q
{π(q)1r}.

Solving for q using the first order condition yields the optimal output level

q∗ = Y−c
2 , leading to the maximal profit stream

UH = 1
r [P (q∗)q∗ − C(q∗)]. (22)

If the project is bad it is optimal not to produce at all. Hence, the revenue

if demand is zero, UL, is given by,

UL = 0. (23)
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Y = 8 r = 0.1

c = 5 µ = 4

I = 12 λ = 0.8

p0 =
1
2

Table 2: Parameter values

In Proposition 2 an analytical result for comparative statics is given. To

get some feeling for the magnitude of several effects we consider a numerical

example. Consider a market structure as described above with parameter

values as given in Table 2. So, the discount rate r is set at 10%. The

probability of a correct signal is 0.8 and on average four signals arrive every

period.

Based on these parameter values the value function is calculated as func-

tion of k and depicted in Figure 2.6 From this figure one can see that the
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Figure 2: Value function. The dashed line denotes the NPV.

NPV rule prescribes not to invest at the moment the option becomes avail-

able (k = 0). In fact, in order to invest, the NPV rule demands that the

NPV must be positive so that the belief of the firm in high market demand

should at least be approximately 0.53 (kNPV ≈ 0.10). However, our ap-

proach specifies that the firm’s belief should exceed p∗ ≈ 0.96. This may

seem an extremely high threshold, but it implies that the firm invests as

soon as k = 3, since k∗ ≈ 2.23. The NPV rule prescribes that, in absence

6In interpreting Figure 2, notice that realizations of k are discrete, although k∗ can be

any real number (see Footnote 5).

15



of l-signals, only one h-signal is needed, while under our approach the firm

invests after three h-signals (net from l-signals). From eq. (19) it is obtained

that the probability of investing in a bad project while using the optimal

approach equals P (k
∗)(0) = 0.00156. Application of the NPV rule gives

P (kNPV )(0) = 0.25. Hence, the probability of making a wrong decision us-

ing the optimal approach is negligible, while it is reasonably large when the

NPV rule is used. The other error measure, P̃ k∗

k (·), is depicted in Figure 3

for different values of T . One observes that the error of the second type
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Figure 3: Probability that investment has not taken place before time T

given that the project is good.

converges to zero fast. The probability of not having invested by period 6

given that the project is good is already negligible.

Using the same parameters we can see how the critical value k∗ changes

with λ. From Proposition 2 we can conclude that the critical level for the

believe in a good project increases with the quality of the signal λ, as one

can also see in the left-hand panel of Figure 4. If λ is higher, then the

informativeness of a signal is higher. So, it is more attractive for the firm

to demand a higher certainty about the goodness of the market. This belief

however, is reached after fewer signals as can be seen from the right-hand

panel of Figure 4.

If one takes Y = 50, c = 10, I = 500, λ = 0.8, r = 0.1 and µ = 7,

one obtains pNPV = 0.125. Since p0 = 1/2 this implies kNPV < 0. Hence,

the firm invests immediately at time 0 if it applies the NPV rule. So, if

the project is bad, the firm invests in the bad project with probability 1.

Applying our decision rule gives p∗ = 0.842, implying that the firm invests
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Figure 4: Comparative statics for λ.

if k = 2. The probability of a wrong decision then becomes P 2(0) = 0.06.

Again, our approach greatly reduces this probability compared to the NPV

rule.

Consider an example where UH = 50, I = 30, r = 0.1 and p0 = 0.5.

First, we consider the situation where the project is good. Using the condi-

tional first passage time density in eq. (21) one can calculate the expected

time until investment takes place as a function of µ and λ, cf. Figures 5 and

6. One can see that both functions are not continuous and the expected
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Figure 5: Comparative statics of expected time of investment given a good

project for µ with λ = 0.7 fixed.

time of investment is not monotonic with respect to µ. This stems from the

fact that the realisations of k are discrete. Hence, for certain combinations

of µ and λ, the threshold jumps from dk∗e to dk∗e+1. If p∗ increases in µ (as
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Figure 6: Comparative statics of expected time of investment given a good

project for λ with µ = 4 fixed.

it usually does), k∗ is also increasing in µ. If, as a result, dk∗e increases with
unity, one additional good signal (in excess of bad signals) is needed before

it is optimal to undertake the project. This implies that the expected time

before investment jumps upwards. Immediately after a jump, the expected

time decreases continuously with µ, as intuition suggests, until the threshold

jumps again.

Concerning the comparative statics with respect to λ we already observed

that an increase in p∗ can lead to a decrease in k∗. This implies that for

certain values of λ the threshold dk∗e decreases with unity. As soon as this

happens, there is a downward jump in the expected time of investment. So,

for λ the discreteness of k works in the same direction as the increase of the

quality of the signals.

We also analyse the comparative statics of the probability of investment

before time T = 20 with respect to the parameters µ and λ using the uncon-

ditional first passage time density in eq. (20), cf. Figure 7. One can see that

this probability is not monotonically increasing in µ and λ. Particularly,

one can see from Figure 8 that, taking λ = 0.7, the comparative statics for

µ are both non-continuous and non-monotonic. The explanation for this

behaviour is the same as for the comparative statics of the expected time

of investment given a good project. Note, however, that th increase in the

probability of investment after each jump increases less fast. This is due to

the fact that a higher threshold needs to be reached.
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Figure 7: Comparative statics of the probability of investment before T = 20

for λ and µ.
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Figure 8: Comparative statics of the probability of investment before T = 20

with λ = 0.7 for µ.

6 Conclusions

In this paper a situation was analysed where a firm has the opportunity to

invest in a project. Initially, the profitability of the project is unknown, but

as time passes the firm receives signals about the profitability of the invest-

ment. There are two types of signals: one type indicating the project to be

profitable and the other type indicating it to be unprofitable. The present

paper differs from the standard literature on investment under uncertainty

(see Dixit and Pindyck (1994)) in that uncertainty diminishes in the course

of time. The firm has a – subjective – a priori belief about the profitability

of the project. A posterior belief about the profitability is obtained in a
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Bayesian way each time a signal arrives. It turns out that it is optimal for

the firm to invest as soon as its belief in a profitable project exceeds a certain

critical level. An analytical expression for this critical level is provided and

it is seen that this level depends crucially on the reliability and the quantity

of the signals and the firm’s discount rate. Given the initial belief in a good

project the critical level can be translated in a number of signals indicating

a good project net from signals indicating a bad project. In other words,

from the critical belief it can be derived how many ”good” signals in excess

of ”bad” signals are needed before it is optimal for the firm to invest.

An interesting extension of the present model is to look at what happens

when the firm is not a monopolist, but if there are rivalling firms to invest in

the same project. This requires using game theoretic concepts in the present

setting. In the standard real options framework such an analysis has been

carried out by e.g. Huisman (2001), Lambrecht and Perraudin (1999) and

Boyer et al. (2001).

Another topic for further research is to include costs for receiving the

signals. In this way one obtains a model for optimal sampling, closely related

to statistical decision theory. For the standard real options model this has

been done by Moscarini and Smith (2001). An interpretation of such a

model could be that a firm can decide once about the intensity and quality

of R&D, leading to a combination of µ and λ. If one assumes a cost function

for µ and λ one can solve a two stage decision problem where the first stage

consists of determining R&D intensity and quantity, while the second stage

consists of the timing of investment. In fact, this paper solves the second

stage. With simulations one could solve the first stage, using our analysis

as an input. Since the value stream depends on the (rather complicated)

first passage density of the threshold, analytical results can probably not be

found. One could even try to extend the model to a situation where the

firm can continuously adjust its R&D intensity and quality, adding again to

the complexity of the problem.

Finally, one could extend the idea of diminishing uncertainty. For in-

stance, to look at a market where two firms are competing, with imperfect

information about each each other’s cost functions. Gradually, firms receive

signals on each other’s behaviour from which they infer the opponent’s cost

function, which then influences their strategies.
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Appendix

A Proof of Proposition 1

Denote the denominator of Ψ by d(Ψ). Analogously, we denote the numer-

ator of Ψ by n(Ψ). Using β1 ≥ 1 − λ, it is easy to derive that Ψ < 1. If

r = 0, it holds that β1 = λ. Therefore,

n(0) = λµ2(1− λ)− µλ(1− λ)µ = 0.

Furthermore, using that β1 ≥ (1− λ) and ∂β1

∂r > 0, it can be obtained that
dn(Ψ)
dr > 0. So, Ψ > 0 and p∗ is a well-defined probability. Furthermore,

since Ψ < 1, it holds that

p∗ =
1

Ψ(U
H

I − 1) + 1

>
I

UH
= pNPV .

¤

B Proof of Proposition 2

Simple calculus gives the result for UH and I. To prove the proposition

for r, µ, and λ, let us first derive the comparative statics of β1 for these

parameters. First, take r. The total differential of Q with respect to r is

given by
∂Q
∂β1

∂β1
∂r

+
∂Q
∂r

= 0.

From Figure 1 one can see that ∂Q
∂β1

> 0. Furthermore, ∂Q
∂r = −β1

µ < 0.

Hence, it must hold that ∂β1

∂r > 0. In a similar way one obtains ∂β1

∂µ < 0 and
∂β1

∂λ > 0.

The numerator and denominator of Ψ can be written in the following

form

n(Ψ) = η(r, µ, λ)− 2µ(1− λ)ζ(r, µ, λ),

d(Ψ) = η(r, µ, λ)− 2µ(1− λ)ν(r, µ, λ),
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where

η(r, µ, λ) = β1(r + µ)(r + µλ)− µλ(1− λ)(r + µ(β1 + λ)),

ζ(r, µ, λ) = β1(r + µ)− µλ(1− λ),

ν(r, µ, λ) = r(1− λ) + µ(1− λ)2.

Since Ψ > 0, this implies that to determine the sign of the derivative of

Ψ with respect to one of the parameters, one only needs to compare the

respective derivatives of ζ(·) and ν(·). Note that

∂ζ(·)
∂r

= β1 +
∂β1
∂r

r > β1

≥ 1− λ =
∂ν(·)
∂r

.

(24)

Hence, ∂Ψ
∂r < 0 and ∂p∗

∂r > 0.

For λ a similar exercise can be done, yielding

∂ζ(·)
∂λ

= µ(2λ− 1) + (r + µ)
∂β1
∂λ

> 0

> −
(

r + 2µ(1− λ)
)

=
∂ν(·)
∂λ

.

(25)

Hence, ∂p∗

∂λ > 0. ¤

References

Aghion, P. and P. Howitt (1992). A Model of Growth through Creative

Destruction. Econometrica, 60, 323–351.

Boyer, M., P. Lasserre, T. Mariotti, and M. Moreaux (2001). Real Options,

Preemption, and the Dynamics of Industry Investments. mimeo, Univer-
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