
A Cooperative Approach to Sequencing

and Connection Problems

A Cooperative Approach to Sequencing

and Connection Problems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Univer-

siteit van Tilburg, op gezag van de rector magnificus,

prof.dr. Ph. Eijlander, in het openbaar te verdedigen

ten overstaan van een door het college voor promoties

aangewezen commissie in de aula van de Universiteit op

vrijdag 4 december 2009 om 10.15 uur door

BARIŞ BEKİR ÇİFTÇİ,

geboren op 23 februari 1978 te Ankara, Turkije.

Promotores: Prof.Dr. P.E.M. Borm

Prof.Dr. H.J.M. Hamers

Acknowledgments

This thesis summarizes most of my research efforts of the past four years. I would

like to express my gratitude to everyone who supported me for the completion of this

work. I must begin with an expression of my debt to my advisors, Peter and Herbert,

for their guidance and the valuable comments they gave during the preparation of

this thesis. Peter’s “I don’t believe you” followed by Herbert’s “Prove” will continue

to stimulate my self criticism as long as I do research. I also thank Tilburg University,

its staff and faculty members for providing me with a great environment to work on

this thesis.

I would like to thank to Semih Koray for teaching me the basics of microeconomic

theory and game theory, supervising me when I was a Ph.D. student at Bilkent Univer-

sity and most importantly introducing me the beauty of the challenge of explaining

the choices and values of the society and the individual by intelligent handling of

mathematics. I would also like to thank Tarık Kara and Taner Yiğit for their support

and encouragement.

As far as the results of my research are concerned, I profited most from my co-

authors Stef Tijs, Marco Slikker and Dinko Dimitrov. I want to thank them all for

that. My special thanks go to Stef Tijs for affecting me with his enthusiasm and

intellectuality. I would like to thank also to Rodica Branzei, Stefano Moretti, Yuan

Ju and Manuel Mosquera for sharing their thoughts and suggesting the way forward

at some points during my research.

My thanks also go to my committee members, Stef Tijs, Carles Rafels Pallarola,

Flip Klijn and Jeroen Kuipers, for the time and effort spent on the manuscript and

also for their insightful comments.

I am most grateful to my parents for their continuing love, support and encour-

agement. I would like to use this opportunity to express my gratitude and to dedicate

this thesis to them. My thanks also go to my sisters Aslı and Bilge, my grandma

Hakiye, my parents-in-law, my brother-in-law, Batur and his family and my cousins

Umut and Utku for their care, encouragement and support.

My warmest thanks go to my friends and my fellow PhD students. Firstly, many

v

thanks go to Tunga for being a “gerçek dost”. I thank Gerwald for all the good

time we had at the office. I thank Wouter, Teresa, Sebastian, Agnieszka, Hans,

Vivian, Pilar, Ina, Pedro, Miguel, Mohammed, Anne, Tural, Arantza, John for their

continuing care and friendship.

Finally, I would like to use this opportunity to express my gratitude and love to

Esen, my wife, who continuously brighten up my life. This thesis would not have

been possible without her encouragement and care. Seni çok seviyorum.

Barış Bekir Çiftçi

Rotterdam, 2009

vi

Contents

1 Introduction 1

1.1 Cost Allocation Problems and Game Theory 1

1.2 Overview . 6

1.3 Preliminaries on Cooperative Games 11

2 Sequencing Situations and Cooperation 15

2.1 Batch Sequencing and Cooperation 18

2.1.1 Batch Sequencing Situations 18

2.1.2 Batch Sequencing Games . 19

2.1.3 Relaxed Batch Sequencing Games 32

2.1.4 Flow-Shop Batch Sequencing Games 35

2.2 Family Sequencing and Cooperation 42

2.2.1 Family Sequencing Situations 42

2.2.2 Family Sequencing Games . 44

3 Connection Situations and Cooperation 59

3.1 Preliminaries . 63

3.1.1 Minimum cost spanning tree situations 64

3.1.2 Algorithms for mcst situations 65

3.2 A Vertex Oriented Approach to ERO for MCST Situations 66

3.2.1 ERO for cost sharing in mcst situations 67

3.2.2 P σ-rules for mcst situations 70

3.2.3 The vertex oriented construct and charge procedure 73

3.2.4 A new approach to obtain ERO 76

3.2.5 Voccp and the optimistic game in mcst situations 78

3.3 ERO and Voccp for Minimum Cost Spanning Forest Situations 80

3.4 ERO and Voccp for Mcst Situations with Two Sources 86

3.4.1 ERO for cost sharing in mcst situations with two sources . . . 87

vii

3.4.2 The vertex oriented construct and charge procedure for mcst

situations with two sources . 91

3.4.3 Voccp and the optimistic game in mcst situations with two sources 96

3.5 Highway Games on Weakly Cyclic Graphs 98

3.5.1 Highway problems and highway games 99

3.5.2 HG-Concavity . 100

3.5.3 Balancedness of Highway Games

on Weakly Cyclic Graphs . 103

4 Population Monotonic Path Schemes for Simple Games 111

4.1 Preliminaries . 114

4.2 Population Monotonic Shapley Path Schemes 115

4.3 Extensions to Probabilistic Values . 119

4.3.1 Population monotonic path schemes of quasi-values 120

4.3.2 Population monotonic path schemes of semi-values 124

Bibliography . 127

Samenvatting (Summary in Dutch) . 134

Author index . 140

Subject index . 142

viii

Chapter 1

Introduction

1.1 Cost Allocation Problems and Game Theory

There are many economic settings in which a group of agents wishes to undertake a

joint enterprise in order to save costs. Doctors, for example, look for colleagues to

share an office in order to save from rent, equipment and secretarial help. Individuals

or firms wish to jointly invest in common networks such as communication networks

and distribution channels. Similarly, countries wish to collaborate in order to solve

environmental or security problems. The success of such enterprises often relies on

agreements on how to share the cost savings generated. That is, joint enterprises

require a cost allocation mechanism that is efficient, fair and provides incentives to

each agent (and also to each group of agents) involved to agree upon.

An economic approach one can take to analyze joint cost savings problems is by

means of cooperative game theory.

Game theory is a branch of applied mathematics that provides tools for analyzing

situations in which the actions of each involved party (called a player) have an effect

on the outcome which is of interest to all. The competition between firms or politi-

cal parties, the conflict between a boss and a worker, war and peace/disarmament/

environmental negotiations between countries, cooperation of producers sharing com-

mon production facilities and so on, all provide examples of these situations, i.e.,

games. As illustrated in the examples above, the mutual interdependence among the

players is the essence of a game and what makes game theory a useful tool for the anal-

ysis of the behavior of interacting decision-makers. The book Theory of Games and

Economic Behavior by von Neumann and Morgenstern (1944) is regarded by many

as the starting point of game theory. As the title of the book of von Neumann and

Morgenstern reveals the intention of the authors was to provide a new kind of math-

ematics for economic analysis. Indeed, starting from the late sixties, game theory is

2 Chapter 1. Introduction

being applied to explain the behavior of firms and individuals in a wide range of eco-

nomic situations. Nor is economics alone: operations research, accounting, finance,

law, marketing, political science and sociology are beginning similar experiences.

Game Theory can be roughly divided into two broad areas: non-cooperative (or

strategic) and cooperative (or coalitional) game theory. Generally speaking, non-

cooperative game theory focuses on those situations where the competitive nature

of interaction is dominant and players make choices which are based only on their

perceived self-interest.

By contrast, the cooperative game theory models those situations in which cooper-

ative behavior is the central feature of social or economic interaction. In a cooperative

game, players can reach formal joint agreements, such as legally binding arrangements

to act as a single entity. A cooperative game typically abstracts itself away from nego-

tiations to reach agreements and mechanisms the players use to enforce agreements.

Rather it describes only the physical outcomes that can jointly be achieved by each

group of players. For this reason, cooperative game theory can be considered as a

structural theory. The most commonly used model in the theory of cooperative games

is the model of transferable utility games. A transferable utility game, or a TU-game,

describes the monetary value that each group of players can achieve by most efficient

means.

Generally, the focus in the analysis of a TU-game is on the allocation of the

value that is achieved by the grand coalition of all players, where the values of the

subcoalitions serve as a benchmark. The literature on TU-games has proposed many

solution concepts each with its own appealing properties. Most important of these

solution concepts are the core (Gillies, 1953), the Shapley value (Shapley, 1953), the

nucleolus (Schmeidler, 1969) and the compromise value (Tijs, 1981).

The central issue of this monograph is to address cost allocation problems arising

from sequencing problems and connection problems. Sequencing problems consider a

group of agents who are waiting to be served in a facility and focuses on the problem

of the allocation of the cost savings that can be obtained by switching from an initial

service order to an optimal one. Connection problems consider the cost allocation

problems arising from situations in which a group of agents wishes to collaborate and

jointly invest in the construction or the maintenance of a common network. Both

of these problems appear in a great number of diverse economic settings. Allocating

patients to surgery rooms, scheduling of computer programs on servers or jobs in

shop-floor on machines are common examples of sequencing problems while a group

of villagers that has to construct and pay pipelines from their respective houses to a

water supplier is a common example of connection problems.

1.1. Cost Allocation Problems and Game Theory 3

The methods we use in this monograph to analyze the cost allocation problems

arising from sequencing and connection problems mainly rely on models of TU-games.

The following example illustrates how a cost allocation problem arising from a simple

sequencing situation can be modeled and analyzed by a TU-game.

Example 1.1.1 Consider 3 companies each of which has a broken tool that has to be

repaired by a maintenance service in order for the companies to restart production.

The number of hours (processing time) required to repair each of these three tools

is given in Table 1.1. For example, the processing time required to repair the tool

company 1 2 3

processing time in hours 3 1 2

cost coefficient in 1,000s of euros 3 2 6

Table 1.1: Processing times and cost coefficients in Example 1.1.1

of company 2 is 1 hour. Suppose that according to a first-come-first-serve principle,

the tool of company 1 will be repaired first, followed by company 2, and, finally,

company 3 (See Figure 1.1). Waiting until the reparation of the tool is costly for

the companies because of the production that is lost meanwhile. Moreover, lost

production in different companies may have different values per time unit. This is

reflected by the cost coefficients in Table 1.1. For example, if the company that owns

tool 2 has to wait 3 hours till it can restart production again, then the costs for this

company will be 3 · 2, 000 = 6, 000 euros. Similarly, the total costs to repair the tools

according to the initial order are 3·3, 000+4·2, 000+6·6, 000 = 53, 000 euros. It can be

6 3 2

6 4 3

tool 1 tool 3 tool 2 service initial order

tool 3 tool 1 tool 2 service optimal order

Figure 1.1: The initial order and the optimal order in Example 1.1.1

checked that this order is not optimal, i.e., it does not minimize the total costs. The

unique optimal order in this situation is 3,2,1 (See Figure 1.1) and the associated total

costs equal 2 · 6, 000 + 3 · 2, 000 + 6 · 3, 000 = 36, 000 euros. Hence, if all companies

cooperate, they can decrease the total costs from 53,000 to 36,000 euros. Assume

now that company 1 and 2 come together to discuss their possibilities to achieve

cost savings without the help of company 3. Obviously, they could switch positions

4 Chapter 1. Introduction

without changing the waiting time of company 3. It can be checked that if companies

1 and 2 switch places then their total costs will be 1 ·2, 000+4 ·3, 000 = 14, 000 euros

and this is the minimum amount for companies 1 and 2. Now, consider companies

1 and 3. Since an initial processing order is established, company 2 might have the

opportunity to prevent the switching between companies 1 and 3. Or, it might be

that company 2 can only veto this switch if the processing time of company 3 is

larger than the processing time of company 1. Hence, whether to allow the switching

between companies 1 and 3 or under which conditions to allow the switching between

companies 1 and 3 are important modeling decisions. For this situation, we take the

perspective that companies 1 and 3 cannot switch positions without the cooperation

of company 2. Hence, companies 1 and 3 cannot generate any cost savings on their

own. The minimal costs for each group of companies are depicted in Table 1.2.

group {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
minimal total costs
in 1,000s of euros 9 8 36 14 45 42 36

Table 1.2: The minimal total costs for each group of companies in Example 1.1.1

We can also consider the cost savings that each group of companies achieve when

they cooperate. Consider again companies 1 and 2. Their total costs with respect to

the initial order equal 17,000 euros. We showed that the minimum total costs these

companies can achieve equal 14,000 euros. Hence, when they cooperate they save

3,000 euros. The maximal cost savings for each group of companies is depicted in

Table 1.3.

group {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
maximal cost savings

in 1,000s of euros 0 0 0 3 0 2 17

Table 1.3: The maximal cost savings for each group of companies in Example 1.1.1

Now we can start looking for a solution for the allocation problem at hand by

taking the values of the subcoalitions as a benchmark. An important property of a

cost allocation is that it has to provide incentives to each agent and to each group of

agents involved to agree upon. For instance, the allocation 8,000 euros for company 1,

7,000 euros for company 2 and 21,000 euros for company 3 does not give companies 1

and 2 the required incentives to participate in the cost savings project. For, together

companies 1 and 2 are charged 15,000 euros whereas they could achieve total costs of

14,000 euros on their own. In other words, this cost allocation is not stable, because

companies 1 and 2 will not accept it. This notion of stability is the main idea behind

the solution concept known as core.

1.1. Cost Allocation Problems and Game Theory 5

A core allocation is the one that gives every group of players an incentive to par-

ticipate by allocating them more than what the group could achieve on its own. The

core of our cost game, which is represented in Figure 1.2, is the set of all allocations

(x1, x2, x3) satisfying the following constraints:

x1 + x2 + x3 = 36, 000.

x1 + x2 ≤ 14, 000.

x1 + x3 ≤ 45, 000.

x2 + x3 ≤ 42, 000.

x1 ≤ 9, 000.

x2 ≤ 8, 000.

x3 ≤ 36, 000.

A solution satisfying the constraints above is (1500, 5500, 29000). ⋄

Figure 1.2: Core of the cost game in Example 1.1.1

Although the core of the game associated with the sequencing problem in Example

1.1.1 is non-empty, the core of TU-games need not be non-empty in general. Since

core stability is a compulsory condition for the viability of a cost allocation, emptiness

or non-emptiness of the core is an essential feature of the games associated with cost

allocation problems. Hence, the first challenge in the cooperative analysis of cost

allocation problems is to explore whether the core of the associated TU-games are

non-empty in general. And if the core of the associated games can be empty, then the

challenge is to explore for the conditions that guarantee the existence of allocations

that satisfy core stability.

6 Chapter 1. Introduction

The sequencing problem in Example 1.1.1 also demonstrates the combinatorial

nature of these problems. Given the cost functions of the players involved in a se-

quencing situation, the problem of finding an optimal order that minimizes the total

costs of the grand coalition (or of sub-groups of players) is a combinatorial optimiza-

tion problem. As examples of other studies that focus on the interplay between the

optimization of costs of a project and the allocation of costs among the participants

of the project we mention: minimum cost spanning tree games and spanning network

games (cf. Claus and Kleitman, 1973; Bird, 1976; Megiddo, 1978; Granot and Huber-

man, 1981), linear programming games (cf. Owen, 1975), flow games (cf. Kalai and

Zemel, 1982), traveling salesman games (cf. Potters et al., 1992), Chinese postman

games (cf. Granot et al., 1999), sequencing games (cf. Curiel et al., 1989) and project

games (cf. Estevez-Fernandez et al., 2007). This kind of problems have been baptized

as operations research games in the survey Borm et al. (2001).

1.2 Overview

Chapter 2 is dedicated to the analysis of cost allocation problems arising from specific

sequencing situations. In sequencing situations, there exists a set of clients each

having one job to be processed on a (number of) machine(s). The clients incur costs

that depend on the completion time of their jobs. Assuming that there is an initial

order on the jobs, two problems arise in these situations: How to find an optimal

processing order which minimizes the total costs and how to distribute these cost

savings obtained by changing the initial order to an optimal order in a fair way. Game

theoretic analysis of this “fairness” problem in sequencing situations was initiated by

Curiel et al. (1989). This study considered one machine sequencing situations and

tackled the problem of the distribution of the maximal cost savings by analyzing

the corresponding cooperative sequencing games. It was shown that these games are

convex and hence balanced, i.e, there are allocations of the cost savings which are

stable in the sense that no coalition of clients can receive a larger payoff by rearranging

the position of their own jobs in an admissible way. Moreover, Curiel et al. (1989)

proposed an allocation rule, the so called equal gain splitting rule for these one-

machine sequencing situations and provided an axiomatical characterization of this

rule. The following studies in this strand of literature have extended the basic model

by considering restrictions on the jobs (e.g., ready times, due dates), by allowing more

general cost functions for the clients or by considering multiple-machine sequencing

situations. A common feature of all these studies is that the analysis is restricted to

manufacturing systems which consist of machines that can process only one job at a

1.2. Overview 7

time. However, in many manufacturing/service systems, operations are carried out

by batch machines which can simultaneously process multiple jobs.

In Section 2.1, we extend the game theoretical approach to the cost allocation

problems arising from sequencing situations on systems that consist of batch ma-

chines. First, we consider batch sequencing situations: sequencing situations which

consist of a single batch machine where the batch machine’s capacity is defined as

the maximum number of jobs that can be processed at any one time. It is shown

that the cooperative games corresponding to batch sequencing situations are convex

and an expression for the Shapley value of these games is provided. We also consider

extensions of the equal gain splitting rule and the split core (Hamers et al., 1996) for

these sequencing situations and provide axiomatic characterizations of these solution

concepts. Second, we analyze relaxed batch sequencing games by considering relax-

ations in the notion of admissibility of reorderings and prove that these games are

also balanced. Third, we analyze various aspects of flow-shop sequencing situations

which consist of batch machines only. In particular, we provide two cases in which

the cooperative game arising from the flow-shop sequencing situation is equal to the

game arising from a sequencing situation that corresponds to one specific machine in

the flow-shop.

Another common assumption in the analysis of sequencing games as initiated by

Curiel et al. (1989) is that no set-up time (i.e, the delays required for reconfiguration

or preparation of a machine or a system) is incurred prior to the processing of the

jobs. This assumption requires that set-up times are negligible or can be included

in processing times. However, in real industry, if a machine has to manufacture

different types of products, then a significant set-up time is almost always required

(See for example Pinedo, 2005). Moreover, recent studies in the scheduling literature

show that explicit incorporation of set-up times in scheduling decisions results in

tremendous cost savings (See Allahverdi et al., 2008).

In Section 2.2, we analyze the cost allocation problems arising from so-called fam-

ily sequencing situations. In family sequencing situations, jobs are partitioned into

families according to their similarities. A job does not require a set-up when following

another job from the same family. A set-up time, known as a family set-up time, is

required when a job follows a member of some other family. Family sequencing situ-

ations have gained considerable attention in the scheduling literature and we refer to

Allahverdi et al. (2008) for a review of this literature. Following the ideas in Curiel

et al. (1989), we associate cooperative games with family sequencing situations by

defining the worth of a coalition as the maximum savings it can obtain by means of

an admissible rearrangement. We show that the cooperative games associated with

8 Chapter 1. Introduction

family sequencing problems have non-empty cores. This result is obtained by showing

that a specific marginal vector of the game is a core element.

In Chapter 3 we analyze cost allocation problems arising from connection prob-

lems, i.e., economic settings in which a set of agents wishes to collaborate and jointly

invest in the construction/maintenance of a common network. We look at two such

problems in particular: minimum cost spanning tree problems, which consider a set of

agents each of whom has to establish a connection to a source and highway problems

which consider a set of agents each of whom has to establish a connection between a

starting point and a destination point.

Imagine a group of villagers that has to construct and pay pipelines from their

respective houses to a water supplier. Each villager could choose to build a direct

link to the supplier, but such a decision would likely be highly inefficient. Instead, it

may be cheaper for some villagers to connect directly to the supplier, whereas others

could connect indirectly via links to neighboring villagers. Indeed, in these situa-

tions a configuration of links that minimizes the total cost of connection is provided

by a minimum cost spanning tree (mcst) and hence these situations are called mcst

situations. Once the agents in a mcst situation agree on which mcst to construct,

the second problem they jointly face is the allocation of the costs of this mcst in a

fair way. This type of cost allocation problems was first introduced in the economics

literature by Claus and Kleitman (1973). The seminal paper by Bird (1976) pro-

vided the first game theoretical treatment of this problem by associating a coalitional

game with transferable utility to mcst problems. Many division rules have been pro-

posed in the literature as appropriate cost allocations for mcst problems. Recently, it

has been shown that the equal remaining obligations rule (Feltkamp et al., 1994) for

mcst problems satisfies many appealing properties (e.g., cost monotonicity, popula-

tion monotonicity, equal treatment) and can be obtained with different approaches.

Moreover, Bergantiños and Vidal-Puga (2007a) showed that other rules in the litera-

ture fail to satisfy some properties that are satisfied by the equal remaining obligations

rule.

The original definition of equal remaining obligations rule by Feltkamp et al.

(1994) consists of a step-by-step procedure: Kruskal’s algorithm (Kruskal, 1956) is

employed to construct an mcst and at each step of the algorithm the cost of the

constructed edge is divided among agents who make use of the edge with respect to

a prespecified scheme. In Section 3.2, we present a new approach to obtain the equal

remaining obligations rule and hence provide yet another support for this important

rule. For this aim, first, we define the vertex oriented construct and charge procedure

1.2. Overview 9

which leads to an mcst for the problem and also a cost sharing allocation where each

agent pays the edge which he chose to construct in the procedure. Then, we show

that the equal remaining obligations rule can be obtained as the average of the cost

allocations provided by a vertex oriented construct and charge procedure for each

order of players. Moreover, in Sections 3.3 and 3.4, we investigate the extensions

of the results obtained in Section 3.2 for minimum cost spanning forest situations

(cf. Rosenthal, 1987) and mcst situations with two sources, respectively. For both of

these situations, we first show that both Kruskal’s algorithm and the vertex oriented

construct and charge procedure can be defined in a way that they yield efficient

algorithms. Second, we extend the definition of equal remaining obligations rule to

these multi-source situations and prove that equal remaining obligations rule can

again be obtained as the average of the cost allocations provided by vertex oriented

construct and charge procedures.

Most of the current literature on the allocation of costs in connection problems

focuses on the mcst problems or its variants. A common feature of these problems is

that each agent in the problem has to establish a connection with a nonempty subset

of the available sources in the network. However, in some connection situations, there

is no particular point that every agent in the problem has to be connected to. For

example, the users of a highway network need a connection only between their entry

and exit points in the network.

Mosquera and Zarzuelo (2006) address the problem of fair allocation of the con-

struction costs of a highway network. For this aim, they formally consider high-

way problems and analyze the corresponding cooperative cost games called highway

games. In a highway problem, the possibilities regarding the construction of the high-

way network are determined by a connected graph. The set of vertices of the graph

represents the potential entry and exit points and the edges in the graph represent the

possible highway connections that can be constructed. Given a highway problem, a

corresponding highway game is defined as a cooperative cost game which associates to

each coalition of players the total cost of the cheapest selection of edges in the graph

which connects the entry and exit point of every member of the coalition. Mosquera

and Zarzuelo (2006) restricted attention to highway problems in which the underlying

graph is a tree. In this setting, there is only one path between an entry and exit point.

In Section 3.5, we study highway problems in which the underlying graphs are

weakly cyclic, i.e., connected graphs for which every edge in the graph is contained

in at most one cycle. First, we focus on the question for which class of graphs the

corresponding games are always concave. For this aim, a graph G is defined to be

highway-game concave if for each highway problem in which G is the underlying graph

10 Chapter 1. Introduction

the corresponding highway game is concave. We prove that a graph is highway-game

concave if and only if it is weakly triangular. Then we focus on the balancedness of

highway games induced by weakly cyclic graphs. It was shown by Kuipers (1997) that

highway games induced by cyclic graphs need not be balanced in general. However,

we prove that highway games on weakly cyclic graphs are balanced.

In Chapter 4, we consider the formation of coalitions through sequences of binding

bilateral agreements.

Studies on coalition formation in many real-life contexts like voting situations

and international trade negotiations suggest that cooperation of all related parties

can hardly be achieved through simultaneous acceptance of an agreement. Hence, a

basic policy recommendation in these situations is to broaden a coalition step by step

through a sequence of binding bilateral agreements. For a coalition formed through

binding bilateral agreements can grow larger by making use of the commitment/

synergy already attained by the coalition to facilitate the persuasion of one of the

outsider parties to enter the coalition.

Chapter 4 focuses on the formation of coalitions through sequences of binding

bilateral agreements in voting situations. In voting situations, voters’ incentive to

form coalitions arises from their will to increase their power to affect the outcome of

the voting process. If we model these situations by simple transferable utility games

and assume that each voter’s voting power is predicted by an appropriate power index,

then the sequences of binding bilateral agreements which result in the formation of

the grand coalition boils down to the notion of population monotonic path schemes

for simple games. A path scheme for a simple game is composed of a path, i.e., a

sequence of coalitions that is formed during the coalition formation process and a

scheme, i.e., a payoff vector for each coalition in the path. A path scheme is called

population monotonic if a player’s payoff does not decrease as the path coalition

grows. First, we focus on Shapley path schemes of simple games in which for every

path coalition the Shapley value of the associated subgame provides the allocation at

hand. We show that the existence of veto players, i.e., a subgroup of voters whose

unanimous agreement is necessary to pass a decision, is required for the existence

of population monotonic Shapley path schemes and vice versa. Moreover, a Shapley

path scheme is population monotonic if and only if the first winning coalition that

is formed along the path contains every minimal winning coalition of the game. We

also show that each Shapley path scheme of a game is population monotonic if and

only if the set of veto players of the game is a winning coalition. We further show

how to extend these results to the probabilistic values, generalizations of the Shapley

1.3. Preliminaries on Cooperative Games 11

value introduced by Weber (1988).

1.3 Preliminaries on Cooperative Games

This section provides a brief introduction to some basic concepts in cooperative game

theory.

Let N = {1, 2, ..., n} be a finite set of players. A coalition is a set of players S ⊂ N

and N is sometimes called the grand coalition.

A cooperative transferable utility game (a TU-game) in characteristic function form

is a pair (N, v) where v is a mapping, v : 2N → R with v(∅) = 0. For any coalition

S ⊂ N , v(S) is called the worth of coalition S and is interpreted as the optimal

monetary amount the coalition S can jointly generate on itself without any help of

players in N\S. Given a TU-game (N, v) and S ∈ 2N , the restriction of v to S (a

subgame of v) is denoted by v|S and is defined by v|S(T) = v(T) for every T ⊂ S. We

denote the set of TU-games with player set N by GN .

A TU-game can reflect rewards or costs. A reward game will be denoted by a

map v and a cost game will be denoted by a map c. The following definitions and

properties refer to reward games.

A game v ∈ GN is monotonic if v(T) ≥ v(S) for every S, T ∈ 2N with S ⊂ T ; it

is called superadditive if v(S) + v(T) ≤ v(S ∪ T) for every S, T ∈ 2N with T ∩ S = ∅

and it is called convex if a player’s marginal contribution does not decrease if he

joins a larger coalition, i.e., v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T) for every i ∈ N

and S, T ⊂ N\{i} with S ⊂ T . Equivalently, a TU-game v ∈ GN is convex if

v(T) + v(S) ≤ v(T ∪ S) + v(T ∩ S) for every S, T ⊂ N .

An element x ∈ RN is called an allocation. We say that x ∈ RN is an imputation

if it satisfies the following two properties:

(i) Efficiency :
∑

i∈N xi = v(N).

(ii) Individual rationality : xi ≥ v({i}) for every i ∈ N .

The core (Gillies, 1953) of a TU-game v ∈ GN is denoted by Core(v) and is

defined as the set of efficient payoff vectors for which no coalition has an incentive

to split off from the grand coalition, i.e., Core(v) = {x ∈ RN |
∑

i∈N xi = v(N) and
∑

i∈S xi ≥ v(S) for all S ∈ 2N}.

A balanced set B is a collection of subsets S of N with the property that there

exist positive numbers λS, S ∈ B, called weights, such that for each i ∈ N , we have

that
∑

S∈B:i∈S

λS = 1.

12 Chapter 1. Introduction

A game v ∈ GN is called balanced if

∑

S∈B

λSv(S) ≤ v(N),

for every balanced set B and for every corresponding set of weights (λS)S∈B. Bon-

dereva (1963) and Shapley (1967) independently proved that a TU-game v ∈ GN is

balanced if and only if its core is nonempty. It is well-known that convex games are

balanced and hence have nonempty cores. A game is said to be totally balanced if

every subgame is balanced, i.e., every subgame has a nonempty core.

An order on the set of players is a bijection σ : N → {1, ..., n}. We denote the set

of all orders on N by Π(N). Given an order σ ∈ Π(N) the set of predecessors of a

player i ∈ N with respect to σ is defined as P (σ, i) = {j ∈ N |σ(j) < σ(i)}. Similarly,

the set of successors of i with respect to σ is defined as S(σ, i) = {j ∈ N |σ(j) > σ(i)}.

We denote by P̄ (σ, i) and S̄(σ, i), the sets P (σ, i)∪{i} and S(σ, i)∪{i}, respectively.

The marginal vector of (N, v) corresponding to order σ ∈ Π(N), mσ(v) is defined

to be the vector with ith coordinate equal to v(P̄ (σ, i)) − v(P (σ, i)).

A coalition S ⊂ N is called connected with respect to σ if for all i, j ∈ S and

k ∈ N such that σ(i) < σ(k) < σ(j) it holds that k ∈ S. We denote with con(σ) the

set of coalitions that are connected with respect to σ. For a coalition S, S\σ is the

set of σ-components of S, a σ-component of S being a maximally connected subset

of S with respect to σ.

Let σ ∈ Π(N). We call a TU-game (N, v) σ-component additive if it satisfies the

following three conditions:

(i) v(i) = 0 for all i ∈ N ,

(ii) (N, v) is superadditive,

(iii) v(S) =
∑

T∈S\σ v(T).

Le Breton et al. (1992) showed that σ−component additive games are balanced.

For any coalition S ∈ 2N\{∅}, the unanimity game uS is defined by uS(T) = 1 if

S ⊂ T and uS(T) = 0 for all other coalitions T . It is well known that every cooperative

TU-game (N, v) can be written as a unique linear combination of unanimity games

by

v =
∑

S⊂N

λSuS, (1.1)

where λS =
∑

T⊂S(−1)|S|−|T |v(T) for every S ⊂ N (cf. Shapley, 1953).

1.3. Preliminaries on Cooperative Games 13

A function F : GN → RN is called a value. A value F is efficient if for all v ∈ GN ,
∑

i∈N Fi(v) = v(N). A player i ∈ N is a null player in (N, v) if v(S ∪{i}) = v(S) for

every S ⊂ N\{i}. F is said to satisfy the null player property if for any v ∈ GN and

any null player i ∈ N in v, Fi(v) = 0. F is said to satisfy the null player out property

(cf. Derks and Haller, 1999) if elimination of a null player does not affect the value

of the other players, i.e., Fi(v) = Fi(v|N\{j}) for all i, j ∈ N and all v ∈ GN such that

j is a null player in v and i 6= j.

The Shapley value (Shapley, 1953) is one of the most important solution concepts

in cooperative game theory and has been studied extensively. The Shapley value of

a game can be calculated by making use of the decomposition of a cooperative game

into unanimity games. More precisely, given a cooperative game (N, v) such that

v =
∑

S⊂N λSuS, the Shapley value Φ assigns to agent i ∈ N

Φi(v) =
∑

S⊂N :i∈S

λS

|S|
,

for every i ∈ N .

An allocation scheme specifies how to distribute the worth of every coalition among

its members. That is an allocation scheme for the game v ∈ GN is a vector (xS)S∈2N\{∅}

such that
∑

i∈S

xS
i = v(S)

for every S ∈ 2N\{∅}. Naturally, every efficient value for TU-games defines an

allocation scheme where the allocation for every coalition is obtained by applying the

value to the corresponding subgame. The allocation scheme in which the Shapley

value is used as an allocation vector is called the Shapley allocation scheme.

Sprumont (1990) introduced the notion of population monotonic allocation schemes.

The notion of population monotonicity requires that the share allocated to every

player increases as the coalition to which he belongs grows larger. Formally, an allo-

cation scheme (xS)S∈2N\{∅} for the game v ∈ GN is population monotonic if

xS
i ≤ xT

i

for every S, T ⊂ N such that S ⊂ T and i ∈ S.

Observe that if (xS)S∈2N\{∅} is a population monotonic allocation scheme (PMAS),

then xS is a core element of the corresponding subgame v|S (cf. Sprumont, 1990) for

every S ∈ 2N\{∅}.

Let (N, c) be a cooperative cost game. The corresponding cost savings game (N, v)

is defined by

v(S) =
∑

i∈S

c({i}) − c(S),

14 Chapter 1. Introduction

for every S ⊂ N .

Consequently, the properties and solution concepts for cooperative cost games can

be derived from the definitions given above. The equivalent of a superadditive game

for a cost game is a subadditive game. A cost game is concave if and only if its

corresponding cost savings game is convex.

Chapter 2

Sequencing Situations and

Cooperation

In this chapter, which is based on Çiftçi et al. (2008) and Çiftçi et al. (2009a), we

consider cost allocation problems arising from specific types of sequencing situations.

Game theoretic analysis of the cost allocation problems arising from sequencing

situations is initiated by Curiel et al. (1989) . This study considered one machine

sequencing situations in which a finite number of agents, each having one job, are

queued in front of a machine waiting for their jobs to be processed. Agents have

linear cost functions and each group of agents is allowed to obtain cost savings by

reordering their jobs. The problem of the distribution of the maximal cost savings

is tackled by analyzing corresponding cooperative sequencing games. It was shown

that these games are convex and hence balanced. Curiel et al. (1989) also proposed

the equal gain splitting (EGS) rule for these one-machine sequencing situations and

provided an axiomatical characterization of this rule.

The following studies in this strand of literature have extended the basic model by

considering ready times (Hamers et al., 1995) , due dates (Borm et al., 2002) , prece-

dence relations (Hamers et al., 2005) and controllable processing times (van Velzen,

2006). In each of these papers, convexity of the corresponding class of games or of

some special sub-classes is established. Curiel et al. (1993) considered a larger class

of sequencing situations by allowing more general cost functions for the agents. It was

shown that these games are not convex in general but core elements do exist. The

β-rule was proposed as an extension of the EGS rule. This rule was shown to yield

outcomes in the core of the corresponding games. Hamers et al. (1996) introduced

the split core, a generalization of the EGS rule and provided an axiomatical charac-

terization. Other papers have investigated multiple-machine sequencing situations.

van den Nouweland et al. (1992) considered sequencing situations in flow-shops while

16 Chapter 2. Sequencing Situations and Cooperation

Hamers et al. (1999) and Slikker (2005) studied sequencing situations with multiple

parallel machines.

The manufacturing/service systems considered in all studies above consist only

of machines which can process no more than one job at a time. Although these

models are realistic for many existing manufacturing systems, there are also various

systems which include batch machines: machines that can simultaneously process

multiple jobs (a batch) subject to the capacity of the machine. Typically, the capac-

ity of a batch machine is related to the number, weight or size of jobs placed in a

batch. Transportation of the semi-finished jobs from one machine to another or the

delivery of the finished jobs to the customers/warehouses (cf. Lee and Chen, 2001)

constitute very common examples of batch machines in manufacturing systems since

transporters, i.e., the machines in these operations usually carry a batch of jobs at the

same time. Other well-known examples include heat-treat ovens which can process

multiple jobs with the same processing requirement (temperature, processing time

etc.) simultaneously in a batch (cf. Lee et al., 1992) and also numerically controlled

(NC) routers which cut a stack of metal sheets simultaneously during the cutting op-

eration (cf. Ahmadi et al., 1992). We refer to Webster and Baker (1995) and Potts

and Kovalyov (2000) for a review of the scheduling literature on batch sequencing.

In Section 2.1, we present a first game theoretical analysis of sequencing situations

with batch machines. From Section 2.1.1 to Section 2.1.4, we consider batch sequenc-

ing situations. In a batch sequencing situation, a machine’s capacity is the maximum

number of jobs that can be processed at any one time and it is assumed that the

time required to process the jobs in any batch is fixed and independent of the number

of the jobs in the batch. We introduce in Section 2.1.1 batch sequencing situations

with a single batch machine. These situations give rise to the class of so-called batch

sequencing games. It is shown in Section 2.1.2 that these games are convex. In partic-

ular, we show that these games can be written as a non-negative linear combination

of unanimity games. This observation also leads to an expression for the Shapley

value of these games. We consider extensions of the equal gain splitting rule and the

split core and provide axiomatic characterizations of these solution concepts by using

efficiency, symmetry and consistency axioms along the lines of Suijs et al. (1997) and

Gerichhausen and Hamers (2008).

Our definition of batch sequencing games follows the standard approach of Curiel

et al. (1989) and assumes that the worth of a coalition is the maximal cost sav-

ings that it can obtain by “admissible” rearrangements of its members’ positions in

the queue. In an admissible rearrangement, two members of a coalition who have

17

a non-member between them may not change positions. The rationale behind this

assumption is that, since an initial order of jobs is established, the non-members who

are placed in between two members of a coalition have the right to object to these

two players jumping over them. Curiel et al. (1993) argued that the set of admissible

rearrangements is too restrictive because a player may not object other players jump-

ing over him if he is not hurt by this change. For the classical sequencing situations

involving machines that can process only one job at a time, van Velzen and Hamers

(2003) and Slikker (2006) considered relaxed sequencing games by considering specific

relaxations of the set of admissible rearrangements and focused on the balancedness

of the corresponding sequencing games. Similarly, we consider in Section 2.1.3 relaxed

batch sequencing games which allow for rearrangements in which two members of a

coalition can switch places by jumping over non-members. The non-members are not

hurt by such rearrangements since the completion time of a batch is independent of

the jobs placed in the batch. We show that these games can be written as a sum of

specific assignment games (cf. Shapley and Shubik, 1972) and hence are balanced. It

is also seen that relaxed batch sequencing games are not convex in general.

In Section 2.1.4 we consider batch sequencing situations in flow-shops which con-

sist of a sequence of finitely many batch machines. We show that when each batch

machine has the same batch size or when each batch machine has the same batch

processing time, the associated cooperative batch sequencing game is equal to the

batch sequencing game corresponding one particular batch machine in the flow-shop.

Hence, the games corresponding to these two special classes are convex. However, it is

also shown that the games corresponding to batch sequencing situations in flow-shops

are not convex in general.

Many practical scheduling/sequencing situations involve set-up times, i.e., the

intermediate delays between processing of successive jobs required to prepare the

machine for the following job (e.g., delays required to change/adjust tooling or to clean

a machine). A common assumption in the analysis of sequencing games as initiated

by Curiel et al. (1989) is that no set-up time is incurred prior to the processing

of the jobs. This assumption requires that set-up times are negligible or can be

included in processing times. However, recent studies in the scheduling literature

show that explicit incorporation of set-up times in scheduling decisions results in

tremendous cost savings in various real world manufacturing/service systems that

are characterized by significant set-up times. We refer to Allahverdi et al. (1999)

and Allahverdi et al. (2008) for a review of the scheduling literature with set-up

considerations.

In particular, so-called family sequencing problems have received considerable

18 Chapter 2. Sequencing Situations and Cooperation

attention in the scheduling literature with set-up considerations1. These problems

consider situations where the jobs can be classified into distinct families with respect

to their production requirements such as the required tooling or container size. Since

the members of the same family have the same production requirements, a job does

not require a set-up when following another job from the same family, but a “family

set-up time” is required when it follows a member of another family. An example of

a specific application of family sequencing problems is a production line of colored

plastics (cf. Potts and Van Wassenhove, 1992). Customer orders can be divided into

color groups. A set-up is required when switching from a job of one color to a job of

another color.

In Section 2.2, we analyze the cost allocation problems arising from family se-

quencing problems. Similarly to Curiel et al. (1989), we assume that there exists

an initial order on the jobs and associate cooperative games with family sequencing

problems by defining the worth of a coalition as the maximum savings it can obtain

by means of an admissible rearrangement. We show that family sequencing games are

balanced. This result is obtained by showing that the marginal which corresponds to

the initial order belongs to the core of the game. It is also seen that the corresponding

games need not be convex in general.

2.1 Batch Sequencing and Cooperation

In this section, we consider the cost allocation problems arising from sequencing situa-

tions with batch machines. Section 2.1.1 describes batch sequencing situations with a

single batch machine. Section 2.1.2 introduces and analyzes the corresponding batch

sequencing games. Section 2.1.3 analyzes relaxed batch sequencing games. Section

2.1.4 introduces and analyzes flow-shop batch sequencing situations and correspond-

ing games.

2.1.1 Batch Sequencing Situations

In a batch sequencing situation a finite number of agents, each having one job, are

queued in front of a single batch machine, waiting for their jobs to be processed. The

set of agents is denoted by N = {1, 2, ..., n}. The machine can process one batch of

jobs at one time. At most z ∈ Z++ jobs can be placed in one batch. Each batch

is processed in t time units which is independent of the number of jobs placed in

1See Potts and Van Wassenhove (1992), Webster and Baker (1995) and Liaee and Emmons (1997)

for a review of scheduling literature on family sequencing problems.

2.1. Batch Sequencing and Cooperation 19

the batch. We assume that there is an initial order σ0 ∈ Π(N) on the agents before

the processing of the machine starts. Specifically, σ0(i) = j means that agent i is in

position j. For each agent i ∈ N , the costs of spending time in the system is assumed

to be linear and the corresponding cost function ci : R+ → R is defined by ci(k) = αik

with αi > 0.

A batch sequencing situation is denoted by Γ(N) = (N, σ0, α, z, t) where σ0 ∈

Π(N), α = (αi)i∈N ∈ RN
++, z ∈ Z++ and t ∈ R++.

In a batch sequencing situation Γ(N) = (N, σ0, α, z, t), it can easily be observed

that as long as there is a sufficient number of jobs to fill up a batch, it is profitable

to run full batches of size z on the machine. Hence, the first z jobs are placed in

the first batch to be processed by the machine, the following z jobs are placed in

the second batch and so on. So, if the jobs are processed according to the order

σ, then
⌈

σ(i)
z

⌉

gives the number of the batch that the job of agent i is placed in2.

Hence the completion time C(σ, i) of the job of agent i with respect to σ is given by

C(σ, i) =
⌈

σ(i)
z

⌉

t.

The total costs of all agents if the jobs are processed according to the order σ

equal
∑

i∈N αiC(σ, i). By reordering the jobs with respect to σ0 the total costs can

be reduced. Since the number of possible orderings of jobs is finite, there exists

an order for which total costs are minimized. We call such an order optimal. The

following proposition establishes the optimality of an HWCF (highest waiting cost

first) order: a processing order in which jobs are processed in nonincreasing order of

cost parameters αi.

Proposition 2.1.1 An HWCF order is optimal for every batch sequencing situation.

Proposition 2.1.1 is a direct consequence of the independence of the batch process-

ing time from the composition of each batch and can be proved by using a straight-

forward argument based on adjacent pairwise interchanges. Notice that the optimal

order is unique up to reorderings of the jobs in the same batch and up to reorderings

of the jobs of the agents with the same cost parameter.

2.1.2 Batch Sequencing Games

For a batch sequencing situation Γ(N) = (N, σ0, α, z, t), the costs of a coalition S

with respect to a processing order σ equal
∑

i∈S αiC(σ, i). We want to determine the

maximal cost savings of a coalition S when its members decide to cooperate. For

this aim, we have to define which reorderings of the jobs of coalition S are admissible

2⌈q⌉ denotes the smallest integer which is greater than or equal to q for any real number q ∈ R.

20 Chapter 2. Sequencing Situations and Cooperation

with respect to the initial order. In this section, we follow the approach of Curiel

et al. (1989) and assume that an order σ is admissible for S with respect to σ0 if

P (σ, j) = P (σ0, j) for all j ∈ N\S. The set of admissible reorderings of a coalition

S is denoted by A(S).

The value of a coalition S is defined as the maximum cost savings coalition S can

achieve by means of an admissible reordering. Formally, the batch sequencing game

(N, v) corresponding to Γ(N) is defined by

v(S) = max
σ∈A(S)

{

∑

i∈S

αi t

(⌈

σ0(i)

z

⌉

−

⌈

σ(i)

z

⌉)

}

, (2.1)

for every S ⊂ N .

Clearly, batch sequencing games are monotonic and superadditive. Notice that,

by definition of an admissible ordering, a coalition S can obtain cost savings only by

changing positions within σ0-components. Hence, the value of a coalition S is equal

to the sum of the values of its σ0-components, i.e., v(S) =
∑

T∈S\σ0
v(T). Notice

further that one-person coalitions can not generate any cost savings, i.e., v({i}) = 0

for every i ∈ N . So, batch sequencing games are σ0-component additive and hence

they are balanced.

In the following, we will denote by σS ∈ Π(N) an ordering which is attained from

σ0 by reordering the members in each σ0-component of a coalition S with respect to

the HWCF rule, i.e., σS(i) = σ0(i) for every i ∈ N\S and σS(i) < σS(j) for every

T ∈ S\σ0 and every i, j ∈ T such that αi > αj. Clearly, σS ∈ A(S). Moreover,

it follows by Proposition 2.1.1 and the σ0-component additivity of batch sequencing

games that σS is optimal for S, i.e.,

v(S) =
∑

i∈S

αi t

(⌈

σ0(i)

z

⌉

−

⌈

σS(i)

z

⌉)

,

for every S ⊂ N .

Example 2.1.1 Consider the batch sequencing situation Γ(N) = (N, σ0, α, z, t) where

N = {1, 2, ..., 7}, z = 2, α = (1, 3, 4, 6, 8, 9, 12) and t = 1. Assume that σ0 is given by

σ0(i) = i for every i ∈ N and consider the coalition S = {2, 3, 5, 6, 7}. It can easily

be observed that σS = (1, 3, 2, 4, 7, 6, 5). The orders σ0 and σS are depicted in Figure

2.1.

Hence

v(S) =
∑

i∈S

αi t
(⌈

σ0(i)
z

⌉

−
⌈

σS(i)
z

⌉)

= α2(1 − 2) + α3(2 − 1) + α5(3 − 4) + α6(3 − 3) + α7(4 − 3) = 5.

⋄

2.1. Batch Sequencing and Cooperation 21

1 2 3 4 5 6 7 σ0

1 3 2 4 7 6 5 σS

Figure 2.1: The orders σ0 and σS in Example 2.1.1

In the following, we will show that batch sequencing games can be written as a

nonnegative linear combination of unanimity games. For this aim, we first need the

following notation and two lemmas.

Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation and let (N, v) be the

corresponding batch sequencing game. For any coalition T ⊂ N , we will denote the

member of T which stands in front of the other members of T with respect to σ0 by

f(T) and the member which stands behind the other members of T by l(T), i.e.,

f(T) = argmini∈T σ0(i) and l(T) = argmaxi∈T σ0(i).

For every agent i ∈ N and an order σ ∈ Π(N), the number of the batch that the job

of agent i is placed in with respect to σ is denoted by bσ(i), i.e., bσ(i) = k if and only

if
⌈

σ(i)
z

⌉

= k. Also we denote by (N, vσS
) the batch sequencing game corresponding

to the batch sequencing situation (N, σS, α, z, t) for any S ⊂ N .

Lemma 2.1.1 Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation and T, S ⊂

N such that S ⊂ T . Then,

v(T) = v(S) + vσS
(T).

Proof.

v(S) + vσS
(T) =

∑

i∈S

αi

(⌈

σ0(i)
z

⌉

−
⌈

σS(i)
z

⌉)

+

+

∑

i∈S

αi

(⌈

σS(i)
z

⌉

−
⌈

σT (i)
z

⌉)

+
∑

i∈T\S

αi

(⌈

σS(i)
z

⌉

−
⌈

σT (i)
z

⌉)

=
∑

i∈T

αi

(⌈

σ0(i)
z

⌉

−
⌈

σT (i)
z

⌉)

=v(T),

where the second equality follows from the fact that σ0(i) = σS(i) for every i ∈ T\S.

¤

We will also make use of the following lemma, proved by Borm et al. (2002),

which explicitly describes the coefficients in the unique linear decomposition of a

σ0-component additive game into unanimity games.

22 Chapter 2. Sequencing Situations and Cooperation

Lemma 2.1.2 (Borm et al., 2002, Proposition 1) Let (N, v) be a σ0-component

additive game and let
∑

S⊂N λSuS be the linear decomposition of (N, v) into unanimity

games. Then, for every coalition S ⊂ N

λS =

{

v(S) − v(S\{f(S)}) − v(S\{l(S)}) + v(S\{f(S), l(S)}), if S ∈ con(σ0),

0, otherwise.

In the following proposition, we show that in case of batch sequencing games the

formula provided by Lemma 2.1.2 boils down to an expression in terms of the differ-

ences between certain players’ waiting cost parameters. More specifically, Proposition

2.1.2 reveals that the coefficient of a connected coalition S is equal to the sum of dif-

ferences between the weight of the last player of a batch with respect to σS and the

weight of the first player of the subsequent batch with respect to σS over all batches

that are crossed by both the first and the last players of S with respect to σ0 when

the order changes from σ0 to σS.

Proposition 2.1.2 Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation. Let

(N, v) be the corresponding batch sequencing game and let
∑

S⊂N λSuS be the linear

decomposition of (N, v) into unanimity games. Then, for every S ∈ con(σ0)

λS =

∑

k:bσS
(l(S))≤k<bσS

(f(S))

t (ασ−1
S

(kz) − ασ−1
S

(kz+1)), if bσS
(l(S)) < bσS

(f(S)),

0, otherwise.

Proof. Let S ⊂ N be a connected coalition with respect to σ0. Let us denote f(S)

by i, l(S) by j and S\{f(S), l(S)} by S ′. By using Lemmas 2.1.1 and 2.1.2, we obtain

λS = v(S) − v(S\{i}) − v(S\{j}) + v(S ′),

= (vσS\{i}
(S) + v(S\{i})) − v(S\{i}) − (vσS′ (S\{j}) + v(S ′)) + v(S ′),

= vσS\{i}
(S) − vσS′ (S\{j}).

Moreover, since S\{i} is already ordered optimally in σS\{i},

vσS\{i}
(S) =

∑

k:bσ0 (i)≤k<bσS
(i)

t (ασ−1
S\{i}

(kz+1) − αi).

Similarly,

vσS′ (S\{j}) =
∑

k:bσ0 (i)≤k<bσS\{j}(i)

t (ασ−1
S′ (kz+1) − αi).

2.1. Batch Sequencing and Cooperation 23

Hence,

λS =
∑

k:bσ0 (i)≤k<bσS
(i)

t (α
σ−1

S\{i}
(kz+1) −αi)−

∑

k:bσ0(i)≤k<bσS\{j}
(i)

t (α
σ−1

S′ (kz+1) −αi). (2.2)

Observe also that ασ−1
S\{i}

(kz+1) = ασ−1
S′ (kz+1) for every k such that bσ0(i) ≤ k <

bσS
(j). So, equation (2.2) can be rewritten as

λS =
∑

k:bσS
(j)≤k<bσS

(i)

t (α
σ−1

S\{i}
(kz+1) −αi)−

∑

k:bσS
(j)≤k<bσS\{j}(i)

t (α
σ−1

S′ (kz+1) −αi). (2.3)

First assume that bσS
(j) ≥ bσS

(i). Clearly, bσS
(i) = bσS\{j}

(i) and ασ−1
S\{i}

(kz+1) =

ασ−1
S′ (kz+1) for all k such that bσS

(j) ≤ k < bσS
(i). But, then λS = 0.

Assume now that bσS
(j) < bσS

(i). Observe that bσS
(i) is either equal to bσS\{j}

(i)

or equal to bσS\{j}
(i) + 1. Assume first that bσS

(i) = bσS\{j}
(i). Then, (2.3) can be

rewritten as

λS =
∑

k:bσS
(j)≤k<bσS

(i)

t (ασ−1
S\{i}

(kz+1) − ασ−1
S′ (kz+1)),

=
∑

k:bσS
(j)≤k<bσS

(i)

t (ασ−1
S

(kz) − ασ−1
S

(kz+1)),

where the second equality follows from the fact that ασ−1
S\{i}

(kz+1) = ασ−1
S

(kz) and

ασ−1
S′ (kz+1) = ασ−1

S
(kz+1) for every k such that bσS

(j) ≤ k < bσS
(i).

Assume lastly that bσS
(i) = bσS\{j}

(i) + 1. Let’s denote bσS\{j}
(i) by k̄. Then,

obviously, αi = ασ−1
S

(k̄z+1). By equation (2.3)

λS =
∑

k:bσS
(j)≤k<k̄

t (ασ−1
S\{i}

(kz+1) − ασ−1
S′ (kz+1)) + t (ασ−1

S\{i}
(k̄z+1) − αi),

=
∑

k:bσS
(j)≤k<k̄

t (ασ−1
S

(kz) − ασ−1
S

(kz+1)) + t (ασ−1
S

(k̄z) − ασ−1
S

(k̄z+1)),

=
∑

k:bσS
(j)≤k<bσS

(i)

t (ασ−1
S

(kz) − ασ−1
S

(kz+1)).

¤

We illustrate the expression provided by Proposition 2.1.2 in the following exam-

ple.

Example 2.1.2 Take the batch sequencing situation Γ(N) considered in Example

2.1.1. Let (N, v) be the batch sequencing game corresponding to Γ(N) and consider

24 Chapter 2. Sequencing Situations and Cooperation

1 2 3 4 5 6 7 σ0

6 5 4 3 2 1 7 σS

Figure 2.2: The orders σ0 and σS in Example 2.1.2

the coalition S = {1, 2, ..., 6}. We will calculate λS, the coefficient corresponding to S

in the decomposition of (N, v) into unanimity games. Obviously, f(S) = 1, l(S) = 6

and σS = (6, 5, 4, 3, 2, 1, 7) (See Figure 2.2).

Observe that the job of agent 1 is processed in the third batch and the job of

agent 6 is processed in the first batch with respect to σS. That is bσS
(l(S)) =

1 and bσS
(f(S)) = 3. Since bσS

(l(S)) < bσS
(f(S)), by Proposition 2.1.2

λS = (ασ−1
S

(2) − ασ−1
S

(3)) + (ασ−1
S

(4) − ασ−1
S

(5))

= (α5 − α4) + (α3 − α2) = (8 − 6) + (4 − 3) = 3.

The whole decomposition of (N, v) into unanimity games is provided below:

v = u{2,3} + 2u{4,5} + 3u{6,7} + 2u{1,2,3} + 2u{2,3,4} + 2u{3,4,5} + u{4,5,6} + u{5,6,7}

+u{1,2,3,4} + 3u{2,3,4,5} + 2u{3,4,5,6} + 5u{4,5,6,7} + 4uN\{6,7} + 3uN\{1,7}

+3uN\{1,2} + 3uN\{7} + 6uN\{1} + 5uN .

⋄

Proposition 2.1.2 reveals that batch sequencing games are nonnegative combinations

of unanimity games. Since unanimity games are convex, this establishes the convexity

of the batch sequencing games. As a side result, we also obtain an expression of the

Shapley value of batch sequencing games.

Theorem 2.1.1 Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation and let

(N, v) be the corresponding batch sequencing game. Then,

(i) (N, v) is convex.

(ii) For all i ∈ N

Φi(v) =
∑

S∈con(σ0),i∈S

∑

k:bσS
(l(S))≤k<bσS

(f(S))

t(ασ−1
S

(kz) − ασ−1
S

(kz+1))

|S|
.

2.1. Batch Sequencing and Cooperation 25

In the remainder of this section, we introduce and characterize a non-aggregated

equal gain splitting (EGS) solution and a non-aggregated split core (SPC) for batch

sequencing situations. Non-aggregated solutions, which are first introduced by Suijs

et al. (1997) for classical sequencing situations, can be considered as a specification of

all components of the total reward an agent obtains. In our setting, a non-aggregated

solution Ψ is a map assigning to each batch sequencing situation Γ(N) a matrix

W ∈ RN×N
+ , where an element wij of W represents the nonnegative gain assigned

to agent i for cooperating with agent j. The aggregated solution corresponding to

W ∈ Ψ(Γ(N)) can be found by multiplying W with the vector eN of all ones in RN .

Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation and (N, v) be the cor-

responding batch sequencing game. Also let
∑

S⊂N λSuS be the linear decomposition

of (N, v) into unanimity games. For any i, j ∈ N , let [i, j] be the set of all players in

between i and j with respect to σ0, i.e.,

[i, j] = {k ∈ N |min{σ0(i), σ0(j)} ≤ σ0(k) ≤ max{σ0(i), σ0(j)}} .

The non-aggregated equal gain splitting solution EGS assigns to each batch sequenc-

ing situation Γ(N) a solution EGS(Γ(N)) ∈ RN×N
+ such that

EGS(Γ(N))ij =
λ[i,j]

2

for every i, j ∈ N .

Example 2.1.3 Consider the batch sequencing situation of Example 2.1.1. Recall

that the decomposition of the corresponding batch sequencing game into unanimity

games is provided in Example 2.1.2. By making use of this decomposition, the equal

gain splitting solution EGS(Γ(N)) equals to

EGS(Γ(N)) =

0 0 1 1
2

2 3
2

5
2

0 0 1
2

1 3
2

3
2

3

1 1
2

0 0 1 1 3
2

1
2

1 0 0 1 1
2

5
2

2 3
2

1 1 0 0 1
2

3
2

3
2

1 1
2

0 0 3
2

5
2

3 3
2

5
2

1
2

3
2

0

⋄

The non-aggregated split core SPC assigns to each batch sequencing situation

Γ(N) a nonempty subset SPC(Γ(N)) ⊂ RN×N
+ such that

GS(Γ(N))ij + GS(Γ(N))ji = λ[i,j]

26 Chapter 2. Sequencing Situations and Cooperation

for each gain splitting matrix GS(Γ(N)) ∈ SPC(Γ(N)) and every i, j ∈ N .

Now we introduce the notions of dummy agents and reduced batch sequencing

situations that will be used for the axiomatizations of the EGS solution and the SPC

for batch sequencing situations.

Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation. An agent i ∈ N is

called a dummy agent in Γ(N) if b(i) = bσS
(i) for every S ⊂ N with i ∈ S, i.e., job of

agent i stays in its initial batch no matter which coalition of agents i cooperates with.

Roughly speaking, a batch sequencing situation reduced to a connected coalition

S ∈ con(σ0) is a batch sequencing situation obtained when the agents outside S are

replaced with dummy agents. Formally, a reduced batch sequencing situation with

respect to S is described by Γ|S(N) = (N, σ0, β, z, t) where β = (βi)i∈N ∈ RN
+ is such

that βi = αi for every i ∈ S and

βj =

{

maxi∈N 2αi, if j < f(S),

mini∈N
αi

2
, if j > l(S),

for every agent j ∈ N\S.

Let Ψ be a non-aggregated solution for batch sequencing situations. We consider

the following three properties of Ψ.

• Efficiency: Ψ is efficient if

∑

i,j∈N

Ψ(Γ(N))ij =
∑

i∈N

αi (C(σ0, i) − C(σN , i)) ,

for all batch sequencing situations Γ(N).

• Symmetry: Ψ is symmetric if Ψ(Γ(N)) is a symmetric matrix for all batch

sequencing situations Γ(N).

• Consistency: Ψ is consistent if for all batch sequencing situations Γ(N) and

all S ∈ con(σ0) the following is satisfied:

Ψ(Γ(N))ij = Ψ(Γ|S(N))ij for every i, j ∈ S.

The efficiency axiom states that the total amount allocated to the agents is equal

to the maximal total cost savings that the agents can jointly obtain. Symmetry

states that the (extra) gain two agents can obtain is equally divided among the two

agents. Consistency states that connected coalitions obtain the same division if they

renegotiate on the basis of the same solution concept to the reduced situation with

outside dummies.

2.1. Batch Sequencing and Cooperation 27

In Theorem 2.1.2 we will characterize the EGS solution with the three properties

mentioned above. For the proof, we need the following lemma which states that, for

non-aggregate solutions that satisfy both efficiency and consistency, the total amount

allocated to connected coalitions must be equal to the maximal total cost savings

that these coalitions can achieve.

Lemma 2.1.3 Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation and let Ψ

be a non-aggregated solution for batch sequencing situations. If Ψ is both efficient and

consistent, then
∑

i,j∈S

Ψ(Γ(N))ij =
∑

i∈S

αi (C(σ0, i) − C(σS , i)) ,

for every S ∈ con(σ0).

Proof. Suppose first that there exists S ∈ con(σ0) such that
∑

i,j∈S

Ψ(Γ(N))ij >
∑

i∈S

αi (C(σ0, i) − C(σS , i)) .

Now on the one hand efficiency of Ψ implies that
∑

i,j∈N

Ψ(Γ|S(N))ij =
∑

i∈S

αi (C(σ0, i) − C(σS , i)) ,

since all agents outside S are dummy agents in Γ|S(N). On the other hand, consis-

tency of Ψ implies that
∑

i,j∈S

Ψ(Γ|S(N))ij =
∑

i,j∈S

Ψ(Γ(N))ij

>
∑

i∈S

αi (C(σ0, i) − C(σS , i)) =
∑

i,j∈N

Ψ(Γ|S(N))ij .

A contradiction, because
∑

i,j∈N

Ψ(Γ|S(N))ij ≥
∑

i,j∈S

Ψ(Γ|S(N))ij

since Ψ(Γ|S(N))ij ≥ 0 for every i, j ∈ N .

Now suppose that there exists S ∈ con(σ0) such that
∑

i,j∈S

Ψ(Γ(N))ij <
∑

i∈S

αi (C(σ0, i) − C(σS , i)) .

Clearly, S 6= N and there exists S1, S2 ∈ con(σ0) ∪ {∅} such that S1 ∩ S2 = ∅ and

N\S = S1 ∪ S2. Observe that
∑

i,j∈N

Ψ(Γ(N))ij =
∑

i∈N

αi (C(σ0, i) − C(σN , i))

≥
∑

T∈{S,S1,S2}

∑

i∈T

αi (C(σ0, i) − C(σT , i)) ,

28 Chapter 2. Sequencing Situations and Cooperation

where the equality follows from Ψ being efficient and the inequality follows from the

fact that N = S ∪ S1 ∪ S2 and S ∩ S1 = S ∩ S2 = S1 ∩ S2 = ∅.

Then, since
∑

i,j∈S Ψ(Γ(N))ij <
∑

i∈S αi (C(σ0, i) − C(σS, i)) , we have either
∑

i,j∈S1

Ψ(Γ(N))ij >
∑

i∈S1

αi (C(σ0, i) − C(σS1 , i))

or
∑

i,j∈S2

Ψ(Γ(N))ij >
∑

i∈S2

αi (C(σ0, i) − C(σS2 , i)) .

However, as we have already shown, the existence of a coalition S ∈ con(σ0) with
∑

i,j∈S Ψ(Γ(N))ij >
∑

i∈S αi (C(σ0, i) − C(σS, i)) leads to a contradiction. ¤

Theorem 2.1.2 The EGS solution is the unique non-aggregated solution satisfying

efficiency, symmetry and consistency.

Proof. Obviously, EGS satisfies efficiency, symmetry and consistency.

Now let Ψ be a nonempty solution which satisfies efficiency, symmetry and con-

sistency. Pick a batch sequencing situation Γ(N) = (N, σ0, α, z, t). We will show that

Ψ(Γ(N))ij is uniquely determined for every i, j ∈ N with induction to the number

|σ0(j) − σ0(i)|.

Pick i, j ∈ N . Assume first that |σ0(j)−σ0(i)| = 0. Then, i = j and Ψ(Γ(N))ij =

0 = EGS(Γ(N))ij by Lemma 2.1.3. Now, assume that Ψ(Γ(N))ij = EGS(Γ(N))ij for

every i, j ∈ N with |σ0(j)− σ0(i)| ≤ k for some k ∈ {0, ..., n− 2}. Pick i, j ∈ N such

that |σ0(j) − σ0(i)| = k + 1. Let S = [i, j]. Then,

Ψ(Γ(N))ij + Ψ(Γ(N))ji =
∑

i∈S

αi (C(σ0, i) − C(σS , i)) −
∑

(p,r)∈S×S\{(i,j),(j,i)}

Ψ(Γ(N))pr,

=
∑

i∈S

αi (C(σ0, i) − C(σS , i)) −
∑

(p,r)∈S×S\{(i,j),(j,i)}

EGS(Γ(N))pr,

where the first equality follows from Lemma 2.1.3 and the second equality follows

from the fact that |σ0(p) − σ0(r)| ≤ k for every (p, r) ∈ S × S\{(i, j), (j, i)} and the

induction assumption.

Then Ψ(Γ(N))ij +Ψ(Γ(N))ji is determined uniquely. Consequently, by symmetry,

Ψ is uniquely determined and hence Ψ(Γ(N)) = EGS(Γ(N)). ¤

We show in the following proposition that, for every batch sequencing situation

Γ(N) = (N, σ0, α, z, t), the aggregated EGS solution EGS(Γ(N)) · eN is equal to the

average of the two marginal vectors of the batch sequencing game corresponding to

Γ(N), the one belonging to the initial order σ0 and the one belonging to the inverse

order of σ0.

2.1. Batch Sequencing and Cooperation 29

Proposition 2.1.3 Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation and

let (N, v) be the corresponding batch sequencing game. Then,

EGS(Γ(N)) · eN =
1

2

(

mσ0(v) + mσ−1
0 (v)

)

.

Proof. Let
∑

S⊂N λSuS be the linear decomposition of (N, v) into unanimity games

and i ∈ N . Then,

1

2

(

mσ0
i (v) + m

σ−1
0

i (v)

)

=
1

2

(

v(P̄ (σ0, i)) − v(P (σ0, i)) + v(S̄(σ0, i)) − v(S(σ0, i))
)

=
1

2

∑

j∈P̄ (σ0,i)

λ[i,j] +
∑

j∈S̄(σ0,i)

λ[i,j]

 =
1

2

∑

j∈N

λ[i,j]

= EGS(Γ(N))i · e
N ,

where the second equality follows from the fact that λT = 0 for every T ⊂ N which

is not connected with respect to σ0. ¤

Comparing the aggregated version of the EGS rule with the Shapley value of

batch sequencing games, we see that while the Shapley value takes the average of

all the marginal vectors of the game, the aggregated version of the EGS rule takes

the average of only two marginals. Since batch sequencing games are convex, each

marginal of these games belongs to the core. Hence, as we highlight in the following

theorem, EGS(Γ(N)) · eN belongs to the core of batch sequencing games.

Theorem 2.1.3 Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation and let

(N, v) be the corresponding batch sequencing game. Then, EGS(Γ(N)) · eN belongs to

the core of (N, v).

Now we turn to a characterization of the non-aggregated split core SPC. Let

D(Γ(N)) be the set of dummy players in a batch sequencing situation Γ(N). Let Ψ

be a non-aggregated solution concept that assigns to each batch sequencing situation

Γ(N) a non-empty subset of RN×N
+ . Consider the following three axioms for Ψ.

• Efficiency: Ψ is efficient if
∑

i,j∈N

Wij =
∑

i∈N

αi (C(σ0, i) − C(σN , i)) ,

for all batch sequencing situations Γ(N) and all W ∈ Ψ(Γ(N)).

• Consistency: Ψ is consistent if for all batch sequencing situations Γ(N), all

W ∈ Ψ(Γ(N)) and all S ∈ con(σ0) the following is satisfied:

There exists W ′ ∈ Ψ(Γ|S(N)) such that Wij = W ′
ij for every i, j ∈ S.

30 Chapter 2. Sequencing Situations and Cooperation

• Converse consistency: Ψ is converse consistent if for all batch sequencing

situations Γ(N) and all W ∈ RN×N
+ with

∑

i,j∈N

Wij =
∑

i∈N

αi (C(σ0, i) − C(σN , i))

the following statement is true:

If for every S ∈ con(σ0)\N with D(Γ(N)) (D(Γ|S(N)) there exists

W ′ ∈ Ψ(Γ|S(N)) such that Wij = W ′
ij for every i, j ∈ S, then W ∈

Ψ(Γ(N)).

The efficiency and the consistency properties are the extensions of their previous

definitions to the case of a correspondence. Converse consistency means that if each

restriction of a feasible gain splitting matrix (a matrix which allocates the maximal

cost savings to the agents) to a connected coalition of agents coincides with an element

of the solution of the corresponding reduced situation, then this gain splitting matrix

must also be an element of the solution of the original situation. Note that for the

converse consistency property only reductions to connected coalitions that enlarge

the set of dummy players are allowed.

In the following we will characterize the SPC solution with the properties men-

tioned above. For this aim, we first need the following lemma.

Lemma 2.1.4 Let Γ(N) be a batch sequencing situation and Ψ be a multi-valued non-

aggregate solution for batch sequencing situations. If Ψ is both efficient and consistent,

then it satisfies the following for every W ∈ Ψ(Γ(N)) and for every S ∈ con(σ0):

∑

i,j∈S

Wij =
∑

i∈S

αi (C(σ0, i) − C(σS , i)) .

The proof runs similar with the proof of Lemma 2.1.3 and hence it is omitted.

Theorem 2.1.4 The non-aggregated split core SPC is the unique non-empty solution

satisfying efficiency, consistency and converse consistency.

Proof. Obviously, SPC satisfies efficiency and consistency. For converse consis-

tency, take a batch sequencing situation Γ(N). Let (N, v) be the batch sequenc-

ing game corresponding to Γ(N) and
∑

S⊂N λSuS be the linear decomposition of

(N, v) to unanimity games. Pick a matrix W ∈ RN×N
+ such that

∑

i,j∈N Wij =
∑

i∈N αi (C(σ0, i) − C(σN , i)) and there exists W ′ ∈ SPC(Γ|S(N)) such that Wij =

W ′
ij for every i, j ∈ S for every S ∈ con(σ0)\N with D(Γ(N)) (D(Γ|S(N)).

Let i = argmini∈N\D(Γ(N))σ0(i) and ī = argmaxi∈N\D(Γ(N))σ0(i). Let S = [i, ī],

S1 = S\{i} and S2 = S\{̄i}. Firstly, by Lemma 2.1.4, Wij = Wji = 0 for every i 6∈ S

and every j ∈ N . Now, consider the reduced batching situations Γ|S1(N) and Γ|S2(N).

2.1. Batch Sequencing and Cooperation 31

Observe that both D(Γ(N)) (D(Γ|S1(N)) and D(Γ(N) (D(Γ|S2(N). Then, there

exists W 1 ∈ SPC(Γ|S1(N)) and W 2 ∈ SPC(Γ|S2(N)) such that Wij = W 1
ij for every

i, j ∈ S1 and Wij = W 2
ij for every i, j ∈ S2. By consistency of SPC we know that

Wij + Wji =

{

W 1
ij + W 1

ji = λ[i,j], if i, j ∈ S1,

W 2
ij + W 2

ji = λ[i,j], if i, j ∈ S2.

Hence, for all pairs (i, j) except (i, ī) and (̄i, i), Wij + Wji = λ[i,j]. Then, Lemma

2.1.4 implies that Wi,̄i + Wī,i = λ[i,̄i]. Hence, W ∈ SPC(Γ(N)).

Now let Ψ be a nonempty solution which satisfies efficiency, consistency and con-

verse consistency. Pick W ∈ Ψ(Γ(N)). We will show that W ∈ SPC(Γ(N)).

Pick i, j ∈ N such that ||σ0(j) − σ0(i)|| = 0. Then, i = j and by Lemma 2.1.4

Wij = Wji = 0 and hence Wij + Wji = λ[i,j]. Now, assume that Wij + Wji = λ[i,j] for

every i, j ∈ N with ||σ0(j) − σ0(i)|| ≤ k for some k ∈ {0, ..., n − 2}. Pick i, j ∈ N

such that ||σ0(j) − σ0(i)|| = k + 1. Let S = [i, j]. Then,

Wij + Wji =
∑

i∈S

αi (C(σ0, i) − C(σS, i)) −
∑

(p,r)∈S×S\{(i,j),(j,i)}

Wpr,

=
∑

i∈S

αi (C(σ0, i) − C(σS, i)) −
∑

T(S:T∈con(σ0)

λT = λS,

where the first equality follows from Lemma 2.1.4; the second equality follows from

the fact that ||σ0(p) − σ0(r)|| ≤ k for every (p, r) ∈ S × S\{(i, j), (j, i)} and the

induction assumption. Therefore W ∈ SPC(Γ(N)). This establishes that Ψ(Γ(N)) ⊂

SPC(Γ(N)).

Now we show that SPC(Γ(N)) ⊂ Ψ(Γ(N)). Pick a batch sequencing situation

Γ(N) and W ∈ SPC(Γ(N)). Since SPC is consistent, for every S ∈ con(σ0), there

exists Y S ∈ SPC(Γ|S(N)) such that Y S
ij = Wij for every i, j ∈ S. We are going

to show that Y S ∈ Ψ(Γ|S(N)) by induction on |S|. Assume first that |S| = 1, i.e.,

S = {i} for some i ∈ N . Then, Ψ(Γ|S(N)) = [0] = Y S since both SPC and Ψ are

efficient.

Now assume that Y S ∈ Ψ(Γ|S(N)) for every S ∈ con(σ0) with |S| < k and pick S ∈

con(σ0) with |S| = k. Then, pick T ∈ con(σ0). We denote a reduction of Γ|S(N) to T

by Γ|S,T (N). Assume that T ∈ con(σ0) is such that D(Γ|S(N)) (D(Γ|S,T (N)). First

consider the case T ∩ S 6= ∅. Then, firstly, T 6⊃ S since D(Γ|S(N)) (D(Γ|S,T (N)).

Since all agents in N\S are dummy agents in Γ|S,T (N), there exists Γ|T∩S(N) a

reduction of Γ(N) to T ∩ S which is equal to Γ|S,T (N). But, then, since |T ∩ S| < k,

Y T∩S ∈ Ψ(Γ|T∩S(N)) = Ψ(Γ|S,T (N)).

Now consider the case T ⊂ N\S. Again since SPC is consistent, for every T ∈

con(σ0) there exists ZS ∈ SPC(Γ|S,T (N)) such that ZS
ij = Y S

ij for every i, j ∈ T . Then,

since all agents in N\S are dummy agents in Γ|S,T (N), ZS = [0] = Ψ(Γ|S,T (N)).

32 Chapter 2. Sequencing Situations and Cooperation

Then for every T ∈ con(σ0) with D(Γ|S(N)) (D(Γ|S,T (N)), there exists Z ∈

Ψ(Γ|S,T (N)) such that Y S
ij = Zij for every i, j ∈ T . Then, since Ψ satisfies converse

consistency, Y S ∈ Ψ(Γ|S(N)).

So, we proved that for every S ∈ con(σ0) such that D(Γ(N)) (D(Γ|S(N)),

Y S ∈ Ψ(Γ|S(N)). Then, W ∈ Ψ(Γ(N)) since Ψ satisfies converse consistency. So we

can conclude that SPC(Γ(N)) ⊂ Ψ(Γ(N)). ¤

2.1.3 Relaxed Batch Sequencing Games

In Section 2.1.2, we associated with a one machine batch sequencing situation a

cooperative game. The value of a coalition S was defined as the maximal cost savings

which the coalition can obtain by admissible rearrangements, i.e., the rearrangements

which reorder the jobs in each component (with respect to the initial order) of S.

In this section, we introduce and analyze relaxed batch sequencing games, a class

of games arising from batch sequencing situations where a coalition can also obtain

savings by switching positions of agents that belong to different components of the

coalition. We show that relaxed batch sequencing games are equal to the sum of

specific assignment games (cf. Shapley and Shubik, 1972). Hence, these games are

balanced. However, it is shown that relaxed batch sequencing games are not convex

in general.

Let Γ(N) = (N, σ0, α, z, t) be a batch sequencing situation. While defining the

associated batch sequencing game in the previous section, we adapted the common

assumption in the sequencing games literature and defined the value of a coalition

S as the maximal cost savings that it can obtain by switching places within σ0-

components. The rationale behind this assumption is that a player not in S has the

right to object to jobs in S jumping over him. In classical sequencing situations where

the machine can process only one job at a time and the agents may require different

processing times, a player not in S will certainly object to jobs in S jumping over him

if he will end up with jobs in front of him that have a longer processing time than he

had in the initial order. In batch sequencing situations however, the completion time

of a player outside S is not affected if two players in different σ0-components of S

switch places since the completion time of a batch is independent of the jobs placed

in the batch. Hence, the players outside S may not object to such rearrangements by

S.

In this section, we follow this “optimistic” assumption and introduce relaxed batch

sequencing games which allow for rearrangements in which players that belong to

different σ0-components of a disconnected coalition can switch places. Formally, an

order σ ∈ Π(N) is called R-admissible for coalition S if σ(j) = σ0(j) for all j ∈ N\S.

2.1. Batch Sequencing and Cooperation 33

We denote the set of R-admissible reorderings for a coalition S by AR(S). Obviously,

A(S) ⊂ AR(S).

By defining the value of a coalition S as the maximum cost savings coalition S can

achieve by means of an R-admissible reordering, we define the relaxed batch sequencing

game (N, vR) corresponding to the batch sequencing situation Γ(N) = (N, σ0, α, z, t)

as follows:

vR(S) = maxσ∈AR(S)

{

∑

i∈S

αi (C(σ0, i) − C(σ, i))

}

, (2.4)

for every S ⊂ N .

Example 2.1.4 Consider the batch sequencing situation given in Example 2.1.1 and

the coalition S = {2, 3, 5, 6, 7}. It can easily be observed that σ∗
S = (1, 7, 6, 4, 5, 3, 2)

is an optimal rearrangement for S in AR(S). The orders σ0 and σ∗
S are depicted in

Figure 2.3.

1 2 3 4 5 6 7 σ0

1 7 6 4 5 3 2 σ∗
S

Figure 2.3: The orders σ0 and σ∗
S in Example 2.1.4

Then, vR(S) can easily be calculated as

vR(S) =
∑

i∈S

αi (C(σ0, i) − C(σ∗
S, i))

= α2(1 − 4) + α3(2 − 3) + α5(3 − 3) + α6(3 − 2) + α7(4 − 1) = 32.

⋄

Clearly, (N, vR) is monotonic and superadditive. Also observe that, for every

coalition S ⊂ N , an order in which the players in S are arranged in order of non-

increasing αi is an optimal admissible order for S. We denote such an order by σ∗
S.

That is, for every S ⊂ N , σ∗
S ∈ Π(N) is such that σ∗

S ∈ AR(S) and σ∗
S(i) < σ∗

S(j) for

every i, j ∈ S such that αi > αj.

In the following, we show that every relaxed batch sequencing game can be written

as a sum of specific assignment games. First, we provide a brief review of assignment

games.

34 Chapter 2. Sequencing Situations and Cooperation

Assignment games arise from bipartitite matching situations and are introduced

by Shapley and Shubik (1972) to model two sided markets with transferable utility.

Let the player set N be the union of two nonempty disjoint sets M1 and M2. For

each i ∈ M1 and j ∈ M2, the value (the joint profit) of a matched pair (i, j) is defined

by aij ≥ 0. From this situation, an assignment game (M1 ∪M2, w) is defined in the

following way. The worth of a coalition S ⊂ N is defined to be the maximum value

that S can obtain by making suitable pairs from its members and pooling the profit.

If S ∩ M1 = ∅ or S ∩ M2 = ∅, no suitable pairs can be made and hence the worth in

this situation is zero. Formally, an assignment game (M1 ∪ M2, w) is defined by

w(S) = max

∑

(i,j)∈µ

aij|µ ∈ M(S ∩ M1, S ∩ M2)

(2.5)

for all S ⊂ N , where M(S∩M1, S∩M2) denotes the set of matchings between S∩M1

and S ∩ M2. Also, a matching is called optimal for S if it maximizes the gain of the

coalition S.

Shapley and Shubik (1972) proved that the core of an assignment game (M1 ∪

M2, w) is nonempty.

Theorem 2.1.5 (Shapley and Shubik, 1972, Theorem 2) Let (M1 ∪ M2, w) be

an assignment game. Then Core(w) 6= ∅.

Let (N, σ0, α, z, t) be a batch sequencing situation. For any coalition S ⊂ N and

batch number k ∈ {1, ...,
⌈

n
z

⌉

− 1}, we denote by L(S, k) the set of players in S which

are placed in batch k or in the batches in front of batch k with respect to the initial

order σ0, i.e., L(S, k) = {i ∈ S|bσ0(i) ≤ k}. We denote by U(S, k) the set of players in

S which are placed in batches behind batch k, i.e., U(S, k) = {i ∈ S|bσ0(i) > k}. Also

let aij = max{0, αj−αi} for every i ∈ L(N, k) and every j ∈ U(N, k). For every batch

number k ∈ {1, ...,
⌈

n
z

⌉

− 1}, we call the assignment game (L(N, k)∪U(N, k), wk) the

kth assignment game associated with the batch sequencing situation (N, σ0, α, z, t).

It can readily be observed that for each assignment game (L(N, k)∪U(N, k), wk)

associated with the batch sequencing situation (N, σ0, α, z, t), the characteristic func-

tion wk can be expressed as follows:

wk(S) =
∑

i∈S:bσ0 (i)>k and bσ∗
S

(i)≤k

αi −
∑

i∈S:bσ0 (i)≤k and bσ∗
S

(i)>k

αi, (2.6)

for every S ⊂ N and k ∈ {1, ...,
⌈

n
z

⌉

− 1}.

In the following theorem, we show that the relaxed batch sequencing game (N, vR)

corresponding to a batch sequencing situation Γ(N) is equal to the sum of the assign-

ment games associated with Γ(N). Since assignment games are balanced, this result

also establihes the balancedness of relaxed batch sequencing games.

2.1. Batch Sequencing and Cooperation 35

Theorem 2.1.6 Let (N, σ0, α, z, t) be a batch sequencing situation and let (N, vR)

be the corresponding relaxed batch sequencing game. Also let (L(N, k) ∪ U(N, k), wk)

be the kth assignment game obtained from (N, σ0, α, z, t) for every batch number k ∈

{1, ...,
⌈

n
z

⌉

− 1}. Then,

vR(S) =

⌈n
z ⌉−1
∑

k=1

wk(S),

for every S ⊂ N and hence (N, vR) is balanced.

Proof. Let S ⊂ N . Then, by using equation (2.6)

⌈n
z ⌉−1
∑

k=1

wk(S) =

⌈n
z ⌉−1
∑

k=1

∑

i∈S:bσ0 (i)>k and bσ∗
S

(i)≤k

αi −
∑

i∈S:bσ0 (i)≤k and bσ∗
S

(i)>k

αi

,

=
∑

i∈S

αi(bσ0(i) − bσ∗
S
(i)) = vR(S).

¤

However, a relaxed batch sequencing game need not be convex in general. This is

illustrated in the following example.

Example 2.1.5 Consider the following batch sequencing situation (N, σ0, α, z, t) where

N={1,2,3,4}, α = (1, 3, 6, 9), z = 2, t = 1 and σ0(i) = i for every i ∈ N . It can easily

be observed that vR(N) = 11, vR({1, 2, 3}) = 5, vR({1, 2, 4}) = 8 and vR({1, 2}) = 0.

So, (N, vR) is not convex:

vR(N) − vR({1, 2, 3}) < vR({1, 2, 4}) − vR({1, 2}).

⋄

2.1.4 Flow-Shop Batch Sequencing Games

Flow-shop batch sequencing (FSBS) situations consist of a sequence of finitely many

batch machines B1, B2, ..., Bm and a finite number of agents N = {1, 2, ..., n} each

having one job to be processed in the order B1, B2, ..., Bm. Each batch machine Bk

has a batch size of zk and processes a batch in tk time units independent of the

number of jobs placed in the batch. As it is the case in batch sequencing situations

on a single batch machine, we assume that there is an initial order σ0 on the jobs

before the processing of the jobs on the flow-shop begins. That is if agent i is in

front of agent j in the queue, then at all machines in the flow-shop, the job of agent

36 Chapter 2. Sequencing Situations and Cooperation

i has to be processed before the job of agent j is processed or together with the job

of agent j in the same batch. An FSBS situation as described above is denoted by

Γ(N,M) = (N,M, σ0, α, z, t) where M = {1, 2, ...,m} and m ∈ Z++ is the number

of batch machines in the flow-shop, σ0 ∈ Π(N), α = (αi)i∈N ∈ RN
++, z ∈ ZM

++ and

t ∈ RM
++.

For every FSBS situation, a production schedule τ fixes for every agent i and

for every machine k a starting time Ti,k(τ) of the job of agent i at machine k. A

production schedule is feasible if it conforms to the batch capacity constraints of the

machines, to the order of the flow-shop and to the order on the jobs. Formally, we

call a production schedule feasible with respect to the order σ ∈ Π(N) if it satisfies

the following:

(i) Ti,k(τ) ≥ 0 for all i ∈ N and all k ∈ M .

(ii) Ti,k(τ) + tk ≤ Ti,k+1(τ) for all i ∈ N and all k ∈ M .

(iii) If σ(i) ≤ σ(j), then Ti,k(τ) ≤ Tj,k(τ) for all i, j ∈ N and all k ∈ M .

(iv) |{i ∈ N |Ti,k(τ) = s}| ≤ zk for all k ∈ M and s ≥ 0.

(v) If Ti,k(τ) 6= Tj,k(τ), then |Ti,k(τ) − Tj,k(τ)| ≥ tk for all i, j ∈ N and all k ∈ M .

We denote by Fi,k(τ) the time at which machine k finishes the processing of the

batch in which job i is placed, i.e., Fi,k(τ) = Ti,k(τ) + tk. Then, the completion time

Ci(τ) of job i under production schedule τ is Fi,m(τ). The total costs of all agents if

the jobs are processed according to the production schedule τ equal
∑

i∈N αiFi,m(τ).

Example 2.1.6 Consider the following FSBS Γ(N,M) = (N,M, σ0, α, z, t) where

N = {1, ..., 5}, M = {1, 2}, σ0(i) = i for every i ∈ N , α = (1, 7, 1, 1, 1), z = (1, 2) and

t = (1, 5). In Figure 2.4, we depict two feasible production schedules with respect to

the initial order σ0: τ0 and τ1.

It can easily be observed that with respect to both schedules, every job is immedi-

ately processed by B1 as soon as B1 is available. If the jobs are processed with respect

to production schedule τ0, then F1,1(τ0) = T1,2(τ0) = 1. That is job 1’s processing at

B2 starts as soon as its processing at B1 ends. If the jobs are processed with respect

to production schedule τ1, then F1,1(τ1) = 1 and T1,2(τ1) = T2,2(τ1) = 2. That is, with

respect to production schedule τ1, although job 1 is available for processing at B2 at

time one, it waits for one time unit for job 2 to become available for B2 and at time

two their processing by B2 starts together in the same batch. ⋄

2.1. Batch Sequencing and Cooperation 37

τ0 :

B1 :
0 1 2 3 4 5

1 2 3 4 5

B2 :
1 6 11 160

1 2,3 4,5

τ1 :

B1 :
0 1 2 3 4 5

1 2 3 4 5

B2 :
2 7 12 170

1,2 3,4 5

Figure 2.4: Two feasible schedules for the flow-shop situation in Example 2.1.6

Finding an optimal schedule for a general FSBS situation is still an open problem3.

However, as we establish in the following proposition, there always exists an optimal

schedule which processes the jobs according to the HWCF-sequence σN and runs full

batches in the first batch machine.

Proposition 2.1.4 For every FSBS situation Γ(N,M) = (N,M, σ0, α, z, t), there

exists an optimal schedule τ such that

(i) τ is a feasible schedule with respect to σN .

(ii) τ runs full batches of size z1 in the first batch machine.

We note that Proposition 2.1.4 can easily be proved by using a simple interchange

argument.

Observe that there can be more than one production schedule which is feasible

with respect to the initial order in an FSBS situation. We assume in this section that,

in the initial case, i.e., when the agents do not cooperate, the corresponding initial

production schedule is the one in which no agent waits for another because waiting

for other jobs, without any further compensation, to get processed together in the

same batch will only increase the costs of the agent. That is the initial production

schedule is the one which is feasible with respect to σ0 and satisfies the condition

that every job which is ready to be processed at a machine is processed as soon as

the machine is also available. We denote the initial production schedule in flow-shop

3For an FSBS situation with two machines and equal waiting time parameters, Ahmadi et al.

(1992) showed that the problem of finding the optimal schedule can be solved within O(N3) opera-

tions.

38 Chapter 2. Sequencing Situations and Cooperation

batch sequencing situations by τ0 (Note that the production schedule τ0 in Example

2.1.6 indeed fits this description.).

Next, for a coalition of cooperating agents, we must decide on which production

schedule rearrangements are admissible. We assume that a coalition S can choose

any production schedule which is feasible with respect to an order σ ∈ A(S) as long

as they do not harm the players outside S. Formally, a production schedule τ is

admissible for coalition S if it satisfies the following two conditions:

(i) τ is a feasible production schedule with respect to an order in A(S).

(ii) Fi,m(τ) ≤ Fi,m(τ0) for all i ∈ N\S.4

The set of admissible production schedules for S is denoted by APS(S).

We define the value of a coalition S as the maximum cost savings coalition S

can achieve by means of an admissible production schedule. Formally, a flow-shop

batch sequencing game (N,w) corresponding to a flow-shop batch sequencing situa-

tion Γ(N,M) is defined by

w(S) = max
τ∈APS(S)

∑

i∈S

αi(Fi,m(τ0) − Fi,m(τ)), (2.7)

for every S ⊂ N .

Using a simple interchange argument, it can be shown that there exists an optimal

admissible production schedule for S which is feasible with respect to σS. Recall that

σS is an ordering which is attained from σ0 by reordering the members in each σ0-

component of a coalition S with respect to the HWCF rule.

Clearly, FSBS games are monotonic and superadditive. However, as illustrated

by the following example, FSBS games are neither σ0-component additive nor convex

in general.

Example 2.1.7 Consider the flow-shop batch sequencing situation Γ(N,M) given in

Example 2.1.6 and the coalition S = {1, 3, 4, 5}. The initial production schedule, τ0 is

also given in Example 2.1.6. Notice that S can not create savings just by reordering

4Condition (ii) enables agents to wait for other agents’ jobs in order to get processed together

in the same batch. That is agents can create savings both by reordering their jobs and also by

waiting for some other jobs. Another option for admissibility of a rearrangement could be to require

that Fi,m(τ) = Fi,m(τ0) for all i ∈ N\S. Under this more restrictive condition, waiting would no

longer be possible in a flow-shop batch sequencing situation, i.e., the agents could create savings

only by reordering their jobs. We want to remark that, under this more restrictive condition, the

results obtained for single machine batch sequencing games can easily be extended to corresponding

flow-shop batch sequencing games.

2.1. Batch Sequencing and Cooperation 39

the jobs since αi = αj for every i, j ∈ S. However, observe that τ1 in Example 2.1.6

is an admissible production schedule for S (since F2,2(τ1) < F2,2(τ0)) and the cost

savings obtained if S uses τ1 is:

∑

i∈S

αi(Fi,2(τ0) − Fi,2(τ1)) =
∑

i∈S

(Fi,2(τ0) − Fi,2(τ1))

= (6 − 7) + (11 − 12) + (16 − 12) + (16 − 17) = 1.

So, when agent 1 waits for agent 2, the only agent outside S, agent 2 profits from

an earlier completion time, agents 3 and 5 are harmed indirectly but agent 4 profits.

As a result, S could obtain cost savings of 1. Actually, τ1 is the optimal production

schedule for S, i.e., w(S) = 1.

For T ∈ 2N\{S} one finds that: w(T) = 30 for every T ⊃ {1, 2} and w(T) = 0

otherwise.

Observe that this FSBS game is not convex:

0 = w(N) − w({1, 2, 3, 4}) < w({1, 3, 4, 5}) − w({1, 3, 4}) = 1.

(N,w) is not σ0-component additive either: {1} and {3, 4, 5} are the σ0-components

of {1, 3, 4, 5}, but

1 = w({1, 3, 4, 5}) 6= w({1}) + w({3, 4, 5}) = 0.

⋄

In the following, we will examine two particular FSBS situations: situations where

all batch machines have the same batch size and situations where all batch machines

have the same batch processing time. First, it is shown that, in both of these situa-

tions, an optimal order for a coalition of agents can be obtained by reordering the jobs

of the agents. That is although waiting for other jobs to produce savings is allowed

in our model, in these FSBS situations it need not be employed by the coalitions to

obtain maximal cost savings. Second, it is shown that the FSBS games arising from

these situations are equal to the game arising from the “bottleneck” machine in the

flow-shop: the machine with the highest batch processing time when all machines

have the same batch capacity and the machine with the minimum batch capacity

when all machines have the same batch processing time.

We need the following notation in order to present our results. Consider an FSBS

situation Γ(N,M) = (N,M, σ0, α, z, t). We denote by Pk the sum of the first k

machines’ batch processing times, by t̄ the maximum batch processing time and by z̄

the minimum batch size, i.e., Pk =
∑k

p=1 tp, t̄ = max{tk|k ∈ M} and z̄ = min{zk|k ∈

40 Chapter 2. Sequencing Situations and Cooperation

M}. Lastly, we denote by τσ the production schedule which is obtained from τ0 only

by reordering the agents with respect to σ. That is

Tσ−1(p),k(τσ) = Tσ−1
0 (p),k(τ0)

for every p ∈ {1, 2, ..., n} and k ∈ M .

Proposition 2.1.5 Let Γ(N,M) = (N,M, σ0, α, z, t) be an FSBS situation. If zk = z

for every k ∈ M or if tk = t for every k ∈ M , then τσS
is an optimal production

schedule for every S ⊂ N .

Proof. First assume that zk = z for every k ∈ M and consider the initial production

schedule τ0. Observe that with respect to τ0 first z jobs in the initial order σ0 are

processed together in the first batch in each machine; the second z jobs in σ0 are

processed together in the second batch in each machine and so on. Since the initial

production schedule τ0 runs full batches in each machine in the flow-shop, waiting

for other jobs is not an option for the players. We know that there exists an optimal

production schedule for every coalition S which is feasible with respect to σS. Then,

clearly, τσS
is an optimal production schedule for any coalition S ⊂ N .

Now assume that tk = t for every k ∈ M and consider the initial production

schedule τ0. Observe that τ0 may run batches with less jobs than full capacity and

the jobs in these batches have the option to wait for other jobs to get processed to-

gether in the same batch. However, observe that it is not possible to decrease the

completion times of the other jobs by waiting for them, because the batch processing

time of each machine is the same. That is the coalitions can not produce savings

through waiting for other jobs. We know that there exists an optimal production

schedule which is feasible with respect to σS for every coalition S. Then, since wait-

ing is not profitable, τσS
is an optimal production schedule for any coalition S ⊂ N . ¤

In Theorem 2.1.7 we show that in both of these FSBS situations the corresponding

FSBS games are equal to the batch sequencing game corresponding to the bottleneck

machine in the flow-shop. For the proof, we need the following lemma which states

that in both of these FSBS situations the completion time of a job is determined up

to a constant by the bottleneck machine.

Lemma 2.1.5 Let Γ(N,M) = (N,M, σ0, α, z, t) be an FSBS situation.

(i) If zk = z for every k ∈ M , then Fi,m(τσ) = Pm + (
⌈

σ(i)
z

⌉

− 1)t̄ for every i ∈ N

and every σ ∈ Π(N).

2.1. Batch Sequencing and Cooperation 41

(ii) If tk = t for every k ∈ M , then Fi,m(τσ) = mt + (
⌈

σ(i)
z̄

⌉

− 1)t for every i ∈ N

and every σ ∈ Π(N).

Proof. (i). Let σ ∈ Π(N) and let i ∈ N be such that
⌈

σ(i)
z

⌉

= 1. Clearly, i is

processed in the first batch by each machine and Fi,k(τσ) = Pk for every k ∈ M .

Now, pick j ∈ N with
⌈

σ(j)
z

⌉

= 2, i.e., j is processed in the second batch by each

machine. Let t̄[1,k] be the maximum batch processing time among the first k machines,

i.e., t̄[1,k] = max{tl|l ∈ {1, 2, ..., k}}. We will show, by induction on k, that

Fj,k(τσ) = Fi,k(τσ) +
(⌈

σ(j)
z

⌉

− 1
)

t̄[1,k] = Pk + t̄[1,k].

When k = 1, the assertion holds trivially. So, assume that the assertion holds for

every k < l. Then, Fj,l−1(τσ) = Pl−1 + t̄[1,l−1].

Now, if tl < t̄[1,l−1], then t̄[1,l] = t̄[1,l−1] and

Fj,l−1(τσ) = Pl−1 + t̄[1,l−1] > Pl−1 + tl = Pl = Fi,l(τσ),

i.e., the second batch’s processing at machine l − 1 finishes after the first batch’s

processing finishes at machine l. Hence, the second batch immediately starts to be

processed by machine l at time Fj,l−1(τσ). So,

Fj,l(τσ) = Fj,l−1(τσ) + tl = Pl−1 + t̄[1,l−1] + tl = Pl + t̄[1,l].

If tl ≥ t̄[1,l−1], then t̄[1,l] = tl. Also we have that

Fj,l−1(τσ) = Pl−1 + t̄[1,l−1] ≤ Pl−1 + tl = Fi,l(τσ).

That is the second batch’s processing at machine l−1 finishes before the first batch’s

processing finishes at machine l. Hence, the second batch starts to be processed by

machine l at time Fi,l(τσ). So, Fj,l(τσ) = Fi,l(τσ) + tl = Pl + tl = Pl + t̄[1,l].

Now, one can repeat the whole argument given above for a job which is processed

in the third batch by each machine, then for the fourth batch and so on to prove that

Fi,m(τσ) = Pm + (
⌈

σ(i)
z

⌉

− 1)t̄ for every i ∈ N .

(ii) can be proven similarly. ¤

Theorem 2.1.7 Let Γ(N,M) = (N,M, σ0, α, z, t) be an FSBS situation and (N,w)

be the corresponding flow-shop batch sequencing game.

(i) Let zk = z for every k ∈ M . Define Γ(N) = (N, σ0, α, z, t̄) to be the batch

sequencing situation corresponding to the bottleneck batch machine and let (N, v)

be the corresponding batch sequencing game. Then, v = w.

42 Chapter 2. Sequencing Situations and Cooperation

(ii) Let tk = t for every k ∈ M . Define Γ(N) = (N, σ0, α, z̄, t) to be the batch

sequencing situation corresponding to the bottleneck batch machine and let (N, v)

be the corresponding batch sequencing game. Then, v = w.

Proof. (i). We know by Lemma 2.1.5 that

Fi,m(τ0) = Pm + (
⌈

σ0(i)
z

⌉

− 1)t̄ and Fi,m(τσS
) = Pm + (

⌈

σS(i)
z

⌉

− 1)t̄,

for every S ⊂ N and every i ∈ N . Moreover, we know by Proposition 2.1.5 that in

Γ(N,M) τσS
is an optimal schedule for every S ⊂ N . Then,

w(S) =
∑

i∈S

αi(Fi,m(τ0) − Fi,m(τσS
))

=
∑

i∈S

αi

(

(Pm + (
⌈

σ0(i)
z

⌉

− 1)t̄) − (Pm + (
⌈

σS(i)
z

⌉

− 1)t̄)
)

=
∑

i∈S

αi t̄
(⌈

σ0(i)
z

⌉

−
⌈

σS(i)
z

⌉)

= v(S),

for every S ⊂ N .

(ii) can be proven similarly. ¤

2.2 Family Sequencing and Cooperation

In this section, we consider cost allocation problems arising from family sequencing

situations. In a family sequencing situation, the jobs can be partitioned into distinct

families. No set-up is required between the jobs of the same family. However, the

family set-up time is required when a job is preceded by a job of a different family

or if there is no preceding job. Section 2.2.1 formally describes family sequencing

situations. Section 2.2.2 introduces and analyzes the corresponding family sequencing

games. We prove that family sequencing games are balanced by showing that a specific

marginal vector belongs to the core of these games. It is also seen that these games

need not be convex even under specific restrictions of the model considered.

2.2.1 Family Sequencing Situations

In this section, we consider a one machine sequencing situation in which a finite num-

ber of agents, each having one job, are queued in front of a machine, waiting for their

jobs to be processed. The machine in the situation is of classical type which can

handle at most one job at a time. The set of agents is denoted by N = {1, 2, ..., n}.

2.2. Family Sequencing and Cooperation 43

The jobs can be partitioned into f families with respect to their production require-

ments. Let F = {1, 2, ..., f} be the set of families. A family function F : N → F

associates to each agent i ∈ N the family F(i) that his job belongs to. We denote

with nk the number of agents whose jobs are in family k. It is assumed that there

is an initial processing order σ0 on the agents before the processing of the machine

starts. If a job in family k follows a job of the same family, then it does not require

a set-up. However, the family set-up time sk is required if it is preceded by a job of

a different family or if there is no preceding job. Observe that the set-up times are

sequence independent, i.e., they are independent of the family of the preceding job.

We assume that each job of the same family requires the same processing time which

is denoted by pk for every family k ∈ F . For each agent i ∈ N , the costs of spending

time in the system is assumed to be linear in the completion time of the job and

the corresponding cost function ci : R+ → R is defined by ci(t) = αit with αi > 0.

Lastly, we assume that the agents having jobs of the same family have the same cost

parameter, i.e., if F(i) = F(j), then αi = αj for every i, j ∈ N .

A one machine sequencing situation as described above is called a family sequenc-

ing situation and is denoted by Σ(N) = (N,F,F , σ0, s, p, α) where σ0 ∈ Π(N) and

s, p, α ∈ RF
++.

In a family sequencing situation Σ(N) = (N,F,F , σ0, s, p, α), the completion time

C(σ, i) of the job of agent i when the jobs are processed according to the order σ is

given by

C(σ, i) =
∑

j∈P̄ (σ,i)

(

xσ,jsF(j) + pF(j)

)

,

where xσ,j equals 1 if the job j will require a set-up when jobs are processed with

respect to σ and 0 otherwise. Observe that C(σ, i) is the sum of processing times for

the first σ(i) jobs plus any set-ups that occurred.

The total costs of all agents if the jobs are processed according to the order σ

equal
∑

i∈N αF(i)C(σ, i). By reordering the jobs with respect to σ0 the total costs can

be reduced. We call an order optimal if it minimizes the total costs. It was proven

by Santos and Magazine (1985) and, independently, by Dobson et al. (1987) that a

highest urgency comes first (HUCF) order, an order which processes the jobs of the

same family together as a group (consecutively) and processes these family groups in

nonincreasing order of the family-specific urgency index uk defined by uk = nkαk

sk+nkpk

is optimal for family sequencing situations.

Theorem 2.2.1 For every family sequencing situation an HUCF order is optimal.

44 Chapter 2. Sequencing Situations and Cooperation

2.2.2 Family Sequencing Games

For a family sequencing situation Σ(N) = (N,F,F , σ0, s, p, α), the costs of a coalition

T with respect to a processing order σ equal
∑

i∈T αF(i)C(σ, i). We want to determine

the maximal cost savings of a coalition T when its members decide to cooperate. For

this aim, we have to define which reorderings of the jobs of coalition T are admissible

with respect to the initial order. We assume that an order σ ∈ Π(N) is admissible

for a coalition T with respect to σ0 if it satisfies the following two conditions:

(i) P (σ, j) = P (σ0, j) for all j ∈ N\T .

(ii) C(σ, i) ≤ C(σ0, i) for all i ∈ N\T .

Condition (i) is the standard admissibility requirement that a coalition T can pro-

duce cost savings only by changing positions within σ0-components. However, in a

family sequencing situation, a coalition may hurt the players outside the coalition

by reordering its players in a way that increases the total time required for set-ups.

Hence, we also adopt condition (ii) which guarantees that T cannot not harm the

players outside T . The set of admissible reorderings of a coalition T is denoted by

A(T).

The value of a coalition T is defined as the maximum cost savings coalition T can

achieve by means of an admissible reordering. Formally, the family sequencing game

(N, v) corresponding to a family sequencing situation Σ(N) = (N,F,F , σ0, s, p, α) is

defined by

v(T) = max
σ∈A(T)

{

∑

i∈T

αF(i) (C(σ0, i) − C(σ, i))

}

, (2.8)

for every T ⊂ N .

The family sequencing games are illustrated in the following example.

Example 2.2.1 Consider the family sequencing situation (N,F,F , σ0, s, p, α) with

N = {1, 2, 3, 4, 5} and F = {1, 2}. Assume that F(1) = F(4) = F(5) = 1 and

F(2) = F(3) = 2. Assume also that σ0 is given by σ0(i) = i for every i ∈ N ,

s = (1, 5), p = (4, 2) and α = (1, 1). Then the urgencies for the families are u1 = 3
13

and u2 = 2
9
, respectively. Hence, an HUCF order processes first the jobs in family

1 and then the jobs in family 2. In Figure 2.5, we depict the production schedules

corresponding to an HUCF order σN and σ0.

Consider now the coalition T = {1, 2, 3}. Observe that the order σT = (2, 3, 1, 4, 5)

is an admissible order for T with respect to σ0: P (σT , j) = P (σ0, j) for all j ∈ N\T

and both C(σT , 4) < C(σ0, 4) and C(σT , 5) < C(σ0, 5). Figure 2.5 also depicts the

2.2. Family Sequencing and Cooperation 45

σN :

σ0 : s1 p1 s2 p2 p2 s1 p1 p1

0

1

5 10 12 14 15 19 23

C(σ0, 1)
C(σ0, 2)

C(σ0, 3) C(σ0, 4) C(σ0, 5)

s1 p1 p1 p1 s2 p2 p2

0
1

5 9 13 18 20 22

C(σ0, 1) C(σ0, 4) C(σ0, 5) C(σ0, 2)

C(σ0, 3)

σT : s2 p2 p2 s1 p1 p1 p1

0 5 7 9 10 14 18 22

C(σT , 2)
C(σT , 3) C(σT , 1) C(σT , 4) C(σT , 5)

Figure 2.5: The production schedules corresponding to the orders σ0, σN and σT in

Example 2.2.1

production schedule corresponding to order σT . The cost savings obtained if T uses

σT is:

∑

i∈T

αF(i)(C(σ0, i) − C(σT , i)) =
∑

i∈T

(C(σ0, i) − C(σT , i))

= (5 − 14) + (12 − 7) + (14 − 9) = 1.

Actually, σT is the optimal processing order for T , i.e., v(T) = 1. Notice that σT

processes the jobs in family 2 first although with respect to the optimal order for the

grand coalition jobs in family 1 are processed first.

Consider now the coalition Q = {1, 2, 3, 5}. Clearly, σT is an admissible order for

Q. The cost savings obtained if Q uses σT is:

∑

i∈Q

αF(i)(C(σ0, i) − C(σT , i)) =
∑

i∈Q

(C(σ0, i) − C(σT , i))

= v(T) + (23 − 22) = 2.

That is when the agents 1,2 and 3 reorder themselves from σ0 to σT , agent 5

profits from an earlier completion time. Actually, σT is also an optimal processing

order for Q. Hence v(Q) = 2. The complete family sequencing game (N, v) is given

by: v(N) = v({2, 3, 4, 5}) = 4, v({1, 2, 3, 4}) = v({1, 2, 3, 5}) = v({2, 3, 4}) = 2,

v({1, 2, 3}) = 1 and v(T ′) = 0 for every remaining coalition T ′ ∈ 2N .

Observe that this game is not convex:

v(N) − v({2, 3, 4, 5}) = 0 < 1 = v({1, 2, 3}) − v({2, 3}).

(N, v) is not σ0-component additive either: {1, 2, 3} and {5} are the σ0-components

of {1, 2, 3, 5}, but v({1, 2, 3, 5}) = 2 6= 1 = v({1, 2, 3}) + v({5}). ⋄

46 Chapter 2. Sequencing Situations and Cooperation

Example 2.2.1 illustrated that family sequencing games need not be convex in

general. The following example shows that a family sequencing game need not be

convex even when the set-up times and the processing times are equal and the jobs

of the same family are consequtive in the initial order.

Example 2.2.2 Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situation

with N = {1, 2, ..., 9} and F = {1, 2, 3, 4}. Assume that F(1) = 1, F(2) = F(3) = 2,

F(4) = ... = F(8) = 3 and F(9) = 4. Assume also that σ0 is given by σ0(i) = i for

every i ∈ N , s = (1, 1, 1, 1), p = (1, 1, 1, 1) and α = (100, 2, 4, 1). Finally, let (N, v)

be the family sequencing game corresponding to Σ(N).

Let Q = {1, 3, 4, 5, 6, 7, 8}, R = Q ∪ {9}. It can be observed that v(Q) = 0,

v(R) = 5 and v(Q ∪ {2}) = v(R ∪ {2}). Then, (N, v) is not convex since

v(Q ∪ {2}) − v(Q) > v(R ∪ {2}) − v(R).

⋄

As illustrated in Example 2.2.1, family sequencing games are in general not σ0-

component additive in spite of the fact that a coalition can only change the posi-

tions of its members who belong to the same σ0-component of the coalition. The

reason that we lose σ0-component additivity although we use a similar admissibility

requirement to Curiel et al. (1989) is that the members of a coalition can affect

the completion times of the members (and also the non-members) behind them by

changing the total set-up time required to process the jobs. This property of family

sequencing situations is in line with sequencing situations with controllable processing

times (cf. van Velzen, 2006) where the players can affect the completion times of the

players behind them by employing additional resources to reduce the time required

to process their jobs.

In the following we will prove balancedness of family sequencing games by showing

that the marginal corresponding to the initial order belongs to the core of these games.

Let T ⊂ N and σ ∈ Π(N). We will denote the member of T which stands in front

of the other members of T in the order σ by f(σ, T) and the member which stands

behind the other members of T by l(σ, T), i.e.,

f(σ, T) = arg min
i∈T

σ(i) and l(σ, T) = arg max
i∈T

σ(i).

We will call f(σ, T) (l(σ, T)) the first player of T (the last player of T) with respect

to σ. We will denote by P (σ, T) (S(σ, T)) the set of players which stand in front of

(behind) every member of T in the order σ, i.e.,

P (σ, T) = {i ∈ N |σ(i) < min
j∈T

σ(j)} and S(σ, T) = {i ∈ N |σ(i) > max
j∈T

σ(j)}.

2.2. Family Sequencing and Cooperation 47

Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situation. For every

T ⊂ N and σ ∈ Π(N), we denote by g(σ, T) the cost savings obtained by T when the

production order is changed from σ0 to σ, i.e.,

g(σ, T) =
∑

i∈T

αF(i) (C(σ0, i) − C(σ, i)) .

Let σ ∈ Π(N). We call a set of jobs R that are processed between two set-ups

when the jobs are processed with respect to σ, a run of σ. Naturally, all jobs in the

same run are of the same family. A run which consists of jobs of family k is called a

run of family k. Given a connected coalition T ∈ con(σ), a run R of σ is said to start

in T (end in T) if f(σ,R) ∈ T (if l(σ,R) ∈ T). Run R is said to start in front of T

(end behind T) if f(σ,R) ∈ P (σ, T) (l(σ,R) ∈ S(σ, T)). We call a run R of σ which

starts in T the last run that starts in T with respect to σ if it includes l(σ, T). With

σ′ ∈ Π(N), σ′ is said to split a run R of σ if there does not exist a run R′ of σ′ with

R ⊂ R′.

Since a σ0-component of a coalition can affect the completion times of the mem-

bers of another σ0-component behind it, it is generally not easy to find an optimal

admissible processing order for coalitions. Nevertheless, there are useful properties

regarding the structure of the optimal admissible orders. In the following proposition

we show that, in every family sequencing situation, there exist optimal admissible

orders for coalitions that process the jobs of the same family consecutively like the

optimal order for the grand coalition.

Proposition 2.2.1 Let (N,F,F , σ0, s, p, α) be a family sequencing situation and let

T ∈ 2N\{∅}. Then, there exists an optimal admissible order for T which processes

all jobs of the same family within a σ0-component of T consecutively.

Proof. Let T\σ0 = {T1, T2, ..., Tl} be such that Ty ⊂ P (σ0, Ty+1) for every y ∈

{1, ..., l − 1}. Let σ ∈ A(T) be optimal for T .

Assume that with respect to σ, family k jobs in Ty (y ∈ {1, 2, ..., l}) are processed

in different runs. Let K1 (K2) be the set of family k jobs in Ty that belong to the

first run (second run). Let M be the set of jobs (of other families) that are placed

in between K1 and K2 with respect to σ. Also let τ =
∑

i∈M(xσ,isF(i) + pF(i)). That

is, τ is the time to process and set-up all jobs in M when they are processed with

respect to σ. Let i1 = f(σ,K1), i2 = f(σ,K2) and m = f(σ,M).

Now consider the processing order σ′ ∈ Π(N) which is obtained from σ by moving

all jobs in K1 to the head of K2. Figure 2.6 depicts the orders σ and σ′. We will

show that σ′ is an optimal admissible order for T . Notice that we are done when we

show that σ′ is an optimal admissible order for T , since this proves that we can join

48 Chapter 2. Sequencing Situations and Cooperation

two job groups of the same family that belong to the same σ0-component of T but

are processed in separate runs without decreasing the the total cost savings achieved

by T .

Ty

Ty

Ty

K1 K2 M σ:

M K2 K1 σ':

K1 M K2 σ'':

Figure 2.6: The orders σ, σ′ and σ′′ in the proof of Proposition 2.2.1

Let us first show that σ′ is an admissible order for T . Clearly, P (σ′, j) = P (σ, j) =

P (σ0, j) for all j ∈ N\T . So, we need to show that C(σ′, i) ≤ C(σ0, i) for every

i ∈ N\T . Since σ is an admissible order, it is sufficient to show that C(σ′, i) ≤ C(σ, i)

for every i ∈ N\T . Observe that xσ′,j = xσ,j for every j ∈ N\{i1, i2,m}. Hence,

C(σ′, i) = C(σ, i) for every i ∈ P (σ,K1) and

C(σ, i) − C(σ′, i) =
∑

j∈P̄ (σ,i)

(

sF(j)xσ,j + pF(j)

)

−
∑

j∈P̄ (σ′,i)

(

sF(i)xσ′,i + pF(i)

)

,

=
∑

j∈{i1,i2,m}

(xσ,j − xσ′,j)sF(j),

for every i ∈ S(σ,M).

Obviously, xσ,m = xσ,i2 = 1, xσ′,i1 = 1, xσ′,i2 = 0. Observe that xσ,i1 and xσ′,m can

either be 0 or 1. Assume first that xσ,i1 = 0, i.e., l(σ, P (σ,K1)) is of family k. Then,

clearly, xσ′,m = 1 and therefore

C(σ, i) − C(σ′, i) = (0 − 1)sF(i1) + (1 − 1)sF(m) + (1 − 0)sF(i2) = 0,

for every i ∈ S(σ,M).

Assume now that xσ,i1 = 1, i.e., l(σ, P (σ,K1)) is of a different family than k. Now,

if l(σ, P (σ,K1)) is in the same family with m then xσ′,m = 0. But, if l(σ, P (σ,K1))

belongs to a different family than the one m belongs to, then xσ′,m = 1. Therefore,

C(σ, i) − C(σ′, i) ≥ (1 − 1)sF(i1) + (1 − 1)sF(m) + (1 − 0)sF(i2) = sk,

for every i ∈ S(σ,M). Hence, σ′ ∈ A(T).

Now consider the cost savings g(σ′, T) obtained by T by switching from σ0 to σ′

and suppose that g(σ′, T) is strictly less than v(T). We will show that this contradicts

2.2. Family Sequencing and Cooperation 49

with the optimality of σ. Observe that

0 > g(σ′, T) − v(T) =
∑

i∈T

αF(i) (C(σ0, i) − C(σ′, i)) −
∑

i∈T

αF(i) (C(σ0, i) − C(σ, i))

=
∑

i∈T

αF(i) (C(σ, i) − C(σ′, i)) ≥
∑

i∈K1∪M

αF(i)

(

C(σ, i) − C(σ′, i)
)

,

(2.9)

where the last inequality follows from the fact that C(σ′, i) = C(σ, i) for every

i ∈ P (σ,K1) and C(σ, i) − C(σ′, i) ≥ 0 for every i ∈ S(σ,M).

It can also be observed that

C(σ, i) − C(σ′, i) =
∑

j∈K1

(xσ,jsF(j) + pF(j)) + (xσ,m − xσ′,m)sF(m)

= |K1|pk + xσ,i1sk + (xσ,m − xσ′,m)sF(m)

= |K1|pk + xσ,i1sk + (1 − xσ′,m)sF(m) ≥ |K1|pk, (2.10)

for every i ∈ M and

C(σ, i) − C(σ′, i) = −
∑

j∈M

(xσ′,jsF(j) + pF(j)) − (xσ′,i1 − xσ,i1)sk ≥ −(τ + sk), (2.11)

for every i ∈ K1 since

∑

j∈M

(xσ′,jsF(j) + pF(j)) =

{

τ, if xσ′,m = 1,

τ − sF(m), if xσ′,m = 0.

Then, by inequalities (2.9)-(2.11), we have that

0 >
∑

i∈K1∪M

αF(i)

(

C(σ, i) − C(σ′, i)
)

≥ |K1|

(

pk

∑

i∈M

αF(i) − (τ + sk)αk

)

.

Hence,

pk

∑

i∈M

αF(i) − (τ + sk)αk < 0. (2.12)

Next consider the processing order σ′′ ∈ Π(N) which is obtained from σ by moving

all jobs in K2 to the tail of K1. Figure 2.6 also depicts σ′′. Let us first show that

σ′′ is an admissible order for T . Obviously, P (σ′′, i) = P (σ0, i) for every i ∈ N\T .

Since σ is an admissible order, it is sufficient to show that C(σ′′, i) ≤ C(σ, i) for every

i ∈ N\T . Let h = f(σ, S(σ,K2)). It can be observed that xσ′′,i = xσ,i for every

i ∈ N\{i2, h}. Hence, C(σ′′, i) = C(σ, i) for every i ∈ P (σ,M) and

C(σ, i) − C(σ′′, i) =
∑

j∈P̄ (σ,i)

(

sF(j)xσ,j + pF(j)

)

−
∑

j∈P̄ (σ′′,i)

(

sF(i)xσ′′,i + pF(i)

)

,

=
∑

j∈{i2,h}

(xσ,j − xσ′′,j)sF(j),

50 Chapter 2. Sequencing Situations and Cooperation

for every i ∈ S(σ,K2).

Clearly, xσ,i2 = 1 and xσ′′,i2 = 0. However, xσ,h can either be 0 or 1. Assume

first that xσ,h = 0, i.e., h is of family k. Then, it can be observed that xσ′′,h = 1 and

hence,
∑

i∈{i2,h}

(xσ,i − xσ′′,i)sF(i) = (1 − 0)sF(i2) + (0 − 1)sF(h) = (1 − 0)sk + (0 − 1)sk = 0.

Assume now that xσ,h = 1. Then,
∑

i∈{i2,h}

(xσ,i − xσ′′,i)sF(i) ≥ (1 − 0)sk + (1 − 1)sF(h) = sk

and we can conclude that σ′′ ∈ A(T).

Observe now that

C(σ, i) − C(σ′′, i) =

{

τ + sk, if i ∈ K2,

−|K2|pk, if i ∈ M.

Then,

g(σ′′, T) − v(T) =
∑

i∈T

αF(i) (C(σ0, i) − C(σ′′, i)) −
∑

i∈T

αF(i) (C(σ0, i) − C(σ, i))

=
∑

i∈T

αF(i) (C(σ, i) − C(σ′′, i)) ≥
∑

i∈K2∪M

αF(i)

(

C(σ, i) − C(σ′, i)
)

= |K2|

(

(τ + sk)αk − pk

∑

i∈M

αF(i)

)

> 0, (2.13)

where the first inequality follows from the fact that C(σ′′, i) = C(σ, i) for every

i ∈ P (σ,M) and C(σ, i)−C(σ′′, i) ≥ 0 for every i ∈ S(σ,K2) while the last inequality

is implied by inequality (2.12). However, this establishes a contradiction with the

optimality of σ. ¤

Next we focus on the structure of the optimal admissible orders for specific coali-

tions that are connected with respect to the initial order.

Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situation. For every

T ⊂ con(σ0) and k ∈ F , the family urgency index uT,k for T is defined as

uT,k =
nT,kαk

sk + nT,kpk

,

where nT,k is the number of family k jobs in T .

Assume now that F(l(σ0, T)) = k̄. The tail-adjusted family urgency index u′
T,k

for T is defined as

u′
T,k =

{

uT,k, if k ∈ F\{k̄},

min
k∈F

uT,k

2
, if k = k̄.

Then an order σ ∈ Π(N) is called an HUCF order for T if

2.2. Family Sequencing and Cooperation 51

(i) P (σ, i) = P (σ0, i) for every i ∈ N\T and

(ii) it processes all jobs of T that belong to the same family consecutively and

processes these family groups in non-increasing order of the family urgency

index uT,k.

Then an order σ ∈ Π(N) is called a tail-adjusted HUCF order for T if

(i) P (σ, i) = P (σ0, i) for every i ∈ N\T and

(ii) it processes all jobs of T that belong to the same family consecutively and

processes these family groups in non-increasing order of the tail-adjusted family

urgency index u′
T,k.

Notice that a tail-adjusted HUCF order for T can be obtained from an HUCF order

for T by taking the family k̄ jobs behind all other family groups.

In the following proposition, we show that for coalitions that are connected with

respect to σ0 and contain the first player in the order σ0, either an HUCF order or a

tail-adjusted HUCF order is optimal.

Proposition 2.2.2 Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situation

and T ∈ con(σ0) with σ−1
0 (1) ∈ T . Then,

(i) If an HUCF order for T is admissible, then it is optimal for T .

(ii) If an HUCF order for T is not admissible, then a tail-adjusted HUCF order for

T is optimal for T .

It can easily be observed that (i) immediately follows from Theorem 2.2.1 and

Proposition 2.2.1. If an HUCF order σ is not admissible for T , then, by switching

from σ0 to σ, T must increase the total set-up time required to process the jobs. In

other words, σ must split some runs of σ0. It can be observed that the only run that

can be splitted by switching from σ0 to σ is the last run that starts in T with respect

to σ0. Moreover, since this run is splitted, it must end behind T with respect to σ0.

Then, a tail-adjusted HUCF order for T is an admissible order for T , since it does not

split any runs of σ0. The optimality of the tail-adjusted HUCF order is also implied

by Theorem 2.2.1 and Proposition 2.2.1.

The following example illustrates the optimality of HUCF orders for coalitions

that are connected with respect to σ0 and contain the first player in the order σ0.

52 Chapter 2. Sequencing Situations and Cooperation

Example 2.2.3 Consider the family sequencing situation (N,F,F , σ0, s, p, α) with

N = {1, 2, 3, 4, 5} and F = {1, 2}. Assume that F(1) = F(4) = F(5) = 1 and

F(2) = F(3) = 2. Assume also that σ0 is given by σ0(i) = i for every i ∈ N ,

s = (1, 5), p = (4, 2) and α = (1, 2). Consider first the coalition T = {1, 2, 3}. The

family urgency indices for this coalition can be calculated as uT,1 = 1
5

and uT,2 = 4
9
.

Then, an HUCF order for T is given by σT = (2, 3, 1, 4, 5). σT is an admissible

order for T with respect to σ0 since P (σT , i) = P (σ0, i) for every i ∈ N\T and

both C(σT , 4) < C(σ0, 4) and C(σT , 5) < C(σ0, 5). Then, by Proposition 2.2.2, σT is

optimal for T .

Consider now the coalition T ′ = {1, 2}. The family urgency indices for T ′ are

uT ′,1 = 1
5

and uT ′,2 = 2
7
. Then, σT ′ = (2, 1, 3, 4, 5) is the HUCF order for T ′. However,

σT ′ is not admissible for T ′: It splits the run of σ0 that consists of jobs 2 and 3 and as

a result C(σT ′ , i) = C(σ0, i) + 5 for every i ∈ {3, 4, 5}. Observe that the initial order

σ0 = (1, 2, 3, 4, 5) is the tail-adjusted HUCF order for T ′ and by Proposition 2.2.2, it

is optimal for T ′. ⋄

Now we are ready to prove that the marginal vector of a family sequencing game

that corresponds to the initial order belongs to the core of the game.

Theorem 2.2.2 Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situation

and (N, v) be the corresponding sequencing game. Then, mσ0(v) ∈ Core(v).

Proof. Let T\σ0 = {T1, T2, ..., Tl} be such that Ty ⊂ P (σ0, Ty+1) for every y ∈

{1, ..., l − 1}. Let σ ∈ A(T) be optimal for T .

We want to show that
∑

i∈T mσ0
i (v) ≥ v(T). Since

v(T) =
∑

i∈T

αF(i) (C(σ0, i) − C(σ, i)) =
∑

y∈{1,2,...,l}

g(σ, Ty)

and
∑

i∈T

mσ0
i (v) =

∑

y∈{1,2,...,l}

∑

i∈Ty

mσ0
i (v),

it is sufficient to show that
∑

i∈Ty
mσ0

i (v) ≥ g(σ, Ty) for every y ∈ {1, 2, ..., l}.

Pick y ∈ {1, 2, ..., l}. Let D = P (σ0, Ty) and E = D ∪ Ty. Notice that σ−1
0 (1) ∈ D

and
∑

i∈Ty
mσ0

i (v) = v(E) − v(D). It remains to show that

v(E) − v(D) − g(σ, Ty) ≥ 0.

We denote by σ|Ty
and by σ′ the orders defined by

σ|Ty
(i) =

{

σ(i), if i ∈ Ty,

σ0(i), otherwise,

2.2. Family Sequencing and Cooperation 53

σ′(i) =

σ(i), if i ∈

y
⋃

q=1

Tq,

σ0(i), otherwise.

Notice that σ′ is an admissible order for E.

Let π be an optimal admissible order for D. Since σ−1
0 (1) ∈ D, we can assume

that π is either an HUCF order for D or a tail-adjusted HUCF order for D. Let

µ ∈ Π(N) be the order defined by

µ(i) =

π(i), if i ∈ D,

σ|Ty
(i), if i ∈ Ty,

σ0(i), otherwise.

Observe that P (σ0, i) = P (µ, i) for every i ∈ N\E.

It can be observed that

g(µ, E) − v(D) − g(σ, Ty) =
∑

i∈E

αF(i) (C(σ0, i) − C(µ, i)) −
∑

i∈D

αF(i) (C(σ0, i) − C(π, i))

−
∑

i∈Ty

αF(i) (C(σ0, i) − C(σ, i))

=
∑

i∈Ty

αF(i)

(

C(σ′, i) − C(µ, i)
)

, (2.14)

where the last equality follows from the fact that C(σ, i) = C(σ′, i) for every i ∈ Ty

and C(π, i) = C(µ, i) for every i ∈ D.

Let iy be the first player of Ty with respect to σ|Ty
. Assume that iy is of family k.

Observe that for every i ∈ S(σ0, D)

C(σ′, i) − C(µ, i) =
∑

j∈P̄ (σ′,i)

(

sF(j)xσ′,j + pF(j)

)

−
∑

j∈P̄ (µ,i)

(

sF(j)xµ,j + pF(j)

)

,

=
∑

j∈D

sF(j)(xσ′,j − xµ,j) + sk(xσ′,iy − xµ,iy)

≥ sk(xσ′,iy − xµ,iy), (2.15)

where the second equality follows from the fact that P̄ (σ′, i) = P̄ (µ, i) for every

i ∈ S(σ0, D) and xσ′,i = xµ,i for every i ∈ S(σ0, D)\{iy} and the inequality follows

from the fact that, with respect to µ, the members of D are processed with respect

to π which is an HUCF or a tail-adjusted HUCF order for D and these orders require

the minimum total set-up time to process the jobs in D.

Then by equation (2.14) and inequality (2.15),

g(µ, E) − v(D) − g(σ, Ty) ≥ sk(xσ′,iy − xµ,iy)
∑

i∈Ty

αF(i). (2.16)

54 Chapter 2. Sequencing Situations and Cooperation

If xσ′,iy − xµ,iy ≥ 0, then by inequality (2.15) and admissibility of σ′, C(σ0, i) ≥

C(σ′, i) ≥ C(µ, i) for every i ∈ S(σ0, D). Hence, µ is an admissible order for E.

Moreover, by inequality (2.16),

v(E) − v(D) − g(σ, Ty) ≥ g(µ, E) − v(D) − g(σ, Ty) ≥ 0.

So, we can assume in the following that xσ′,iy = 0 and xµ,iy = 1.

First, by inequalities (2.15) and (2.16)

C(σ′, i) − C(µ, i) ≥ −sk, for every i ∈ S(σ0, D) and (2.17)

g(µ, E) − v(D) − g(σ, Ty) ≥ −sk

∑

i∈Ty

αF(i). (2.18)

Since xσ′,iy = 0, F(iy) = F(l(σ′, D)) = k. Observe that l(σ′, D) = l(σ0, D).

Moreover, since xµ,iy = 1, F(l(µ,D)) = F(l(π,D)) 6= k. Then π can not be a

tail-adjusted HUCF order for D because the last player of D with respect to a tail-

adjusted HUCF order for D must be of family k, the family of l(σ0, D). So, π is an

HUCF order for D which splits the last run of D with respect to σ|Ty
.

Let K1 (K2) be the set of family k jobs in D (Ty) that belong to the last run of

D with respect to σ|Ty
. Since π splits the last run of D with respect to σ|Ty

, K1 and

K2 are processed in two different runs of µ. Let R1 (R2) be the run of µ that K1

(K2) belongs to. Also let M be the set of jobs (of other families) that are placed in

between R1 and K2 with respect to µ. Figure 2.7 depicts the order µ. Let τ be the

time to process and set-up all jobs in M when they are processed with respect to µ,

i.e., τ =
∑

i∈M(xµ,isF(i) + pF(i)).

D Ty

R1 M π:

σ0

µ':

D Ty

R1 M µ:

σ|Ty

D

Ty

π': R1 M

σ0

K2

π

D Ty

R1 K2

σ|Ty

M

E

Figure 2.7: The orders π, π′, µ and µ′ in the proof of Theorem 2.2.2

Claim 1: ταk − pk

∑

i∈M αF(i) ≥ 0.

Proof of Claim 1. Consider π′ the tail-adjusted HUCF order for D obtained

from π by taking R1 the group of family k jobs in D behind M . Figure 2.7 also

2.2. Family Sequencing and Cooperation 55

depicts orders π and π′. Since π′ is a tail-adjusted HUCF order for D, it is admissible

for D.

Observe that

C(π′, i) − C(π, i) =

0, if i ∈ D\(M ∪ R1),

τ, if i ∈ R1,

−(sk + |R1|pk), if i ∈ M.

Therefore,

v(D) − g(π′, D) =
∑

i∈D

αF(i)

(

C(π′, i) − C(π, i)
)

=
∑

i∈R1∪M

αF(i)

(

C(π′, i) − C(π, i)
)

= |R1|ταk − (sk + |R1|pk)
∑

i∈M

αF(i)

= |R1|

(

ταk − pk

∑

i∈M

αF(i)

)

− sk

∑

i∈M

αF(i) ≥ 0,

where the last inequality follows from the fact that π is an optimal admissible order

for D and π′ is admissible for D. But then

ταk − pk

∑

i∈M

αF(i) ≥
sk

∑

i∈M αF(i)

|R1|
≥ 0.

Now consider the order µ′ which is obtained from µ by moving all jobs in K2 to

the tail of R1. Figure 2.7 also depicts the order µ′.

Claim 2: µ′ is an admissible order for E and

g(µ′, E) − g(µ,E) ≥ sk

∑

i∈Ty

αF(i).

Observe that if Claim 2 is true, then we are done:

v(E) − v(D) − g(σ, Ty) ≥ g(µ′, E) − v(D) − g(σ, Ty)

≥ sk

∑

i∈Ty

αF(i) + g(µ, E) − v(D) − g(σ, Ty) ≥ 0,

where the first inequality follows from the admissibility of µ′ and the last inequality

follows from inequality (2.18) and Claim 2.

Proof of Claim 2. Let jy be the job which is preceded by l(µ,K2) in the order

µ. Observe that xµ′,i = xµ,i for every i ∈ N\{iy, jy}. Hence, C(µ, i) = C(µ′, i) for

56 Chapter 2. Sequencing Situations and Cooperation

every i ∈ P (µ,M) and

C(µ, i) − C(µ′, i) =
∑

j∈P̄ (µ,i)

(sF(j)xµ,j + pF(j)) −
∑

j∈P̄ (µ′,i)

(sF(j)xµ′,j + pF(j)),

=
∑

j∈{iy ,jy}

(xµ,j − xµ′,j)sF(j), (2.19)

for every i ∈ S(µ,K2).

Obviously, xµ,iy = 1, xµ′,iy = 0. Observe that xµ,jy
can either be 0 or 1.

Case 1: xµ,jy
= 1. Then,

C(µ, i) − C(µ′, i) ≥ (1 − 0)sF(iy) + (1 − 1)sF(jy) = sk,

for every i ∈ S(µ,K2). Moreover, we know by inequality (2.17) that C(σ′, i) −

C(µ, i) ≥ −sk for every i ∈ S(µ′, E) and σ′ is an admissible order for E. Hence, µ′ is

also an admissible order for E since

C(σ0, i) − C(µ′, i) ≥ C(σ′, i) − C(µ′, i) ≥ C(σ′, i) − C(µ, i) + sk ≥ 0,

for every i ∈ S(σ0, E).

Observe also that

C(µ, i) − C(µ′, i) =

{

τ + sk, if i ∈ K2,

|K2|pk, if i ∈ M.
(2.20)

Therefore,

g(µ′, E) − g(µ, E) =
∑

i∈E

αF(i)

(

C(µ, i) − C(µ′, i)
)

=
∑

i∈M∪Ty

αF(i)

(

C(µ, i) − C(µ′, i)
)

=
∑

i∈K2∪M

αF(i)

(

C(µ, i) − C(µ′, i)
)

+
∑

i∈Ty\K2

αF(i)

(

C(µ, i) − C(µ′, i)
)

≥ |K2|

(

(τ + sk)αk − pk

∑

i∈M

αF(i)

)

+ sk

∑

i∈Ty\K2

αF(i)

≥ |K2|skαk + sk

∑

i∈Ty\K2

αF(i) = sk

∑

i∈Ty

αF(i), (2.21)

where the second equality follows from the fact that C(µ, i) = C(µ′, i) for every

i ∈ P (µ,M); the last but one inequality follows from equation (2.20) and the fact

that C(µ, i)−C(µ′, i) is at least sk for every i ∈ Ty\K2 and the last inequality follows

by Claim 1.

Case 2: xµ,jy
= 0.

2.2. Family Sequencing and Cooperation 57

Observe first that xµ,jy
= 0 only when R2 ends behind Ty. We know that the first

job of R2 with respect to µ is iy, the first job of Ty with respect to σ|Ty
. Since R2

ends behind Ty with respect to µ, every job in Ty must belong to R2, i.e., each job in

Ty is of family k and K2 = Ty. Moreover, then jy is the first player of S(σ0, Ty).

Observe also that since each job in Ty is of family k, C(π, i) = C(µ, i) for every

i ∈ S(σ0, E) and hence C(µ, i) = C(π, i) ≤ C(σ0, i), i.e., µ is also an admissible order

for E.

Consider now the order µ′. We know that xµ,iy = 1, xµ′,iy = 0 and xµ,jy
= 0.

Observe that xµ′,jy
= 1 since the last job of M with respect to µ′ belongs to a

different family than k. Then by equation (2.19)

C(µ, i) − C(µ′, i) =
∑

j∈{iy ,jy}

(xµ,j − xµ′,j)sF(j) = 0, (2.22)

for every i ∈ S(µ,E). And hence µ′ is also an admissible order for E.

Moreover,

g(µ′, E) − g(µ, E) =
∑

i∈M∪Ty

αF(i)

(

C(µ, i) − C(µ′, i)
)

= |Ty|

(

(τ + sk)αk − pk

∑

i∈M

αF(i)

)

≥ sk

∑

i∈Ty

αF(i), (2.23)

where the equality follows by equation (2.20) and the inequality follows by Claim 1. ¤

As mentioned before, sequencing situations with controllable processing times (cf.

van Velzen, 2006) are in the same spirit with family sequencing situations, because,

in both types of sequencing situations, admissible reorderings of connected coalitions

can affect the completion times of the players behind them. van Velzen (2006) ana-

lyzed the sequencing games corresponding to sequencing situations with controllable

processing times and proved that many marginal vectors of these games are core ele-

ments. This result was obtained by showing that the sequencing games corresponding

to sequencing situations with controllable processing times are permutationally con-

vex with respect to many orders on the set of players. Permutational convexity (cf.

Granot and Huberman, 1982) with respect to an order σ ∈ Π(N) is a well-known

sufficient condition for the marginal vector of a cooperative game that corresponds

to σ to be a core element. Formally, a TU-game (N, v) is said to be permutationally

convex with respect to σ ∈ Π(N) if

v(P̄ (σ, i) ∪ T) − v(P̄ (σ, i)) ≤ v(P̄ (σ, j) ∪ T) − v(P̄ (σ, j)),

for every i, j ∈ N with σ(i) < σ(j) and T ⊂ S(σ, j).

58 Chapter 2. Sequencing Situations and Cooperation

In the following example, we show that family sequencing games need not be

permutationally convex with respect to the initial order although the corresponding

marginal is an element of the core.

Example 2.2.4 Consider the family sequencing situation (N,F,F , σ0, s, p, α) with

N = {1, 2, 3, 4, 5, 6} and F = {1, 2, 3, 4}. Assume that F(1) = F(3) = 1, F(2) = 2,

F(4) = F(5) = 3 and F(6) = 4. Assume also that σ0 is given by σ0(i) = i for every

i ∈ N , s = (2, 2, 1, 5), p = (1, 2, 2, 5) and α = (10, 10, 10, 1). Finally, let (N, v) be the

family sequencing game corresponding to Σ(N).

Consider the coalitions Q = {1, 2, 3}, Q′ = {1, 2, 3, 6}, R = {1, 2, 3, 4} and R′ =

{1, 2, 3, 4, 6}. The urgency indices for Q are uQ,1 = 20
4

and uQ,2 = 10
4
. Hence, σQ =

(1, 3, 2, 4, 5, 6) is an HUCF order for Q. It can easily be observed that σQ is admissible

for Q. Then, by Proposition 2.2.2, σQ is optimal for Q.

The urgency indices for R are uR,1 = 20
4
, uR,2 = 10

4
and uR,3 = 10

3
. Hence,

σR = (1, 3, 4, 2, 5, 6) is an HUCF order for R. It can easily be observed that σR is

admissible for R. Then, by Proposition 2.2.2, σR is optimal for R.

Observe also that σQ is an optimal admissible order for Q′ and σR is an optimal

admissible order for R′. Then, (N, v) is not permutationally convex with respect to

σ0 since

2 = v(Q′) − v(Q) > v(R′) − v(R) = 1.

⋄

In several sequencing games considered in the literature, both the marginal vector

corresponding to the initial order σ0 and the marginal vector corresponding to the

inverse order of σ0 are core elements (e.g., Curiel et al., 1989; Çiftçi et al., 2008;

Curiel et al., 1993). In the following example, we show that the marginal vector

corresponding to the inverse order of σ0 need not belong to the core of a family

sequencing game.

Example 2.2.5 Consider the family sequencing situation (N,F,F , σ0, s, p, α) with

N = {1, 2, 3, 4} and F = {1, 2}. Assume that F(1) = F(3) = 1 and F(2) = F(4) = 2.

Assume also that σ0 is given by σ0(i) = i for every i ∈ N , s = (2, 1), p = (1
10

, 4)

and α = (1, 10). Finally, let (N, v) be the family sequencing game corresponding to

Σ(N).

The complete family sequencing game (N, v) is given by v(N) = 62, v({1, 2, 3}) =

18, v({1, 2, 4}) = 36, v({1, 3, 4}) = v({2, 3, 4}) = v({3, 4}) = 27, v({1, 2}) = 16 and

v(T) = 0 for every remaining coalition T ⊂ N . Then, mσ−1
0 (v) 6∈ Core(v) since

35 =
∑

i∈{1,2,4}

m
σ−1
0

i (v) < v({1, 2, 4}) = 36.

⋄

Chapter 3

Connection Situations and

Cooperation

Networks play an important role in modern economic life. Transportation networks

(airlines, railroads, shipping services, postal services) provide us the means to com-

mute and to deliver products. Communication networks (internet, telephone, broad-

cast television, radio) allow us to conduct the necessary transactions required for

daily economic activities and energy networks (electric power transmission and dis-

tribution, water, natural gas and petroleum pipelines) help to provide the energy

and resources required to maintain all of these activities. In this chapter, which is

based on Çiftçi and Tijs (2009) and Çiftçi et al. (2007), we consider the problem of

allocating the construction costs of networks in an interactive cooperative setting.

In Section 3.2, we focus on the problem of allocating the construction costs of

networks arising in minimum cost spanning tree (mcst) problems. These problems

consider a group of agents, each of whom has to be connected to a source, either

directly or via other agents. One example would be a situation where villagers have

to construct and pay pipelines from their respective houses to a water supplier. This

type of cost allocation problems was first introduced in the economics literature by

Claus and Kleitman (1973). The seminal paper by Bird (1976) provided the first

game theoretical treatment of this problem by associating a coalitional game with

transferable utility to mcst problems. Then, solution concepts of cooperative game

theory were implemented and subsequently proposed as appropriate cost allocations

for mcst problems by several studies: Granot and Huberman (1981, 1984) analyzed

the core and the nucleolus; Kar (2002) studied the Shapley value.

Cost allocation rules for mcst problems can also be defined directly without con-

sidering the underlying cost game. In particular, one can make use of an algorithm

to construct an mcst and allocate the cost of each edge constructed by the algorithm

60 Chapter 3. Connection Situations and Cooperation

among the agents by following an appropriate method. Cost allocation rules which

follow such a procedure are baptized construct and charge rules in Moretti et al.

(2005). Construct and charge rules proposed in the literature mainly focus on the

two well-known algorithms, Kruskal’s algorithm (Kruskal, 1956) and Prim’s algorithm

(Prim, 1957), for constructing an mcst. In particular, the Bird rule (Bird, 1976) and

the extended Bird rule (Dutta and Kar, 2004) rely on Prim’s algorithm while the

equal remaining obligations rule (ERO) (Feltkamp et al., 1994) and obligation rules

(Tijs et al., 2006) rely on Kruskal’s algorithm.

Recent contributions to the literature on cost allocation in mcst situations revealed

the fact that ERO satisfies many appealing properties: Branzei et al. (2004) and

Bergantiños and Vidal-Puga (2005a) obtained axiomatic characterizations of ERO

which are based on properties such as additivity and equal treatment. Tijs et al.

(2006) showed that obligation rules (and hence ERO) satisfy appealing population

monotonicity and cost monotonicity properties. Norde et al. (2004) showed that

an allocation scheme which is obtained by using ERO as an allocation vector is

population monotonic. Moreover, Bergantiños and Vidal-Puga (2007a) showed that

other rules in the literature fail to satisfy some properties that are satisfied by ERO.

They also provided an axiomatic characterization of ERO based on monotonicity

properties.

The original definition of ERO by Feltkamp et al. (1994) consists of a step-by-step

procedure: Kruskal’s algorithm is employed to construct an mcst and at each step

of the algorithm the cost of the constructed edge is divided among agents who make

use of the edge with respect to a prespecified scheme. Bergantiños and Vidal-Puga

(2005b) provided two different approaches to obtain ERO. They showed that ERO

can be obtained as the average of cost allocations provided by a procedure associated

with the irreducible matrix of the mcst situation and also with a procedure which

computes the part of the cost of edges in an mcst that every agent has to pay.

Moreover, Bergantiños and Vidal-Puga (2005b, 2007a) showed that Shapley values of

the so-called optimistic game associated with an mcst situation and of the coalitional

game associated with the irreducible matrix are both equal to ERO.

In Section 3.2 we present a new approach to obtain ERO and hence provide yet

another support for this important rule. For this aim, we consider a construct and

charge procedure, which we call the vertex oriented construct and charge procedure

(voccp). This procedure leads to an mcst and a cost sharing allocation where each

agent pays the edge which she chose to construct in the procedure. Postponing a

precise definition to the following sections, voccp can be explained as follows. Voccp

works in steps. At each step of the procedure one agent constructs one edge and the

61

agent who is going to construct an edge is determined by making use of an order

on the set of agents. That is, at each step of the procedure, the first agent in the

order who has not yet constructed an edge constructs and pays the cheapest edge

which connects the component that the agent belongs to with another component.

The main result of our study is that ERO can be obtained as the average of the cost

allocations provided by voccp over all orders on the set of agents.

The vertex oriented approach differs from the original approach to obtain ERO

in the following ways. First, while at each step of voccp an agent constructs the

cheapest allowed edge, Kruskal’s algorithm selects and adds edges to the spanning

tree in increasing order of their costs. That is Kruskal’s algorithm is an edge oriented

algorithm. Second, ERO distributes the cost of an edge constructed by Kruskal’s

algorithm via a prespecified scheme. However, with our approach, the cost assigned

to an agent is determined as the average of her own choices in each run of the voccp.

Our new approach thus provides a new interpretation for ERO. Now ERO can be

interpreted as an expected value of the cost allocations provided by voccp for each

order on the set of agents and where the orders on the set of agents have equal

probability.

In Section 3.3 we investigate extensions of the results obtained in Section 3.2 for

mcst situations on a multisource extension of mcst situations, minimum cost spanning

forest situations (cf. Rosenthal, 1987). A minimum cost spanning forest situation

allows for more than one source, each source providing identical services. The users’

objective is still to build a minimum-cost network (which is a forest in this case)

which connects each of them to at least one source and to allocate its cost fairly. The

availability of different identical sources may be interpreted as the existence of several

suppliers which compete according to the costs of links connecting them to the users.

We first show that both Kruskal’s algorithm and voccp can be defined for minimum

cost spanning forest situations in a way that they yield efficient algorithms. Second,

we extend the definition of ERO to this multisource situation and prove that ERO

can again be obtained as the average of the cost allocations provided by voccp.

Section 3.4 investigates the extensions of the results obtained in Section 3.2 for

mcst situations with two sources. In a minimum cost spanning tree problem with

two sources, there exist exactly two sources which may provide identical or different

services and the users have to build a minimum-cost network which connects each of

them to both of the sources. The optimal network in this multisource situation is

again an mcst. Hence, Kruskal’s algorithm is also an efficient algorithm for these mcst

situations. We first propose an equal remaining obligations rule for mcst situations

with two sources. Then we extend voccp to these multisource situations and prove

62 Chapter 3. Connection Situations and Cooperation

that ERO can again be obtained as the average of the cost allocations provided by

voccp.

In Section 3.5 we consider Highway Problems and the corresponding cooperative

cost games called highway games which were introduced by Mosquera and Zarzuelo

(2006) to address the problem of fair allocation of the construction costs of a highway

network. In a highway problem, the possibilities regarding the construction of a high-

way network are determined by a connected graph. The set of vertices of the graph

represents the potential entry and exit points and edges in the graph represent the

possible highway connections that can be constructed. Each edge in the graph has an

associated cost which in general will depend on its length or the geographical proper-

ties that may affect the construction costs of the highway. Each player in a highway

problem has to establish a connection between two given vertices in the graph, i.e.,

between his entry and exit point. Given a highway problem, a corresponding highway

game is defined as a cooperative cost game which associates to each coalition of play-

ers the total cost of the cheapest selection of edges in the graph which connects the

entry and exit point of every member of the coalition. Mosquera and Zarzuelo (2006)

restricted attention to highway problems in which the underlying graph is a tree. For

complete graphs, highway problems are a special type of minimum cost forest (mcf)

problems as introduced by Kuipers (1997). Mcf problems are generalizations of mcst

problems which allow for more than one source, where each source offers a different

type of service and each customer has to be connected with a given nonempty subset

of the available sources.

In this study, we analyze highway problems in which the underlying graphs are

weakly cyclic. A graph is called weakly cyclic if it is connected and every edge

in the graph is contained in at most one cycle. In particular, these graphs may

contain cycles and hence, there will exist multiple paths between some entry and exit

points. Note that, in this setting, a coalition of players can further reduce the joint

construction costs by an optimal coordination of paths to construct. That is, the

joint minimal cost of a coalition is now obtained as a result of solving a combinatorial

optimization problem. Hence highway games induced by weakly cyclic graphs belong

to the research area of operations research games which focuses on the interplay

between the optimization of costs of a project and the allocation of costs among

the participants of the project. From among the numerous studies on this topic, we

mention minimum cost spanning tree games (Granot and Huberman, 1981), traveling

salesman games (Potters et al., 1992), Chinese postman games (Granot et al., 1999),

sequencing games (Curiel et al., 1989) and project games (Estevez-Fernandez et al.,

2007). An overview of operations research games can be found in Borm et al. (2001).

3.1. Preliminaries 63

We start our analysis of highway games that are induced by weakly cyclic graphs

by investigating their concavity properties in Section 3.5.2. We proceed as Herer and

Penn (1995) in the setting of traveling salesman problems and Granot et al. (1999)

for Chinese postman problems, and focus on the question for which class of graphs

the corresponding games are always concave. We define a graph to be highway game-

concave (HG-concave), if for every player set, for every choice of entry and exit points

for the players and for every cost specification, the corresponding highway game is

concave. The main result of this section is that a graph is HG-concave if and only if

it is weakly triangular. Here, a graph is called weakly triangular if it is weakly cyclic

and, moreover, if every cycle is a triangle, i.e., every cycle is composed of precisely

three edges.

In Section 3.5.3 we investigate the core of the highway games. Highway games

induced by trees are always balanced. For general highway games induced by graphs

which allow for multiple paths between vertices, the core can be empty. We prove

that highway games induced by weakly cyclic graphs are balanced.

3.1 Preliminaries

This section recalls basic notions from graph theory which will be used throughout

this chapter.

A graph G is a pair (V,E), where V is a nonempty and finite set of vertices and

E ⊂ EV = {{u, v}|u, v ∈ V, u 6= v} is a set of edges. (V,EV) is called the complete

graph on V . An edge {u, v} ∈ EV is said to connect vertices u and v and u, v are

called the end vertices of the edge {u, v}. Also we say that an edge is incident with

its end vertices (and vice versa).

A subgraph of G = (V,E) is a graph G′ = (V ′, E ′) with ∅ 6= V ′ ⊂ V and E ′ ⊂

EV ′ ∩ E. If G′ is a subgraph of G, then we say that G contains G′. If a subgraph

G′ = (V ′, E ′) of G = (V,E) is such that E ′ = EV ′ ∩ E, then we say that V ′ induces

G′ in G and write G′ = G[V ′].

A path P of length k ≥ 1 is a graph (V,E) with

V = {v1, ..., vk+1}, |V | = k + 1 and E = {{v1, v2}, {v2, v3}, ..., {vk, vk+1}},

and is often abbreviated by P = v1v2...vk+1; it is also referred as a path from v1 to

vk+1.

A cycle C of length k ≥ 3 is a graph (V,E) with

V = {v1, ..., vk}, |V | = k and E = {{v1, v2}, {v2, v3}, ..., {vk−1, vk}, {vk, v1}}

64 Chapter 3. Connection Situations and Cooperation

and is often abbreviated by C = v1v2...vkv1.

Two vertices u, v ∈ V are called connected in G if u = v or if G contains a path

between u and v as a subgraph. A graph G is called connected if every pair of distinct

vertices of G is connected in G. If G = (V,E) is connected, an edge e ∈ E is called

a bridge in G if the graph (V,E\{e}) is not connected. The notion of connectedness

induces an equivalence relation on the vertex set V . Thus there is a partition of V into

nonempty subsets V1, V2, ..., Vk such that two vertices u and v are connected if and

only if both u and v belong to the same set Vi. The subgraphs G[V1], G[V2], ..., G[Vk]

are called components of G. We denote by Gu the component of G to which vertex u

belongs.

An acyclic graph, i.e., a graph which does not contain cycles is called a forest. A

connected forest is called a tree. Notice that the components of a forest are all trees,

i.e., a forest is a disjoint union of trees. A subgraph G′ = (V ′, E ′) of G = (V,E) is

called a spanning tree of G if it is a tree with V ′ = V . A connected graph is called

weakly cyclic if every edge in the graph is contained in at most one cycle 1. A weakly

cyclic graph is called weakly triangular if every cycle in G has length 3.

Given a graph G = (V,E), an edge e ∈ EV \E and an edge e′ ∈ E, we denote by

G + e the graph (V,E ∪ {e}) and by G − e′ the graph (V,E\{e′}).

In the following we do not always distinguish strictly between a graph and its

vertex or its edge set. For example, we may write v ∈ G (rather than v ∈ V) or e ∈ G

(rather than e ∈ E).

3.1.1 Minimum cost spanning tree situations

Mcst situations involve a group of agents who have to be connected to a supplier

of a service (source). Every mcst situation can be represented by a triple (N, 0, w),

where N = {1, ..., n} is the agent set and 0 represents the source. In the following,

we denote by N ′ the set N ∪ {0}. The function w : EN ′ → R+ is called a weight

function and associates with each edge e ∈ EN ′ the weight w(e) which represents the

cost of constructing e. If w(e) ∈ {0, 1} for every e ∈ EN ′ , then the weight function w

is called a simple weight function and the mcst situation (N, 0, w) is called a simple

mcst situation. Obviously, the minimum cost network that would connect all agents

to the source has to form a spanning tree of (N ′, EN ′). Therefore, given an mcst

problem (N, 0, w), we are interested in finding a minimum cost spanning tree (mcst) of

(N, 0, w). Formally, the cost of a spanning tree, Γ is given by w(Γ) =
∑

e∈E(Γ) w(e) and

1The name “weakly cyclic” graph is not a standard graph theoretical term. It was first introduced

in the context of Chinese postman games in Granot et al. (1999) and was maintained in subsequent

related papers. Weakly cyclic graphs are also called cactus graphs.

3.1. Preliminaries 65

Γ is called an mcst if it satisfies w(Γ) = min{w(Γ′)|Γ′ is a spanning tree of (N ′, EN ′)}.

Observe that an mcst situation with agent set N , (N, 0, w), can be identified with

the weight function, w. Hence, we will denote the set of mcst situations with agent

set N as WN = R
EN′

+ .

Example 3.1.1 Assume that three villages have to be connected to a water supplier

directly or via the other villages. The cost of constructing water pipelines between

the villages and between the villages and the water supplier are given in Figure 3.1.

Here the villages are denoted by 1, 2 and 3 and the water supplier by 0.

3

21

0

90 150

100

40

60 70

3

21

0

Figure 3.1: An mcst situation (left side) and a related mcst (right side)

An mcst in this mcst situation is the tree with edges {1, 2}, {1, 3}, {0, 1} with cost

190.

We will use the following well-known results in graph theory:

Property 3.1.1 Let (N, 0, w) be an mcst situation and let Γ be a subgraph of (N ′, EN ′).

Then,

(1) Γ is a spanning tree of (N ′, EN ′) if and only if Γ has n edges and does not

contain cycles.

(2) A spanning tree Γ of (N ′, EN ′) is an mcst of (N, 0, w) if and only if w(e) ≥

w(e′) for every e ∈ EN ′\E(Γ) and every e′ ∈ C, where C is the unique cycle in Γ+ e.

3.1.2 Algorithms for mcst situations

The first problem that arises in mcst situations is how to find an mcst. The operations

research literature on mcst problems has provided many algorithmic solutions to

the problem and has discussed the computational properties of these solutions. An

historic overview of the algorithms provided for the mcst problem can be found in

Graham and Hell (1985). In this section, we briefly introduce the two most famous

algorithms, Kruskal’s algorithm (Kruskal, 1956) and Prim’s algorithm (Prim, 1957).

66 Chapter 3. Connection Situations and Cooperation

Let (N, 0, w) be an mcst situation. A minimum cost spanning tree for (N, 0, w)

can be obtained in the following two ways.

Prim’s Algorithm: In the first iteration a cheapest edge which connects

the source with an agent is constructed. In every subsequent iteration

of Prim’s algorithm, a cheapest edge which connects an agent who is

not connected to the source yet with either the source or another agent

which is already connected to the source in the previous iterations of the

algorithm is constructed. In every step of the algorithm, precisely one

agent gets connected with the source. So, the algorithm results in an

mcst after |N | steps.

Kruskal’s Algorithm: Kruskal’s algorithm selects and adds edges to

the spanning tree in increasing order of their costs such that an edge is

added only if it does not create a cycle with the previously added edges.

Example 3.1.2 Consider the mcst situation (N, 0, w) with N = {1, 2, 3} and w as

depicted in Figure 3.1.

Prim’s algorithm first constructs the edge {0, 1} since it is the cheapest of all edges

that connect an agent with the source. Then the algorithm selects {1, 2} and finally

{1, 3} resulting in the mcst with the set of edges {{0, 1}, {1, 2}, {1, 3}}.

Kruskal’s algorithm first constructs the cheapest edge {1, 2} and then the second

cheapest edge {1, 3}. The third cheapest edge is {2, 3}. However, this edge is not

constructed by the algorithm since it creates a cycle with the previously constructed

edges. At the third step of the algorithm, the edge {0, 1} is constructed resulting in

the mcst with the set of edges {{0, 1}, {1, 2}, {1, 3}}. ⋄

3.2 A Vertex Oriented Approach to ERO for MCST

Situations

In this section, we prove that ERO can be obtained as the average of the cost alloca-

tions provided by voccp for every order on the set of agents. Section 3.2.1 introduces

ERO formally. Section 3.2.2 introduces another class of construct and charge proce-

dures, the P σ-rules (where σ is an order on the set of agents) introduced by Branzei

et al. (2004). These procedures are also based on Kruskal’s algorithm and they will be

utilized while proving that ERO can be obtained as the average of the cost allocations

provided by voccp. Section 3.2.3 introduces voccp and also analyzes its algorithmic

properties. Section 3.2.4 proves our main results. Finally, Section 3.2.5 investigates

3.2. A Vertex Oriented Approach to ERO for MCST Situations 67

the connections between voccp and the so-called optimistic game associated with an

mcst situation (cf. Bergantiños and Vidal-Puga, 2007a).

3.2.1 ERO for cost sharing in mcst situations

Feltkamp et al. (1994) introduced ERO to solve the cost sharing problem related to

mcst situations. In the following, we will provide the notation and the definitions

required to introduce ERO.

Let Π(EN ′) stand for the set of all bijections π : {1, ..., |EN ′ |} → EN ′ . Obviously,

for each mcst situation (N, 0, w), there exists a bijection π ∈ Π(EN ′) that orders

edges in increasing order with respect to their costs, i.e., w(π(1)) ≤ w(π(2)) ≤ ... ≤

w(π(|EN ′|)). The column vector (w(π(1)), w(π(2)), ..., w(π(|EN ′|)))t is denoted by

wπ.

For any π ∈ Π(EN ′), one can define the set Kπ = {w ∈ WN |w(π(1)) ≤ w(π(2)) ≤

... ≤ w(π(|EN ′|))}, i.e., the set of weight functions which result in the same increasing

order on the set of edges with respect to their costs. It can easily be observed that

Kπ is a cone in WN . Obviously,
⋃

π∈Π(EN′)
Kπ = WN . For each π ∈ Π(EN ′), the set

of simple weight functions eπ,k ∈ Kπ defined by

eπ,k(π(1)) = eπ,k(π(2)) = ... = eπ,k(π(k − 1)) = 0

eπ,k(π(k)) = eπ,k(π(k + 1)) = ... = eπ,k(π(|EN ′|)) = 1,

for every k ∈ {1, 2, ..., |EN ′ |} forms a basis of Kπ. That is each weight function w ∈ Kπ

can be written as a unique linear combination of these simple weight functions as

w = w(π(1))eπ,1 +

|EN′ |
∑

k=2

(

(w(π(k)) − w(π(k − 1)))eπ,k
)

. (3.1)

We introduce ERO in two steps. First a rule EROπ is defined on each cone Kπ

and then it is proved that these EROπ rules can be extended to the whole cone of

mcst situations.

Let (N, 0, w) be an mcst situation and π ∈ Π(EN ′) be such that w ∈ Kπ. In

order to define EROπ on Kπ, we will consider Kruskal’s algorithm when it selects

edges with respect to order π. The EROπ-rule distributes the cost of edges that

are constructed by Kruskal’s algorithm among the agents whose connectivity, i.e.,

the number of nodes in N that an agent is connected to, increases with the con-

struction of the edge. To do so, we will consider a sequence of |EN ′|+1 graphs:

(N ′, F π,0), (N ′, F π,1), ..., (N ′, F π,|EN′ |) such that F π,0 = ∅ and F π,k = F π,k−1 ∪ {π(k)}

for every k ∈ {1, ..., |EN ′ |}. In the following, for the sake of simplicity, we will denote

68 Chapter 3. Connection Situations and Cooperation

the graphs (N ′, F π,k) shortly by F π,k, i.e., by their edge sets. The connectivity of an

agent i in graph F π,k is denoted by ni(F
π,k). Note that ni(F

π,k) = 1 when i is not

connected to any other agent in N in F π,k. The connection vectors bπ,k ∈ RN are

defined for each k ∈ {0, 1, ..., |EN ′ |} by

bπ,k
i =

{

0 if i is connected to 0 in F π,k

1
ni(F π,k)

otherwise
(3.2)

for each i ∈ N . EROπ will distribute the cost of a Kruskal edge proportionally to

the change in the connection vectors resulting from the introduction of the edge by

the algorithm.

The contribution matrix with respect to π ∈ Π(EN ′) is the matrix Mπ ∈ RN×EN′

where rows correspond to agents and columns to edges. It lists the change in the

connectivity of the agents, i.e., the k-th column of Mπ equals

Mπek = bπ,k−1 − bπ,k (3.3)

for each k ∈ {1, ..., |EN ′ |}. Here ek stands for the column vector defined as ek
i = 1 if

i = k and ek
i = 0 for each i ∈ {1, ..., |EN ′ |}\{k}.

Observe that the zero columns in Mπ correspond to edges which are not con-

structed by Kruskal’s algorithm. Moreover, each column Mπek with (Mπek)i 6= 0

for some i ∈ N corresponds to the edge π(k) constructed at stage k in the Kruskal

algorithm. Notice that the sum of the elements of such a column equals 1. Then,

(Mπek)i (i ∈ N), the difference between i’s connectivity resulting from the construc-

tion of π(k), represents the fraction of the cost of the edge π(k) to be paid by agent

i. Notice also that the sum of elements of each row of Mπ equals 1.

We are now ready to define the rule EROπ on Kπ.

Definition 3.2.1 For each π ∈ Π(EN ′), EROπ is defined as the map EROπ : Kπ →

RN , where EROπ(w) = Mπwπ for each mcst situation w in the cone Kπ.

If in an mcst (N, 0, w), some edges have the same cost then we know that there

exist multiple orders that are compatible with w, i.e., there exist π, π′ ∈ Π(EN ′) such

that w ∈ Kπ ∩ Kπ′
. Then, for all orders compatible with edges, the corresponding

EROπ rule can be utilized to distribute the cost of the mcst obtained. So, the impor-

tant question that arises at this point is whether different EROπ rules corresponding

to different orders that are compatible with an mcst situation lead to the same cost

allocation or not. The following lemma shows that although the allocation of the

cost of a single edge by different EROπ rules may change with respect to the order

of edges under consideration, the allocation of the total cost of all edges with same

cost is the same regardless of the order considered.

3.2. A Vertex Oriented Approach to ERO for MCST Situations 69

Lemma 3.2.1 (Branzei et al., 2004, Lemma 1) Let π ∈ Π(EN ′), w ∈ Kπ. Assume

that wπ
t = wπ

t+1 for some t ∈ {1, ..., |EN ′ |−1}. Then for the ordering π′ ∈ Π(EN ′) such

that π′(t) = π(t+1), π′(t+1) = π(t) and π′(i) = π(i) for every i ∈ {1, ..., |EN ′ |}\{t, t+

1}, we have that w ∈ Kπ′
and EROπ(w) = EROπ′

(w).

Hence, for every order π that a weight function w is compatible with, EROπ(w)

results in the same allocation.

Proposition 3.2.1 (Branzei et al., 2004, Proposition 1) Let (N, 0, w) be an mcst

situation. Then, EROπ(w) = EROπ′
(w) for every π, π′ ∈ Π(EN ′) with w ∈ Kπ∩Kπ′

.

Proposition 3.2.1 implies that EROπ rules can be extended to the whole cone of

mcst situations as one ERO rule.

Definition 3.2.2 ERO is defined as the map ERO : WN → RN , where

ERO(w) = EROπ(w) = Mπwπ (3.4)

for every w ∈ WN and π ∈ Π(EN ′) such that w ∈ Kπ.

Example 3.2.1 Consider the mcst situation (N, 0, w) with N = {1, 2, 3} and w as

depicted in Figure 3.1. Then w ∈ Kπ, with π(1) = {1, 2}, π(2) = {1, 3}, π(3) =

{2, 3}, π(4) = {0, 1}, π(5) = {0, 3} and π(6) = {0, 2}.

The sequence of the graphs F π,k formed by Kruskal’s algorithm and the corre-

sponding connection vectors are given in Table 3.1.

F π,k bπ,k

∅ (1, 1, 1)t

{{1, 2}} (1
2 , 1

2 , 1)t

{{1, 2}, {1, 3}} (1
3 , 1

3 , 1
3)t

{{1, 2}, {1, 3}, {2, 3}} (1
3 , 1

3 , 1
3)t

{{1, 2}, {1, 3}, {2, 3}, {0, 1}} (0, 0, 0)t

{{1, 2}, {1, 3}, {2, 3}, {0, 1}, {0, 3}} (0, 0, 0)t

{{1, 2}, {1, 3}, {2, 3}, {0, 1}, {0, 3}, {0, 2}} (0, 0, 0)t

Table 3.1: Graphs formed in each step of Kruskal’s algorithm and the corresponding con-

nection vectors in Example 3.2.1.

Then the contribution matrix Mπ is given by

Mπ =

1
2

1
6 0 1

3 0 0
1
2

1
6 0 1

3 0 0

0 2
3 0 1

3 0 0

.

Finally, wπ = (40, 60, 70, 90, 100, 150)t. Hence, ERO(w) = Mπwπ = (60, 60, 70)t. ⋄

70 Chapter 3. Connection Situations and Cooperation

It follows by the definition of ERO that it satisfies the Cone-wise Positive Lin-

earity property (cf. Branzei et al., 2004). That is

ERO(αw + α′w′) = αERO(w) + α′ERO(w′),

for every π ∈ Π(EN ′), for every w,w′ ∈ Kπ and for every α, α′ ≥ 0. Hence ERO(w)

can also be calculated by making use of the linear decomposition of w into simple

weight functions as given in Equation 3.1. That is

ERO(w) = w(π(1))ERO(eπ,1)+

|EN′ |
∑

k=2

(

(w(π(k)) − w(π(k − 1)))ERO(eπ,k)
)

, (3.5)

for every w ∈ WN and π ∈ Π(EN ′) such that w ∈ Kπ.

3.2.2 P σ-rules for mcst situations

In this section we present a class of construct and charge rules, the P σ-rules which

are introduced by Branzei et al. (2004).

Let (N, 0, w) be an mcst situation with w ∈ Kπ. We denote by Π(N) the set of all

orders σ : {1, 2, ..., n} → N , where σ(k) = i means that agent i is in the k-th position

with respect to σ. Moreover, for every σ ∈ Π(N), we say that i ∈ N is the last agent

in F π,t
i with respect to σ, if σ−1(i) ≥ σ−1(j) for every agent j ∈ F π,t

i . Recall here that

F π,t denotes the graph obtained after adding the t cheapest edges (with respect to π)

during Kruskal’s algorithm and F π,t
i is the component of F π,t which contains agent i.

P σ-rules (σ ∈ Π(N)) are closely related with ERO and to present this rule we

follow the same plan used for ERO. Analogously to Definition 3.2.1, for each π ∈

Π(EN ′), we first define a rule P σ,π on cone Kπ by P σ,π(w) = Mσ,πwπ for each mcst

situation w ∈ Kπ. Similarly to the definition of the contribution matrix Mπ for

EROπ, Mσ,π ∈ RN×EN′ is defined as Mσ,πek = bσ(F π,k−1) − bσ(F π,k), where

bσ
i (F π,k) =

{

1 if i is the last agent in F π,k
i with respect to σ and 0 6∈ F π,k

i ,

0 otherwise,

for every k ∈ {0, 1, ..., |EN ′ |} and every i ∈ N.

A variant of Lemma 3.2.1 holds also for rules P σ,π. Hence, similarly to EROπ-

rules, for every order π that a weight function w is compatible with, P σ,π(w) also

results in the same allocation. This enables us to define a P σ-rule over all mcst

situations.

Definition 3.2.3 P σ is defined as the map P σ : WN → RN , where

P σ(w) = P σ,π(w) = Mσ,πwπ (3.6)

for every σ ∈ Π(N), w ∈ WN and π ∈ Π(EN ′) such that w ∈ Kπ.

3.2. A Vertex Oriented Approach to ERO for MCST Situations 71

Example 3.2.2 Consider the mcst situation (N, 0, w) with N = {1, 2, 3} and w as

depicted in Figure 3.1. Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N . Example

3.2.1 provides an order π ∈ Π(EN ′) such that w ∈ Kπ and in Table 3.1 we already

provided the sequence of graphs F π,k formed by Kruskal’s algorithm. In Table 3.2,

we provide the corresponding bσ(F π,k) vectors. Then the corresponding matrix Mσ,π

F π,k bσ(F π,k)

∅ (1, 1, 1)t

{{1, 2}} (0, 1, 1)t

{{1, 2}, {1, 3}} (0, 0, 1)t

{{1, 2}, {1, 3}, {2, 3}} (0, 0, 1)t

{{1, 2}, {1, 3}, {2, 3}, {0, 1}} (0, 0, 0)t

{{1, 2}, {1, 3}, {2, 3}, {0, 1}, {0, 3}} (0, 0, 0)t

{{1, 2}, {1, 3}, {2, 3}, {0, 1}, {0, 3}, {0, 2}} (0, 0, 0)t

Table 3.2: Graphs formed in each step of Kruskal’s algorithm and the corresponding

bσ(F π,k) vectors in Example 3.2.2.

is given by

Mσ,π =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

.

Recall that wπ = (40, 60, 70, 90, 100, 150)t. Hence, P σ(w) = Mσ,πwπ = (40, 60, 90)t. ⋄

There is an important connection between ERO and P σ-rules. Tijs et al. (2006)

proved that ERO is the average of the P σ-rules over all possible orderings of agents.

Proposition 3.2.2 (Tijs et al., 2006, Proposition 7) Let w ∈ WN . Then

ERO(w) =
∑

σ∈Π(N)

P σ(w)

n!
.

In the following proposition we prove that if P σ is utilized in an mcst situation,

then every agent pays for one edge of the mcst constructed by Kruskal’s algorithm.

Proposition 3.2.3 Let (N, 0, w) be an mcst situation, π ∈ Π(EN ′) with w ∈ Kπ and

σ ∈ Π(N). Then P σ(w) assigns each agent the cost of one of the edges of the mcst

constructed by Kruskal’s algorithm.

Proof. First let us show that P σ does not assign any cost for the edges not con-

structed by the algorithm. For this aim consider a column Mσ,πek that correspond to

72 Chapter 3. Connection Situations and Cooperation

an edge π(k) which is not constructed by Kruskal’s algorithm. Since π(k) is not con-

structed it must create a cycle with the previously constructed edges in F π,k and hence

does not affect vectors bσ(F π,k), i.e., bσ(F π,k−1) = bσ(F π,k) and hence Mσ,πek = 0. So,

P σ does not allocate any cost for the edges not constructed by Kruskal’s algorithm.

Now consider a column Mσ,πek that corresponds to an edge π(k) constructed by

Kruskal’s algorithm. Since it is constructed it must connect two disjoint components

in F π,k−1, let’s say F1 and F2. Let us denote the last agent in F1 with respect to σ

by i and the one in F2 by j. Assume without loss of generality that σ−1(i) ≥ σ−1(j),

i.e., j precedes i with respect to order σ.

Now assume that the source does not belong to these components. Then we have

that bσ(F π,k−1)i = bσ(F π,k−1)j = 1 and bσ(F π,k−1)r = 0 for every other agent r in

F1 ∪ F2. Observe now that i is the last agent in F1 ∪ F2 with respect to σ and

0 6∈ F1 ∪ F2. Hence, bσ(F π,k)i = 1 and bσ(F π,k)r = 0 for every other agent r in

F1 ∪ F2. Hence, (Mσ,πek)j = 1 and (Mσ,πek)r = 0 for every other agent r ∈ N\{j}.

That is the cost of edge π(k) is assigned totally to agent j. Observe that bσ(F π,l)j = 1

for every l < k − 1 and bσ(F π,l)j = 0 for every l > k . So, agent j is not allocated

any other cost, i.e., P σ(w)j = w(π(k)).

Now assume that F1 contains the source. Then bσ(F π,k−1)r = 0 for every agent

r ∈ F1 ∪ F2 except j. bσ(F π,k−1)j = 1 since j is the last agent in F2 and 0 6∈ F2.

Moreover, bσ(F π,k)r = 0 for every agent r ∈ F1 ∪ F2 since 0 ∈ F1 ∪ F2. So, the cost

of edge π(k) is assigned totally to agent j. As discussed above, j is not allocated any

other cost, so P σ(w)j = w(π(k)).

One can use the arguments given above to show that if F2 contains the source,

then the cost of edge π(k) is assigned totally to agent i and i is not allocated any

other cost. So, P σ(w)i = w(π(k)) and hence we are done. ¤

In the following proposition we consider simple mcst situations and show which

agents are assigned edges that cost zero and which agents are assigned edges that

cost one by P σ(w).

Proposition 3.2.4 Let (N, 0, w) be a simple mcst situation, π ∈ Π(EN ′) with w ∈

Kπ and σ ∈ Π(N). Assume that the number of edges in EN ′ that cost zero is t. Then

P σ(w)i =

{

1 if i is the last agent in F π,t
i with respect to σ and 0 6∈ F π,t

i ,

0 otherwise,

for every i ∈ N .

We omit the proof of Proposition 3.2.4 since it is straightforward.

3.2. A Vertex Oriented Approach to ERO for MCST Situations 73

It follows by the definition of P σ that it satisfies the cone-wise positive linearity

property. Hence P σ(w) can also be calculated by making use of the linear decompo-

sition of w into simple weight functions as given in Equation 3.1. Hence

P σ(w) = w(π(1))P σ(eπ,1) +

|EN′ |
∑

k=2

(

(w(π(k)) − w(π(k − 1)))P σ(eπ,k)
)

, (3.7)

for every σ ∈ Π(N), w ∈ WN and π ∈ Π(EN ′) such that w ∈ Kπ.

3.2.3 The vertex oriented construct and charge procedure

In this section we introduce voccp and also analyze its algorithmic properties.

Let G = (N ′, E) be a graph on N ′. Recall that the component of G which contains

agent i is denoted by Gi. Then the set of edges which connect a vertex of this

component with a vertex of another component is given by {{u, v}|u ∈ Gi and v ∈

N ′\Gi}. We call this set the set of component reducing edges for agent i in G and

denote it by Ai(G).

Just like Kruskal’s algorithm and Prim’s algorithm, voccp is a greedy algorithm

which works on the principle of gradual merging several trees in a forest in the cheapest

possible way until an mcst is achieved. The procedure makes use of a predetermined

order on the set of agents to determine the agent who is going to construct an edge.

At each step of the procedure, the first agent in the order who has not yet constructed

an edge constructs and pays the cheapest allowed edge, i.e., the cheapest edge which

connects the tree to which he belongs to another tree of the forest obtained in the

previous iterations of the procedure.

Let (N, 0, w) be an mcst situation. Then voccp for mcst situations is defined

formally as follows:

(Step 1) Pick σ ∈ Π(N) .

(Step 2) Set Gσ,0 = (N ′, ∅) and vσ,0 = 0 (∈ RN).

(Step 3) For k = 1 to n:

Let σ(k) = i. Choose an edge eσ
k such that

eσ
k = arg min{w(e)|e ∈ Ai(G

σ,k−1)}.

Set Gσ,k = Gσ,k−1 + eσ
k and vσ,k = vσ,k−1 + w(eσ

k)e{i}.

(Step 4) Set Γσ = Gσ,n and vσ = vσ,n.

74 Chapter 3. Connection Situations and Cooperation

Example 3.2.3 Consider the mcst situation (N, 0, w) with N = {1, 2, 3} and w as

depicted in Figure 3.1.

Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N . The related voccp is

described as follows:

(Step 1) Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N .

(Step 2) Set Gσ,0 = (N ′, ∅) and vσ,0 = 0.

(Step 3) Step 3 consists of the following three iterations:

• k = 1: σ(1) = 1. Obviously A1(G
σ,0) = {{1, 0}, {1, 2}, {1, 3}}. Then, eσ

1 =

{1, 2}, Gσ,1 = (N ′, {{1, 2}}) and vσ,1 = (40, 0, 0).

• k = 2: σ(2) = 2. Note that 2 and 1 are in the same component of Gσ,1 but 3 and

0 belong to different components. So A2(G
σ,1) = {{1, 0}, {1, 3}, {2, 0}, {2, 3}}.

Then, eσ
2 = {1, 3}, Gσ,2 = (N ′, {{1, 2}, {1, 3}}) and vσ,1 = (40, 60, 0).

• k = 3: σ(3) = 3. Note that 3 is connected with 1 and 2 in Gσ,2 and hence these

vertices belong to the same component. So A3(G
σ,2) = {{1, 0}, {2, 0}, {3, 0}}.

Then, eσ
3 = {1, 0}, Gσ,3 = (N ′, {{1, 2}, {1, 3}, {1, 0}}) and vσ,3 = (40, 60, 90).

(Step 4) Γσ = (N ′, {{1, 2}, {1, 3}, {1, 0}}) and vσ = (40, 60, 90).

In Figure 3.2, we depict graphs Gσ,k obtained in step 3 of voccp related to σ. Here,

for each of these graphs, the agent who is going to construct an edge is indicated with

a shaded vertex and edges that are allowed for the agent are indicated with dotted

edges.

3

21

0

Gσ,0

3

21

0

Gσ,1

3

21

0

Gσ,2

3

21

0

Gσ,3

Figure 3.2: Graphs obtained during voccp in Example 3.2.3

In Table 3.3 we give the construct and charge results provided by voccp for all

orderings of agents. ⋄

It’s obvious that Γσ as obtained in Step 4 of voccp related to order σ has n edges

and does not contain any cycle. Hence, it immediately follows from result (1) of

Property 3.1.1 that Γσ is a spanning tree. Observe that voccp can lead to different

3.2. A Vertex Oriented Approach to ERO for MCST Situations 75

Constructed edges by Costs for

σ 1 2 3 1 2 3

(1,2,3) (1,2) (1,3) (1,0) 40 60 90

(1,3,2) (1,2) (1,0) (1,3) 40 90 60

(2,1,3) (1,3) (1,2) (1,0) 60 40 90

(2,3,1) (1,0) (1,2) (1,3) 90 40 60

(3,1,2) (1,2) (1,0) (1,3) 40 90 60

(3,2,1) (1,0) (1,2) (1,3) 90 40 60

Table 3.3: Construct and charge results for the mcst situation in Figure 3.1

spanning trees. Because, at each iteration of the procedure in step 3, the agents are

allowed to choose any cheapest allowed edge. So, if a cheapest allowed edge is not

unique, the procedure may lead to different spanning trees depending on choices of

agents.

We establish in the following theorem that voccp is an efficient algorithm for mcst

problems, i.e., any spanning tree provided by voccp is an mcst of the mcst situation.

Theorem 3.2.1 Let (N, 0, w) be an mcst situation and σ ∈ Π(N). Then, Γσ is an

mcst of (N, 0, w).

Proof. For any spanning tree T of (N ′, EN ′) other than Γσ denote by f(T) the

smallest value of k such that eσ
k is not in T . Now suppose that Γσ is not an mcst and

let T be an mcst such that f(T) is as large as possible.

Suppose that f(T) = k, i.e., eσ
1 , ..., e

σ
k−1 are in both T and Γσ, but that eσ

k is not

in T . Then, T + eσ
k contains a unique cycle C and obviously, C contains an edge e′

different than eσ
k such that e′ ∈ Aσ(k)(G

σ,k−1). Now, on the one hand, w(eσ
k) ≤ w(e′),

since e′ is allowed for σ(k) in Gσ,k−1 and on the other hand, w(e′) ≤ w(eσ
k) by result

(2) in Property 3.1.1. Hence, w(e′) = w(eσ
k). Moreover, T ′ = (T + eσ

k)− e′ is another

spanning tree of (N ′, EN ′) and w(T) = w(T ′). So, T ′, too, is an mcst. However,

f(T ′) > f(T), contradicting with the choice of T . Therefore, Γσ is indeed an mcst.¤

Remark 3.2.1 It can be shown that voccp solves the mcst problem in O ((n + 1)3)

time and hence has a greater (time) complexity than the well-known algorithms

Prim’s algorithm and Kruskal’s algorithm which solve the problem in O ((n + 1)2)

and O ((n + 1)log(n + 1)) time, respectively. The main reason behind the greater

time requirement is that voccp has to manipulate more information compared to

Kruskal’s algorithm and Prim’s algorithm, since it also provides a cost allocation

besides an mcst of the problem.

76 Chapter 3. Connection Situations and Cooperation

We prove in Theorem 3.2.2 that every mcst in an mcst situation can be obtained

by voccp for any order of agents followed.

Theorem 3.2.2 Let (N, 0, w) be an mcst situation and let T be an mcst. Then T can

be the result of a vertex oriented construct and charge procedure for any permutation

σ ∈ Π(N).

Proof. Suppose that the mcst T can not be constructed by voccp for a specific

σ ∈ Π(N). Starting with σ construct Γ by using voccp as far as possible. Then, there

exists k ∈ {1, ..., n} such that eσ
1 , ..., e

σ
k−1 are in T , but that eσ

k is not in T . Then,

T + eσ
k contains a unique cycle C and obviously, C contains an edge e′ different than

eσ
k such that e′ ∈ Aσ(k)(G

σ,k−1). Since σ(k) can not construct e′ although it is allowed

for σ(k) in Gσ,k−1, it follows that w(eσ
k) < w(e′). But, then T ′ = T + eσ

k − e′ is a

spanning tree of (N ′, EN ′) with total weight less than that of T , a contradiction. ¤

Remark 3.2.2 Theorem 3.2.2 shows that every mcst can be the result of voccp.

Subsequently, the important question that arises is whether the cost allocation pro-

vided by voccp is independent of the mcst reached. In the next section, we will see

that this is indeed the case.

3.2.4 A new approach to obtain ERO

In this section we prove the coincidence of the cost allocation provided by ERO with

the average of the cost allocations provided by voccp over all orders of agents.

We show in the following lemma that, for simple mcst situations, the cost alloca-

tion vσ provided by voccp related to order σ ∈ Π(N) is equal to P σ(w).

Lemma 3.2.2 Let (N, 0, w) be a simple mcst situation. Then vσ equals P σ(w) for

every σ ∈ Π(N).

Proof. Let w be a simple mcst situation. Let us denote the number of edges in EN ′

that cost zero with t. Let π ∈ Π(EN ′) be such that w ∈ Kπ and let σ ∈ Π(N).

By Proposition 3.2.4, we have to show that the cost vσ
i assigned by voccp related

to σ to an agent i ∈ N is equal to 1 if i is the last agent in F π,t
i with respect to σ and

0 6∈ F π,t
i , and is equal to 0 otherwise.

Pick an agent i ∈ N . Assume that i is the kth agent with respect to order σ, i.e.,

σ(k) = i. Naturally, agent i constructs a zero-edge during voccp related to σ if there

exist zero-edges that are component reducing for agent i in Gσ,k−1.

Now, assume that 0 ∈ F π,t
i . Observe then that the number of edges of a tree

which connects the vertices of F π,t
i is equal to the number of agents in F π,t

i . Hence,

3.2. A Vertex Oriented Approach to ERO for MCST Situations 77

even if i is the last agent in F π,t
i and all agents in F π,t

i that precede i constructed a

zero-edge in F π,t
i , i will still not be connected to some agents in F π,t

i , i.e., there will

exist component reducing edges for agent i in Gσ,k−1 that cost 0. Hence, vσ
i = 0.

Assume now that 0 6∈ F π,t
i . Then the number of edges of a tree which connects

the vertices of F π,t
i is one less than the number of agents in F π,t

i . If agent i is the last

agent in F π,t
i with respect to σ, then all other agents in F π,t

i that precede i with re-

spect to σ will construct a zero-edge, and hence all vertices of F π,t
i will be connected in

Gσ,k−1. Hence, all component reducing edges for agent i in Gσ,k−1 cost 1, i.e., vσ
i = 1.¤

Lemma 3.2.2 also proves that vσ yields in a unique cost allocation independent of

the mcst reached for simple mcst situations. Hence, for every simple mcst situation

w, we can now denote by vσ(w) the unique cost allocation provided by voccp related

to order σ ∈ Π(N).

We show in the following proposition that vσ equals P σ(w) for every mcst situation

by making use of the linear decomposition of w into simple weight functions.

Proposition 3.2.5 Let (N, 0, w) be an mcst situation. Then vσ equals P σ(w) for

every σ ∈ Π(N).

Proof. Let π ∈ Π(EN ′) be such that w ∈ Kπ. We know that

P σ(w) = w(π(1))P σ(eπ,1) +
∑|EN′ |

k=2

(

(w(π(k)) − w(π(k − 1)))P σ(eπ,k)
)

,

= w(π(1))vσ(eπ,1) +
∑|EN′ |

k=2

(

(w(π(k)) − w(π(k − 1)))vσ(eπ,k)
)

,

where the second equality follows by Lemma 3.2.2.

Now let Γ be a minimum cost spanning tree of w. Then by Theorem 3.2.2 Γ can

be constructed by voccp related to order σ. Let vσ be the cost allocation provided

by voccp related to σ when it results in Γ.

It can be observed that Γ is also an mcst of every simple mcst situation eπ,k

(k ∈ {1, 2, ..., |EN ′ |}). Then again by Theorem 3.2.2, Γ can be constructed by voocp

related to σ in every simple mcst situation eπ,k. Now, consider voccp related to σ

in w and in a simple mcst situation eπ,k. Assume that voccp resulted in Γ in both

mcst situations. Then, obviously, for every iteration of the procedure k ∈ {1, ..., n},

the corresponding agent σ(k) chooses to construct the same edge of Γ in both mcst

situations w and eπ,k. But then voccp assigns the cost of the same edge to every agent

in both situations. Since this observation is true for every simple mcst situation eπ,k,

we can conclude that

vσ = w(π(1))vσ(eπ,1) +

|EN′ |
∑

k=2

(

(w(π(k)) − w(π(k − 1)))vσ(eπ,k)
)

.

¤

78 Chapter 3. Connection Situations and Cooperation

Since vσ yields in a unique cost allocation independent of the mcst reached for

any mcst situations, we can now denote by vσ(w) the unique cost allocation provided

by voccp related to order σ ∈ Π(N) for every mcst situation w ∈ WN .

We know by Proposition 3.2.2 that the average of P σ-rules over all possible orders

of agents is equal to ERO. But, since vσ(w) = P σ(w) by Proposition 3.2.5, we

can now conclude that ERO can be obtained an an average of the cost allocations

provided by voccp over all possible orders of agents.

Theorem 3.2.3 Let w ∈ WN . Then

ERO(w) =
∑

σ∈Π(N)

vσ(w)

n!
.

3.2.5 Voccp and the optimistic game in mcst situations

In this section, we investigate the connections between voccp and the optimistic

transferable utility game for mcst problems (cf. Bergantiños and Vidal-Puga, 2007b).

In an optimistic transferable utility game for mcst problems, the worth of a coalition

is defined as the cost of connection, assuming that the rest of agents are already

connected to the source. Bergantiños and Vidal-Puga (2005b) show that the Shapley

value of this game is equal to the cost allocation provided by ERO. It is well-known

that the Shapley value of a TU-game is equal to the average of its marginal vectors

over all orders on the set of players. We will prove in the following that for every

ordering σ of the agents, the vσ value is equal to the marginal of the game for the

same ordering.

The optimistic game for mcst situations is defined as follows. Given an mcst situa-

tion (N, 0, w) and a nonempty coalition of agents S ⊂ N , we first obtain an optimistic

mcst situation for S assuming that when the agents in S have to be connected to

the source, the agents in N\S are already connected to the source and the agents

in S can connect to the source via agents in N\S. Formally, the optimistic mcst

situation for S is the mcst situation (S, 0, wS), where wS(e) = w(e) for every e ∈ ES

and wS({i, 0}) = minj∈N ′\S w({i, j}) for every i ∈ S. That is the costs of edges that

connect agents in S are not changed in the optimistic mcst situation. However, the

cost of edges which connect an agent in S with the source are changed to be equal to

the cost of the cheapest edge which connects the agent in S with an agent outside S

or with the source in according with the assumptions of the optimistic setup.

Now the optimistic TU-game (N, v) associated with the mcst situation (N, 0, w)

is defined as v(S) = wS(Γ) where Γ is a mcst for (S, 0, wS) for every S ⊂ N with

v(∅) = 0.

3.2. A Vertex Oriented Approach to ERO for MCST Situations 79

Example 3.2.4 Consider the mcst situation (N, 0, w) with N = {1, 2, 3} and w

as depicted in Figure 3.1. Consider coalition {1, 2}. In Figure 3.3 we provide the

optimistic mcst situation for {1, 2} and a related mcst. Hence the worth of coalition

{1, 2} in the optimistic TU-game associated with (N, 0, w) is 100. The complete

21

0

60 70

40 21

0

Figure 3.3: The optimistic mcst situation for {1, 2} (left side) and a related mcst (right

side)

optimistic TU-game associated with (N, 0, w) is given in Table 3.4.

S {1} {2} {3} {1,2} {1,3} {2,3} N

v(S) 40 40 60 100 100 100 190

Table 3.4: The optimistic TU-game in Example 3.2.4

⋄

We first consider in Lemma 3.2.3 the structure of graphs Gσ,0, Gσ,1, ..., Gσ,n that

are formed during step 3 of voccp. In particular, we focus on the tree to which the

agent that is going to construct an edge belongs and show that (i) the source 0 can

not belong to this component and (ii) all other agents in the component must have

constructed an edge in the previous iterations of the procedure.

Lemma 3.2.3 Let (N, 0, w) be an mcst, σ ∈ Π(N), k ∈ {1, 2, ..., n} and σ(k) = i.

Then,

(i) 0 6∈ Gσ,k−1
i .

(ii) σ−1(j) ≤ σ−1(i) for every j ∈ Gσ,k−1
i .

Proof. (i) Suppose 0 ∈ Gσ,k−1
i . We know that Gσ,k−1

i is a tree and hence the number

of vertices of Gσ,k−1
i is one more than its number of edges. Then, the number of

agents that belong to this tree is equal to the number of edges of this tree and hence

all agents that belong to this tree must have constructed an edge, a contradiction

since agent i has not constructed an edge yet.

(ii) can be proven similarly. ¤

80 Chapter 3. Connection Situations and Cooperation

In the following, we show that for every ordering of the agents, the cost allocation

provided by the related voccp and the related marginal vector of the optimistic game

are equal to each other.

Proposition 3.2.6 Let (N, 0, w) be an mcst. Then vσ(w) = mσ(v) for every σ ∈

Π(N).

Proof. Let σ ∈ Π(N). We denote by Sk the set of first k agents with respect to

order σ, i.e., Sk = {σ(1), σ(2), ..., σ(k)} for every k ∈ {1, 2, ..., n}. Also we denote an

mcst of the optimistic mcst situation for Sk by Γk. We will show that the total cost

of the first k edges constructed in voccp related to σ is equal to the cost of an mcst

of (Sk, 0, wSk
), i.e., w(Gσ,k) = wSk

(Γk) for every k ∈ {1, 2, ..., n}.

Pick k ∈ {1, 2, ..., n}. First, we know by Lemma 3.2.3 that at least one end vertex

of every edge e ∈ Gσ,k belongs to Sk. Second, if {u, v} ∈ Gσ,k is such that u ∈ Sk and

v 6∈ Sk, then {u, v} is the cheapest edge which connects u with a vertex outside Sk,

i.e., w({u, v}) = minw∈N ′\Sk
w({u,w}). Hence, w({u, v}) = wSk

({u, 0}), i.e., the cost

of {u, v} equals to the cost of {u, 0} the edge which connects u with the source in

(Sk, 0, wSk
). Now, we construct an mcst for (Sk, 0, wSk

) by using the edges in Gσ,k as

follows: For every {u, v} ∈ Gσ,k, if {u, v} ⊂ Sk then construct {u, v} in (Sk, 0, wSk
);

if u ∈ Sk and v 6∈ Sk then construct {u, 0} in (Sk, 0, wSk
). Let us denote the set

of edges we constructed in the mcst situation (Sk, 0, wSk
) by Γ. Observe first that

wSk
(Γ) = w(Gσ,k). Observe second that Γ is a spanning tree because (i) it has k

edges and (ii) it does not contain cycles since Gσ,k does not contain cycles and every

component of Gσ,k contains exactly only one vertex outside Sk. Observe lastly that

by construction of Gσ,k by voccp Γ is an mcst of (Sk, 0, wSk
).

So, we have that

mσ(v)σ(k) = v(Sk) − v(Sk−1) = wSk
(Γk) − wSk−1

(Γk−1) = w(Gσ,k) − w(Gσ,k−1)

= w(eσ
k) = vσ(w)σ(k),

for every k ∈ {1, 2, ..., n}. Hence, we can conclude that mσ(v) = vσ(w). ¤

3.3 ERO and Voccp for Minimum Cost Spanning

Forest Situations

In this section we investigate extensions of the results obtained in Section 3.2 for

mcst situations on minimum cost spanning forest situations (cf. Rosenthal, 1987).

We first show that both Kruskal’s algorithm and voccp can be defined for minimum

3.3. ERO and Voccp for Minimum Cost Spanning Forest Situations 81

cost spanning forest situations in a way that they yield efficient algorithms. Second,

we extend the definition of ERO to this multisource situation and prove that ERO

can again be obtained as the average of the cost allocations provided by voccp.

In an mcsf situation, there are finitely many identical sources and agents have to

be connected to only one of them. These situations can be represented by a tuple

(N,S,w) where N = {1, ..., n} is the agent set, S = {01, 02, ..., 0s} (s ∈ N++) is the

set of available identical sources. Let us denote N ∪ S by N ′. Then w : EN ′ → R++

is a weight function on EN ′ . Given an mcsf situation (N,S,w), a spanning forest of

the graph (N ′, EN ′) is a set of trees that spans all vertices in N ′, in which each tree

contains at least one source. A minimum cost spanning forest (mcsf) is a spanning

forest with the minimum sum of weights of edges. Similar to the mcst situations with

a unique source, mcsf situations can also be identified with their weight functions.

Hence, we will denote the set of mcsf situations with agent set N by WF
N = R

EN′

++ .

In an mcsf situation, the availability of multiple identical sources enables agents to

form several components which are connected to different sources. Hence, the optimal

network in an mcsf situation is an mcsf. Moreover, since we consider mcsf situations

where all edges have strictly positive weights, each tree in an mcsf contains exactly

one source.

Kruskal’s algorithm for mcst situations may not result in an optimal network if

it is applied directly to mcsf situation. However, it can still be used to obtain an

mcsf by applying it to a related mcst situation as follows. Let (N,S,w) be an mcsf

situation. Now, add an additional vertex, denoted by 0, to N ′; add edges {0, i} for

every i ∈ V to EN ′ . Also, define the weight function w0 on EN ′∪{0} by

w0(e) =

w(e), if e ∈ EN ′ ,

0, if e = {0, s} for some s ∈ S,

2 max{w(e)|e ∈ EN ′}, if e = {0, i} for some i ∈ N.

We call the mcst situation (N ′, 0, w0) the mcst situation associated with (N,S,w).

Since all edges in EN ′ have strictly positive costs, in any mcst of (N ′, 0, w0), the

sources 01, ..., 0s are connected to 0 through edges {0k, 0} that cost zero. Obviously

if one removes these edges from an mcst of (N ′, 0, w0), then the graph obtained will

be an mcsf for (N,S,w). Then one can obtain an mcsf for an mcsf situation, first

by finding an mcst for the associated mcst situation and then by removing the edges

that connect the sources with 0.

Example 3.3.1 Consider the mcsf situation (N,S,w) with N = {1, 2}, S = {01, 02}

and w as depicted in Figure 3.4. The associated mcst situation (N ′, 0, w0) is also

depicted in Figure 3.4. By applying Kruskal’s algorithm to (N ′, 0, w0), one obtains

82 Chapter 3. Connection Situations and Cooperation

21

01 02

6 9 4 3

5

9 21

0

01 02

6
0
9

0
4 3

5

18
9

18

21

0

01 02

21

01 02

Figure 3.4: An mcsf situation with two agents and two sources (top-left); the associated

mcst situation (top-right); the mcst Γ (bottom right) and the mcsf F (bottom left) consid-

ered in Example 3.3.1

the mcst Γ with E(Γ) = {{0, 01}, {0, 02}, {1, 01}, {2, 02}}. Then, by removing edges

{0, 01} and {0, 02} from Γ, one obtains the mcsf F with E(F) = {{1, 01}, {2, 02}}.

The mcst Γ and the mcsf F are also depicted in Figure 3.4. ⋄

Now we can define the equal remaining obligations rule for mcsf situations by mak-

ing use of the cost allocations assigned by ERO to the associated mcst situations as

follows. Let (N,S,w) be an mcsf situation and consider ERO(w0) the cost allocation

assigned by ERO to the associated mcst situation (N ′, 0, w0). Observe that sources

01, ..., 0s are treated as agents in the associated mcst situation. Hence, ERO(w0) also

assigns costs to sources for the construction of the mcst. However, since sources are

connected to 0 with edges that cost zero, ERO(w0) does not assign any cost to the

sources, i.e, ERO(w0)s = 0 for every source s ∈ S. In particular, the cost of the mcst

in the associated mcst situation is allocated completely to the agents.

Definition 3.3.1 The equal remaining obligations rule for mcsf situations EROF is

defined as the map EROF : WF
N → RN , where

EROF(w)i = ERO(w0)i,

for every i ∈ N and w ∈ WF
N .

Example 3.3.2 Consider the mcsf situation (N,S,w) with N = {1, 2}, S = {01, 02}

and w as depicted in Figure 3.4.

3.3. ERO and Voccp for Minimum Cost Spanning Forest Situations 83

In order to calculate EROF(w), we simply have to calculate ERO for the related

mcst situation (N ′, 0, w0). Observe that w0 ∈ Kπ, with π(1) = {0, 01}, π(2) = {0, 02},

π(3) = {2, 02}, π(4) = {01, 2}, π(5) = {01, 02}, π(6) = {1, 01}, π(7) = {1, 2},

π(8) = {02, 1}, π(9) = {0, 1} and π(10) = {0, 2}. The sequence of the graphs F π,k

formed by Kruskal’s algorithm when it follows the order π and the corresponding

connection vectors, where the first two indices correspond to 01 and 02 and the third

(fourth) index correspond agent 1 (2), are given in Table 3.5 below. Hence, the

F π,k bπ,k

∅ (1, 1, 1, 1)t

{{01, 0}} (0, 1, 1, 1)t

{{01, 0}, {02, 0}} (0, 0, 1, 1)t

{{01, 0}, {02, 0}, {02, 2}} (0, 0, 1, 0)t

{{01, 0}, {02, 0}, {02, 2}, {01, 2}} (0, 0, 1, 0)t

{{01, 0}, {02, 0}, {02, 2}, {01, 2}, {01, 02}} (0, 0, 1, 0)t

{{01, 0}, {02, 0}, {02, 2}, {01, 2}, {01, 02}, {01, 1}} (0, 0, 0, 0)t

...
...

EN ′∪{0} (0, 0, 0, 0)t

Table 3.5: Graphs formed in each step of Kruskal’s algorithm and the corresponding con-

nection vectors in Example 3.3.2

contribution matrix Mπ is given by

Mπ =

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

.

Observe that wπ
0 = (0, 0, 3, 4, 5, 6, 9, 9, 18, 18). Hence, ERO(w0) = Mπwπ

0 = (0, 0, 6, 3)t

and EROF(w) = (6, 3)t. ⋄

In the following, we first define the vertex oriented construct and charge procedure

for mcsf situations. Then we show that voccp is an efficient algorithm for mcsf

situations. Finally, we prove that ERO for mcsf situations can be obtained as an

average of the cost allocations provided by voccp over all orders of agents.

Voccp for mcsf situations is defined formally as follows:

Let (N,S,w) be an mcsf situation.

(Step 1) Pick σ ∈ Π(N) .

(Step 2) Set Gσ,0 = (N ′, ∅) and vσ,0
F = 0 (∈ RN).

(Step 3) For k = 1 to n:

84 Chapter 3. Connection Situations and Cooperation

Let σ(k) = i. Choose an edge eσ
k such that

eσ
k = arg min{w(e)|e ∈ Ai(G

σ,k−1)}.

Set Gσ,k = Gσ,k−1 + eσ
k and vσ,k

F = vσ,k−1
F + w(eσ

k)e{i}.

(Step 4) Set F σ = Gσ,n and vσ
F = vσ,n

F .

Example 3.3.3 Consider the mcsf situation (N,S,w) with N = {1, 2}, S = {01, 02}

and w as depicted in Figure 3.4.

Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N . The related voccp is

described as follows:

(Step 1) Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N .

(Step 2) Set Gσ,0 = (N ′, ∅) and vσ,0
F = 0.

(Step 3) Step 3 consists of the following two iterations:

• k = 1: σ(1) = 1. Obviously each edge incident with 1 is allowed for 1 in Gσ,0.

Then, eσ
1 = {1, 01}; Gσ,1 = (N ′, {{1, 01}}) and vσ,k

F = (6, 0).

• k = 2: σ(2) = 2. Since 2 is not connected with any other vertex in Gσ,1,

the allowed edges for 2 in Gσ,1 are the ones that are incident with 2. Then,

e2 = {2, 02}. Gσ,2 = (N ′, {{1, 01}, {2, 02}}) and vσ,k
F = (6, 3).

(Step 4) F σ = (N ′, {{1, 01}, {2, 02}}) and vσ
F = (6, 3).

Observe lastly that voccp related to the reverse order results in the same construct

and charge result. ⋄

Obviously F σ as obtained in Step 4 of voccp related to order σ does not contain

any cycles and hence is a forest. It is well known that a forest with p vertices and

k edges has p − k components. So, since F σ has n edges and n + s vertices, it must

contain s components which are trees. Recall here that s is the number of sources in

an mcsf situation. One can also observe that each of these components must contain

exactly one source. Hence, F σ is a spanning forest. Similar to the mcst case, voccp for

mcsf situations can lead to different spanning forests depending on choices of agents.

In the following theorem we first show that voccp is an efficient algorithm for

mcsf problems, i.e., any spanning forest provided by voccp is an mcsf of the mcsf

situation. Second, we show that the cost assigned by voccp to an agent in the mcsf

situation is equal to the cost assigned by voccp to the same agent in the associated

mcst situation. Let (N,S,w) be an mcsf situation. We say that an order π ∈ Π(N ′)

is compatible with the order σ ∈ Π(N) if it satisfies the condition that σ(i) < σ(j) if

and only if π(i) < π(j) for every i, j ∈ N .

3.3. ERO and Voccp for Minimum Cost Spanning Forest Situations 85

Theorem 3.3.1 Let (N,S,w) be an mcsf situation, (N ′, 0, w0) be the associated mcst

situation and π ∈ Π(N). Then

(i) F σ is an mcsf of (N,S,w) for every σ ∈ Π(N);

(ii) vσ
F ,i = vπ(w0)i for every order σ ∈ Π(N), every π ∈ Π(N ′) that is compatible

with σ and every i ∈ N .

Proof. First recall that the sources 01, ..., 0s are treated as agents in the associated

mcst situation (N ′, 0, w0). Let σ ∈ Π(N) and let π ∈ Π(N ′) be compatible with σ.

Consider the voccp related to order σ in the mcsf situation and the voccp related to

π in the associated mcst situation. Observe that during voccp related to π in the

associated mcst situation (N ′, 0, w0)

• Each source s ∈ S selects the edge {s, 0} because {s, 0} is always an allowed

edge for s, it costs zero and all other allowed edges have strictly positive costs.

• None of the agents selects an edge {i, 0} (i ∈ N) since these are the most

expensive edges with respect to w0.

That’s why in both procedures, voccp related to σ in mcsf situation and voccp

related to π in the associated mcst situation, each agent i ∈ N is in the same situ-

ation: They have the same options and hence they can select to construct the same

edge in both procedures. And in this case the graph found by the voccp related to σ

in the mcsf situation can also be obtained by first using voccp related to π to obtain

an mcst for the associated mcst situation and then removing the arcs (0, s), for ev-

ery s ∈ S. So, voccp is an efficient algorithm for mcsf situations and moreover, since

agents can select the same edges in both procedures vσ
F ,i = vπ(w0)i for every i ∈ N . ¤

Theorem 3.3.1 also proves that the cost allocation provided by voccp for the mcsf

situations is unique, i.e., is independent of the mcsf reached. Hence, we can now

denote the cost allocation provided by voccp related to σ by vσ
F(w).

Finally, we prove that EROF can be obtained as the average of the cost allocations

provided by voccp for every order of the agents.

Theorem 3.3.2 Let w ∈ WF
N . Then

EROF(w) =
∑

σ∈Π(N)

vσ
F(w)

n!
.

86 Chapter 3. Connection Situations and Cooperation

Proof. We know that EROF(w)i = EROi(w0). We also know by Theorem 3.3.1

that vσ
F(w)i = vπ(w0)i for every order σ ∈ Π(N), π ∈ Π(N) that is compatible with

σ and i ∈ N . Observe that for every order σ ∈ Π(N), there exists (n+s)!
n!

compatible

orders in Π(N ′). Then

EROF(w)i = ERO(w0)i =
∑

π∈Π(N ′)

vπ(w0)i

(n + s)!

=
∑

σ∈Π(N)

(n+s)!
n!

vσ
F(w)i

(n + s)!
=

∑

σ∈Π(N)

vσ
F(w)i

n!
,

for every i ∈ N . Hence, we can conclude that EROF(w) can be obtained as the

average of the cost allocations provided by voccp over all orders of agents. ¤

3.4 ERO and Voccp for Mcst Situations with Two

Sources

In this section we investigate the extensions of the results obtained in Section 3.2 for

mcst situations in which the agents have to be connected to two sources. Section 3.4.1

proposes an equal remaining obligations rule for mcst situations with two sources.

Then in Section 3.4.2 we extend voccp to these multisource situations in a way that it

yields an efficient algorithm and prove that ERO can again be obtained as the average

of the cost allocations provided by voccp. In Section 3.4.3 we define an optimistic

transferable utility game for mcst problems with two sources and show that for every

ordering of the agents, the cost allocation provided by the related voccp is equal to

the marginal of the optimistic game for the same ordering.

In this section we consider mcst situations with two sources. In this type of mcst

situations there exists a group of agents N = {1, 2, ..., n} that has to be connected to

two sources {01, 02}. These situations can be represented by a tuple (N, {01, 02}, w).

Let us denote {01, 02}∪N by N ′. Here, as before w : EN ′ → R++ is a weight function

on EN ′ . Similar to mcst situations with a unique source, mcst situations with two

sources can also be identified with their weight functions. Hence, we will denote the

set of mcst situations with two sources with agent set N by WT
N = R

EN′

++ .

The optimal network in an mcst situation with two sources is obviously an mcst of

(N ′, EN ′). Hence, Kruskal’s algorithm is an efficient algorithm for these multisource

mcst situations. It can also easily be observed that any spanning tree of (N ′, EN ′)

has n + 1 edges. That is the agents have to construct n + 1 edges in order to be

connected to both sources.

3.4. ERO and Voccp for Mcst Situations with Two Sources 87

Example 3.4.1 Consider the mcst situation with two sources (N, {01, 02}, w) with

N = {1, 2, 3} and w as depicted in Figure 3.5.

31

2

01 025

6
7
9

10
4 3

4
9

7
31

2

01 02

Figure 3.5: An mcst situation with two sources (left side) and a related mcst

Kruskal’s algorithm first constructs the cheapest edge {02, 3}. The algorithm

continues by constructing both of the two second cheapest edges {01, 3} and {1, 2}

since neither of these edges creates a cycle with the previously constructed edges.

Next the algorithm selects the edge {01, 02} but it will not construct this edge since it

creates a cycle with the previously constructed edges {02, 3} and {01, 3}. Finally, the

algorithm selects and constructs {01, 1} resulting in the mcst with the set of edges

{{01, 1}, {1, 2}, {01, 3}, {02, 3}}. ⋄

3.4.1 ERO for cost sharing in mcst situations with two sources

In the following we will propose an equal remaining obligations rule for mcst situations

with two sources. In order to define this rule, we will follow a set-up analogous to the

set-up used for ERO in Section 3.2.1.

Let Π(EN ′), Kπ and wπ (π ∈ Π(EN ′)) be defined analogously to their counterparts

in Section 3.2.1. Let (N, {01, 02}, w) be an mcst situation with two sources and

π ∈ Π(EN ′) be such that w ∈ Kπ. Let us first define a rule EROπ
T on cone Kπ. Similar

to ERO’s original definition in Section 3.2.1, we will again start with considering a

sequence of |EN ′ | + 1 graphs that are formed during Kruskal’s algorithm when the

algorithm follows the order π on the set of edges EN ′ : F π,0, F π,1, ..., F π,|EN′ |. But, this

time we will define two different connection vectors and accordingly two connection

matrices as follows. Connection vectors bπ,k
1 ∈ RN and bπ,k

2 ∈ RN are defined for each

k ∈ {0, 1, ..., |EN ′ |} as

bπ,k
1,i =

{

0 if i is connected with 01 or with 02 in F π,k

1
ni(F π,k)

otherwise
(3.8)

bπ,k
2,i =

{

0 if 01 and 02 are connected in F π,k

1
n

otherwise
(3.9)

88 Chapter 3. Connection Situations and Cooperation

for each i ∈ N and w ∈ WT
N .

The contribution matrices with respect to π ∈ Π(EN ′) Mπ
1 ∈ RN×EN′ and Mπ

2 ∈

RN×EN′ are defined as follows. Mπ
1 is the matrix which lists the change in the con-

nectivity of the agents as given by bπ,k
1 , i.e., the k-th column of Mπ

1 equals

Mπ
1 ek = (bπ,k−1

1 − bπ,k
1)

for each k ∈ {1, ..., |EN ′ |}. Similarly, Mπ
2 lists the change in the connectivity of the

agents as given by bπ,k
2 , i.e., the k-th column of Mπ

2 equals

Mπ
2 ek = (bπ,k−1

2 − bπ,k
2)

for each k ∈ {1, ..., |EN ′ |}.

It can easily be observed that the connection vector bπ,k
1 and the corresponding

contribution matrix Mπ
1 are straightforward extensions of their counterparts defined

for ERO (see equations 3.2 and 3.3). Similar to the contribution matrix for ERO, each

nonzero-column of Mπ
1 corresponds to an edge constructed by Kruskal’s algorithm and

represents the fraction of the cost of the edge paid by each player. However, in every

mcst situation with two sources there exists one edge which is constructed by Kruskal’s

algorithm but the corresponding column in Mπ
1 is a zero-column. To see this, let

F π,k be the first graph in the sequence F π,0, F π,1, ..., F π,|EN′ | in which 01 and 02 are

connected. Observe that the corresponding edge π(k) joins two separate components

in F π,k−1 one including 01 and the other including 02. Hence, π(k) is constructed by

Kruskal’s algorithm since it does not create a cycle with the previously constructed

edges. However, the column (Mπ
1 ek) is a zero column since bπ,k

1,i = bπ,k−1
1,i = 0 for every

agent i that belongs to the components of F π,k−1 joined by edge π(k). So, according

to contribution matrix Mπ
1 agents do not contribute for an edge which is constructed.

In order to be able to distribute the cost of edge π(k) among agents, we introduced

connection vectors bπ,t
2 and the corresponding contribution matrix Mπ

2 . Observe that

(Mπ
2 ek)i = 1

n
and every other column of matrix Mπ

2 is a zero column. That is Mπ
2

distributes the cost of edge π(k) equally among agents.

We are now ready to define the EROπ
T -value on Kπ.

Definition 3.4.1 For each π ∈ Π(EN ′), EROπ
T is defined as the map EROπ

T : Kπ →

RN , where EROπ
T (w) = Mπ

1 wπ + Mπ
2 wπ for each mcst situation with two sources w

in the cone Kπ.

A variant of Lemma 3.2.1 holds also for rules EROπ
T . Hence, similarly to EROπ-

rules, for every order π that a weight function w is compatible with, EROπ
T also

results in the same allocation.

3.4. ERO and Voccp for Mcst Situations with Two Sources 89

Proposition 3.4.1 Let (N, {01, 02}, w) be an mcst situation with two sources. Then,

Mπ
1 wπ = Mπ′

1 wπ′
, Mπ

2 wπ = Mπ′

2 wπ′
and hence EROπ

T (w) = EROπ′

T (w) for every

π, π′ ∈ Π(EN ′) with w ∈ Kπ ∩ Kπ′
.

This enables us to define a EROT -rule over all mcst situations with two sources.

Definition 3.4.2 The equal remaining obligations rule for mcst situations with two

sources is defined as the map EROT : WT
N → RN , where

EROT (w) = EROπ
T (w) = Mπ

1 wπ + Mπ
2 wπ (3.10)

for every w ∈ WT
N and π ∈ Π(EN ′) such that w ∈ Kπ.

Remark 3.4.1 The method we followed to extend ERO to mcst situations with two

sources can be summarized as: First use Mπ
1 the straightforward extension of a con-

tribution matrix and then distribute the cost of the edge that Mπ
1 failed to handle

equally among the agents. In the following sections we consider straightforward ex-

tensions of voccp and the optimistic game associated with mcst situations and show

that (i) EROT can be obtained as an average of the cost allocations provided by

voccp over all orders of agents and (ii) the Shapley value of the extended optimistic

game is equal to EROT . We believe that these two results provide strong support

to EROT as an appropriate extension of equal remaining obligations rule for mcst

situations with two sources.

Example 3.4.2 Consider the mcst situation with two sources (N, {01, 02}, w) with

N = {1, 2, 3} and w as depicted in Figure 3.5. Observe that w ∈ Kπ, with π(1) =

{02, 3}, π(2) = {01, 3}, π(3) = {1, 2}, π(4) = {01, 02} π(5) = {01, 1}, π(6) = {01, 2},

π(7) = {2, 3}, π(8) = {1, 3}, π(9) = {02, 1} and π(10) = {02, 2}.

The sequence of graphs F π,k formed by Kruskal’s algorithm when it follows the

order π on the set of edges EN ′ and corresponding connection vectors are given in

Table 3.6.

Then the contribution matrices Mπ
1 and Mπ

2 are given by

Mπ
1 =

0 0 1
2 0 1

2 0 0 0 0 0

0 0 1
2 0 1

2 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

,

and

Mπ
2 =

0 1
3 0 0 0 0 0 0 0 0

0 1
3 0 0 0 0 0 0 0 0

0 1
3 0 0 0 0 0 0 0 0

.

Observe lastly that wπ = (3, 4, 4, 5, 6, 7, 7, 9, 9, 10)t. Hence, EROT (w) = Mπ
1 wπ +

Mπ
2 wπ = (5 + 4

3
, 5 + 4

3
, 3 + 4

3
)t. ⋄

90 Chapter 3. Connection Situations and Cooperation

F π,k b
π,k
1 b

π,k
2

∅ (1, 1, 1)t, (1
3 , 1

3 , 1
3)t

{{02, 3}} (1, 1, 0)t, (1
3 , 1

3 , 1
3)t

{{02, 3}, {01, 3}} (1, 1, 0)t, (0, 0, 0)t

{{02, 3}, {01, 3}, {1, 2}} (1
2 , 1

2 , 0)t, (0, 0, 0)t

{{02, 3}, {01, 3}, {1, 2}, {01, 02}} (1
2 , 1

2 , 0)t, (0, 0, 0)t

{{02, 3}, {01, 3}, {1, 2}, {01, 02}, {01, 1}} (0, 0, 0)t, (0, 0, 0)t

{{02, 3}, {01, 3}, {1, 2}, {01, 02}, {01, 1}, {01, 2}} (0, 0, 0)t, (0, 0, 0)t

...
...

...

EN ′ (0, 0, 0)t, (0, 0, 0)t

Table 3.6: Graphs formed in each step of Kruskal’s algorithm and corresponding connection

vectors in Example 3.4.2

In the following we define for every mcst situation with two sources a related mcst

situation and show that there is a close relationship between the equal remaining

obligations rule of the mcst situation with two sources and the equal remaining obli-

gations rule of the related mcst situation. Let (N, {01, 02}, w) be an mcst situation

with two sources and let π ∈ Π(EN ′) such that w ∈ Kπ. Remove the sources 01, 02

and add vertex 0. Define the weight function w0 : EN∪{0}→R+ by

w0(e) =

{

w(e), if e ∈ EN ,

min{w({u, 01}), w({u, 02})}, if e = {u, 0} for some u ∈ N.

The mcst situation (N, 0, w0) as described above is called the mcst situation associated

with (N, {01, 02}, w).

Example 3.4.3 Consider the mcst situation with two sources (N, {01, 02}, w) with

N = {1, 2, 3} and w as depicted in Figure 3.5. The associated mcst situation (N, 0, w0)

is depicted in Figure 3.6. ⋄

31

2

01 025

6
7
9

10
4 3

4
9

7
31

2

0

36
7

4
9

7

Figure 3.6: An mcst situation with two sources (left side) and the associated mcst situation

3.4. ERO and Voccp for Mcst Situations with Two Sources 91

In the following lemma we show that the cost allocation provided by ERO for the

associated mcst situation w0 is equal to Mπ
1 wπ.

Lemma 3.4.1 Let w ∈ WT
N and π ∈ Π(EN ′) be such that w ∈ Kπ. Then Mπ

1 wπ =

ERO(w0).

Proof. Let π(t1), π(t2), ..., π(tn+1) be the n + 1 edges of the mcst Γ constructed

by Kruskal’s algorithm corresponding to π in w. Let π(tk) be the first edge among

them such that 01 and 02 are connected during Kruskal’s algorithm. Then the edges

in Γ\{π(tk)} = {π(t1), ..., π(tk−1), π(tk+1), ..., π(tn+1)} correspond to the non-zero

columns of Mπ
1 .

Observe that the edge {01, 02} and the more expensive of the edges {i, 01}, {i, 02}

(i ∈ N) can be constructed by Kruskal’s algorithm only if it is the first edge that 01

and 02 are connected. Then every edge e ∈ Γ\{π(tk)} is either an edge that connects

two agents or is the cheaper of the two edges that connect an agent with the source.

Let us now associate with each edge π(tr) ∈ Γ\{π(tk)} an edge er ∈ EN∪{0}. If

π(tr) ⊂ N , then er = π(tr); if π(tr) is the cheaper of the two edges that connect

an agent i with a source, then er = {i, 0}. Obviously, w(π(tr)) = w0(er). Now let

Γ′ = {e1, ..., ek−1, ek+1, ...en+1}. Obviously, Γ′ contains n edges and does not contain

any cycles. Hence, Γ′ is a spanning tree of (N,EN∪{0}). Moreover, it can easily be

shown that Γ′ is a mcst of the associated mcst situation w0 by using the fact that Γ

is a mcst for the mcst situation w.

Now, since Γ′ is a mcst of the associated mcst situation w0, there exists an order

π′ ∈ Π(EN∪{0}) such that w0 ∈ Kπ′
and such that the corresponding Kruskal’s algo-

rithm constructs first e1, then e2,... and lastly en+1. Clearly, Mπ′
equals the matrix ob-

tained from Mπ
1 by deleting its zero columns. Hence, ERO(w0) = Mπ′

wπ′

0 = Mπ
1 wπ.

¤

3.4.2 The vertex oriented construct and charge procedure

for mcst situations with two sources

In this section we define voccp for mcst situations with two sources.

We know that since each agent has to be connected to both of the available

sources, the mcst in an mcst situation with two sources has n + 1 edges. Then

the first n iterations of voccp for such an mcst problem will yield a forest which is

composed of two disjoint trees and hence one more edge has to be constructed to

connect these two disjoint trees. Therefore, we modify the voccp so that for any

order of the agents σ ∈ Π(N), after the first n iterations, the last agent in the order,

σ(n) is also responsible for the construction of the (n + 1)th edge which connects the

92 Chapter 3. Connection Situations and Cooperation

tree that he is involved in to the other one. In the following, abusing notation, σ(n)

the last agent in the order will also be denoted by σ(n + 1) for any σ ∈ Π(N).

Voccp for mcst situations with two sources is defined formally as follows:

Let (N, {01, 02}, w) be an mcst situation with two sources.

(Step 1) Pick σ ∈ Π(N) .

(Step 2) Set Gσ,0 = (N ′, ∅) and vσ,0
T = 0 (∈ RN).

(Step 3) For k = 1 to n + 1:

Let σ(k) = i. Choose an edge eσ
k such that

eσ
k = arg min{w(e)|e ∈ Ai(G

σ,k−1)}.

Set Gσ,k = Gσ,k−1 + eσ
k and vσ,k

T = vσ,k−1
T + w(eσ

k)e{i}.

(Step 4) Set Γσ = Gσ,n+1 and vσ
T = vσ,n+1.

We illustrate voccp in mcst situations with two sources in the following example.

Example 3.4.4 Consider the mcst situation with two sources (N, {01, 02}, w) with

N = {1, 2, 3} and w as depicted in Figure 3.5. Let σ ∈ Π(N) be such that σ(i) = i

for every i ∈ N . The related voccp is described as follows:

(Step 1) Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N .

(Step 2) Set Gσ,0 = (N ′, ∅) and vσ,0 = 0.

(Step 3) Step 3 consists of the following four iterations:

• k = 1: σ(1) = 1. Obviously A1(G
σ,0) = {{1, 01}, {1, 02}, {1, 2}, {1, 3}}. Then,

eσ
1 = {1, 2}, Gσ,1 = (N ′, {{1, 2}}) and vσ,1 = (4, 0, 0).

• k = 2: σ(2) = 2. Note that 2 and 1 are in the same component of Gσ,1 but 3,

01 and 02 belong to different components. So,

A2(G
σ,1) = {{1, 3}, {1, 01}, {1, 02}, {2, 3}, {2, 01}, {2, 02}} .

Obviously eσ
2 = {1, 01}, Gσ,2 = (N ′, {{1, 2}, {1, 01}}) and vσ,1 = (4, 6, 0).

• k = 3: σ(3) = 3. Note that 1, 2 and 01 are in the same component of Gσ,1 but

3 and 02 belong to different components. Obviously

A3(G
σ,2) = {{3, 1}, {3, 2}, {3, 01}, {3, 02}} .

Then, eσ
3 = {3, 02}, Gσ,3 = (N ′, {{1, 2}, {1, 01}, {3, 02}}) and vσ,3 = (4, 6, 3).

3.4. ERO and Voccp for Mcst Situations with Two Sources 93

• k = 4: σ(4) = 3. Note that there are two components in Gσ,3: 1, 2 and 01 are

in one component and 3 and 02 belong to the other component. Then,

A3(G
σ,3) = {{3, 1}, {3, 2}, {3, 01}, {02, 1}, {02, 2}, {02, 01}} .

So, eσ
4 = {01, 3}, Gσ,4 = (N ′, {{1, 2}, {1, 01}, {3, 02}, {01, 3}}) and vσ,3 = (4, 6, 3+

4).

(Step 4) Γσ = (N ′, {{1, 2}, {1, 01}, {3, 02}, {01, 3}}) and vσ = (8, 6, 3). In Table 3.7

we give the construct and charge results provided by voccp for all orderings of agents.

⋄

Constructed edges by Costs for

σ 1 2 3 1 2 3

(1,2,3) {1, 2} {1, 01} {3, 02},{01, 3} 4 6 7

(1,3,2) {1, 2} {1, 01},{01, 3} {3, 02} 4 10 3

(2,1,3) {1, 01} {1, 2} {3, 02},{01, 3} 6 4 7

(2,3,1) {1, 01},{01, 3} {1, 2} {3, 02} 10 4 3

(3,1,2) {1, 2} {1, 01},{01, 3} {3, 02} 4 10 3

(3,2,1) {1, 01},{01, 3} {1, 2} {3, 02} 10 4 3

Table 3.7: Construct and charge results for the mcst situation in Figure 3.5

We establish in the following theorem that (i) voccp is an efficient algorithm for

mcst situations with two sources and (ii) that every mcst in an mcst situation with

two sources can be obtained by voccp for any order of agents followed.

Theorem 3.4.1 Let (N, {01, 02}, w) be an mcst situation with two sources and σ ∈

Π(N). Then,

(i) Γσ is an mcst of (N, {01, 02}, w).

(ii)If T is an mcst of (N, {01, 02}, w), then T can be the result of a vertex oriented

construct and charge procedure for any permutation σ ∈ Π(N).

We omit the proof of Theorem 3.4.1 since it is similar to the proofs of theorems

3.2.1 and 3.2.2.

We consider in Lemma 3.2.3 the structure of graphs Gσ,0, Gσ,1, ..., Gσ,n+1 that are

formed during step 3 of voccp and prove one preliminary result.

Lemma 3.4.2 Let (N, {01, 02}, w) be an mcst situation with two sources, σ ∈ Π(N),

k ∈ {1, 2, ..., n} and σ(k) = i. Then, 01 and 02 can not belong to Gσ,k−1
i .

94 Chapter 3. Connection Situations and Cooperation

The proof Lemma 3.4.2 is similar to its counterpart in Lemma 3.2.3 and hence omit-

ted.

In the following lemma we consider voccp related to order σ ∈ Π(N) in a mcst

situation with two sources (N, {01, 02}, w) and voccp related to same order in the

associated mcst situation (N, 0, w0). Let us denote the kth edge constructed by voccp

related to σ in (N, {01, 02}, w) by eσ
k for every k ∈ {1, 2, ..., n + 1} and the kth edge

constructed by voccp related to σ in (N, 0, w0) by fσ
k for every k ∈ {1, 2, ..., n}. We

show that each of the first n edges constructed by the two algorithms cost the same,

i.e., w(eσ
k) = w0(f

σ
k) for every k ∈ {1, 2, ..., n}.

Lemma 3.4.3 Let (N, {01, 02}, w) be an mcst situation with two sources , (N, 0, w0)

be the associated mcst situation and σ ∈ Π(N). Then, w(eσ
k) = w0(f

σ
k) for every

k ∈ {1, 2, ..., n}.

Proof. Let σ ∈ Π(N). Consider first the voccp related to order σ in the mcst

situation with two sources. Pick k ∈ {1, 2, ..., n} and let σ(k) = i. We know by

Lemma 3.4.2 that neither 01 nor 02 belongs to Gσ,k−1
i the component that agent i

belongs in Gσ,k−1. So, both edges {i, 01} and {i, 02} are component reducing for i in

Gσ,k−1. Naturally, the more expensive of the two edges will never be constructed by

i.

So, starting with the first step of both procedures, voccp related to σ in w and

voccp related to σ in the associated mcst situation w0, each agent can select to con-

struct the same edge in both procedures in the following sense: if agent i chooses to

construct an edge e ⊂ N in voccp related to σ in w, then e is also a cheapest com-

ponent reducing edge for agent i in voccp related to σ in w0 and if agent i chooses

to construct the cheaper of the two edges {i, 01} and {i, 02} in voccp related to σ in

w0 then the edge {i, 0} is a cheapest component reducing edge for agent i in voccp

related to σ in w0. Since agents can select the same edges in the first n steps of both

procedures w(eσ
k) = w0(f

σ
k). ¤

We know by Lemma 3.4.1 that EROT (w) = ERO(w0). Hence, Lemma 3.4.3 en-

ables us to establish the relationship between the costs of the first n edges constructed

by voccp and EROT (w). In the following lemma, we will establish the relationship

between the cost of the last edge constructed by voccp and EROT (w).

Lemma 3.4.4 Let (N, {01, 02}, w) be an mcst situation with two sources , σ ∈ Π(N)

and π ∈ Π(EN ′) be such that w ∈ Kπ. Then, w(eσ
n+1) =

∑

i∈N e{i}Mπ
2 wπ.

3.4. ERO and Voccp for Mcst Situations with Two Sources 95

Proof. Let Γ be an mcst for the mcst situation with two sources w and Γ′ be an

mcst for the associated mcst situation w0. Now, on the one hand

w(Γ) = w(eσ
n+1) +

∑

k∈{1,2,...,n}

w(eσ
k) = w(eσ

n+1) +
∑

k∈{1,2,...,n}

w(fσ
k)

= w(eσ
n+1) + w0(Γ

′) = w(eσ
n+1) +

∑

i∈N

ERO(w0)i

= w(eσ
n+1) +

∑

i∈N

e{i}Mπ
1 wπ, (3.11)

where the first equality follows from the efficiency of voccp in mcst situations with

two sources, the second equality follows from Lemma 3.4.3, the third equality follows

from the efficiency of voccp in mcst situations, the fourth equality follows from the

efficiency of ERO in mcst situations and the last equality follows from Lemma 3.4.1.

On the other hand

w(Γ) =
∑

i∈N

EROT (w)i =
∑

i∈N

(

e{i}Mπ
1 wπ + e{i}Mπ

2 wπ
)

. (3.12)

Then by equations (3.11) and (3.12), w(eσ
n+1) =

∑

i∈N e{i}Mπ
2 wπ. ¤

Finally, we prove that EROT can be obtained as the average of the cost allocations

provided by voccp for every order of the agents.

Theorem 3.4.2 Let w ∈ WT
N . Then

EROT (w) =
∑

σ∈Π(N)

vσ
T (w)

n!
.

Proof. Let w be an mcst with two sources and w0 be the associated mcst situation,

σ ∈ Π(N), k ∈ {1, ..., n} and σ(k) = i. We know by Lemma 3.4.3 that if i is not the

last agent with respect to σ then

vσ
T ,i = w(eσ

k) = w0(e
σ
k) = vσ

i (w0),

i.e., the cost vσ
T ,i assigned by voccp related to σ to agent i in w is equal to the cost

vσ
i (w0) assigned by voccp related to σ to agent i in w0.

We also know by lemmas 3.4.3 and 3.4.4 that if i is the last agent with respect to

σ then

vσ
T ,i = w(eσ

n) + w(eσ
n+1) = w0(e

σ
n) +

∑

i∈N

e{i}Mπ
2 wπ = vσ

i (w0) +
∑

i∈N

e{i}Mπ
2 wπ,

96 Chapter 3. Connection Situations and Cooperation

i.e., the cost vσ
T ,i assigned by voccp related to σ to agent i in w is equal to the sum of

the cost vσ
i (w0) assigned by voccp related to σ to agent i in w0 and

∑

i∈N e{i}Mπ
2 wπ.

Then

∑

σ∈Π(N)

vσ
T (w)i

n!
=

1

n!

∑

σ∈Π(N):i6=σ(n)

vσ(w0)i +
∑

σ∈Π(N):i=σ(n)

vσ(w0)i +
∑

j∈N

e{j}Mπ
2 wπ

 ,

=
1

n!

∑

σ∈Π(N)

vσ(w0)i +
1

n!

∑

σ∈Π(N):i=σ(n)

∑

j∈N

e{j}Mπ
2 wπ,

= ERO(w0)i +
1

n!

n!

n

∑

j∈N

e{j}Mπ
2 wπ,

= e{i}Mπ
1 wπ +

1

n

∑

j∈N

e{j}Mπ
2 wπ,

= e{i}Mπ
1 wπ + e{i}Mπ

2 wπ = EROT (w)i,

where the first equality follows from Lemmas 3.4.3 and 3.4.4, the third equality follows

from the equality of ERO and the average of the cost allocations provided by voccp

in mcst situations and the fact that there are n!
n

orders at which i is the last player,

the fourth equality follows from Lemma 3.4.1 and the last equality follows from the

fact that e{j}Mπ
2 wπ = e{j

′}Mπ
2 wπ for every j, j′ ∈ N . ¤

3.4.3 Voccp and the optimistic game in mcst situations with

two sources

In this section, we define an optimistic transferable utility game for mcst problems

with two sources and show that for every ordering σ of the agents, the vσ
T value is

equal to the marginal of the optimistic game for the same ordering.

The optimistic game for mcst situations with two sources is defined as follows.

Given an mcst situation with two sources (N, {01, 02}, w) and a nonempty coalition

of agents S (N , we first obtain an optimistic mcst situation for S assuming that

when the agents in S have to be connected to both of the sources, the agents in

N\S are already connected to sources and the agents in S can connect to sources via

agents in N\S. Formally, for every S (N , the optimistic mcst situation for S is the

mcst situation (S, 0, wS)T , where wS(e) = w(e) for every e ∈ ES and wS({i, 0}) =

minj∈N ′\S w({i, j}) for every i ∈ S. Naturally, the optimistic mcst situation for N is

the original mcst situation with two sources (N, {01, 02}, w).

Now the optimistic TU-game (N, v) associated with the mcst situation with two

sources (N, {01, 02}, w) is defined as v(S) = wS(Γ) where Γ is a mcst for the optimistic

game for S for every S ⊂ N with v(∅) = 0.

3.4. ERO and Voccp for Mcst Situations with Two Sources 97

Example 3.4.5 Consider the mcst situation with two sources (N, {01, 02}, w) with

N = {1, 2, 3} and w as depicted in Figure 3.5. Consider coalition {1, 2}. In Figure

3.7 we provide the optimistic mcst situation for {1, 2} and a related mcst. Hence the

worth of coalition {1, 2} in the optimistic TU-game associated with (N, {01, 02}, w) is

10. The complete optimistic TU-game associated with (N, {01, 02}, w) is given below:

21

0

6 7

4 21

0

Figure 3.7: The optimistic mcst situation for {1, 2} (left side) and a related mcst

S {1} {2} {3} {1,2} {1,3} {2,3} N

v(S) 4 4 3 10 7 7 17

⋄

In the following, we show that for every ordering of the agents, the cost allocation

provided by the related voccp and the related marginal vector of the optimistic game

are equal to each other. First, we consider in the following lemma two optimistic mcst

games, one derived from an mcst situation with two sources and the other derived

from the associated mcst situation. We show that for proper subsets of N they are

equal to each other

Lemma 3.4.5 Let w ∈ WT
N and let w0 ∈ WN be the associated mcst situation. Also

let (N, v) be the optimistic TU-game associated with w and (N, v0) be the optimistic

TU-game associated with w0. Then, v(S) = v0(S) for every S (N .

Proof. Let (S, 0, wS)T be the optimistic mcst situation for S derived from w and let

(S, 0, w0,S) be the optimistic mcst situation for S derived from w0. We want to show

that wS(e) = w0,S(e) for every e ∈ ES∪{0}. Obviously, wS(e) = w0,S(e) = w(e)

for every e ∈ ES. So consider an edge {i, 0} for some i ∈ S. We know that

wS({i, 0}) = minj∈N∪{01,02}\S w({i, j}) and wS,0({i, 0}) = minj∈N∪{0}\S w0({i, j}). We

also know that w0({i, 0}) = min{{i, 01}, {i, 02}}. Hence, wS({i, 0}) = w0,S({i, 0}).

So, we can conclude that wS = w0,S. But, since wS = w0,S, the cost of an mcst of

(S, 0, wS)T is equal to the cost of an mcst of (S, 0, w0,S) and hence v(S) = v0(S). ¤

Proposition 3.4.2 Let w ∈ WT
N . Then vσ

T (w) = mσ(v) for every σ ∈ Π(N).

98 Chapter 3. Connection Situations and Cooperation

Proof. Let w ∈ WT
N , w0 ∈ WN be the associated mcst situation and (N, c) be the

optimistic TU-game associated with w0. Also let σ ∈ Π(N) and denote by Sk the

set of first k agents with respect to order σ, i.e., Sk = {σ(1), σ(2), ..., σ(k)} for every

k ∈ {1, 2, ..., n}. Lastly let S0 = ∅.

Now let k ∈ {1, ..., n − 1} and σ(k) = i. Then

mσ(v)i = v(Sk) − v(Sk−1) = c(Sk) − c(Sk−1) = vσ(w0)i = vσ
T (w)i, (3.13)

where the second equality follows from Lemma 3.4.5, the third equality follows from

Proposition 3.2.6 and the last equality follows from Lemma 3.4.3.

Note that by (3.13),

v(Sk) =
∑

i∈Sk

vσ
T (w)i =

∑

t∈{1,2,...,k}

w(eσ
t)

for every k ∈ {1, 2, ..., n − 1}.

Now let k = n and consider σ(k) = i the last agent with respect to σ. Then,

mσ(v)i = v(N) − v(Sn−1) = v(N) −
∑

t∈{1,2,...n−1}

w(eσ
t) = w(eσ

n) + w(eσ
n+1) = vσ

T (w)i,

where the second equality follows from the fact that v(Sn−1) is equal to the total cost

of first n − 1 edges constructed by voccp related to σ and the third equality follows

from the fact that v(N) is equal to the cost of an mcst of the mcst situation with two

sources w.

Hence, we can conclude that vσ
T (w) = mσ(v). ¤

Since the Shapley value of a game is the average of its marginals, Proposition 3.4.2

implies that EROT is equal to the Shapley value of the optimistic game.

Corollary 3.4.1 Let w ∈ WT
N . Then EROT (w) is equal to the Shapley value of the

optimistic game associated with w.

3.5 Highway Games on Weakly Cyclic Graphs

In this section, we study the concavity and the balancedness of highway games on

weakly cyclic graphs. Section 3.5.1 formally introduces highway problems and highway

games. Section 3.5.2 presents the characterization of HG-concave graphs. Section

3.5.3 proves that highway games on weakly cyclic graphs are balanced.

3.5. Highway Games on Weakly Cyclic Graphs 99

3.5.1 Highway problems and highway games

A highway problem is defined as a tuple Γ = (N,G, {si}i∈N , {ti}i∈N , w). N = {1, ..., n}

is a nonempty, finite set of players and G=(V,E) is a connected graph. The graph G

determines the possibilities regarding the construction of the highway network. That

is, any constructed highway network has to be a subgraph of G. Note that G need not

be the complete graph, since the construction of some edges may be infeasible due to

geographic or socioeconomic reasons. For each player i ∈ N , si and ti are vertices in

G and they are called the connection vertices of i. The connection vertices of player

i represent the locations (think of entry and exit) that i has to establish a connection

between. Finally, w : E → R+ is a cost function and associates to each edge, e ∈ E,

the nonnegative cost w(e) of constructing e. The total cost of constructing a set of

edges E ′ ⊂ E is abbreviated by w(E ′) =
∑

e∈E′ w(e). In the following we do not

always distinguish strictly between a graph and its edge set. For example, given a

graph G = (V ′, E ′), we may write w(G′) rather than w(E ′).

In a highway problem, a coalition S of cooperating players will construct a cheap-

est set of edges that connects the connection points of every member of S. Therefore,

given a highway problem Γ = (N,G, {si}i∈N , {ti}i∈N , w), the corresponding highway

game (N, cΓ) is defined by

cΓ(S) = min
E′⊂E

{w(E ′)|si and ti are connected in (V,E ′) for every i ∈ S} (3.14)

for all S ⊂ N . Clearly, (N, cΓ) is subadditive and monotonic.

Example 3.5.1 Consider the cycle C = v1v2v3v4v1. The construction costs of edges

are given by: w({v1, v2}) = w({v2, v3}) = 2 and w({v3, v4}) = w({v4, v1}) = 3.

Consider N = {1, 2, 3} with s1 = v1, t1 = v3, s2 = v2, t2 = v3, s3 = v4, t3 = v1. The

corresponding highway problem Γ is depicted in Figure 3.8.

v1

v2

v3

v4

2

23

3

t3 = = s1

= s2

t1 = = t2

s3 =

Figure 3.8: A highway problem with three players

Consider player 1. There are two paths in C between player 1’s connection vertices

v1 and v3: v1v2v3 and v1v4v3. Since player 1 will not construct any superfluous

100 Chapter 3. Connection Situations and Cooperation

edges, cΓ({1}) is the minimum of w({v1, v2}) + w({v2, v3}) = 4 and w({v1, v4}) +

w({v4, v3}) = 6, i.e., cΓ({1}) = 4.

Next, consider the coalition {1, 3}. Clearly, players 1 and 3 will construct the set

of edges {{v1, v4}, {v3, v4}}. Hence, cΓ({1, 3}) = 6.

The complete corresponding highway game (N, cΓ) is given in Table 3.8 below.

S {1} {2} {3} {1,2} {1,3} {2,3} N

cΓ(S) 4 2 3 4 6 5 7

Table 3.8: The highway game (N, cΓ) in Example 3.5.1.

Observe that this highway game is not concave:

cΓ({1, 2}) + cΓ({1, 3}) < cΓ({1}) + cΓ({1, 2, 3}).

⋄

The above example illustrates that if there are multiple paths between the con-

nection vertices of players in the underlying graph, then players can select different

paths in different coalitions and this may lead to the violation of concavity conditions

of the associated highway game. When the underlying graph is a tree as it is the case

for the highway problems considered by Mosquera and Zarzuelo (2006), the players

use the unique path between their connection vertices independent of the coalition

they belong to. From this, it can readily be derived that the highway games induced

by trees are concave.

3.5.2 HG-Concavity

In this section, we characterize HG-concave graphs. Here, a graph G is called HG-

concave if for every highway problem Γ = (N,G, {si}i∈N , {ti}i∈N , w), the correspond-

ing highway game (N, cΓ) is concave. Explicitly, we show that a graph is HG-concave

if and only if it is weakly triangular.

For this aim, we first show that every highway game on a cycle of length 3 is

concave.

Lemma 3.5.1 Let Γ = (N,C, {si}i∈N , {ti}i∈N , w) be a highway problem where C is

a cycle of length 3. Then, the corresponding highway game (N, cΓ) is concave.

Proof. Without loss of generality, assume that si 6= ti for all i ∈ N . It can easily be

observed that

3.5. Highway Games on Weakly Cyclic Graphs 101

(i) for every coalition, it is optimal to construct either one edge in C or the two

cheaper edges in C;

(ii) for a coalition S ⊂ N , if it is optimal to construct just one edge {u, v} in C,

then {si, ti} = {u, v} for every i ∈ S;

(iii) for a coalition S ⊂ N , if it is optimal to construct the two cheaper edges in C,

then constructing the two cheaper edges is optimal for any superset of S, too.

Now, we will show that cΓ(S∪T)+ cΓ(S∩T) ≤ cΓ(S)+ cΓ(T) for every S, T ⊂ N ,

i.e., that the corresponding highway game (N, cΓ) is concave. Take S, T ⊂ N and

assume that S ∩ T 6= ∅. For, if S ∩ T = ∅, then the inequality follows directly from

the subadditivity of (N, cΓ).

Firstly, (i) implies that, for any coalition K ⊂ N , cΓ(K) is either equal to the sum

of the costs of the two cheaper edges in C or equal to the cost of one of the three

edges in C.

If both cΓ(S) and cΓ(T) are equal to the sum of the costs of the two cheaper edges

in C, then the inequality follows from the monotonicity of cΓ and (iii). If only one of

cΓ(S) and cΓ(T) is equal to the sum of the costs of the two cheaper edges in C and

the other is equal to the cost of one edge, say e, in C, then (iii) implies that cΓ(S∪T)

is equal to the sum of the costs of the two cheaper edges in C and (ii) implies that

cΓ(S∩T) is also equal to the cost of e. Hence, cΓ(S∪T)+ cΓ(S∩T) = cΓ(S)+ cΓ(T).

Lastly, assume that cΓ(S) and cΓ(T) are equal to the cost of an edge in C. Then,

since S ∩ T 6= ∅, (ii) implies that cΓ(S) and cΓ(T) have to be equal to the cost of the

same edge. Then, both cΓ(S ∪ T) and cΓ(S ∩ T) are equal to the cost of the same

edge, too. Hence, cΓ(S ∪ T) + cΓ(S ∩ T) = cΓ(S) + cΓ(T). ¤

We now discuss some properties of weakly cyclic graphs. Let G=(V,E) be a weakly

cyclic graph. Clearly, each edge in G is either a bridge edge or belongs to exactly one

cycle in G. Let C(G) denote the set of cycles in G and BE(G) denote the set of bridge

edges in G. Observe that every path in G which connects two vertices has to pass

through (has a common edge with) the same set of cycles and the same set of bridge

edges in G. More specifically, every path that connects the same two vertices, passes

through the same cycles and the same bridge edges but the edges followed in cycles

may differ. Moreover, every path that connects the same two vertices in G enter and

leave a cycle that they pass through at the same vertices.

Before presenting the main result of this section, we will show that for every

highway problem on a weakly cyclic graph, the corresponding highway game is equal

102 Chapter 3. Connection Situations and Cooperation

to the sum of specific sub-highway games on each cycle and on each bridge edge in

the graph. These sub-highway games are formally defined as follows.

Consider a highway problem Γ = (N,G, {si}i∈N , {ti}i∈N , w) where G is a weakly

cyclic graph. Let C = v1v2...vkv1 be a cycle in G. Now, the sub-highway problem

with respect to C is defined by ΓC = (N,C, {sC
i }i∈N , {tCi }i∈N , w|C), where w|C is the

restriction of the cost function w to the edges in C. For each player i ∈ N , if the

paths connecting si and ti pass through C, then sC
i and tCi are the vertices in C at

which the paths connecting si and ti enter and leave C. If the paths connecting si

and ti do not pass through C, then we set sC
i = tCi = v1.

Next, let e = {u, v} be a bridge edge in G. Then, the sub-highway problem with

respect to e is defined by Γe = (N, ({u, v}, {e}), {se
i}i∈N , {tei}i∈N , w|e). Set se

i = u and

tei = v if the paths connecting si and ti pass through e. Otherwise, set se
i = tei = u.

Lemma 3.5.2 Let Γ = (N,G, {si}i∈N , {ti}i∈N , w) be a highway problem where G is

a weakly cyclic graph. Then, cΓ(S) =
∑

C∈C(G) cΓC (S) +
∑

e∈BE(G) cΓe(S) for every

S ⊂ N .

We omit the proof of Lemma 3.5.2 since it is straightforward2.

We are now ready to present the main result of this section.

Theorem 3.5.1 A graph G is HG-concave if and only if it is weakly triangular.

Proof. We first show the if-part. Let G=(V,E) be a weakly triangular graph and

consider a highway problem Γ = (N,G, {si}i∈N , {ti}i∈N , w). We will show that the

corresponding highway game (N, cΓ) is concave.

We know by Lemma 3.5.2 that cΓ(S) =
∑

C∈C(G) cΓC (S)+
∑

e∈BE(G) cΓe(S) for every

S ⊂ N . By Lemma 3.5.1, we have that cΓC is concave for every triangle C ∈ C(G)

and we also know that highway games induced by trees are concave. In particular,

cΓe is concave for every e ∈ BE(G). We may conclude that cΓ is concave, since it is a

non-negative linear combination of concave games.

For the only-if part of the proof, choose a graph G=(V,E) that is not weakly

triangular. Now, we construct a player set N , connection vertices si, ti for each

player i in N and a cost function w such that the highway game corresponding to the

highway problem (N,G, {si}i∈N , {ti}i∈N , w) is not concave.

Since G is not weakly triangular, it contains a cycle C = v1v2...vkv1 with length

k ≥ 4. Let the player set be N = {1, 2, 3} and let s1 = v1, t1 = v3, s2 = v2, t2 = v3

2Lemma 3.5.2 can be extended to decompose a highway game induced by an arbitrary graph into

the sum of sub-highway games associated to the bridge edges and the components obtained after

deleting all bridge edges.

3.5. Highway Games on Weakly Cyclic Graphs 103

and s3 = vk, t3 = v1. Define the cost function w by:

w(e) =

2, if e ∈ {{v1, v2}, {v2, v3}},

0, if e ∈ {{v3, v4}, ..., {vk−2, vk−1}},

3, if e ∈ {{vk, v1}, {vk, vk−1}},

100, if e 6∈ C.

v1

v2

v3vk−1

vk

2

23

3

100

100

100

... 0 ...

t3 = = s1

= s2

= t2= t1

s3 =

Figure 3.9: An auxiliary figure for the proof of Theorem 3.5.1

Figure 3.9 depicts a part of the highway problem Γ = (N,G, {si}i∈N , {ti}i∈N , w).

Now, it can easily be shown that the highway game corresponding to the highway

problem Γ is equal to the highway game presented in Example 3.5.1, which is not

concave. ¤

3.5.3 Balancedness of Highway Games

on Weakly Cyclic Graphs

In this section, we show that highway games induced by weakly cyclic graphs are

balanced. First we provide an example (cf. Kuipers, 1997) which shows that highway

games in which the underlying graphs allow for multiple paths between vertices need

not be balanced in general.

Example 3.5.2 Let G=(V,E) be the complete graph on V = {v1, v2, ..., v6}. The

construction costs of the edges are given by:

w(e) =

{

5, if e ∈ {{v1, v4}, {v2, v5}, {v3, v6}, {v4, v5}, {v4, v6}, {v5, v6}},

3, otherwise.

Consider N = {1, 2, 3} with s1 = v1, t1 = v4, s2 = v2, t2 = v5, s3 = v3, t3 = v6.

A part of the corresponding highway problem Γ = (N,G, {si}i∈N , {ti}i∈N , w), where

only the edges of cost 3 are drawn, is depicted in Figure 3.10.

It can easily be observed that the cost of any two-player coalition is 9. For

example, the optimal collection of edges for the coalition {1, 2} consists of edges

104 Chapter 3. Connection Situations and Cooperation

v1v5 v6

v2

v4

v3

3

3

3 3

33 3

3

3

s1

=

= t3

= s2

= t1

s3 =

t2 =

Figure 3.10: An auxiliary figure for Example 3.5.2

{{v5, v1}, {v1, v2}, {v2, v4}} with a total cost of 9. There are several possibilities for

the optimal collection of edges for the grand coalition. One of them can be obtained

by adding the edge {v3, v6} to the optimal collection of edges of the coalition {1, 2}.

Hence, cΓ(N) = 14. Suppose that (x1, x2, x3) is a core element of (N, cΓ). Then, it

can be shown by using the core conditions for coalitions {1, 2}, {1, 3} and {2, 3} that

2(x1 + x2 + x3) ≤ cΓ({1, 2}) + cΓ({1, 3}) + cΓ({2, 3}) = 27 < 2cΓ(N),

a contradiction with the efficiency of a core allocation. Hence, (N, cΓ) is not balanced.

⋄

In the following, we first focus on highway problems on cycles and prove that the

induced highway games are balanced.

Let (N,C, {si}i∈N , {ti}i∈N , w) be a highway problem on a cycle C = (V,E). Ob-

serve that each player has two alternative paths between his connection vertices in C.

For player i, we denote an individually optimal path for i by Pi and the alternative

path by Qi. Note that Pi∩Qi = ∅ and Pi∪Qi = E for every player i ∈ N . Let S ⊂ N .

A collection of paths, {Ri}i∈S with Ri ∈ {Pi, Qi}, for all i ∈ S is called a path profile

for S. The set of path profiles for S is denoted by RS. For each path profile R ∈ RS,

the set of edges
⋃

i∈S Ri is called the set of edges corresponding to R and is denoted

by E(R). Ē(R) is defined as the complement of E(R), i.e., Ē(R) = E\E(R). Let

T = {Ti}i∈N ∈ RN . The restriction of T to S, T|S = {(T|S)i}i∈S, is the path profile

for S defined by (T|S)i = Ti for every i ∈ S.

Every set of edges which connects the connection vertices of every member of a

coalition of players has to contain either the individually optimal path or the alter-

native path of each member of the coalition. Moreover, since a coalition will not

construct any superfluous edges, a cheapest set of edges that connects the connection

vertices of every member of a coalition will be equal to a set of edges corresponding

to a path profile. Hence, the highway game (N, cΓ) corresponding to the highway

3.5. Highway Games on Weakly Cyclic Graphs 105

problem (N,C, {si}i∈N , {ti}i∈N , w) on a cycle C = (V,E) can be reformulated as

cΓ(S) = min
R∈RS

{w(E(R))}, (3.15)

or equivalently as

cΓ(S) = w(E) − max
R∈RS

{w(Ē(R))}, (3.16)

for every S ⊂ N .

Lemma 3.5.3 Let Γ = (N,C, {si}i∈N , {ti}i∈N , w) be a highway problem such that

C = (V,E) is a cycle and let S ⊂ N .

(i) If R,R′ ∈ RS with R 6= R′, then Ē(R) ∩ Ē(R′) = ∅.

(ii)
⋃

R∈RS

Ē(R) = E.

(iii) w(E) =
∑

R∈RS w(Ē(R)).

(iv) Ē(R) =
⋃

T∈RN :T|S=R

Ē(T) for every R ∈ RS.

(v) w(Ē(R)) =
∑

T∈RN :T|S=R

w(Ē(T)) for every R ∈ RS.

Proof. (i) Let R,R′ ∈ RS with R 6= R′. Clearly, there exists i ∈ S such that Ri 6= R′
i.

Assume without loss of generality that Ri = Pi and R′
i = Qi. Then, Ē(R) ⊂ Qi and

Ē(R′) ⊂ Pi, and hence Ē(R) ∩ Ē(R′) = ∅.

(ii) Obviously,
⋃

R∈RS

Ē(R) ⊂ E. Now, pick e ∈ E. Consider R ∈ RS such that

Ri = Pi if e ∈ Qi and Ri = Qi otherwise. Clearly, e 6∈ Ri for any i ∈ S and hence

e ∈ Ē(R). So, E ⊂
⋃

R∈RS

Ē(R).

(iii) readily follows from (i) and (ii).

(iv) Let R ∈ RS. Let T ∈ RN be such that T|S = R. Then

Ē(T) =

(

E\
⋃

i∈N

Ti

)

⊂

(

E\
⋃

i∈S

Ti

)

= Ē(R),

and hence Ē(R) ⊃
⋃

T∈RN :T|S=R

Ē(T).

106 Chapter 3. Connection Situations and Cooperation

Now pick e ∈ Ē(R). Consider T ∈ RN with T|S = R and for every i ∈ N\S,

Ti = Pi if e ∈ Qi and Ti = Qi otherwise. Obviously, e 6∈ Ti for any i ∈ N and hence

e ∈ Ē(T). So, Ē(R) ⊂
⋃

T∈RN :T|S=R

Ē(T).

(v) readily follows from (i) and (iv). ¤

Let us denote with R∗
S an optimal path profile for S, i.e., cΓ(S) = w(E)−w(Ē(R∗

S))

(cf. (3.16)) for every S ⊂ N with S 6= ∅. Let S = (S1, S2, ..., Sm) be a sequence3 of

coalitions in N . For every path profile T for N , we denote by α(T,S) the number of

coalitions S in sequence S such that the restriction of T to S is equal to R∗
S, i.e.,

α(T,S) =
∣

∣

{

t ∈ {1, 2, ...,m}|T|St
= R∗

St

}∣

∣ .

For every x ∈ R, (x)+ is defined as (x)+ = max{x, 0}.

Lemma 3.5.4 Let Γ = (N,C, {si}i∈N , {ti}i∈N , w) be a highway problem such that

C = (V,E) is a cycle. Let S = (S1, S2, ..., Sm) be a sequence of coalitions in N and

l ∈ {1, 2, ...,m}4.

If
∑

T∈RN

(α(T,S) − (m − l))+ > l then there exists j ∈ N such that

|{t ∈ {1, 2, ...,m}|j ∈ St}| < l.

Proof. The proof will proceed by induction on l.

Let us first prove the assertion for an arbitrary m ∈ {1, 2, ...} and l = 1. Assume

that
∑

T∈RN (α(T,S) − (m − 1))+ > 1. Then there exists R,R′ ∈ RN with R 6= R′

such that α(R,S) = α(R′,S) = m, i.e., R|St
= R′

|St
= R∗

St
for every t ∈ {1, 2, ...,m}.

Since R 6= R′, there exists j ∈ N such that Rj 6= R′
j. Hence, j 6∈ St for every

t ∈ {1, 2, ...,m}, i.e., |{t ∈ {1, 2, ...,m}|j ∈ St}| = 0 < 1.

Let us now prove the assertion for l ≥ 2 and an arbitrary m ≥ l. Assume that the

assertion holds for every l′ < l and arbitrary m′ ≥ l′.

3What we need of the sequence S is the fact that the same coalition S can occur several times,

the precise order of the coalitions is not relevant.
4In Theorem 3.5.2, we will use Lemma 3.5.4 in order to prove the balancedness of highway games

induced by cycles. There l will be taken as the smallest strictly positive integer such that lλS is an

integer for every coalition S in a balanced set B with balancing weights (λS)S∈B and a sequence S

will be constructed by duplicating each S ∈ B lλS times. Hence, m will be equal to
∑

S∈B
lλS .

3.5. Highway Games on Weakly Cyclic Graphs 107

Case 1: For all i ∈
⋃m

t=1 St there exists Ri ∈ {Pi, Qi} such that (R∗
St

)i = Ri

for every t ∈ {1, 2, ...,m} such that i ∈ St. Fix such Ri for every i ∈
⋃m

t=1 St. For

i ∈ N\
⋃m

t=1 St, take Ri = Pi.

Consider the path profile R = {Ri}i∈N . Then (α(R,S) − (m− l))+ = (m − (m−

l))+ = l. Assume that
∑

T∈RN (α(T,S) − (m − l))+ > l. Then there exists R′ 6= R

such that α(R′,S) > m − l. Since R′ 6= R, either there exists j ∈
⋃m

t=1 St such that

R′
j 6= Rj or there exists j ∈ N\

⋃m

t=1 St such that R′
j 6= Pj. If the latter is the case,

then we are automatically finished since |{t ∈ {1, 2, ...,m}|j ∈ St}| = 0 < l. If the

former is the case, then for every S in sequence S such that R′
|S = R∗

S, j 6∈ S. But,

then

|{t ∈ {1, 2, ...,m}|j ∈ St}| ≤ m − α(R′,S) < m − (m − l) = l.

Note that for this case we did not have to use the induction hypothesis.

Case 2: There exists i ∈
⋃m

t=1 St and S, S ′ in the sequence S such that i ∈ S∩S ′,

(R∗
S)i = Pi and (R∗

S′)i = Qi. Choose one such i. If |{t ∈ {1, 2, ...,m}|i ∈ St}| < l,

then we are automatically finished. So assume that |{t ∈ {1, 2, ...,m}|i ∈ St}| ≥ l.

Reorder the coalitions in S so that

S = (S1, ..., Sp, Sp+1, ..., Sl, Sl+1, ..., Sm), where l > p ≥ 1 and

• i ∈ St for every t ≤ l,

• (R∗
St

)i = Pi for every t ∈ {1, 2, ..., p},

• (R∗
St

)i = Qi for every t ∈ {p + 1, p + 2, ..., l}.

Define S ′ = (Sp+1, Sp+2, ..., Sl, Sl+1, ..., Sm) and S ′′ = (S1, S2, ..., Sp, Sl+1, ..., Sm).

Assume that
∑

T∈RN (α(T,S) − (m − l))+ > l.

Case 2.1:
∑

T∈RN (α(T,S ′) − (m − l))+ > l−p. The induction hypothesis implies

that there exists j ∈ N such that |{t ∈ {p + 1, ..., l, l + 1, ...,m}|j ∈ St}| < l− p. But

then

|{t ∈ {1, 2, ..., m}|j ∈ St}| ≤ |{t ∈ {p + 1, ..., l, l + 1, ..., m}|j ∈ St}| + p < (l − p) + p = l.

Case 2.2:
∑

T∈RN (α(T,S ′) − (m − l))+ ≤ l − p. Then
∑

T∈RN

(α(T,S ′) − (m − l))
+

=
∑

T∈RN :Ti=Pi

(α(T,S ′) − (m − l))
+

+
∑

T∈RN :Ti=Qi

(α(T,S ′) − (m − l))
+

=
∑

T∈RN :Ti=Qi

(α(T,S ′) − (m − l))
+

=
∑

T∈RN :Ti=Qi

(α(T,S) − (m − l))
+
≤ l − p. (3.17)

108 Chapter 3. Connection Situations and Cooperation

Also

l <
∑

T∈RN

(α(T,S) − (m − l))
+

=
∑

T∈RN :Ti=Pi

(α(T,S) − (m − l))
+

+
∑

T∈RN :Ti=Qi

(α(T,S) − (m − l))
+

and, hence,
∑

T∈RN :Ti=Pi

(α(T,S) − (m − l))
+

> l−
∑

T∈RN :Ti=Qi

(α(T,S) − (m − l))
+
≥ l− (l−p) = p, (3.18)

where the second inequality follows by (3.17).

Now we show that
∑

T∈RN (α(T,S ′′) − (m − l))+ > p. This follows from the fact

that

∑

T∈RN

(

α(T,S ′′) − (m − l)
)

+
=

∑

T∈RN :Ti=Pi

(

α(T,S ′′) − (m − l)
)

+

+
∑

T∈RN :Ti=Qi

(

α(T,S ′′) − (m − l)
)

+

=
∑

T∈RN :Ti=Pi

(

α(T,S ′′) − (m − l)
)

+

=
∑

T∈RN :Ti=Pi

(α(T,S) − (m − l))+ > p,

where the inequality follows from (3.18).

Hence, by the induction hypothesis, there exists j ∈ N such that

|{t ∈ {1, 2, ..., p, l + 1, ...,m}|j ∈ St}| < p.

But then

|{t ∈ {1, 2, ..., m}|j ∈ St}| ≤ |{t ∈ {1, 2, ..., p, l + 1, ..., m}|j ∈ St}| + (l − p)

< p + (l − p) = l.

¤

Theorem 3.5.2 Let Γ = (N,C, {si}i∈N , {ti}i∈N , w) be a highway problem such that

C = (V,E) is a cycle. Then the highway game (N, cΓ) is balanced.

Proof. Let B = {B1, B2, ..., Bk} be a balanced set with balancing weights (λS)S∈B.

Since
∑

S∈B

λScΓ(S) =
∑

S∈B

λS

(

w(E) − w(Ē(R∗
S))

)

3.5. Highway Games on Weakly Cyclic Graphs 109

and

cΓ(N) = w(E) − w(Ē(R∗
N)),

it is sufficient to show that

w(Ē(R∗
N)) ≥ (1 −

∑

S∈B

λS)w(E) +
∑

S∈B

λSw(Ē(R∗
S)). (3.19)

Note that right hand side of (3.19) can be rewritten as follows:

(1 −
∑

S∈B

λS)w(E) +
∑

S∈B

λSw(Ē(R∗
S))

= (1 −
∑

S∈B

λS)
∑

T∈RN

w(Ē(T)) +
∑

S∈B

λS

∑

T∈RN :T|S=R∗
S

w(Ē(T))

= (1 −
∑

S∈B

λS)
∑

T∈RN

w(Ē(T)) +
∑

T∈RN

w(Ē(T))
∑

S∈B:T|S=R∗
S

λS ,

=
∑

T∈RN

∑

S∈B:T|S=R∗
S

λS − (
∑

S∈B

λS − 1)

 w(Ē(T)),

where the first equality is obtained by using (iii) and (v) in Lemma 3.5.3.

Hence it is sufficient to prove that

w(Ē(R∗
N)) ≥

∑

T∈RN

∑

S∈B:T|S=R∗
S

λS − (
∑

S∈B

λS − 1)

 w(Ē(T)). (3.20)

Let l ∈ {1, 2, ...} be such that lλS ∈ {1, 2, ...} for all S ∈ B and, if l′ < l, then

there exists S ∈ B such that lλS 6∈ {1, 2, ...}. Let
∑

S∈B lλS = m and define a

sequence of (duplicated) coalitions S = (S1, S2, ..., Sm) by S1 = S2 = ... = SlλB1
= B1,

SlλB1
+1=SlλB1

+2 = ... = SlλB1
+lλB2

= B2 and so on. Observe that for every path profile

R ∈ RN ,
∑

S∈B:R|S=R∗
S

lλS = α(R,S).

Then, it is sufficient to prove that

lw(Ē(R∗
N)) ≥

∑

T∈RN

∑

S∈B:T|S=R∗
S

lλS − (
∑

S∈B

lλS − l)

w(Ē(T))

or that

lw(Ē(R∗
N)) ≥

∑

T∈RN

(α(T,S) − (m − l))w(Ē(T)). (3.21)

Note that Lemma 3.5.4 implies that
∑

T∈RN (α(T,S) − (m − l))+ ≤ l. If not,

there would exist a j ∈ N such that |{t ∈ {1, 2, ...,m}|j ∈ St}| < l. However, since B

110 Chapter 3. Connection Situations and Cooperation

is a balanced collection, it holds that

l =
∑

S∈B:j∈S

lλS = |{t ∈ {1, 2, ..., m}|j ∈ St}| .

Then

lw(Ē(R∗
N)) ≥

∑

T∈RN

(α(T,S) − (m − l))+ w(Ē(R∗
N))

≥
∑

T∈RN

(α(T,S) − (m − l))+ w(Ē(T))

≥
∑

T∈RN

(α(T,S) − (m − l))w(Ē(T)),

where the second inequality follows from the fact that w(Ē(R∗
N)) ≥ w(Ē(T)) for ev-

ery T ∈ RN . Hence, we can conclude that (N, cΓ) is balanced. ¤

Finally, we show in Corollary 3.5.1 that the highway games induced by the weakly

cyclic graphs are balanced.

Corollary 3.5.1 Let Γ = (N,G, {si}i∈N , {ti}i∈N , w) be a highway problem such that

G is a weakly cyclic graph. Then the highway game (N, cΓ) is balanced.

Proof. We know by Lemma 3.5.2 that a highway game on a weakly cyclic graph

is equal to the sum of the sub-highway games with respect to each of its cycles

and with respect to each bridge edge in the graph, i.e., cΓ(S) =
∑

C∈C(G) cΓC (S) +
∑

e∈BE(G) cΓe(S) for every S ⊂ N . Moreover, we know by Theorem 3.5.2 that highway

games induced by cycles are balanced. Lastly, we know that highway games induced

by trees are balanced. Pick yC ∈ Core(cΓC) for each C ∈ C(G) and ye ∈ Core(cΓe)

for each e ∈ BE(G). Set x =
∑

C∈C(G) yC +
∑

e∈BE(G) ye. Clearly, x ∈ Core(cΓ). ¤

Chapter 4

Population Monotonic Path

Schemes for Simple Games

In this chapter, which is based on Çiftçi et al. (2009b), we consider the formation

of coalitions through binding bilateral agreements in voting/government formation

situations.

In many real life contexts, ranging from the formation of pre/post-electoral coali-

tions of parties to the formation of mergers and partnerships between firms, coalitions

form through a sequence of binding bilateral agreements. From among the numerous

examples of such coalition formation processes, we may single out the recent mergers

between the banks and between the consultancy firms that are observed in many

countries and the Oslo agreements between Israel and its neighbors. An important

characteristic of such coalition formation processes is the effect of the sequence of

agreements on the future potential agreements. For a coalition formed through bi-

lateral agreements may grow larger because the synergy/commitment obtained by a

coalition may create new agreement opportunities which are profitable both for the

members of the coalition and the agent which will join the coalition. Hence, the

determination of the sequences of binding bilateral agreements which will result in

the exploitation of the greatest possible amount of synergy is of both theoretical and

practical importance.

The coalition formation processes which end up with the formation of the grand

coalition deserve particular interest. Because, first of all, in many situations (e.g.,

situations of increasing returns to size), the grand coalition is the unique efficient

coalition structure. Secondly, the formation of the grand coalition among agents

which have common properties (e.g., the formation of the grand coalition among

leftist parties) has been the focal point of many branches of social sciences.

In this chapter, we will focus on the formation of the grand coalition through

112 Chapter 4. Population Monotonic Path Schemes for Simple Games

binding bilateral agreements in voting/government formation situations. We aim to

address two important questions in this context.

(i) Which voting situations allow for the formation of the grand coalition through

binding bilateral agreements?

(ii) In these situations, which agreement sequences must be followed to form the

grand coalition?

We will address these questions by modeling voting situations by simple trans-

ferable utility cooperative games. In voting situations, the voters’ incentive to form

coalitions arises from their will to increase their power to affect the outcome of the

voting process. Modelling of these situations as simple transferable utility games al-

lows us to predict the voters’ power to affect the result of voting by using appropriate

values for transferable utility games. Many values have been offered for simple games

as appropriate measures of voting power and the two most widely used ones are the

Shapley and Shubik (1954) and Banzhaf (1965) power indices. If we assume that each

voter’s voting power is predicted by such an appropriate index, then the sequences

of binding bilateral agreements which result in the formation of the grand coalition

boils down to the notion of population monotonic path schemes. Postponing a precise

definition to the next section, a path scheme for a simple game is composed of a path,

i.e., a sequence of coalitions that is formed through a sequence of binding bilateral

agreements which result in the formation of the grand coalition and a scheme, i.e., a

power index vector for each coalition in the path based on the associated subgame. A

path scheme is called population monotonic if each player’s index does not decrease

as the path coalition grows. In this study, we focus on the Shapley-Shubik power

index as an appropriate measure of voting power. Hence, the two questions that we

address can be rephrased as

(i) Which simple games allow for population monotonic Shapley path schemes?

(ii) In these simple games, which Shapley path schemes are population monotonic?

It turns out that existence of veto players, i.e., a subgroup of voters whose unan-

imous agreement is necessary to pass a decision, is required for the existence of pop-

ulation monotonic Shapley path schemes and vice versa. Moreover, a Shapley path

scheme is population monotonic if and only if the first winning coalition that is formed

along the path contains every minimal winning coalition of the game. We also show

that each Shapley path scheme of a game is population monotonic if and only if

the set of veto players of the game is a winning coalition. We further show how to

extend these results to the probabilistic values, generalizations of the Shapley value

introduced by Weber (1988).

The notion of population monotonic (Shapley) path schemes is introduced by

Cruijssen et al. (2005). This study analyzes insinking (the antonym of outsourcing)

113

situations in logistics and the transportation sector. In these sectors, shippers often

outsource their transportation activities to a logistics service provider of their choice.

Cruijssen et al. (2005) proposes an insinking procedure in which the logistics service

provider initiates the shift of logistics activities instead of waiting for the shippers

to outsource their activities. To obtain the greatest possible amount of gains, the

service provider has to find an effective way of proposing offers to shippers through

which it can acquire the involvement of each shipper. At this point, Cruijssen et al.

(2005) proposes a sequence of binding bilateral agreements arguing that compared

to the simultaneous comprehensive agreements, by following an appropriate sequence

of binding bilateral agreements, the service provider can attract new customers to

the project by using the level of synergy and commitment already attained in the

sequence.

Our study in particular provides an alternative prediction of what kind of coali-

tions form in voting situations which differs from the mainstream prediction of Riker

(1962). Riker (1962) predicts that only minimal winning coalitions will form in equi-

librium. This idea has been the conclusion of many studies in the general coalition

formation literature based on the seminal noncooperative bargaining approach of

Baron and Ferejohn (1989) and also the studies which analyze coalition formation in

voting situations that are modeled by simple TU-games like Shenoy (1979). However,

the empirical data on government/coalition formation shows that among all coalitions

formed after the second world war in European democracies only a third of them is

minimal winning (Laver and Schofield, 1990). Our current study shows that a wide

spectrum of coalitions including the minimal winning ones can form as a result of

binding bilateral agreements providing an alternative point of view for the analysis

and the explanation of the data.

Population monotonic path schemes (PMPS) are in the same spirit as population

monotonic allocation schemes (PMAS) for cooperative games, introduced by Spru-

mont (1990) and further analyzed in e.g., Norde and Reijnierse (2002) and Slikker

et al. (2003). An allocation scheme for a cooperative game specifies how to dis-

tribute the worth of every coalition among its members and it is called population

monotonic if the share of any player does not decrease as the coalition he belongs

to grows larger. Clearly, also a PMAS’s main concern is to ensure that no player is

worse off with additional cooperation between players. However, a PMAS compares

the allocations assigned to a coalition of players with every sub-coalition’s allocation

while a PMPS restricts the comparison to the allocations of path coalitions that are

formed previously. In fact, the existence of a PMPS is a weaker condition for a TU-

game than the existence of a PMAS since every path scheme induced by a PMAS

114 Chapter 4. Population Monotonic Path Schemes for Simple Games

is population monotonic. Another difference between the two notions is that each

allocation provided by a PMAS has to belong to the core of the associated subgame.

However, this may not be the case for a PMPS as we exemplify in our study.

The outline of the chapter is as follows. Section 4.1 recalls some well-known

concepts on simple TU-games. Section 4.2 introduces Shapley path schemes and

presents the main results regarding the characterization of population monotonic

Shapley path schemes of simple games. Section 4.3 discusses extensions of the results

to other probabilistic values.

4.1 Preliminaries

A TU-game v ∈ GN is called simple if v is monotonic, v(S) ∈ {0, 1} for every S ∈ 2N

and v(N) = 1. We denote the set of simple TU-games with player set N by SN .

Given v ∈ SN , a coalition S ∈ 2N is called a winning coalition if v(S) = 1 and is

called a losing coalition if v(S) = 0. A winning coalition S is called minimal winning

if there does not exist a coalition T (S which is winning. Every simple game v is

characterized by its set of minimal winning coalitions, MWC(v). A player i ∈ N is a

veto player in v ∈ SN if S ⊂ N , v(S) = 1 implies that i ∈ S. The set of veto players

of v is denoted by veto(v). It is readily verified that a simple game v is balanced if

and only if veto(v) 6= ∅.

Voting or decision making situations in committees like parliaments can easily

be modeled into the framework of simple games by representing the coalitions which

possesses the necessary power to pass a decision as the winning coalitions of the game.

This model enables the employment of values for simple games to measure the parties’

power to affect the outcome of the voting situations at hand. Many values have been

offered for simple games and studied in the literature as appropriate measures of

decisional power, i.e., as power indices. We will shortly review the Shapley and

Shubik (1954) power index that arises from the Shapley value.

Shapley and Shubik (1954) proposed to use the Shapley value as a power index

for voting situations in committees. For a simple game v ∈ SN the Shapley-Shubik

index Φ assigns to player i ∈ N

Φi(v) =
∑

{S⊂N\{i}|v(S)=0,v(S∪{i})=1}

|S|!(|N | − |S| − 1)!

|N |!
. (4.1)

The value assigned to each voter can be interpreted by using the sequential prob-

abilistic interpretation of the Shapley value which stems from a procedure to form

4.2. Population Monotonic Shapley Path Schemes 115

the grand coalition (which is described also by Shapley, 1953) that yields the Shap-

ley value of the game as an expected payoff of each player. In this procedure, the

grand coalition N is formed by introducing the players one by one and each player

is assigned the marginal contribution to the worth of the coalition formed when she

joins the set of her predecessors. Hence, the value assigned by Shapley-Shubik index

is the probability of turning the coalition of predecessors from losing to winning when

the order of arrival of players is random and all orders are equally likely. For further

discussion of the importance of the Shapley value as an estimator of political power

and several examples of its applications, the reader is referred to Straffin (1994) and

Winter (2002). Lastly, we know (for example by Derks and Haller (1999) that the

Shapley value satisfies the null player out property.

4.2 Population Monotonic Shapley Path Schemes

In this section we introduce and analyze the Shapley path schemes of simple games.

Let v ∈ GN . A path consists of a sequence S = {S1, S2, ..., S|N |} of coalitions such

that |Sk| = k for all k ∈ {1, ..., |N |} and Sm ⊂ Sm+1 for all m ∈ {1, ..., |N | − 1}.

A path scheme specifies how to distribute the worth of every coalition on the path

among its members. Formally, a path scheme (S, (xS)S∈S) for v consists of a path S

and a vector (xS)S∈S such that

∑

i∈S

xS
i = v(S)

for every coalition S ∈ S.

A path scheme (S, (xS)S∈S) for v ∈ GN is called population monotonic if it satisfies

the following conditions:

• xS
i ≥ v({i}) for all S ∈ S and i ∈ S. (individual rationality)

• xS
i ≥ xT

i for every S, T ∈ S such that T ⊂ S and i ∈ T . (monotonicity)

A path scheme in which the Shapley value is used as an allocation vector is

called a Shapley path scheme. Clearly, the Shapley allocation scheme of a TU-game

is population monotonic if and only if all Shapley path schemes of the game are

population monotonic. We will illustrate the notion of Shapley path schemes and

their properties in the following example.

Example 4.2.1 Let N = {1, 2, 3} and consider the simple game v ∈ SN with

MWC(v) = {{1, 2}, {2, 3}}. The Shapley allocation scheme of v is provided in Table

4.1 below.

116 Chapter 4. Population Monotonic Path Schemes for Simple Games

Coalition Player 1 Player 2 Player 3

{1} 0 - -

{2} - 0 -

{3} - - 0

{1,2} 1
2

1
2 -

{1,3} 0 - 0

{2,3} - 1
2

1
2

N 1
6

2
3

1
6

Table 4.1: The Shapley allocation scheme of v in Example 4.2.1

It can easily be observed that the Shapley allocation scheme of v is not population

monotonic but that there are exactly two population monotonic Shapley path schemes

on the paths {{1}, {1, 3}, N} and {{3}, {1, 3}, N}, respectively.

Observe also that the game v has a unique core allocation, (0, 1, 0) different from

the Shapley value of v. So, in particular, the allocation prescribed by a (Shapley)

PMPS may not belong to the core of the associated subgame.

⋄

We will begin with presenting a preliminary result which is useful in understanding

the structure of population monotonic Shapley path schemes of simple games.

Lemma 4.2.1 Given a simple game v ∈ SN , let S = {S1, S2, ..., S|N |} be a path of

coalitions such that Sm = {i1, ..., im} for every m ∈ {1, ..., |N |}. Assume that the

first winning coalition along the path S is Sk, i.e., v(S1) = ... = v(Sk−1) = 0 and

v(Sk) = 1. If the Shapley path scheme (S, (Φ(v|S))S∈S) is population monotonic, then

the following must hold:

(R1) Φim(v|Sp
) = 0, for all m ∈ {k + 1, ..., |N |} and for all p ∈ {m, ..., |N |}.

(R2) Φi(v|Sk
) = Φi(v|Sp

), for all p ∈ {k + 1, ..., |N |} and for all i ∈ Sk.

(R3) MWC(v|Sk
) = MWC(v).

Proof. (R1) and (R2). On the one hand
∑

i∈Sp
Φim(v|Sp

) = 1 for all p ∈ {k, ..., |N |} by

the efficiency of the Shapley value. On the other hand, by the population monotonicity

of (S, (Φ(v|S))S∈S), Φi(v|Sp
) ≥ Φi(v|Sk

) for every p ∈ {k+1, ..., |N |} and Φim(v|Sp
) ≥ 0,

for all m ∈ {k + 1, ..., |N |} and for all p ∈ {m, ..., |N |}. Hence Φim(v|Sp
) = 0 for all

m ∈ {k + 1, ..., |N |} and for all p ∈ {m, ..., |N |} and Φi(v|Sk
) = Φi(v|Sp

) for all

p ∈ {k + 1, ..., |N |} and for all i ∈ Sk.

(R3). Suppose on the contrary that MWC(v|Sk
) 6= MWC(v). Then there exists

a T ∈ MWC(v) such that T\Sk 6= ∅. But then Φj(v) > 0 for every j ∈ T\Sk, a

4.2. Population Monotonic Shapley Path Schemes 117

contradiction with (R1). ¤

We now provide a characterization of the family of simple games which allow for

population monotonic Shapley path schemes.

Theorem 4.2.1 Let v ∈ SN . Then v has a population monotonic Shapley path

scheme if and only if v is balanced.

Proof. Let v ∈ SN have a population monotonic Shapley path scheme. Also let

(S, (Φ(v|S))S∈S) be a population monotonic Shapley path scheme for v such that

S = {S1, S2, ..., S|N |} and Sm = {i1, ..., im} for every m ∈ {1, ..., |N |}. Assume that

the first winning coalition along the path S is Sk. Obviously ik ∈ veto(v|Sk
) and hence

veto(v|Sk
) 6= ∅. Moreover, we know by (R3) in Lemma 4.2.1 that MWC(v|Sk

) =

MWC(v). Hence, veto(v|Sk
) = veto(v) and v is balanced.

Now, assume that v is balanced. Then, veto(v) 6= ∅. Let i ∈ veto(v) and consider

a path S = {S1, S2, ..., S|N |} with S|N |−1 = N\{i}. We know that S|N |−1 = N\{i}

is a losing coalition. Then v|N\{i} is a null game and hence Φj(v|St
) = 0 for all

t ∈ {1, ..., |N | − 1} and j ∈ St. Also, Φj(v) ≥ 0 for all j ∈ N , since v is monotonic.

So, the Shapley path scheme (S, (Φ(v|S))S∈S) is population monotonic. ¤

Theorem 4.2.1 reveals that, in the class of simple games, the existence of veto

players (or, equivalently, a nonempty core) is a must for the existence of population

monotonic Shapley path schemes and vice versa. We can interpret this result as fol-

lows. When a winning coalition is formed through a sequence of binding bilateral

agreements, we know that the restriction of the TU-game to this coalition has veto

players, that is, in this winning coalition, there is a subgroup of agents whose unan-

imous agreement/involvement is necessary to pass a decision. We also know that

the formation of the grand coalition starting from this winning coalition via binding

bilateral agreements requires the remaining players to be null players. But, this in

turn implies that the veto players of the winning coalition are in fact the veto players

of the whole game, i.e., the game is balanced.

Next we turn to our second question of which Shapley path schemes are population

monotonic. We will show in the following theorem that the requirement that the

first winning coalition along a path has to include all minimum winning coalitions

of the game is both necessary and sufficient for the population monotonicity of the

corresponding Shapley path scheme.

Theorem 4.2.2 Let v ∈ SN be balanced. A Shapley path scheme (S, (Φ(v|S))S∈S) is

population monotonic if and only if the first winning coalition along S contains every

minimal winning coalition of v.

118 Chapter 4. Population Monotonic Path Schemes for Simple Games

Proof. Let (S, (Φ(v|S))S∈S) be a population monotonic Shapley path scheme for v

and assume that the first winning coalition along the path S is Sk. We already know

by (R3) in Lemma 4.2.1 that MWC(v|Sk
) = MWC(v). Then, clearly, Sk contains

every minimal winning coalition of v.

Let S be a path of coalitions with Sm = {i1, ..., im} for every m ∈ {1, ..., |N |}.

Assume that the first winning coalition along the path S is Sk (k ∈ {1, ..., |N |})

and Sk contains every minimal winning coalition of v. Now, Φj(v|St
) = 0 for all

t ∈ {1, ..., k − 1} and j ∈ St since Sk−1 is a losing coalition. Also, Φi(v|Sk
) ≥ 0 for all

i ∈ Sk since v is monotonic. We know that each player im (m ∈ {k + 1, ..., |N |}) is a

null player in v|Sp
(p ∈ {m, ..., |N |}) since Sk contains every minimal winning coalition

of v. Then, firstly, Φim(v|Sp
) = 0 for all m ∈ {k+1, ..., |N |} and for all p ∈ {m, ..., |N |}

and secondly, one can easily show that Φi(v|Sk
) = Φi(v|Sk+1

) = ... = Φi(v) for all i ∈ Sk

by applying the null player out property recursively. So, we conclude that the Shapley

path scheme (S, (Φ(v|S))S∈S) is population monotonic. ¤

In the light of Theorem 4.2.2, we can answer one other important question in this

context: For which simple games all Shapley path schemes are population monotonic,

i.e., which simple games have a population monotonic Shapley allocation scheme?

Theorem 4.2.3 Let v ∈ SN be a simple game. Then the following statements are

equivalent:

(i) All Shapley path schemes of v are population monotonic.

(ii) The set of veto players of v is a winning coalition.

(iii) The game v is convex.

(iv) The Shapley allocation scheme of v is population monotonic.

Proof. (i) → (ii) Assume that all Shapley path schemes of v are population

monotonic. Suppose that veto(v) is losing. Then there exists a minimum winning

coalition S = {i1, ..., im} with m ∈ {1, ..., |N | − 1}. We know that Φi(v|S) = 1
m

for every i ∈ S since S is a minimal winning coalition. Pick a path of coalitions

S = {S1, S2, ..., S|N |} with Sm = S. The Shapley path scheme (S, (Φ(v|S))S∈S) is

population monotonic by assumption. Consequently, Φi(v) = 1
m

for every i ∈ S.

Observe that there exists i∗ ∈ S such that i∗ /∈ veto(v) since S is a minimal winning

coalition and veto(v) is losing. Then, there exists another minimal winning coalition

T (N such that i∗ /∈ T . Pick a path of coalitions S
′
= {S

′

1, S
′

2, ..., S
′

|N |} with S
′

|T | = T .

Now, the Shapley path scheme (S′, (Φ(v|S))S∈S′) is also population monotonic by

4.3. Extensions to Probabilistic Values 119

assumption. Then, (R1) implies that Φi∗(v) = 0 since i∗ /∈ T , a contradiction with

Φi∗(v) = 1
m

as derived earlier.

(ii) → (iii) Let v ∈ SN be such that veto(v) is a winning coalition. Then, all

players in N\veto(v) are null players in v. Hence, v is the unanimity game on veto(v)

and is convex.

(iii) → (iv) See Sprumont (1990), Corollary 2.

(iv) → (i) Obvious. ¤

Theorem 4.2.3 reveals that, in the class of simple games, the existence of a winning

veto player set is both necessary and sufficient for the existence of a population

monotonic Shapley allocation scheme. This result can be interpreted by making use

of our results on population monotonic Shapley path schemes as follows. We know

that the existence of a population monotonic Shapley allocation scheme implies the

population monotonicity of each Shapley path scheme of the game and vice versa.

Then, by Theorem 4.2.2, the existence of a population monotonic Shapley allocation

scheme requires the first winning coalition along each path to include all minimum

winning coalitions of the game. But this is possible only when the game has a unique

minimum winning coalition, i.e., when the set of veto players is winning.

4.3 Extensions to Probabilistic Values

Probabilistic values, introduced and characterized by Weber (1988), are generaliza-

tions of the Shapley value for finite TU-games. These values keep one essential feature

of the Shapley value, they assign each player an average of his marginal contributions.

They, however, fail to satisfy either the efficiency or anonymity property. In fact, the

Shapley value is the unique probabilistic value satisfying both anonymity and effi-

ciency. Probabilistic values can be classified into two groups: Quasi-values which are

efficient probabilistic values and Semi-values, the probabilistic values which satisfy

anonymity (see Weber, 1988). We refer to Monderer and Samet (2002) for a detailed

discussion of probabilistic values.

Probabilistic values are formally defined as follows. Given N and i ∈ N , let

P i
N denote the set of probability distributions on 2N\{i}, the family of coalitions not

containing i. A value F (defined on GN) is called a probabilistic value (Weber, 1988)

if for every v ∈ GN and i ∈ N

Fi(v) =
∑

T⊂N\{i}

pi(T) (v(T ∪ {i}) − v(T)) , (4.2)

120 Chapter 4. Population Monotonic Path Schemes for Simple Games

for some pi ∈ P i
N and for all i ∈ N . Here pi ∈ P i

N can be interpreted as the player’s

subjective evaluation of the probability of joining different coalitions. For example,

the probabilistic value which is defined by pi(T) = 1
|N |

(

|N |−1
|T |

)−1
for all i ∈ N is the

Shapley value.

In the following two subsections we will discuss the extensions of the results ob-

tained for the Shapley value on quasi-values and on semi-values, respectively.

4.3.1 Population monotonic path schemes of quasi-values

Let P(Π(N)) denote the set of probability distributions on the set of permutations

of the player set N . Given i ∈ N and S ∈ 2N\{i}, we will denote by ΠS,i(N) the set

{τ ∈ Π(N)|τ(j) < τ(i) if and only if j ∈ S}.

If we think of a permutation τ ∈ Π(N) as the order in which players enter the game,

then ΠS,i(N) stands for the set of orders in which exactly all members of S enter the

game before player i enters.

The following characterization of efficient probabilistic values is provided by Weber

(1988).

Theorem 4.3.1 (Weber, 1988) Let F be a probabilistic value as given in (4.2) defined

by p = {pi}i∈N with pi ∈ P i
N for every i ∈ N . Then F is efficient if and only if there

exists b ∈ P(Π(N)) such that

pi(S) =
∑

τ∈ΠS,i(N)

b(τ) (4.3)

for every i ∈ N and S ∈ 2N\{i}.

Observe that probabilistic values are originally defined for a fixed player set. How-

ever, our analysis requires the values to be defined on every subset of the player set

under consideration. Because, for every simple game, we want to be able to compare

the payoffs assigned by a value to the players at every subgame of the game. We now

extend probabilistic values in such a way that the players’ subjective evaluation of the

probability of joining different coalitions will be consistent in the sense defined below.

For this aim we will define the restrictions of a probabilistic value to subgames.

Let F : GN → RN be a probabilistic value defined by {pi
N}i∈N where pi

N ∈ P i
N

for every i ∈ N . For each S ⊂ N , the restriction of F to GS is denoted by FS and

for each player i ∈ S, his restricted evaluations pi
S ∈ P i

S are constructed by using the

following consistency condition.

pi
S(T) =

∑

T ′⊂N\S

pi
N(T ∪ T ′), (4.4)

4.3. Extensions to Probabilistic Values 121

for all T ⊂ S\{i}.

The consistency condition can be interpreted by using the sequential probabilistic

interpretation of the Shapley value (and of the probabilistic values of course). If we let

the players enter a room one by one and assign each player the marginal contribution

created by her, then pi
N represents player i’s assessment of the probability of different

coalitions to be the set of predecessors of her. Then if one player j leaves N , it is

natural to expect that every player i ∈ N\{j} will update her assessment of joining

a coalition T ⊂ N\{i, j} by merging her previous assessments of T and of T ∪ {j}1.

We illustrate the notion of the restriction of a probabilistic value in the following

example.

Example 4.3.1 Let F be a probabilistic value on N = {1, 2, 3}. Assume that F is

defined by the following subjective evaluations of players.

p1
N({2, 3}) = 5

16
, p1

N({2}) = 1
16

, p1
N({3}) = 4

16
and p1

N(∅) = 6
16

.

p2
N({1, 3}) = 8

16
, p2

N({1}) = 2
16

, p2
N({3}) = 4

16
and p2

N(∅) = 2
16

.

p3
N({1, 2}) = 3

16
, p3

N({1}) = 4
16

, p3
N({2}) = 1

16
and p3

N(∅) = 8
16

.

F satisfies (4.3) by taking the following probability distribution on the set of permu-

tations on the player set:

b(123) = 2
16

, b(132) = 4
16

, b(213) = 1
16

, b(231) = 1
16

, b(312) = 4
16

, and b(321) = 4
16

.

Hence F is efficient.

Now consider S = {1, 2}. According to (4.4), the restriction FS is defined by:

p1
S({2}) = 3

8
= p1

N({2}) + p1
N({2, 3}) and p1

S(∅) = 5
8

= p1
N(∅) + p1

N({3}).

p2
S({1}) = 5

8
= p2

N({1}) + p2
N({1, 3}) and p2

S(∅) = 3
8

= p2
N(∅) + p2

N({3}).

Notice that FS can be described via (4.3) by taking:

b(12) = 5
8

and b(21) = 3
8
.

So FS is an efficient probabilistic value on GS. ⋄

In the previous example, we have shown that the specific restriction under consid-

eration is again an efficient probabilistic value. Indeed, every restriction of an efficient

probabilistic value is an efficient probabilistic value for the corresponding subgame as

shown in the following proposition.

1As discussed in the following subsection every semi-value readily satisfies our consistency con-

dition (4.4).

122 Chapter 4. Population Monotonic Path Schemes for Simple Games

Proposition 4.3.1 Let F be an efficient probabilistic value defined by {pi
N}i∈N where

pi
N ∈ P i

N for every i ∈ N . Then, FS is an efficient probabilistic value for every S ⊂ N ,

S 6= ∅.

Proof. By Theorem 4.3.1 there exists b ∈ P(Π(N)) such that pi
N(T) =

∑

τ∈ΠT,i(N) b(τ)

for every i ∈ N and T ∈ 2N\{i}. Take S ⊂ N,S 6= ∅. Given τ ∈ Π(N), τ|S

denotes the restriction of τ to S, i.e., τ|S = π for some π ∈ Π(S) with π(i) <

π(j) if and only if τ(i) < τ(j), for all i, j ∈ S. We can induce a probability distribu-

tion c on Π(S) from b as follows.

c(π) =
∑

τ∈Π(N):τ|S=π

b(τ), for all π ∈ Π(S). (4.5)

Let FS be defined by {pi
S}i∈S as determined by (4.4). Pick i ∈ S and T ⊂ S\{i}.

Obviously,
⋃

T ′⊂N\S

Π(T∪T ′),i(N) =
⋃

π∈ΠT,i(S)

{τ ∈ Π(N)|τ|S = π} (4.6)

Notice that

Π(T∪T ′),i(N) ∩ Π(T∪T ′′),i(N) = ∅ for every T ′, T ′′ ⊂ N\S with T ′ 6= T ′′

and

{τ ∈ Π(N)|τ|S = π}∩{τ ∈ Π(N)|τ|S = π′} = ∅ for every π, π′ ∈ ΠT,i(S) with π 6= π′.

Then,

pi
S(T) =

∑

T ′⊂N\S

pi
N(T ∪ T ′) =

∑

T ′⊂N\S

∑

τ∈Π(T∪T ′),i(N)

b(τ)

=
∑

π∈ΠT,i(S)

∑

τ∈Π(N):τ|S=π

b(τ) =
∑

π∈ΠT,i(S)

c(π)

where the first equality follows from (4.4) and the last but one equality follows from

(4.6) and the remarks below it. Then, Theorem 4.3.1 implies that FS is an efficient

probabilistic value on GS. ¤

Having defined the restrictions of probabilistic values, we can now illustrate the

path schemes associated with these values in the following example.

Example 4.3.2 Consider the probabilistic value F defined in Example 4.3.1 and let

v ∈ SN with N = {1, 2, 3} be defined by MWC(v) = {{1, 2}, {2, 3}}. From Table

4.2 it can easily be observed that this balanced game has two population monotonic

F -path schemes related to the paths {{1},{1,3},N} and {{3},{1,3},N}. ⋄

4.3. Extensions to Probabilistic Values 123

Coalition Player 1 Player 2 Player 3

{1} 0 - -

{2} - 0 -

{3} - - 0

{1,2} 3
8

5
8 -

{1,3} 0 - 0

{2,3} - 6
8

2
8

N 1
16

14
16

1
16

Table 4.2: The restrictions of F for v and its subgames in Example 4.3.2

The following theorem states that the results for population monotonic Shapley

path schemes in fact can be extended to all efficient probabilistic values which are

defined by strictly positive subjective evaluations of joining different coalitions for

each player.

Theorem 4.3.2 Let F : GN → RN be an efficient probabilistic value defined by

{pi
N}i∈N with pi

N > 0 for all i ∈ N . Then

(i) A simple game v ∈ SN has a population monotonic F -path scheme if and only

if v is balanced.

(ii) Let v be balanced. Then an F -path scheme (S, (FS(v|S))S∈S) is population mono-

tonic if and only if the first winning coalition along S contains every minimal

winning coalition of v.

(iii) Let v ∈ SN be a simple game. Then the following statements are equivalent:

(a) All F -path schemes of v are population monotonic.

(b) The set of veto players of v is a winning coalition.

(c) The game v is convex.

(d) The F -allocation scheme of v, (FS(v|S))S∈2N\{∅}) is population monotonic.

The proof of Theorem 4.3.2 is similar to the proofs of Theorems 4.2.1, 4.2.2 and

4.2.3, respectively and is therefore omitted.

It is important at this point to observe that if for an efficient probabilistic value

F , pi
N(S) = 0 for some i ∈ N and S ∈ 2N\{i}, then an unbalanced simple game may

have population monotonic F -path schemes. This is illustrated in Example 4.3.3.

124 Chapter 4. Population Monotonic Path Schemes for Simple Games

Example 4.3.3 Let N = {1, 2, 3}. Let F be the efficient probabilistic value deter-

mined by

p1
N(S) =

1

4
for all S ⊂ N\{1}; p2

N(S) =
1

4
for all S ⊂ N\{2} and

p3
N({1, 2}) = p3

N(∅) =
1

2
, p3

N({1}) = p3
N({2}) = 0.

Consider v ∈ SN defined by MWC(v) = {{1, 2}, {1, 3}, {2, 3}}. Clearly veto(v) = ∅.

But, v has population monotonic F -path schemes related to the paths {{1}, {1, 2}, N}

and {{2}, {1, 2}, N} as can be seen in Table 4.3. ⋄

Coalition Player 1 Player 2 Player 3

{1} 0 - -

{2} - 0 -

{3} - - 0

{1,2} 1
2

1
2 -

{1,3} 1
2 - 1

2

{2,3} - 1
2

1
2

N 1
2

1
2 0

Table 4.3: The restrictions of F for v and its subgames in Example 4.3.3

4.3.2 Population monotonic path schemes of semi-values

In this section, we will focus on one particular, well-known semi-value, the Banzhaf

value (Banzhaf, 1965). Given v ∈ GN , the Banzhaf value β assigns to player i ∈ N

βi(v) =
∑

S⊂N\{i}

1

2|N |−1
(v(S ∪ {i}) − v(S)) .

It can easily be observed that the Banzhaf value is defined for every finite player

set, and in particular also for all subgames of a specific game. In fact, every semi-value

is defined for every finite player set, and hence for all subgames of a specific game.

Moreover, the restriction of a semi-value obtained by using the consistency condi-

tion (4.4) boils down to the definition of the same semi-value for the corresponding

subgame. This can be readily verified from the characterization of semi-values on TU-

games with finite support provided by Dubey et al. (1981). Dubey et al. (1981) show

that, for every semi value, the players’ underlying subjective evaluations {pi
N}i∈N ,

depend only on the cardinalities of S and N and hence every semi-value is defined for

4.3. Extensions to Probabilistic Values 125

all subgames of a particular game. It can also easily be checked that the restriction

of a semi-value by using the consistency condition (4.4) like we did for quasi-values.

But, one can check that every semi-value satisfies the consistency condition (4.4) by

making use of the characterization of semi-values on TU-games with finite support

provided by Dubey et al. (1981).

For population monotonic Banzhaf path schemes the situation essentially differs

from the population monotonic Shapley path schemes. This is illustrated in Examples

4.3.4 and 4.3.5.

Example 4.3.4 Let N = {1, 2, 3} and consider the simple game v ∈ SN defined by

MWC(v) = {{1, 2}, {1, 3}, {2, 3}}. The Banzhaf value of v and its subgames are

provided in the Table 4.4.

Coalition Player 1 Player 2 Player 3

{1} 0 - -

{2} - 0 -

{3} - - 0

{1,2} 1
2

1
2 -

{1,3} 1
2 - 1

2

{2,3} - 1
2

1
2

N 1
2

1
2

1
2

Table 4.4: The Banzhaf allocation scheme of v and in Example 4.3.4

Notice that v is not balanced since veto(v) = ∅ but that every Banzhaf path

scheme of v is population monotonic. ⋄

Example 4.3.5 Let N = {1, 2, 3, 4} and consider the simple game v ∈ SN de-

fined by MWC(v) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. Clearly, v is balanced. The

Banzhaf value of v and its subgames are provided in Table 4.5. The Banzhaf val-

ues of the subgames corresponding to losing coalitions are omitted. Then, every

Coalition Player 1 Player 2 Player 3 Player 4

{1,2,3} 1
4

1
4

1
4 -

{1,2,4} 1
4

1
4 - 1

4

{1,3,4} 1
4

1
4 - 1

4

N 1
2

1
4

1
4

1
4

Table 4.5: The Banzhaf allocation scheme of v in Example 4.3.5

Banzhaf path scheme is population monotonic although the set of veto players of v

126 Chapter 4. Population Monotonic Path Schemes for Simple Games

is a losing coalition. Secondly, there are path schemes of v, like the one related to

path {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}, which are population monotonic but the first

winning coalition along these paths does not contain the union of minimal winning

coalitions v. ⋄

The results for population monotonic Shapley path schemes can be extended only

partly to the Banzhaf value. This is reflected in Theorem 4.3.3.

Theorem 4.3.3 Let v ∈ SN be balanced.

(1) If the first winning coalition along a path S contains every minimal winning

coalition of v, then the Banzhaf-path scheme (S, (β(v|S))S∈S) is population monotonic

.

(2) If the set of veto players of v is a winning coalition, then all Banzhaf-path

schemes of v are population monotonic.

The proof of Theorem 4.3.3 is similar to the corresponding parts of the proofs of

Theorems 4.2.2 and 4.2.3, respectively and is therefore omitted.

By making use of the characterization of semi-values provided by Dubey et al.

(1981), one can show that Theorem 4.3.3 can be extended to every semi-value.

Bibliography

Ahmadi, J. H., Ahmadi, R. H., Dasu, S., and Tang, C. S. (1992). Batching and

scheduling jobs on batch and discrete processors. Operations Research, 40:750–763.

Allahverdi, A., Cheng, T. C. E., and Kovalyov, M. Y. (2008). A survey of scheduling

problems with setup times or costs. European Journal of Operational Research,

187:985–1032.

Allahverdi, A., Gupta, J. N. D., and Aldowaisan, T. (1999). A review of scheduling

research involving setup considerations. OMEGA, The International Journal of

Management Science, 27:219–239.

Banzhaf, J. F. (1965). Weighted voting does not work: A mathematical analysis.

Rutgers Law Review, 19:317–343.

Baron, D. P. and Ferejohn, J. A. (1989). Bargaining in legislatures. American Political

Science Review, 83:1181–1206.

Bergantiños, G. and Vidal-Puga, J. J. (2005a). Additivity in cost spanning tree

problems. RGEA WP 10-05, University of Vigo, Spain.

Bergantiños, G. and Vidal-Puga, J. J. (2005b). Several approaches to the same rule

in cost spanning tree problems. Mimeo.

Bergantiños, G. and Vidal-Puga, J. J. (2007a). A fair rule in minimum cost spanning

tree problems. Journal of Economic Theory, 137:326–352.

Bergantiños, G. and Vidal-Puga, J. J. (2007b). The optimistic TU game in minimum

cost spanning tree problems. International Journal of Game Theory, 36:223–239.

Bird, C. G. (1976). On cost allocation for a spanning tree: a game theoretic approach.

Networks, 6:335–350.

Bondereva, O. N. (1963). Some applications of linear programming methods to the

theory of cooperative games. Problemy Kybernetiki, 10:119–139.

128 BIBLIOGRAPHY

Borm, P., Fiestras-Janeiro, G., Hamers, H., Sánchez, E., and Voorneveld, M. (2002).

On the convexity of games corresponding to sequencing situations with due dates.

European Journal of Operational Research, 136:616–634.

Borm, P., Hamers, H., and Hendrickx, R. (2001). Operations research games: A

survey. TOP, 9:139–199.

Branzei, R., Moretti, S., Norde, H., and Tijs, S. (2004). The P -value for cost sharing

in minimum cost spanning tree situations. Theory and Decision, 56:47–61.

Çiftçi, B. B., Borm, P., and Hamers, H. (2007). Highway games on weakly cyclic

graphs. CentER-DP 104, Tilburg University, Center for Economic Research, The

Netherlands.

Çiftçi, B. B., Borm, P., and Hamers, H. (2009a). Family sequencing problems and

cooperation. Preprint.

Çiftçi, B. B., Borm, P., and Hamers, H. (2009b). Population monotonic path schemes

for simple games. Theory and Decision. (in press).

Çiftçi, B. B., Borm, P., Hamers, H., and Slikker, M. (2008). Batch sequencing and

cooperation. CentER-DP 100, Tilburg University, Center for Economic Research,

The Netherlands.

Çiftçi, B. B. and Tijs, S. (2009). A vertex oriented approach to the equal remaining

obligations rule for minimum cost spanning tree situations. TOP. (in press).

Claus, A. and Kleitman, D. (1973). Cost allocation for a spanning tree. Networks,

3:289 – 304.

Cruijssen, F., Borm, P., Fleuren, H., and Hamers, H. (2005). Insinking : A method-

ology to exploit synergy in transportation. CentER-DP 121, Tilburg University,

Center for Economic Research, The Netherlands.

Curiel, I., Pederzoli, G., and Tijs, S. (1989). Sequencing games. European Journal of

Operational Research, 40:344–351.

Curiel, I., Potters, J., Prasad, R., Tijs, S., and Veltman, B. (1993). Cooperation in one

machine scheduling. Mathematical Methods of Operations Research, 38:113–129.

Derks, J. J. M. and Haller, H. H. (1999). Null player out? linear values for games

with variable supports. International Game Theory Review, 1:301–314.

BIBLIOGRAPHY 129

Dobson, G., Karmarkar, S., and Rummel, J. L. (1987). Batching to minimize flow

times on on one machine. Management Science, 33:784–799.

Dubey, P., Neyman, A., and Weber, R. J. (1981). Value theory without efficiency.

Mathematical Methods of Operations Research, 6:122–128.

Dutta, B. and Kar, A. (2004). Cost monotonicity, consistency and minimum cost

spanning tree games. Games and Economic Behavior, 48:223–248.

Estevez-Fernandez, A., Borm, P., and Hamers, H. (2007). Project games. Interna-

tional Journal of Game Theory, 36:149–176.

Feltkamp, V., Muto, S., and Tijs, S. (1994). On the irreducible core and the equal

remaining obligations rule of minimum cost spanning extension problems. CentER-

DP 106, Tilburg University, Center for Economic Research, The Netherlands.

Gerichhausen, M. and Hamers, H. (2008). Partitioning sequencing situations and

games. European Journal of Operational Research, (in press).

Gillies, D. (1953). Some theorems on n-person games. Ph.D. thesis, Princeton Uni-

versity, University Press Princeton, New Jersey.

Graham, R. and Hell, P. (1985). On the history of minimum spanning tree problem.

Annals of the History of Computing, 7:43–57.

Granot, D., Hamers, H., and Tijs, S. (1999). On some balanced, totally balanced and

submodular delivery games. Mathematical Programming, 86:355–366.

Granot, D. and Huberman, G. (1981). Minimum cost spanning tree games. Mathe-

matical Programming, 21:1–18.

Granot, D. and Huberman, G. (1982). The relationship between convex games and

minimal cost spanning tree games: A case for permutationally convex games. SIAM

Journal of Algorithms and Discrete Methods, 3:288–292.

Granot, D. and Huberman, G. (1984). On the core and nucleolus of the minimum

cost spanning tree games. Mathematical Programming, 29:323–347.

Hamers, H., Borm, P., and Tijs, S. (1995). On games corresponding to sequencing

situations with ready times. Mathematical Programming, 70:1–13.

Hamers, H., Klijn, F., and Suijs, J. (1999). On the balancedness of multimachine

sequencing games. European Journal of Operational Research, 119:678–691.

130 BIBLIOGRAPHY

Hamers, H., Klijn, F., and van Velzen, B. (2005). On the convexity of precedence

sequencing games. Annals of Operations Research, 137:161–175.

Hamers, H., Suijs, J., Tijs, S., and Borm, P. (1996). The split core for sequencing

games. Games and Economic Behavior, 15:165–176.

Herer, Y. and Penn, M. (1995). Characterization of naturally submodular graphs:

A polynomial solvable class of the tsp. Proceedings of the American Mathematical

Society, 123:613–619.

Kalai, E. and Zemel, E. (1982). Totally balanced games and games of flow. Mathe-

matics of Operations Research, 7:476–478.

Kar, A. (2002). Axiomatization of the shapley value on minimum cost spanning tree

games. Games and Economic Behavior, 38:265–277.

Kruskal, J. B. J. (1956). On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7:48–50.

Kuipers, J. (1997). Minimum cost forest games. International Journal of Game

Theory, 26:367 – 377.

Laver, K. and Schofield, N. J. (1990). Multiparty governments: the politics of coali-

tions in Europe. Oxford University Press, Oxford.

Le Breton, M., Owen, G., and Weber, S. (1992). Strongly balanced cooperative

games. International Journal of Game Theory, 20:419–427.

Lee, C. Y. and Chen, Z. L. (2001). Machine scheduling with transportation consid-

erations. Journal of Scheduling, 4:3–24.

Lee, C. Y., Uzsoy, R., and Martin-Vega, L. A. (1992). Efficient algorithms for schedul-

ing semiconductor burn-in operations. Operations Research, 40:764–775.

Liaee, M. M. and Emmons, H. (1997). Scheduling families of jobs with setup times.

International Journal of Production Economics, 51:165–176.

Megiddo, N. (1978). Cost allocation for steiner trees. Networks, 8:1–6.

Monderer, D. and Samet, D. (2002). Variations of the shapley value. In Aumann,

R. and Hart, S., editors, Handbook of Game Theory with Economic Applications,

pages 2055–2076. Elsevier.

BIBLIOGRAPHY 131

Moretti, S., Branzei, R., Norde, H., and Tijs, S. (2005). Cost monotonic construct

and charge rules for connection situations. CentER-DP 104, Tilburg University,

Center for Economic Research, The Netherlands.

Mosquera, M. A. and Zarzuelo, J. M. (2006). Sharing costs in highways: a game

theoretical approach. Preprint.

Norde, H., Moretti, S., and Tijs, S. (2004). Minimum cost spanning tree games

and population monotonic allocation schemes. European Journal of Operational

Research, 154:84–97.

Norde, H. and Reijnierse, H. (2002). A dual description of the class of games with a

population monotonic allocation scheme. Games and Economic Behavior, 41:322–

343.

Owen, G. (1975). On the core of linear production games. Mathematical Programming,

9:358–370.

Pinedo, M. (2005). Planning and Scheduling in Manufacturing and Services. Springer,

New York.

Potters, J., Curiel, I., and Tijs, S. (1992). Traveling salesman games. Mathematical

Programming, 53:199–211.

Potts, N. C. and Kovalyov, Y. M. (2000). Scheduling with batching: A review.

European Journal of Operational Research, 120:228–249.

Potts, N. C. and Van Wassenhove, L. N. (1992). Integrating scheduling with batching

and lot-sizing: a review of algorithms and complexity. Journal of the Operational

Research Society, 43:395–406.

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell

Systems Technical Journal, 36:1389–1401.

Riker, W. (1962). The theory of political coalitions. Yale University Press, New Haven.

Rosenthal, E. C. (1987). The minimum cost spanning forest game. Economics Letters,

23:355–357.

Santos, C. and Magazine, M. (1985). Batching in single operation manufacturing

systems. Operations Research Letters, 4:99–103.

Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal

on Applied Mathematics, 17:1163–1170.

132 BIBLIOGRAPHY

Shapley, L. S. (1953). A value for n-person games. Annals of Mathematics Studies,

28:307–317.

Shapley, L. S. (1967). On balanced sets and cores. Naval Research Logistics Quarterly,

14:453–460.

Shapley, L. S. and Shubik, M. (1954). A method for evaluating the distribution of

power in a committee system. American Political Science Review, 48:787–792.

Shapley, L. S. and Shubik, M. (1972). The assignment game: The core. International

Journal of Game Theory, 1:111–130.

Shenoy, P. P. (1979). On coalition formation: a game-theoretical approach. Interna-

tional Journal of Game Theory, 8:133–164.

Slikker, M. (2005). Balancedness of sequencing games with multiple parallel machines.

Annals of Operations Research, 137:177–189.

Slikker, M. (2006). Balancedness of multiple machine sequencing games revisited.

European Journal of Operational Research, 174:1944–1949.

Slikker, M., Norde, H., and Tijs, S. (2003). Information sharing games. International

Game Theory Review, 5:1–12.

Sprumont, Y. (1990). Population monotonic allocation schemes for cooperative games

with transferable utility. Games and Economic Behavior, 2:378–394.

Straffin, P. D. (1994). Power and stability in politics. In Aumann, R. and Hart, S.,

editors, Handbook of Game Theory with Economic Applications, pages 1127–1151.

Elsevier.

Suijs, J., Hamers, H., and Tijs, S. (1997). On consistency of reward allocation rules

in sequencing situations. In Haneveld, K., Vrieze, O., and Kallenberg, L., editors,

Ten Years LNMB, pages 223–232. CWI Tract.

Tijs, S. (1981). Bounds for the core and the τ -value. In Moeschlin, O. and Pallaschke,

D., editors, Game Theory and Mathematical Economics, pages 123–132. North

Holland.

Tijs, S., Branzei, R., Moretti, S., and Norde, H. (2006). Obligation rules for minimum

cost spanning tree situations and their monotonicity properties. European Journal

of Operational Research, 175:121–134.

BIBLIOGRAPHY 133

van den Nouweland, A., Krabbenborg, M., and Potters, J. (1992). Flow-shops with

a dominant machine. European Journal of Operational Research, 62:38–46.

van Velzen, B. (2006). Sequencing games with controllable processing times. European

Journal of Operational Research, 172:64–85.

van Velzen, B. and Hamers, H. (2003). On the balancedness of relaxed sequencing

games. Mathematical Methods of Operations Research, 57:287–297.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic

Behavior. Princeton University Press, Princeton.

Weber, R. (1988). Probabilistic values for games. In Roth, A., editor, The Shapley

value: Essays in honor of Lloyd S. Shapley, pages 101–120. Cambridge University

Press.

Webster, S. and Baker, R. K. (1995). Scheduling groups of jobs on a single machine.

Operations Research, 43:692–703.

Winter, E. (2002). The Shapley value. In Aumann, R. and Hart, S., editors, Handbook

of Game Theory with Economic Applications, pages 2025–2054. Elsevier.

Samenvatting

Hoofdstuk 2 bestudeert allocatieproblemen die samenhangen met een special type

machinevolgorde problemen. In machinevolgorde problemen is er een groep klanten,

die elk precies een taak willen laten uitvoeren op een (of meerdere) machine(s). De

kosten van elke klant hangen af van het tijdstip waarop hun taak door de machine

is uitgevoerd. Als we aannemen dat er een beginvolgorde bestaat op de verschillende

taken dan zijn er twee vragen die beantwoord dienen te worden. “Welke volgorde zorgt

ervoor dat de totale, gezamenlijke kosten geminimaliseerd wordt” en “Hoe dienen de

hiermee corresponderende maximale kostenbesparingen op een eerlijke manier onder

de klanten verdeeld te worden?”. Curiel et al. (1989) introduceerden een spelthe-

oretische aanpak voor het verdelingsvraagstuk binnen de context van specifieke 1-

machinevolgorde problemen met lineaire individuele kostenfuncties door correspon-

derende machinevolgorde spelen te analyseren. Aangetoond werd dat dit soort spelen

convex en derhalve ook gebalanceerd zijn: er bestaat een zogenaamde stabiele verdel-

ing van de maximaal haalbare kostenbesparingen onder alle klanten zodanig dat geen

enkele deelgroep, in totaal, hogere kostenbesparingen kan behalen door toegelaten

onderlinge volgordewisselingen dan wat deze coalitie in totaal volgens het verdel-

ingsvoorstel krijgt toegewezen. Een speciale regel die voor elk 1-machinevolgorde

probleem binnen de bestudeerde klasse een dergelijke stabiele uitkomst voorschrijft

blijkt de zogenaamde EGS-regel te zijn, die bovendien axiomatisch gekarakteriseerd

is. In de literatuur is het elementaire model van Curiel et al (1989) verfijnd door extra

aannames op de taken te beschouwen zoals tijdstippen van beschikbaarheid, uiterli-

jke uitvoeringstijdstippen, andersoortige kostenfuncties etc. In alle studies tot nu

toe wordt aangenomen dat een machine slechts een taak tegelijkertijd kan uitvoeren.

In de praktijk echter bestaan er ook batch machines die in staat zijn tegelijkertijd

meerdere taken uit te voeren.

In paragraaf 2.1 breiden we de speltheoretische aanpak voor machinevolgorde

problemen uit naar batch machines. Eerst beschouwen we 1-batchmachinevolgorde

problemen waarbij de capaciteit van de batchmachine vastligt en het maximaal aan-

tal taken weergeeft dat deze machine tegelijkertijd kan uitvoeren. Aangetoond wordt

136 SAMENVATTING

dat de corresponderende 1-spelen convex zijn. Bovendien wordt een expliciete uit-

drukking voor de Shapley waarde voor dit soort spelen afgeleid. Ook wordt de EGS-

regel doorvertaald naar dit soort situaties en axiomatisch gekarakteriseerd. Vervol-

gens beschouwen we zogenaamde relaxaties waarbij de aannames over toelaatbare

volgordewisselingen voor deelgroepen wordt gevarieerd. Voor deze relaxaties wordt

aangetoond dat stabiele verdelingsvoorstellen bestaan. Tot slot kijken we naar m-

batchmachinevolgorde problemen waarin elke taak dezelfde volgorde door de m batch-

machines dient te doorlopen. In het bijzonder identificeren we hier twee gevallen

zodanig dat het corresponderende m-spel een bijzonder type 1-spel is.

Een andere gemeenschappelijke aanname in de analyse van machinevolgorde spe-

len is dat geen omsteltijden vereist zijn. Deze aanname vereist dat de omsteltijden

verwaarloosbaar zijn of in de verwerkingstijden kunnen worden omvat. Nochtans,

in de praktijk, als een machine verschillende types taken moet uitvoeren, dan is een

significante omsteltijd bijna altijd vereist (zie bijvoorbeeld Pinedo, 2005).

In paragraaf 2.2, analyseren we allocatieproblemen die gerelateerd zijn aan zoge-

naamde familie machinevolgorde problemen. Bij familie machinevolgorde problemen,

zijn de taken verdeeld in families. Er is geen omsteltijd vereist als een andere taak

van dezelfde familie er aan vooraf gaat. Een omsteltijd is echter wel vereist als een

taak een lid van een andere familie volgt. Wij associëren cooperatieve spelen met

familie machinevolgorde problemen door de waarde van een coalitie te definiëren als

de maximumbesparing door middel van een toelaatbare volgordewisselingen. We be-

wijzen dat elk familie machinevolgorde spel een niet-lege core heeft. Dit resultaat

wordt verkregen door aan te tonen dat een specifieke marginale vector van het spel

een core-element is.

In hoofdstuk 3 bestuderen we allocatieproblemen die voortkomen uit verbind-

ingsproblemen zoals in een economische omgeving waar agenten willen samenwerken

en gezamenlijk willen investeren in de aanleg/onderhoud van een gemeenschappelijk

netwerk. We bekijken twee speciale klassen van deze verbindingsproblemen: mini-

mum opspannende boom problemen, waarin agenten verbinding willen maken met

een bron, en highway problemen waarin agenten een verbinding leggen tussen een

vertrek- en aankomstpunt.

Neem een aantal inwoners van een dorp dat een netwerk van leidingen wil aan-

leggen van hun huis naar een watervoorziening. Elke inwoner kan een directe verbind-

ing maken met de watervoorziening, maar een dergelijke beslissing zal waarschijnlijk

inefficiënt zijn. In de meeste gevallen zal het goedkoper zijn als enkele inwoners recht-

streeks verbonden zijn met de watervoorziening, terwijl anderen zich aansluiten op

de watervoorziening via andere inwoners. Inderdaad, in deze situatie zal een netwerk

SAMENVATTING 137

ontstaan dat de totale verbindingskosten minimaliseert. Een dergelijk netwerk wordt

gevonden door een minimum opspannende boom (mob). Deze situaties worden dan

ook mob situaties genoemd. Indien de agenten het eens zijn over de mob die aangelegd

moet worden, ontstaat het tweede probleem waarbij de gezamenlijke minimale kosten

van de mob op een eerlijke manier verdeeld moeten worden onder de agenten. Deze al-

locatieproblemen zijn voor het eerst geintroduceerd in de economische literatuur door

Claus en Kleitman (1973). Bird (1976) introduceerden een speltheoretische aanpak

voor deze problemen door een cooperatief TU-spel te koppelen aan mob problemen.

Vervolgens zijn voor mob problemen een groot aantal verdeelregels geintroduceerd in

de literatuur die geschikt zijn om toe te passen op mob situaties. Bijvoorbeeld, de

equal remaining obligations regel (Feltkamp et al., 1994) voor mob situaties voldoet

aan een groot aantal aantrekkelijke eigenschappen (bijvoorbeeld monotonie in kosten,

populatie monotonie, gelijke behandeling) en kan op verschillende manieren worden

verkregen. Bovendien tonen Bergantiños en Vidal-Puga (2007a) aan dat andere regels

uit de literatuur sommige eigenschappen niet bezitten die de equal remaining obliga-

tions regel wel heeft.

De oorspronkelijke definitie van de equal remaining obligations regel bestaat uit

een sequentiële procedure: Kruskal’s algoritme (Kruskal, 1956) wordt gebruikt om

een mob te construeren en bij elke stap van het algoritme worden de kosten van de

geconstrueerde verbinding verdeeld tussen de agenten die deze verbinding gebruiken.

In paragraaf 3.2 introduceren we een andere benadering en onderbouwing voor de

equal remaining obligations regel. Om dit te bereiken definiëren we eerst de knoop

georiënteerde aanleg- en betaalprocedure die zowel tot een mob leidt als een verdeel-

regel van de kosten leidt waarin elke agent de verbinding betaalt die hij kiest om

aan te leggen. Vervolgens tonen we aan dat de equal remaining obligations regel

het gemiddelde is van de verdeelregels die verkregen zijn uit de knoop georiënteerde

aanleg- en betaalprocedure voor elke volgorde van agenten. In paragraaf 3.3 en 3.4

tonen we aan dat de resultaten uit paragraaf 3.2 uit te breiden zijn naar de minimum

opspannende bos situaties (cf. Rosenthal, 1987) en mob situaties met twee bronnen.

Het grootste deel van de huidige literatuur op het gebied van de allocatie van de

kosten in verbindingsproblemen richt zich op de mob problemen of varianten daar-

van. Een gemeenschappelijk kenmerk van deze problemen is dat elke persoon in het

probleem een verbinding met een niet-lege deelverzameling van de beschikbare bron-

nen in het netwerk moet maken. Nochtans, in sommige verbindingssituaties is er

geen bepaald punt waarmee elke persoon in het probleem moet worden verbonden.

Bijvoorbeeld, de gebruikers van een highway netwerk hebben slechts een verbinding

nodig tussen hun vertrek- en aankomstpunt in het netwerk.

138 SAMENVATTING

Mosquera en Zarzuelo (2006) bestuderen het allocatieprobleem dat samenhangt

met de bouwkosten van een highway netwerk. Voor dit doel, definëren zij formeel

highway problemen en analyseren de bijbehorende cooperatieve kostenspelen, highway

spelen genoemd. In een highway probleem, worden de mogelijkheden betreffende de

bouw van het highway netwerk bepaald door een verbonden graaf. De verzameling

knopen van de graaf vertegenwoordigt de potentiele vertrek- en aankomstpunten en

de zijden in de graaf vertegenwoordigen de mogelijke wegverbindingen die kunnen

worden geconstrueerd. Gegeven een highway probleem wordt een corresponderend

highway spel gedefiniërd als een cooperatief kostenspel dat aan elke coalitie van spelers

de totale kosten van de goedkoopste keuze van zijden in de graaf associërt die het

vertrek- en aankomstpunt van elk lid van de coalitie met elkaar verbindt. Mosquera

en Zarzuelo (2006) beperken zich tot highway problemen waarin de onderliggende

graaf een boom is. In deze context is er slechts één pad tussen een vertrek- en een

aankomstpunt.

In paragraaf 3.5 bestuderen we highway problemen waarin de onderliggende graven

zijn weakly cyclic, d.w.z., verbonden graven waarvoor elke zijde in de graaf in hoog-

stens één cykel bevat is. We bestuderen eerst de klasse van graven waarvoor de

corresponderende spelen altijd concaaf zijn. Voor dit doel, wordt een graaf G als

highway-spel-concaaf gedefinëerd als voor elk highway probleem waarin G de on-

derliggende graaf is, het corresponderende highway spel concaaf is. Wij bewijzen dat

een graaf highway-spel-concaaf is dan en slechts dan als deze weakly triangular is.

Dan richten we ons op de core van highway spelen die door weakly cyclic graven

worden gëınduceerd. Kuipers (1997) laat zien dat de highway spelen die door cy-

clische graven worden gëınduceerd hoeven niet gebalanceerd te zijn in het algemeen.

Nochtans bewijzen we dat de highway spelen op weakly cyclic graven gebalanceerd

zijn.

Wij beschouwen in Hoofdstuk 4 de vorming van coalities door sequentiële bi-

laterale onderhandelingen in stemmensituaties. Wij modelleren deze situaties door

simpele spelen en nemen aan dat de macht van elke kiezer wordt beschrijven via een

machtsindex. Een pad schema voor een simpele spel bestaat uit een pad, d.w.z., een

volgorde van coalities die wordt gevormd tijdens het onderhandelingsproces en een

schema, d.w.z., een allocatievector voor elke coalitie in het pad. Een pad schema

wordt genoemd populatie monotoon als de allocatie van een speler niet afneemt als

de pad-coalitie groeit. In de eerste plaats richten we ons op Shapley pad schemas van

simpele spelen waarin voor elke pad-coalitie de Shapley waarde van het geassociërde

deelspel de allocatie bepaalt. We bewijzen dat het bestaan van veto spelers nodige

en voldoende voorwaarde is voor het bestaan van populatie monotoon Shapley pad

SAMENVATTING 139

schemas. Voorts is een Shapley pad schema populatie monotoon is dan en slechts dan

als de eerste winnende coalitie die via het pad wordt gevormd, elke minimale winnende

coalitie van het spel bevat. Wij bewijzen ook dat elke Shapley pad schema populatie

monotoon is dan en slechts dan als de coalitie van veto spelers een winnende coalitie

is. Wij bestuderen verder hoe deze resultaten uit te breiden naar probabilistische

waarden, die de Shapley waarde generaliseren.

140 AUTHOR INDEX

Author index

Çiftçi, B. B., 13, 52, 53, 101

Ahmadi, J. H., 14, 33

Ahmadi, R. H., 14

Aldowaisan, T., 15

Allahverdi, A., 6, 7, 15

Baker, R.K., 14

Banzhaf, J. F., 102, 113

Baron, D. P., 103

Bergantiños, G., 7, 54, 60, 70

Bird, C. G., 5, 53, 54

Bondereva, O. N., 10

Borm, P., 5, 6, 13, 19, 52, 53, 56, 101,

102

Branzei, R., 53, 54, 62–64

Chen, Z. L., 14

Cheng, T. C. E., 6, 15

Claus, A., 5, 7, 53

Cruijssen, F., 102

Curiel, I., 5–7, 13–15, 17, 41, 52, 56

Dasu, S., 14

Derks, J. J. M., 11, 104

Dobson, G., 38

Dubey, P., 113, 114

Dutta, B., 54

Emmons, H., 15

Estevez-Fernandez, A., 5, 56

Feltkamp, V., 7, 54

Ferejohn, J. A., 103

Fiestras-Janeiro, G., 13, 19

Fleuren, H., 102

Gerichhausen, M., 14

Gillies, 2, 10

Graham, R., 59

Granot, D., 5, 51, 53, 56

Gupta, J. N. D., 15

Haller, H. H., 11, 104

Hamers, H., 5, 6, 13, 14, 19, 21, 52, 53,

56, 101, 102

Hell, P., 59

Hendrickx, R., 5

Herer, Y., 56

Huberman, G., 5, 51, 53, 56

Kalai, E., 5

Kar, A., 53, 54

Karmarkar, S., 38

Kleitman, D., 5, 7, 53

Klijn, F., 13

Kovalyov, Y. M., 6, 14, 15

Krabbenborg, M., 13

Kruskal, J. B. J., 7, 54, 59

Kuipers, J., 8, 56, 93

Laver, K., 103

Le Breton, M., 11

Lee, C. Y., 14

Liaee, M.M., 15

Magazine, M., 38

Martin-Vega, L. A., 14

Megiddo, N., 5

Moretti, S., 53, 54, 62–64

Morgenstern, O., 1

Mosquera, M. A., 8, 55, 90

Muto, S., 7, 54

Neyman, A., 113, 114

AUTHOR INDEX 141

Norde, H., 53, 54, 62–64, 103

Owen, G., 5, 11

Pederzoli, G., 6, 7, 13–15, 17, 41, 52

Penn, M., 56

Pinedo, M.L., 6

Potters, J., 5, 13, 14, 52, 56

Potts, N. C., 14, 15

Prasad, R., 13, 14, 52

Prim, R. C., 54, 59

Reijnierse, H., 103

Riker, W., 103

Rosenthal, E. C., 8, 55, 72

Rummel, J. L., 38

Sanchez, E., 13, 19

Santos, C., 38

Schmeidler, D., 2

Schofield, N. J., 103

Shapley, L. S., 2, 10, 11, 15, 28, 30, 102,

104

Shenoy, P. P., 103

Shubik, M., 28, 30

Slikker, M., 13, 14, 52, 103

Sprumont, Y., 12, 103, 108

Straffin, P. D., 104

Suijs, J., 6, 13, 14, 21

Tang, C. S., 14

Tijs, S., 2, 5–7, 13–15, 17, 21, 41, 52–

54, 56, 62–64, 103

Uzsoy, R., 14

van den Nouweland, A., 13

van Velzen, B., 13, 14, 41

van Wassenhove, L. N., 15

Veltman, B., 13, 14, 52

Vidal-Puga, J. J., 7, 54, 60, 70

von Neumann, J., 1

Voorneveld, M., 13, 19

Weber, R., 9, 108, 109, 113, 114

Weber, S., 11

Webster, S., 14, 15

Winter, E., 104

Zarzuelo, J. M., 8, 55, 90

Zemel, E., 5

142 SUBJECT INDEX

Subject index

P σ-rule, 63

σ-component, 11

σ-component additive game, 11

admissible order, 18, 29, 39

allocation scheme, 12

population monotonic, 12

Shapley allocation scheme, 12

balanced set, 10

Banzhaf value, 113

batch sequencing game, 17

batch sequencing situation, 16

coalition, 9

connected, 11

cooperative cost game, 10, 12

concave, 12

cost savings game, 12

subadditive, 12

cooperative game, 9

allocation, 10

balanced, 10

convex, 10

monotonic, 10

restriction, 10

superadditive, 10

totally balanced, 10

core, 10

efficiency, 10

equal remaining obligations rule, 62

family sequencing game, 39

family sequencing situation, 38

flow-shop batch sequencing game, 34

flow-shop batch sequencing situation, 31

bottleneck machine, 35

production schedule, 32

grand coalition, 9

graph, 57

acyclic, 57

bridge edge, 57

complete, 57

component, 57

connected, 57

cycle, 57

forest, 57

HG-concave, 90

path, 57

subgraph, 57

tree, 57

weakly cyclic, 57

weakly triangular, 57

highway game, 89

highway problem, 89

connection vertex, 89

imputation, 10

individual rationality, 10

Kruskal’s algorithm, 59

marginal vector, 11

mcst situations with two sources, 78

minimum cost spanning forest situation,

73

minimum cost spanning tree situations,

58

non-aggregated equal gain splitting so-

lution, 22

SUBJECT INDEX 143

non-aggregated solution, 22

non-aggregated split core, 22

optimistic transferable utility game, 70

order, 10

path profile, 94

population monotonic path scheme, 105

path, 105

path scheme, 105

predecessor, 11

Prim’s algorithm, 59

probabilistic values, 108

quasi-values, 108

restriction of a probabilistic value,

109

semi values, 108

relaxed batch sequencing game, 29

Shapley value, 11

Shapley-Shubik power index, 104

simple game, 103

losing coalition, 103

minimal winning coalition, 103

veto player, 104

winning coalition, 103

successor, 11

unanimity game, 11

value, 11

efficient, 11

null player out property, 11

vertex oriented construct and charge pro-

cedure, 66

mcsf situations, 75

mcst situations with two sources,

83

