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1 Introduction

In the last decades, there is an increased interest in studying diverse problems in economics and
optimal control theory using dynamic games. In particular in environmental economics and macro-
economic policy coordination, dynamic games are a natural framework to model policy coordination
problems (see e.g. the books and references in Dockner et al. [5] and Engwerda [9]). In these prob-
lems, the open-loop Nash strategy is often used as one of the benchmarks to evaluate outcomes of
the game. In optimal control theory it is well-known that, e.g., the issue to obtain robust control
strategies can be approached as a dynamic game problem (see e.g. [2]).

In this note we consider the open-loop linear quadratic differential game. This problem has been
considered by many authors and dates back to the seminal work of Starr and Ho in [17] (see, e.g.,
[14], [15], [6], [11], [10], [1], [18], [7], [8], [3] and [12]). More specifically, we study in this paper
the (regular indefinite) infinite-planning horizon case. The corresponding regular definite (that is
the case that the state weighting matrices Qi (see below) are semi-positive definite) problem has
been studied, e.g., extensively in [7] and [8]. Whereas [12] studied the regular indefinite case using
a functional analysis approach, under the assumption that the uncontrolled system is stable. In
particular, these papers show that, in general, the infinite-planning horizon problem does not have
a unique equilibrium. Moreover [12] shows that whenever the game has more than one equilibrium,
there will exist an infinite number of equilibria. Furthermore the existence of a unique solution is
related to the existence of a so-called strongly stabilizing solution of the set of coupled algebraic
Riccati equations (6,7), below.
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In this paper we will generalize these results for stabilizable systems using a state-space approach.
The outline of this note is as follows. Section two introduces the problem and contains some pre-
liminary results. The main results of this paper are stated in Section three, whereas Section four
contains some concluding remarks. The proofs of the main theorems are included in the Appendix.

2 Preliminaries

In this paper we assume that the performance criterion player i = 1, 2 likes to minimize is:

Ji =

∫ ∞

0

{xT (t)Qix(t) + uT
i (t)Riui(t)}dt, (1)

subject to the linear dynamic state equation

ẋ(t) = Ax(t) +B1u1(t) +B2u2(t), x(0) = x0, (2)

Here, the matrices Qi and Ri are symmetric and Ri are, moreover, assumed to be positive definite,
i = 1, 2. Notice that we do not make any definiteness assumptions w.r.t. matrix Qi.

We assume that the matrix pairs (A,Bi), i = 1, 2, are stabilizable. So, in principle, each player
is capable to stabilize the system on his own.

The open-loop information structure of the game means that we assume that both players only
know the initial state of the system and that the set of admissible control actions are functions of
time, where time runs from zero to infinity. We assume that the players choose control functions
belonging to the set

Us =
{
u ∈ L2,loc | Ji(x0, u) exists in IR ∪ {−∞,∞}, lim

t→∞
x(t) = 0

}
,

where L2,loc is the set of locally square-integrable functions, i.e.,

L2,loc = {u[0,∞) | ∀T > 0,

∫ T

0

uT (s)u(s)ds <∞}.

Another set of functions we consider is the class of locally square integrable functions which expo-
nentially converge to zero when t → ∞, Le

2,loc. That is, for every c(.) ∈ Le
2,loc there exist strictly

positive constants M and α such that

|c(t)| ≤Me−αt.

We start our analysis with a result on the regular linear quadratic optimal control problem. Since
we were unable to trace this theorem in the literature, an outline of the proof is included.

Theorem 2.1 Let c(.) ∈ Le
2,loc, (A,B) stabilizable, Q symmetric and R > 0. Consider the mini-

mization of ∫ ∞

0

{xT (t)Qx(t) + uT (t)Ru(t)}dt (3)

subject to the state dynamics

ẋ(t) = Ax(t) +Bu(t) + c(t), x(0) = x0, (4)
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and u ∈ Us. Then, the linear quadratic problem (3,4) has a solution for all x0 ∈ IRn if and only if
the algebraic Riccati equation

Q+ ATK +KA−KBR−1BTK = 0 (5)

has a symmetric stabilizing solution K(.), i.e K is such that A−BR−1BTK is stable.
Moreover, if the linear quadratic control problem has a solution, then the optimal control in feedback
form is

u∗(t) = −R−1BT (Kx∗(t) +m(t)), where m(t) =

∫ ∞

t

e−(A−SK)T (t−s)Kc(s)ds,

and x∗(t) is the through this optimal control implied solution of the differential equation

ẋ∗(t) = (A− SK)x∗(t) − Sm(t) + c(t), x∗(0) = x0.

Proof. (Outline) First consider the case c(.) = 0. Under the assumption that (A,B) is controllable
it follows from e.g. [4] (see also [19]) that the theorem holds. In case (A,B) is stabilizable, one
implication follows from a standard completion of squares argument. The reverse implication is
obtained by considering the controllability canonical form of the system

[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

0 A22

] [
x1(t)
x2(t)

]
+

[
B1

0

]
u(t), x0 =

[
x10

x20

]
,

with (A11, B1) controllable and A22 stable.
Since the optimization problem has a solution for every initial state, it follows that it has in par-
ticular a solution for x0 = [xT

10, 0]T . From the above quoted result it follows then that the alge-
braic Riccati equation AT

11K1 +K1A11 + Q11 −K1B1R
−1BT

1 K1 = 0 has a stabilizing solution (here
Q11 = [I 0]Q[I 0]T ). From this it is readily verified, by elementary spelling out (5), that (5) has a
stabilizing solution too.
Finally, the fact that the above equivalence continues to hold even when c(.) differs from zero, fol-
lows from the general argument that linear terms do not play a role to decide whether a quadratic
functional has a minimum or not (see e.g. [13, Section 1.4.2]). �

Let Si := BiR
−1
i Bi. Tightly connected with finding the open-loop Nash equilibria of the game

(1,2) is the set of coupled algebraic Riccati equations (ARE) given by

0 = Q1 + ATP1 + P1A− P1S1P1 − P1S2P2, (6)

0 = Q2 + ATP2 + P2A− P2S2P2 − P2S1P1; (7)

and the two algebraic Riccati equations,

Qi + ATKi +KiA−KiSiKi = 0, i = 1, 2. (8)

Similar to, e.g., [7], it can be shown that every solution to the set of equations (6,7) can be
obtained as a graph subspace of matrix
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M :=


 A −S1 −S2

−Q1 −AT 0
−Q2 0 −AT


 , (9)

and vice versa. To be more precise

Theorem 2.2 Let V ⊂ IR3n be an n-dimensional invariant subspace of M , and let Xi ∈ IRn×n, i =
0, 1, 2, be three real matrices such that

V = Im
[
XT

0 , X
T
1 , X

T
2

]T
.

If X0 is invertible, then Pi := XiX
−1
0 , i = 1, 2, is a solution to the set of coupled Riccati equations

(6,7) and σ(A− S1P1 − S2P2) = σ(M |V ) 1. Furthermore, the solution (P1, P2) is independent of the
specific choice of basis of V . �

Theorem 2.3 Let Pi ∈ IRn×n, i = 1, 2, be a solution to the set of coupled Riccati equations (1,2).
Then there exist matrices Xi ∈ IRn×n, i = 0, 1, 2, with X0 invertible, such that Pi = XiX

−1
0 .

Furthermore, the columns of
[
XT

0 , X
T
1 , X

T
2

]T
form a basis of an n-dimensional invariant subspace

of M . �

The set of (strongly) stabilizing solutions of (6,7) play an important role in the subsequent analysis.
Definition a, below, introduces the concept of a stabilizing solution. This notion generalizes the
one-player case definition. Definition b, item ii., states that a strongly stabilizing solution has the
additional property that the spectrum of the controlled dual system should be in the closed left-half
of the complex plane.

Definition 2.4 A solution (P1, P2) of the set of algebraic Riccati equations (6,7) is called

a. stabilizing, if σ(A− S1P1 − S2P2) ⊂ lC−;

b. strongly stabilizing if

i. it is a stabilizing solution, and

ii.

σ

([ −AT + P1S1 P1S2

P2S1 −AT + P2S2

])
⊂ lC+

0 . �

From the above Theorems 2.2, 2.3 it follows immediately that

1σ(H) denotes the spectrum of matrix H; lC− = {λ ∈ lC | Re(λ) < 0}; lC+
0 = {λ ∈ lC | Re(λ) > 0}.
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Corollary 2.5 (6,7) has a set of stabilizing solutions (P1, P2) if and only if M has an n-dimensional
stable-invariant graph subspace. �

Furthermore, the next two important properties of a strongly stabilizing solution are easily obtained.

Theorem 2.6

1. The set of algebraic Riccati equations (6,7) has a strongly stabilizing solution (P1, P2) if and only
if matrix M has an n-dimensional stable graph subspace and M has 2n eigenvalues (counting
algebraic multiplicities) in lC+

0 .

2. If the set of algebraic Riccati equations (6,7) has a strongly stabilizing solution, then it is unique.

Proof.
1. Assume that (6,7) has a strongly stabilizing solution (P1, P2). Then (see also Kremer [12]), with

T :=


 I 0 0

−P1 I 0
−P2 0 I


 , TMT−1 =


 A− S1P1 − S2P2 S1 S2

0 P1S1 − AT P1S2

0 P2S1 P2S2 − AT


 .

Since (P1, P2) is a strongly stabilizing solution, by Definition 2.4, matrix M has exact n stable
eigenvalues and 2n eigenvalues (counted with algebraic multiplicities) in lC+

0 . Furthermore, obviously,
the stable subspace is a graph subspace.

The converse statement is obtained similarly using the result of Theorem 2.2.
2. Using the result from item 1, Corollary 2.5 shows that there exists exactly one stabilizing solution.
So, our solution (P1, P2) must be unique. �

Next we state two technical lemmas that are used in the proofs of our main theorems. A proof
of them can be found, e.g., in [9]. Lemma 2.7 deals with the stable subspace, Es, of a linear system.

Lemma 2.7 Let x0 ∈ IRp, y0 ∈ IRn−p and Y ∈ IR(n−p)×p. Consider the differential equation

d

dt

[
x(t)
y(t)

]
=

[
A11 A12

A21 A22

] [
x(t)
y(t)

]
,

[
x(0)
y(0)

]
=

[
x0

y0

]
.

If lim
t→∞

x(t) = 0, for all

[
x0

y0

]
∈ Span

[
I
Y

]
, then

1. dim Es ≥ p, and

2. there exists a matrix Ȳ ∈ IR(n−p)×p such that Span

[
I
Ȳ

]
⊂ Es. �

Lemma 2.8 Assume there exists an initial state x0 �= 0 such that

x(t) = e−AT tx0 → 0 if t→ ∞ and BTx(t) = 0.

Then (A,B) is not stabilizable. �
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3 Main results

Using the previous results, in the Appendix the following theorem is proved.

Theorem 3.1 If the linear quadratic differential game (1,2) has an open-loop Nash equilibrium for
every initial state, then

1. M has at least n stable eigenvalues (counted with algebraic multiplicities). More in particular,
there exists a p-dimensional stable M-invariant subspace S, with p ≥ n, such that

Im


 I
V1

V2


 ⊂ S,

for some Vi ∈ IRn×n.

2. the two algebraic Riccati equations (8) have a symmetric stabilizing solution Ki(.), i = 1, 2.

Conversely, if vT (t) =: [xT (t), ψT
1 (t), ψT

2 (t)] is an asymptotically stable solution of v̇(t) = Mv(t), x(0) =
x0, and the two algebraic Riccati equations (8) have a stabilizing solution then,

u∗i := −R−1
i BT

i ψi(t), i = 1, 2,

provides an open-loop Nash equilibrium for the linear quadratic differential game (1,2). �

Remark 3.2 From this theorem one can draw a number of conlusions concerning the existence
of open-loop Nash equilibria. A general conclusion is that this number depends critically on the
eigenstructure of matrix M . We will distinguish some cases. To that end, let s denote the number
(counting algebraic multiplicities) of stable eigenvalues of M .
1. If s < n, still for some initial state there may exist an open-loop Nash equilibrium. Consider, e.g.,
the case that s = 1. Then, for every x0 ∈ Span [I, 0, 0]v, where v is an eigenvector corresponding
with the stable eigenvalue, the game has a Nash equilibrium.
2. In case s ≥ 2, the situation might arise that for some initial states there exists an infinite
number of equilibria. A situation in which there are an infinite number of Nash equilibrium actions
occurs if, e.g., v1 and v2 are two independent eigenvectors in the stable subspace of M for which
[I, 0, 0]v1 = µ[I, 0, 0]v2, for some scalar µ. In such a situation,

x0 = λ[I, 0, 0]v1 + (1 − λ)µ[I, 0, 0]v2,

for an arbitrary scalar λ ∈ IR. The resulting equilibrium control actions, however, differ for each λ
(apart from some exceptional cases). �

Similar to [3, Theorem 6.22] it can be shown that

Theorem 3.3 Assume that
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1. the set of coupled algebraic Riccati equations (6,7) has a stabilizing solution; and

2. the two algebraic Riccati equations (8) have a symmetric stabilizing solution Ki(.), i = 1, 2.

Then the linear quadratic differential game (1,2) has an open-loop Nash equilibrium for every initial
state. Moreover, one set of equilibrium actions is given by:

u∗i (t) = −R−1
i BT

i PiΦ(t, 0)x0, i = 1, 2. (10)

Here Φ(t, 0) satisfies the transition equation Φ̇(t, 0) = (A− S1P1 − S2P2)Φ(t, 0); Φ(t, t) = I. �

The above reflections raise the question whether it is possible to find conditions under which the
game has a unique equilibrium for every initial state. The next Theorem 3.4 gives such conditions.
Moreover, it shows that in that case the unique equilibrium actions can be synthesized as a state
feedback. The proof of this theorem is provided in the Appendix.

Theorem 3.4 The linear quadratic differential game (1,2) has a unique open-loop Nash equilibrium
for every initial state if and only if

1. The set of coupled algebraic Riccati equations (6,7) has a strongly stabilizing solution, and

2. the two algebraic Riccati equations (8) have a stabilizing solution.

Moreover, the unique equilibrium actions are given by (10). �

Example 3.5
1. Consider the system

ẋ(t) = −2x(t) + u1(t) + u2(t), x(0) = x0;

and cost functions

J1 =

∫ ∞

0

{x2(t) + u2
1(t)}dt and J2 =

∫ ∞

0

{4x2(t) + u2
2(t)}dt.

The eigenvalues of M are {−3, 2, 3}. An eigenvector corresponding with the eigenvalue −3 is
[5, 1, , 4]T .
So, according Theorem 2.6 item 1, the with this game corresponding set of algebraic Riccati equa-
tions (6,7) has a strongly stabilizing solution. Furthermore, since qi > 0, i = 1, 2, the two algebraic
Riccati equations (8) have a stabilizing solution. Consequently, this game has a unique open-loop
Nash equilibrium for every initial state x0.
2. Reconsider the game in item 1, but with the system dynamics replaced by

ẋ(t) = 2x(t) + u1(t) + u2(t), x(0) = x0.

ThenM has the eigenvalues {−3,−2, 3}. SinceM has two stable eigenvalues, it follows from Theorem
2.6 item 1 that the with this game corresponding set of algebraic Riccati equations (6,7) does not
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have a strongly stabilizing solution. So, see Theorem 3.4, the game does not have for every initial
state a unique open-loop Nash equilibrium.
On the other hand, since [1, 1, 4]T is an eigenvector corresponding with λ = −3, it follows from the
Corollaries 2.5 and Theorem 3.3 that the game does have an open-loop Nash equilibrium for every
initial state that permits a feedback synthesis.
In fact for every initial state there are an infinite number of equilibria. For every α ∈ IR the
equilibrium actions u∗1(t) = −2(e−5tx0 − αe−3t), u∗2(t) = −2(e−5tx0 + αe−3t) yield an open-loop Nash
equilibrium. �

4 Concluding Remarks

In this note we considered the regular indefinite infinite-planning horizon linear-quadratic differential
game. Both necessary conditions and sufficient conditions were derived for the existence of an open-
loop Nash equilibrium. Moreover, conditions were presented that are both necessary and sufficient
for the existence of a unique equilibrium.
The above results can be generalized straightforwardly to the N -player case. Furthermore, since Qi

are assumed to be indefinite, the obtained results can be directly used to (re)derive properties for the
zero-sum game, which plays, e.g., an important role in robustness analysis. If players discount their
future loss, similar to [7], it follows from Theorem 3.4 that if the discount factor is ”large enough”
the game has generically a unique open-loop Nash equilibrium. Finally we conclude from (17) that
the conclusion in [12], that if the game has an open-loop Nash equilibrium for every initial state
either there is a unique equilibrium or an infinite number of equilibria, applies in general.

Appendix

Proof of Theorem 3.1.
”⇒ part” Suppose that u∗1, u

∗
2 are a Nash solution. That is,

J1(u1, u
∗
2) ≥ J1(u

∗
1, u

∗
2) and J2(u

∗
1, u2) ≥ J2(u

∗
1, u

∗
2).

From the first inequality we see that for every x0 ∈ IRn the (nonhomogeneous) linear quadratic
control problem to minimize

J1 =

∫ ∞

0

{xT (t)Q1x(t) + uT
1 (t)R1u1(t)}dt,

subject to the (nonhomogeneous) state equation

ẋ(t) = Ax(t) +B1u1(t) +B2u
∗
2(t), x(0) = x0,

has a solution. This implies, see Theorem 2.1, that the algebraic Riccati equation (8) has a stabilizing
solution (with i = 1). In a similar way it follows that also the second algebraic Riccati equation must
have a stabilizing solution. Which completes the proof of point 2.
To prove point 1. we consider Theorem 2.1 in some more detail. According Theorem 2.1 the
minimization problem

min
u1

J1(x0, u1, u
∗
2) =

∫ ∞

0

{xT
1 (t)Q1x1(t) + uT

1 (t)R1u1(t)}dt,
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where

ẋ1 = Ax1 +B1u1 +B2u
∗
2, x1(0) = x0,

has a unique solution. Its solution is

ũ1(t) = −R−1
1 BT

1 (K1x1(t) +m1(t)) with m1(t) =

∫ ∞

t

e−(A−S1K1)T (t−s)K1B2u
∗
2(s)ds (11)

and K1 the stabilizing solution of the algebraic Riccati equation

Q1 + ATX +XA−XS1X = 0. (12)

Notice that, since the optimal control ũ1 is uniquely determined, and by definition the equilibrium
control u∗1 solves the optimization problem, u∗1(t) = ũ1(t). Consequently,

d(x(t) − x1(t))

dt
= Ax(t) +B1u

∗
1(t) +B2u

∗
2(t) − ((A− S1K1)x1(t) − S1m1(t) +B2u

∗
2(t))

= Ax(t) − S1(K1x1(t) +m1(t)) − Ax1(t) + S1K1x1(t) + S1m1(t)

= A(x(t) − x1(t)).

Since x(0) − x1(0) = x0 − x0 = 0 it follows that x1(t) = x(t).
In a similar way we obtain from the minimization of J2, with u∗1 now entering into the system as an
external signal, that

u∗2(t) = −R−1
2 BT

2 (K2x(t) +m2(t)) with m2(t) =

∫ ∞

t

e−(A−S2K2)T (t−s)K2B1u
∗
1(s)ds (13)

and K2 the stabilizing solution of the algebraic Riccati equation

Q2 + ATX +XA−XS2X = 0.

By straightforward differentiation of mi(t) in (11) and (13), respectively, we obtain

ṁ1(t) = −(A− S1K1)
Tm1(t) −K1B2u

∗
2(t), and (14)

ṁ2(t) = −(A− S2K2)
Tm2(t) −K2B1u

∗
1(t).

Next, introduce ψi(t) := Kix(t) +mi(t), i = 1, 2. Using (14) and (12) we get

ψ̇1(t) = K1ẋ(t) + ṁ1(t)

= K1(A− S1K1)x(t) −K1S1m1(t) +K1B2u
∗
2(t) −K1B2u

∗
2(t) − (A− S1K1)

Tm1(t)

= (−Q1 − ATK1)x(t) −K1S1m1(t) − (A− S1K1)
Tm1(t)

= −Q1x(t) − AT (K1x(t) +m1(t))

= −Q1x(t) − ATψ1(t). (15)

Similarly it follows that ψ̇2(t) = −Q2x(t) − ATψ2(t). Consequently, vT (t) := [xT (t), ψT
1 (t), ψT

2 (t)],
satisfies

v̇(t) = Mv(t), with v1(0) = x0.
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Since by assumption, for arbitrary x0, v1(t) converges to zero it is clear from Lemma 2.7 by choosing
consecutively x0 = ei, i = 1, · · · , n, that matrix M must have at least n stable eigenvalues (counting
algebraic multiplicities). Moreover, the other statement follows from the second part of this lemma.
Which completes this part of the proof.
”⇐ part” Let u∗2 be as claimed in the theorem, that is

u∗2(t) = −R−1
2 BT

2 ψ2.

We next show that then necessarily u∗1 solves the optimization problem

min
u1

∫ ∞

0

{x̃T (t)Q1x̃(t) + uT
1R1u1(t)}dt,

subject to

˙̃x(t) = Ax̃(t) +B1u1(t) +B2u
∗(t), x̃(0) = x0.

Since, by assumption, the algebraic Riccati equation

Q1 + ATK1 +K1A−K1S1K1 = 0 (16)

has a stabilizing solution, according Theorem 2.1, the above minimization problem has a solution.
This solution is given by

ũ∗1(t) = −R−1BT
1 (K1x̃+m1), where m1 =

∫ ∞

t

e−(A−S1K1)T (t−s)K1B2u
∗
2(s)ds.

Next, introduce

ψ̃1(t) := K1x̃(t) +m1(t).

Then, similar to (15) we obtain

˙̃ψ1 = −Q1x̃− AT ψ̃1.

Consequently, xd(t) := x(t) − x̃(t) and ψd(t) := ψ1(t) − ψ̃1(t) satisfy

[
ẋd(t)

ψ̇d(t)

]
=

[
A −S1

−Q1 −AT

] [
xd(t)
ψd(t)

]
,

[
xd(0)
ψd(0)

]
=

[
0
p

]
, for some p ∈ IRn.

Notice that matrix

[
A −S1

−Q1 −AT

]
is the Hamiltonian matrix associated with the algebraic Riccati

equation (16). Recall that the spectrum of this matrix is symmetric w.r.t. the imaginary axis. Since
by assumption the Riccati equation (16) has a stabilizing solution, we know that its stable invariant
subspace is given by Span[I K1]

T . Therefore, with Eu representing a basis for the unstable subspace,
we can write [

0
p

]
=

[
I
K1

]
v1 + Euv2,
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for some vectors vi, i = 1, 2. However, it is easily verified that due to our asymptotic stability
assumption both xd(t) and ψd(t) converge to zero if t→ ∞. So, v2 must be zero. From this it follows
now directly that p = 0. Since the solution of the differential equation is uniquely determined, and
[xd(t) ψd(t)] = [0 0] solve it, we conclude that x̃(t) = x(t) and ψ̃1(t) = ψ1(t). Or stated differently,
u∗1 solves the minimization problem.
In a similar way it is shown that for u1 given by u∗1, player two his optimal control is given by u∗2.
Which proves the claim. �.

Proof of Theorem 3.4.
”⇒ part” That the Riccati equations (8) must have a stabilizing solution follows directly from
Theorem 3.1.
Assume that matrix M has a s-dimensional stable graph subspace S, with s > n. Let {b1, · · · , bs} be
a basis for S. Denote di := [I, 0, 0]bi and assume (without loss of generality) that Span [d1, · · · , dn] =
IRn. Then dn+1 = µ1d1+· · ·+µndn for some µi, i = 1, · · · , n. Furthermore, let x0 = α1d1+· · ·+αndn.
Then also for arbitrary λ ∈ [0, 1],

x0 = λ(α1d1 + · · · + αndn) + (1 − λ)(dn+1 − µ1d1 − · · · − µndn)

= [I, 0, 0]{λ(α1b1 + · · · + αnbn) + (1 − λ)(bn+1 − µ1b1 − · · · − µnbn)}
= [I, 0, 0]{(λα1 − (1 − λ)µ1)b1 + · · · + (λαn − (1 − λ)µn)bn + (1 − λ)bn+1}.

Next consider

vλ := (λα1 − (1 − λ)µ1)b1 + · · · + (λαn − (1 − λ)µn)bn + (1 − λ)bn+1.

Notice that vλ1 �= vλ2 whenever λ1 �= λ2.
According Theorem 3.1 all solutions vT (t) = [xT , ψT

1 , ψ
T
2 ] of v̇(t) = Mv(t), v(0) = vλ, induce then

open-loop Nash equilibrium strategies

ui,λ := −R−1
i BT

i ψi,λ(t), i = 1, 2. (17)

Since by assumption for every initial state there is a unique equilibrium strategy it follows on the
one hand that the by these equilibrium strategies induced state trajectory xλ(t) coincides for all λ
and, on the other hand, that

BT
i ψi,λ1(t) = BT

i ψi,λ2(t), ∀λ1, λ2 ∈ [0, 1]. (18)

Since ψ̇i,λ = −Qixλ(t) − ATψi,λ it follows that

ψ̇i,λ1 − ψ̇i,λ2 = −AT (ψi,λ1 − ψi,λ2) and BT
i (ψi,λ1(t) − ψi,λ2(t)) = 0. (19)

Notice that both ψi,λ1(t) and ψi,λ2(t) converge to zero. Furthermore, since vλ1 �= vλ2 whenever
λ1 �= λ2, {b1, · · · , bn+1} are linearly independent and Span[d1, · · · , dn] = IRn, it can be easily verified
that at least for one i, ψi,λ1(0) �= ψi,λ2(0), for some λ1 and λ2. Therefore, by Lemma 2.8, it follows
from (19) that (A,Bi) is not stabilizable. But this violates our basic assumption. So, our assumption
that s > n must have been wrong and we conclude that matrix M has an n-dimensional stable graph
subspace and that the dimension of the subspace corresponding with non-stable eigenvalues is 2n.
By Theorem 2.6 the set of Riccati equations (6,7) has then a strongly stabilizing solution.
”⇐ part” Since by assumption the stable subspace, Es, is a graph subspace we know that every
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initial state, x0, can be written uniquely as a combination of the first n entries of the basisvectors
in Es. Consequently, with every x0 there corresponds a unique ψ1 and ψ2 for which the solution of
the differential equation ż(t) = Mz(t), with zT

0 = [xT
0 , ψ

T
1 , ψ

T
2 ], converges to zero. So, according

Theorem 3.1, for every x0 there is a Nash equilibrium. On the other hand we have from the proof of
Theorem 3.1 that all Nash equilibrium actions (u∗1, u

∗
2) satisfy

u∗i (t) = −R−1
i BT

i ψi(t), i = 1, 2,

where ψi(t) satisfy the differential equation


 ẋ(t)

ψ̇1(t)

ψ̇2(t)


 = M


 x(t)
ψ1(t)
ψ2(t)


 , with x(0) = x0.

Now, consider the system

ż(t) = Mz(t); y(t) = Cz(t), with C :=


 I 0 0

0 −R−1
1 B1 0

0 0 −R−1
2 B2


 .

Since (A,Bi), i = 1, 2, is stabilizable, it is easily verified that the pair (C,M) is detectable. Conse-
quently, due to our assumption that x(t) and u∗i (t), i = 1, 2, converge to zero, we have from Lemma
[20, Lemma 14.1] that [xT (t), ψT

1 (t), ψT
2 (t)] converges to zero. Therefore, [xT (0), ψT

1 (0), ψT
2 (0)] has

to belong to the stable subspace of M . However, as we argued above, for every x0 there is exactly
one vector ψ1(0) and vector ψ2(0) such that [xT (0), ψT

1 (0), ψT
2 (0)] ∈ Es. So we conclude that for

every x0 there exists exactly one Nash equilibrium.
Finally notice that by Theorem 3.3 the game has an equilibrium for every initial state given by

(10). Since for every initial state the equilibrium actions are uniquely determined, it follows that the
equilibrium actions u∗i , i = 1, 2, have to coincide with (10). �
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