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Preface

This thesis consists of two parts. The first part contributes statistical method-
ology for nonnegative integer-valued time series. The second part of this thesis
consists of two chapters. One chapter is concerned with the development of ef-
ficient estimators of the marginal distribution functions from multivariate data
if one has knowledge on the dependence structure. The other chapter considers
semiparametric estimation for general (continuous) time series models with
innovations that are not necessarily independently and identically distributed.
A short overview of both parts is presented below.

Part I In many sciences one encounters nonnegative discrete valued time se-
ries, often as counts of events or objects at consecutive points in time. Espe-
cially in economics and medicine many interesting variables are (nonnegative)
integer-valued. For example: the number of transactions in SNS-Reaal during
each day, the number of patients in a hospital at the end of the day, the num-
ber of claims an insurance company receives during each day, the number of
epileptic seizures a patient suffers each day, etcetera. Hence the need for ade-
quate probabilistic models and statistical techniques for nonnegative discrete
valued time series is apparent. However, until the early eighties this area of re-
search did not attract much attention. As possible explanation McKenzie (2003)
mentions that modeling discrete valued time series is a challenging topic in
time series analysis since most traditional representations of dependence be-
come either impossible or impractical. The last two decades there have been
attempts to develop suitable classes of models; the class of INteger-valued Au-
toRegressive (INAR) processes can, presently, be considered as the major model
for discrete valued time series. Part I of this thesis contributes statistical meth-
ods for INAR processes. Chapter 1 contains some probabilistic results on INAR
processes. The existence of a strictly stationary solution, the existence of mo-
ments under the stationary distribution, and the (uniform) ergodicity of INAR
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processes is investigated. In Chapter 2 parametric INAR processes are discussed:
the innovation distribution G belongs to a parametric family. The main result
of this chapter is that parametric INAR models enjoy the Local Asymptotic Nor-
mality (LAN) property. The proofs are made tractable by a certain representa-
tion of the transition-scores, which is motivated by an information-loss inter-
pretation of the model. Furthermore, a new computationally attractive, asymp-
totically efficient estimator of the parameters is provided. Using a parametric
model exposes the researcher to misspecification. Therefore Chapter 3 consid-
ers a semiparametric model, where hardly any assumptions are made on the
innovation distribution. The focus is on efficient estimation of the Euclidean
parameters as well as the distribution of the innovations. Even inefficient es-
timation of the innovation distribution has, to my best knowledge, not been
addressed before. A possible explanation for this is that, even if the parame-
ters are known, the innovations cannot be calculated from the observations.
Consequently, estimation of the innovation distribution cannot be based on
residuals (as is the case for AR processes). However, estimation of the inno-
vation distribution is, just as for standard AR models, an important topic. For
INAR processes this might be even more important, since in some applications
the innovation distribution has a physical interpretation. We provide an esti-
mator which might be viewed upon as a nonparametric maximum likelihood
estimator. It turns out that we cannot prove efficiency by standard semipara-
metric methodology. Efficiency is proved by using the special representation
of the limit distribution. In Chapters 2 and 3 the models only considered the
‘stationary part’ of the parameter space. To analyze the INAR model on the
boundary of the parameter space, Chapter 4 considers a nearly nonstationary
INAR(1) model and derives its limit experiment (in the Le Cam framework).
The main result of this chapter is that this limit experiment is based on one ob-
servation from a Poisson distribution. This is rather surprising since limit ex-
periments are usually Locally Asymptotically Quadratic (LAQ; see Jeganathan
(1995) and Le Cam and Yang (1990)) and even non-regular models often enjoy
a shift structure (see Hirano and Porter (2003a)), whereas the Poisson limit ex-
periment does not enjoy these two properties. To illustrate the statistical conse-
quences of the convergence to a Poisson limit experiment, we exploit this limit
experiment to construct efficient estimators of the autoregression parameter
in various models, and to construct an efficient test for the null hypothesis of a
unit root. Related to this, we show that the Dickey-Fuller test for a unit root has
no (local asymptotic) power.

Part II Chapter 5 discusses estimation of the marginals from a bivariate ran-
dom sample. The only assumption on the marginals is that they are absolutely
continuous. By Sklar’s theorem, the joint distribution is uniquely determined
by the copula (the dependence structure), and the marginal distributions. Of
course, the marginal empirical distribution functions are

p
n-consistent esti-
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mators of the marginal distribution functions. If the components are indepen-
dent then these estimators are known to be efficient. We prove that, amongst
smooth copulas, this is actually the only case that the marginal empirical distri-
bution functions are efficient. So the natural question is how knowledge on the
copula should be exploited to improve on the empirical distribution functions.
Motivated by an empirical likelihood argument we provide a new estimator of
the marginal distribution functions. Since the tangent space is the sum of two
non-orthogonal spaces, traditional semiparametric arguments cannot be used
to prove efficiency of our estimator. We derive, by ad hoc arguments, a special
representation of the limiting distribution of our estimator. Using this repre-
sentation we prove efficiency.
Chapter 6 derives semiparametric efficiency bounds for parametric compo-
nents in general semiparametric time series models. The time series models
considered are not, as is the case in the usual semiparametric time series ap-
proach, assumed to be driven by a sequence of independent innovations with
an unknown distribution. Instead of this, the dependence between the inno-
vations is seen as an additional nonparametric nuisance parameter. A Local
Asymptotic Normality (LAN) result is, under quite natural and economical con-
ditions, derived implying a lower bound on the asymptotic performance of
(regular) estimators.
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Part I

Nonnegative integer-valued
autoregressive processes
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1 Preliminaries

In Section 1.1 we recall the definition of INAR processes. Section 1.2, the main
part of this chapter, contributes some probabilistic results on INAR processes.
In particular, conditions for the existence of a strictly stationary solution and
the existence of moments under the stationary distribution are provided.

De�nition 1.1
The nonnegative INteger-valued AutoRegressive process of the order 1 (INAR(1))
was introduced by Al-Osh and Alzaid (1987). The INAR(1) process is defined by
the recursion,

X t =ϑ◦X t−1 +εt , t ∈Z+ =N∪ {0}, (1.1)

where1,

ϑ◦X t−1 =
X t−1∑
j=1

Z (t )
j .

The variables (Z (t )
j ) j∈N,t∈Z+ are i.i.d Bernoulli distributed variables with success

probability θ ∈ [0,1], independent of the i.i.d. innovation sequence (εt )t∈Z+ with
distribution G on Z+. Finally, the starting value X−1, with distribution ν on Z+,
is independent of (εt )t∈Z+ and (Z (t )

j ) j∈N,t∈Z+ . The random variable ϑ ◦ X t−1 is
called the Binomial thinning of X t−1 (this operator was introduced by Steutel
and Van Harn (1979) and, conditionally on X t−1, it follows a Binomial distri-
bution with success probability θ and number of trials equal to X t−1). Display
(1.1) can be interpreted as a branching process with immigration. The outcome

1An empty sum equals, by definition, 0. Although it would be more accurate to write ϑ(t )◦
instead of ϑ◦, this superscript is, to keep in line with the literature, dropped.
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X t is composed of the surviving elements of X t−1 during the period (t − 1, t ],
ϑ◦X t−1, and the number of immigrants during this period, εt . Each element of
X t−1 survives with probability θ and its survival has no effect on the survival of
the other elements, nor on the number of immigrants. In the literature on sta-
tistical inference for branching processes with immigration it is assumed that
one observes both the X process and the ε process. We consider the empirically
more common situation where the number of immigrants εt is not observed.
Note that, even if the true parameter θ would be known, the number of immi-
grants cannot be derived from the X process in the INAR(1) model.

The more general INAR(p) processes were first introduced by Al-Osh and Alzaid
(1990) but Du and Li (1991) proposed a different setup. In the setup of Du and Li
(1991) the autocorrelation structure of an INAR(p) process is the same as that of
an AR(p) process, whereas it corresponds to the one of an ARMA(p, p −1) pro-
cess in the setup of Al-Osh and Alzaid (1990). The setup of Du and Li (1991) has
been followed by most authors, and we use their setup as well. The INAR(p)
process is an analogue of (1.1) with p lags. An INAR(p) process is recursively
defined by,

X t =ϑ1 ◦X t−1 +ϑ2 ◦X t−2 +·· ·+ϑp ◦X t−p +εt , t ∈Z+, (1.2)

where, for i = 1, . . . , p,

ϑi ◦X t−i =
X t−i∑
j=1

Z (t ,i )
j .

Here (Z (t ,i )
j ) j∈N,t∈Z+ , i ∈ {1, . . . , p}, are p mutually independent collections of

i.i.d. Bernoulli variables with success probabilities θi ∈ [0,1], i = 1, . . . , p, inde-
pendent of the Z+-valued i.i.d. G-distributed innovations (εt )t∈Z+ . The starting
value (X−1, . . . , X−p )′ is independent of (εt )t∈Z+ and (Z (t ,i )

j )i∈{1,...,p}, j∈N,t∈Z+ , and

has distribution ν on Z
p
+. The corresponding probability space is denoted by

(Ω,F ,Pν,θ,G ), where θ = (θ1, . . . ,θp )′.

Without going into details, let us mention some empirical applications of INAR
processes. Applications in the medical sciences can be found in, for example,
Franke and Seligmann (1993) (epileptic seizure counts), Bélisle et al. (1998)
(spike trains), and Cardinal et al. (1999) (infectious disease incidence). An ap-
plication to psychometrics can be found in Böckenholt (1999a) (daily emo-
tion experiences), an application to environmentology in Thyregod et al. (1999)
(rainfall (rain data is most often collected by means of a tipping bucket rain
gauge, which is a discrete sampler counting the number of times a bucket is
filled in each sampling time interval)); recent applications to economics in, for
example, Böckenholt (1999b), Berglund and Brännäs (2001) (number of plants
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in Swedish municipalities), Brännäs and Hellström (2001), Rudholm (2001), Böck-
enholt (2003), Freeland and McCabe (2004), Gouriéroux and Jasiak (2004) (num-
ber of claims an insurance company receives), and McCabe and Martin (2005);
and Pickands III and Stine (1997) and Ahn et al. (2000) considered queueing
applications.

Stationarity, moments & auxiliaries 1.2
This section introduces notation for Part I of this thesis, and provides some
probabilistic results, which we need in later chapters.

Throughout Part I the number of lags, p ∈ N, is fixed. The following notation
is used: G denotes the set of all probability measures on Z+ = N∪ {0}. The Bi-
nomial distribution with parameters θ ∈ [0,1] and n ∈ Z+ is denoted by Binn,θ

(Bin0,θ is the Dirac-measure concentrated in 0), bn,θ denotes the corresponding
point mass function, and δx denotes the Dirac measure concentrated in x. In
general, we denote a probability measure onZ+ by a capital, and denote the as-
sociated probability mass function by the corresponding lower case. For G ∈G ,
µG denotes the mean of G , and σ2

G denotes its variance. As usual Eν,θ,G (·) is
shorthand for

∫
(·)dPν,θ,G . For (probability) measures F and G , F ∗G denotes

the convolution of F and G . Finally, F = (Ft )t≥−p is the filtration generated
by X , i.e. Ft = σ

(
X−p , . . . , X t

)
. Note that, contrary to classical AR(p) processes,

Ft 6=σ
(
X−p , . . . , X−1,ε0, . . . ,εt

)
.

Next, we compute the first two conditional moments of an INAR(p) process
to gain some insight in its dependence structure. It immediately follows from
(1.2) that, for t ∈Z+,

Eθ,G [X t |Ft−1] = Eθ,G
[

X t | X t−1, . . . , X t−p
]=µG +

p∑
i=1

θi X t−i ∈ [0,∞],

and,

varθ,G [X t |Ft−1] = varθ,G
[

X t | X t−1, . . . , X t−p
]=σ2

G+
p∑

i=1
θi (1−θi )X t−i ∈ [0,∞].

Hence an INAR(p) process has the same autoregression function as an AR(p)
process. However, an INAR(p) process has conditional heteroskedasticity of au-
toregressive form (actually it is an ARCH(p) process), whereas the conditional
variance is constant for AR(p) processes. For computations on higher-order
moments we refer to Silva and Oliveira (2004, 2005).

Next we determine the conditional distribution of X t given Ft−1. From (1.2)
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it follows, for t ∈Z+,

Pθ,G {X t = xt |Ft−1} =Pθ,G
{

X t = xt | X t−1, . . . , X t−p
}= Pθ,G

(X t−1,...,X t−p ),xt
,

where, for xt−p , . . . , xt ∈Z+, the transition-probability Pθ,G
(xt−1,...,xt−p ),xt

is given by,

Pθ,G
(xt−1,...,xt−p ),xt

=Pθ,G

{
p∑

i=1
ϑi ◦X t−i +εt = xt | X t−1 = xt−1, . . . , X t−p = xt−p

}

=
(
Binxt−1,θ1 ∗·· ·∗Binxt−p ,θp ∗G

)
{xt }. (1.3)

Note that X = (X t )t≥−p is a pth order Markov chain. To exploit this Markovian
structure we introduce the Zp

+-valued process Y = (Yt )t≥0 defined by

Yt = (X t−1, X t−2, . . . , X t−p )′, t ∈Z+. (1.4)

Under Pν,θ,G the process Y is a (first-order) Markov chain in Z
p
+. It is easy to

see that, in case g (0) < 1 and θ ∈ (0,1)p , the Markov chain Y is irreducible on
{α,α+1, . . . }p , where α= min{k ∈Z+ | g (k) > 0}. It is also easily seen that, under
these conditions, the chain is also aperiodic.

Franke and Seligmann (1993) gave conditions for the existence of a (strictly)
stationary INAR(1) process using generating functions. Du and Li (1991), Dion
et al. (1995), and Latour (1998) proved the existence of a stationary INAR(p)
process in case EGε

2
0 <∞ and

∑p
i=1θi < 1. Only using an elementary result on

Markov chains, we give an alternative shorter proof.

Theorem 1.1. For all G ∈ G with g (0) ∈ [0,1), µG < ∞, and θ ∈ (0,1)p with∑p
i=1θi < 1, there exists a probability measure νθ,G on Zp

+ such that X is a strictly
stationary process under Pνθ,G ,θ,G . The support of νθ,G is given by {α,α+1, . . . }p ,
where α= min{k ∈Z+ | g (k) > 0}.

Remark 1. Clearly, in case g (0) = 1, a strictly stationary solution is given by X t =
0 for all t , i.e. νθ,G = δ0.

Proof.
First note that it suffices to prove that the Markov chain Y (see (1.4)) has a sta-
tionary distribution. We prove this for the case g (0) > 0. The case g (0) = 0 runs
along the same lines.

By Qn
i , j we denote the n-step probability of moving from state i to j of the

process Y , i.e., Qn
i , j =Pδi ,θ,G {Yn = j }, i , j ∈Zp

+. Since, under the imposed condi-

tions, Y is aperiodic and irreducible onZp
+, it suffices, by, for example, Theorem

8.8 in Billingsley (1995), to prove that there exist states i , j ∈ Zp
+ for which Qn

i , j



Section 1.2 Stationarity, moments & auxiliaries 7

does not converge to 0 as n →∞.

It is easy to see that, for all t ∈Z+, Eδ0,θ,G X t <∞ when EGε0 <∞. We first show
that we even have supt∈Z+ Eδ0,θ,G X t <∞. Note that this statement indeed holds

true if we can show that Eδ0,θ,G X t ≤µG
∑t

j=0θ
j
∗, where θ∗ =

∑p
i=1θi which is less

than 1 by assumption. Obviously we have Eδ0,θ,G X−1 = ·· · = Eδ0,θ,G X−p = 0 and
Eδ0,θ,G X0 = µG . Hence the statement holds for t ∈ {−p, . . . ,0}. Let N ∈ Z+. As-

suming that Eδ0,θ,G X t ≤µG
∑t

j=0θ
j
∗ is valid for all t ∈ {−p, . . . , N } we obtain

Eδ0,θ,G XN+1 =µG +
p∑

i=1
θiEδ0,θ,G XN+1−i ≤µG +

p∑
i=1

θiµG

N∑
j=0

θ
j
∗ =µG

N+1∑
j=0

θ
j
∗,

which concludes the induction argument.
Using supt∈Z+ Eδ0,θ,G X t <∞, Markov’s inequality yields, for M > 0,

sup
t∈Z+

Pδ0,θ,G

{
max

i=1,...,p
X t−i > M

}
≤ p

M
sup
t∈Z+

Eδ0,θ,G X t .

Hence there exists M ∈N such that, for all t ∈Z+,Pδ0,θ,G
{
maxi=1,...,p X t−i ≤ M

}≥
1/2. Define BM = {(x1, . . . , xp ) ∈Zp

+ | ∀i ∈ {1, . . . , p} : xi ≤ M }, then, for n ≥ 1,

Qn+p
0,0 =Pδ0,θ,G {Yn+p = 0} ≥Pδ0,θ,G {Yn ∈ BM ,Yn+p = 0}

=
∑

(i1,...,in−1)∈Z(n−1)p
+

in∈BM

(in+1,...,in+p−1)∈Z(p−1)p
+

Q0,i1 · · ·Qin+p−1,0

=
∑

(i1,...,in−1)∈Z(n−1)p
+

in∈BM

Q0,i1 · · ·Qin−1,in Qp
in ,0.

Using in ∈ BM we obtain the (very crude) bound Qp
in ,0 ≥

[
g (0)(1−θ∗)pM

]p
, where

θ∗ = maxi=1,...,p θi . Since,

∑

(i1,...,in−1)∈Z(n−1)p
+ ,in∈BM

Q0,i1 · · ·Qin−1,in =Pδ0,θ,G
{

Xn−p ≤ M , . . . , Xn−1 ≤ M
}≥ 1

2
,

we obtain, for all n ∈N,

Qn+p
0,0 ≥ [

g (0)(1−θ∗)pM]p ∑

(i1,...,in−1)∈Z(n−1)p
+

in∈BM

Q0,i1 · · ·Qin−1,in

≥ 1

2

[
g (0)(1−θ∗)pM]p > 0,

which concludes the proof.
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Only in special cases it is possible to derive explicit formulas for νθ,G . As an ex-
ample: for p = 1 and G = Poisson(µ) we have νθ,G = Poisson(µ/(1−θ1)) (this is
well-known and is, using generating functions, easy to check). For this specific
case it is immediate that, under the stationary distribution, all moments exist.
In general this is not the case: if, for example, σ2

G =∞ then, under νθ,G , X0 can-
not have a finite second moment. The next lemma gives sufficient conditions
for the existence of moments under the stationary distribution. Oddly enough
it appears that the existence of higher order moments has not been considered
before.

Lemma 1.2.1. Let G ∈G with g (0) ∈ [0,1), and θ ∈ (0,1)p with
∑p

i=1θi < 1. Then,

for k ∈N, EGε
k
0 <∞ if and only if Eνθ,G ,θ,G X k

0 <∞.

Proof.
Of course, we only have to prove the ‘only if’.
We give the proof for the case g (0) > 0, for g (0) = 0 the argument is almost
similar. Under the assumption EGε

k
0 <∞ the stationary distribution νθ,G exists.

Since Y is an irreducible, aperiodic Markov chain with stationary distribution
νθ,G , we have L (Yt | Pδ0,θ,G ) → νθ,G . Hence (use the Portmanteau Lemma) we
have,

Eνθ,G ,θ,G X k
0 ≤ liminf

t→∞ Eδ0,θ,G X k
t ≤ sup

t≥0
Eδ0,θ,G X k

t .

Thus it suffices to prove

sup
t≥0

Eδ0,θ,G X k
t <∞. (1.5)

For k = 1 we have shown in the proof of Theorem 1.1 that Eδ0,θ,G X t is bounded
in t ∈ Z+. Let K ≥ 2. Suppose now that (1.5) holds for k = 1, . . . ,K − 1. If we
prove that then (1.5) also holds for k = K , then, by induction, the proof of the
lemma is complete. So suppose (1.5) holds for k = 1, . . . ,K −1. If Z1, . . . , Zn are
i.i.d. Bernoulli(θ) variables then we have, for k ≥ 2, the bound (easily follows by
elementary martingale theory; see, for example, Dharmadhikari et al. (1968))

E
∣∣∑n

i=1(Zi −θ)
∣∣k ≤Ck nk/2, where the constant Ck > 0 only depends on k. Using

that ϑi ◦X t−i , conditional on X t−i , follows a Binomial(X t−i ,θ) distribution, this
yields the following inequality,

Eδ0,θ,G |ϑi ◦X t−i −θi X t−i |K = Eδ0,θ,G
[
Eθ

[|ϑi ◦X t−i −θi X t−i |K | X t−i
]]

≤CKEδ0,θ,G X K /2
t−i .

So, using the induction hypothesis (K /2 ≤ K −1), we obtain

M = ‖ε0‖K +p sup
t∈Z+,1≤i≤p

(
Eδ0,θ,G |ϑi ◦X t−i −θi X t−i |K

)1/K <∞,
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where we denote ‖Z‖K = (
Eδ0,θ,G |Z |K )1/K

, i.e. the LK (Pδ0,θ,G ) norm. We prove
that, for all s ≥ 0,

‖Xs‖K ≤ M

1−∑p
i=1θi

. (1.6)

We have Eδ0,θ,G X K
−i = 0 for i = 1, . . . , p, and Eδ0,θ,G X K

0 = ‖ε0‖K
K . So (1.6) holds for

s =−p, . . . ,0. Let t ∈N. Suppose now that (1.6) holds for −p ≤ s ≤ t −1. We have,

‖X t‖K ≤
∥∥∥∥∥X t −

p∑
i=1

θi X t−i

∥∥∥∥∥
K

+
∥∥∥∥∥

p∑
i=1

θi X t−i

∥∥∥∥∥
K

≤ ‖εt‖K +
p∑

i=1
‖ϑi ◦X t−i −θi X t−i‖K +

p∑
i=1

θi‖X t−i‖K

≤ M +
p∑

i=1
θi

M

1−∑p
i=1θi

≤ M

1−∑p
i=1θi

.

Hence (1.6) holds for s = t . By induction we conclude that (1.6) holds for all
t ∈Z+. This completes the proof.

In subsequent chapters we repeatedly have to deal with objects that are build
of terms f (X t−p , . . . , X t ), i.e. they depend on two consecutive observations on
Y . Therefore we introduce the process Z = (Zt )t≥0, defined by

Zt = (X t , . . . , X t−p )′, t ∈Z+. (1.7)

It is easy to see that, in case g (0) < 1 and θ ∈ (0,1)p , Z is an irreducible, aperiodic
Markov chain on the state space2 Z = support(νθ,G ⊗Pθ,G ) ⊂ Z

p+1
+ . The next

proposition contains some auxiliary results.

Proposition 1.2.1. Let G ∈G with g (0) ∈ (0,1), µG <∞, θ ∈ (0,1)p with
∑p

i=1θi <
1. The following results hold.

1. Letν a probability measure onZp
+. If h :Zp+1

+ →R satisfies Eνθ,G ,θ,G h2(Z0) <
∞, then,

1p
n

n∑
t=0

(
h(Zt )−Eθ,G [h(Zt ) |Ft−1]

) d−→ N(0,σ2), under Pν,θ,G ,

where σ2 is given by,

σ2 = Eνθ,G ,θ,G h2(Z0)−Eνθ,G

(
Eθ,G [h(Z0) |F−1]

)2 .

2As usual, ν⊗Pθ,G denotes the joint distribution of (X−p , . . . , X0) under Pν,θ,G .
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2. Let C > 0. The Markov chain Z is V1-uniformly ergodic3 for V1 : Zp+1
+ →

[1,∞) given by V1(Zt ) = 1+C
∑p

i=0 X t−i . If also σ2
G <∞ then Z is also V2-

uniformly ergodic for V2(Zt ) = 1+C
(∑p

i=0 X t−i
)2

.

3. Add the assumption σ2
G <∞. Let ν a probability measure on Zp

+. Let K be

a compact subset of Rk . Let, for every κ ∈ K , f (·;κ) :Zp+1
+ →R such that,

sup
κ∈K

∣∣ f (x−p , . . . , x0;κ)
∣∣≤C

(
p∑

i=0
x−i

)2

,

for some constant C > 0, and for every x−p , . . . , x0 ∈ Z+ the map κ 7→
f (x−p , . . . , x0;κ) is continuous. Then we have, under Pν,θ,G

sup
κ∈K

∣∣∣∣
1

n

n∑
t=0

f (X t−p , . . . , X t ;κ)−Eνθ,G ,θ,G f (X−p , . . . , X0;κ)

∣∣∣∣
p−→ 0. (1.8)

And, for K 3κn → κ0,

1

n

n∑
t=0

f (X t−p , . . . , X t ;κn)
p−→ Eνθ,G ,θ,G f (X−p , . . . , X0;κ0), under Pν,θ,G . (1.9)

4. Under Pνθ,G ,θ,G the β-mixing (also called: absolute regularity mixing) co-
efficients4 of Z satisfy

β(n) ≤Cρn , for all n ∈N,

for some constant C > 0 and 0 < ρ < 1.

5. Add the assumption EGε
3
1 <∞. Let Zn denote the empirical process of Z ,

i.e. for f :Zp+1
+ →R satisfying Eνθ,G ,θ,G f 2(Z0) <∞,

Zn f = 1p
n

n∑
t=0

(
f (Zt )−Eνθ,G ,θ,G f (Z0)

)
.

Let F be a collection of R-valued functions on Zp+1
+ with, for some C >

0, sup f ∈F | f (x−p , . . . , x0)| ≤ C (x−p + ·· ·+ x0), and such that its bracketing

numbers5 with respect to the L2(νθ,G⊗Pθ,G )-norm, denoted by, N[ ](δ,F ),
δ> 0, satisfy

log N[ ](x,F ) =O(x−2ζ),

3Recall that the Markov chain Z is V -uniformly ergodic, with V : Z → [1,∞), if
supz∈Z sup f : | f |≤V |Eθ,G [ f (Zt )|Z0 = z]−Eνθ,G ,θ,G f (Z0)|/V (z) → 0 as t →∞.

4For the definition see, for example, Davydov (1973) or Doukhan (1994, page 3 and pages
87-88).

5A bracket is a pair of elements [ f , g ] of L2(νθ,G ⊗Pθ,G ) such that f ≤ g . For δ> 0 the brack-
eting number N[ ](δ,F ) is the smallest cardinality of collections S (δ) of brackets such that for
all f ∈F there exists [g ,h] ∈S (δ) such that g ≤ f ≤ h and

∫
(h − g )d(νθ,G ⊗Pθ,G ) ≤ δ2.
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with ζ ∈ (0,1). Then the process
{
Zn f | f ∈F

}
weakly converges, under

Pνθ,G ,θ,G , in `∞(F ) to a tight Gaussian process.

6. Define V :Zp
+ → [1,∞) by V (x−1, . . . , x−p ) = 1+∑p

i=1 ai x−i , where ai = θi +
·· ·+θp for i = 1, . . . , p. Let (θn ,Gn) be a sequence with, for all n ∈N, θn,i > 0
for all i ,

∑p
i=1θn,i < 1, gn(0) ∈ (0,1) and EGnε0 <∞. Then

lim
n→∞ sup

y∈Zp
+

sup f : | f |≤V

∣∣∣Eδy ,θn ,Gn f (Y1)−Eδy ,θ,G f (Y1)
∣∣∣

V (y)
= 0

implies

lim
n→∞ sup

f : | f |≤V

∣∣∣∣
∫

f dνθ,G −
∫

f dνθn ,Gn

∣∣∣∣= 0.

Proof.
Proof of Part 1: Since Y is a positive recurrent Markov chain, this follows from
Theorem 4.3.16 in Dacunha-Castelle and Duflo (1986) in case ν= δy . From this,
the result extends to arbitrary ν by looking at pointwise convergence of charac-
teristic functions, conditioning on the initial value and using dominated con-
vergence.

Proof of Part 2: We consider the V1-uniform ergodicity first. Introduce V :Zp+1
+ →

[1,∞) given by V (Zt ) = 1+∑p+1
i=1 ai X t+1−i , with ai = θi + ·· ·+θp for i = 1, . . . , p

and ap+1 = (1−a1)/2. If we verify that there exists a constant δ> 0 such that we
have, for all zt−1 ∈Z , except for some finite set, the inequality

Eθ,G
[
V (Zt ) | Zt−1 = zt−1 = (xt−1, . . . , xt−p−1)′

]−V (zt−1) ≤−δV (zt−1),

i.e. that a Foster-Lyanupov drift criterium holds, we obtain the first result from
Meyn and Tweedie (1994, Theorem 16.01). Let 0< δ< (1−a1)(min j=1,...,p θ j )/2 <
1. We have,

(1−δ)V (zt−1)−Eθ,G [V (Zt ) | Zt−1 = zt−1] = a + (1−δ)ap+1xt−p−1

+
p∑

i=1
[(1−δ)ai −ci ] xt−i ,

for some constant a and ci given by ci = a1θi +ai+1, i = 1, . . . , p. We show that,
for i = 1, . . . , p, (1−δ)ai −ci > 0 which implies that

(1−δ)V (zt−1)−Eθ,G [V (Zt ) | Zt−1 = zt−1] > 0,

outside a finite set. We have, for i = 1, . . . , p −1, (use ai = θi +ai+1),

(1−δ)ai −a1θi −ai+1 =−δai + (1−a1)θi >−δ+ (1−a1) min
j=1,...,p

θ j > 0,
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and (1−δ)ap −a1θp −ap+1 >−δ+0.5θp (1−a1)/2, which concludes the proof of
the V1-uniform ergodicity. Next we prove the V2-uniform ergodicity. Introduce

Ṽ : Zp+1
+ → [1,∞) given by Ṽ (Zt ) = 1+

(∑p+1
i=1 ai X t+1−i

)2
, with ai = θi + ·· ·+θp

for i = 1, . . . , p, and ap+1 = (1−a2
1)

(
min j θ j

)2 /4. Let 0 < δ < ap+1/4. After some
calculus we find,

Eθ,G
[
Ṽ (Zt ) | Zt−1 = zt−1

]= a +
p∑

i=1
αi X t−i +

p∑
i=1

p∑
j=1

βi j X t−i X t− j ,

where βi j = a2
1θiθ j +θi a1a j+1 +θ j a1ai+1 +ai+1a j+1 for i , j = 1, . . . , p. We show

that (1−δ)ai a j −βi j > 0 for i , j = 1, . . . , p. Using that, for i , j = 1, . . . , p −1,

ai a j = θiθ j +θi (θ j+1 +·· ·+θp )+θ j (θi+1 +·· ·+θp )+ai+1a j+1,

and ai a j < (θi +·· ·+θp ), we obtain, for i , j = 1, . . . , p −1,

(1−δ)ai a j −βi j > (1−a2
1)θiθ j −δai a j ≥ (1−a2

1)(min
j
θ j )2 −δ> 0.

For i = 1, . . . , p −1 we have (1−δ)ai ap −βi p > (1− a2
1)θiθp − ap+1 −δ > 0, and

(1−δ)a2
p −βpp > −δ+ (1− a2

1)θ2
p − ap+1(2a1θp + ap+1) > 0. We conclude that,

outside a finite set, we have

(1−δ)Ṽ (zt−1)−Eθ,G
[
Ṽ (Zt ) | Zt−1 = zt−1

]> 0.

So another application of the drift criterion in Meyn and Tweedie (1994, Theo-
rem 16.01) shows that Z is V2-uniformly ergodic.

Proof of Part 3: Since Z is V2-uniformly ergodic, a combination of Part 2 with
Meyn and Tweedie (1994, Theorem 16.0.1) yields, for a constant M > 0 and
ρ ∈ (0,1), such that for all t ∈Z+,

sup
z∈Z

sup f : | f |≤V2

∣∣Eθ,G [ f (Zt )|Z0 = z]−Eνθ,G ,θ,G f (Z0)
∣∣

V2(z)
≤ Mρt .

Using that V2(Z0) is Pνθ,G ,θ,G -integrable (by Lemma 1.1) we easily obtain

lim
t→∞ sup

f : | f |≤V2

∣∣Eν,θ,G f (Zt )−Eνθ,G ,θ,G f (Z0)
∣∣= 0. (1.10)

Display (1.10) yields, for M > 0,

lim
t→∞Eν,θ,GV2(Zt )1{V2(Zt )≥M } = Eνθ,G ,θ,GV2(Z0)1{V2(Z0)≥M}.

Hence we obtain, for M > 0,

lim
n→∞

1

n

n∑
t=0
Eν,θ,GV2(Zt )1{V2(Zt )≥M} = Eνθ,G ,θ,GV2(Z0)1{V2(Z0)≥M}.
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Dominated convergence now yields,

lim
M→∞

lim
n→∞

1

n

n∑
t=0
Eν,θ,GV2(Zt )1{V2(Zt )≥M } = 0.

Hence Assumption DM in Andrews (1992) is satisfied. Assumption TSE-1B in
that paper is also satisfied, by the compactness of K , by the continuity of κ 7→
f (z;κ), and because we have, from (1.10),

lim
n→∞

1

n

n∑
t=0
Pν,θ,G {Zt ∈ A} = νθ,G ⊗Pθ,G (A), for A ⊂Zp+1

+ .

A combination of the law of large numbers for Markov chains (see, for exam-
ple, Dacunha-Castelle and Duflo (1986, Theorem 4.3.15)) with Theorem 4 in
Andrews (1992) now yields,

sup
κ∈K

∣∣∣∣
1

n

n∑
t=0

f (X t−p , . . . , X t ;κ)−Eν,θ,G f (X−p , . . . , X0;κ)

∣∣∣∣
p−→ 0, under Pν,θ,G .

This yields (1.8), since (1.10) yields,

sup
κ∈K

∣∣Eν,θ,G f (X t−p , . . . , X t ;κ)−Eνθ,G ,θ,G f (X−p , . . . , X0;κ)
∣∣→ 0 as t →∞,

Display (1.9) follows by dominated convergence.

Proof of Part 4: Let Qn denote the n-step transition-operator of Z (drop the su-
perscript θ,G). From well-known results on mixing-numbers for Markov chains
(see, for example, Doukhan (1994, pages 87-89) it follows that it is sufficient to
prove that there exists a function A :Zp+1

+ → (0,∞) such that
∫

A d(νθ,G⊗Pθ,G ) <
∞ and

‖Qn(z, ·)−νθ,G ⊗Pθ,G‖TV ≤ A(z)ρn , z ∈Z , (1.11)

for some 0 < ρ < 1, where ‖ ·‖TV the total variational norm of a signed measure.
By Part 2 Z is V1-uniformly ergodic. Meyn and Tweedie (1994, Theorem 16.0.1)
now yields, for a constant M > 0 and ρ ∈ (0,1), such that for all t ∈Z+,

sup
z∈Z

sup f : | f |≤V2

∣∣Eθ,G [ f (Zt )|Z0 = z]−Eνθ,G ,θ,G f (Z0)
∣∣

V1(z)
≤ Mρt .

Since Eνθ,G ,θ,GV1(Z0) <∞ (by Lemma 1.1) and V ≥ 1 (1.11) immediately follows.

Proof of Part 5: this follows from Part (1) and Doukhan et al. (1995, Theorem 1,
Application 4, and Display (2.16)). In their setup proceed as follows. Take r =
3/2, notice that, using Markov’s inequality and Eνθ,G X 3

0 <∞ (by Lemma 1.1), the
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envelope belongs to Λ3(P ) = Λx
p

x(P ). Next, note that (2.16) in Doukhan et al.

(1995) is satisfied, since we have
∑∞

n=1 n−1/2β(n)(1−ζ)(r−1)/(2r ) <∞, by Part 4.

Proof of Part 6: Analogous to the proof of Part 2 it follows that the Markov chain
Y on Zp

+ is V -uniformly ergodic for V (Yt ) = 1+∑p
i=1 ai X t−i , ai = θi + ·· · +θp .

An application of Kartashov (1985, Theorem B) yields that Y is strongly stable
in this norm, i.e. that Part 6 holds.

Let us briefly comment on this proposition. Part 1 is stated for easy reference;
its purpose is clear. In Chapter 2, where we discuss the LAN-property for para-
metric INAR models, we encounter remainder terms which we will handle with
Part 3. We proved this uniform law of large numbers by exploiting a high level
result of Andrews (1992). The V -uniform ergodicity, Part 2, which we prove
by a drift criterium, appears to be new to the literature. Using this property,
Part 4, Part 5 and Part 6 follow quite easily from the literature. Part 5 is used in
Chapter 3 to demonstrate weak convergence of the infinite-dimensional part a
‘score-process’. And Part 6 shows that, in appropriate topologies, the stationary
distribution νθ,G is a continuous mapping of (θ,G).



2 Parametric stationary INAR(p)
models

This chapter considers parametric INAR(p) models: G belongs to a paramet-
ric class of distributions, say (Gα|α ∈ A ⊂ Rq ). Estimators of the parameters are
provided by several authors. For p = 1 and Gα = Poisson(α), Franke and Selig-
mann (1993) analyzed maximum likelihood. Du and Li (1991) and Freeland
and McCabe (2005) derived the limit-distribution of the OLS-estimator of θ.
Brännäs and Hellström (2001) considered GMM estimation, Silva and Oliveira
(2004) proposed a frequency domain based estimator of θ, and Silva and Silva
(2006) considered a Yule-Walker estimator. Jung et al. (2005) analyzed, by a
Monte Carlo study, the finite sample behavior of several estimators for the case
p = 1. Zheng et al. (2006) analyzed random coefficient INAR(p) processes. And
Enciso-Mora et al. (2006) and Neal and Subba Rao (2007) considered MCMC
estimation. In this chapter we are interested in asymptotic efficient estimation
of the parameters in an INAR(p) model. Maximum likelihood is, in general,
considered to be computationally unattractive, since the transition-densities
are convolutions of p + 1 distributions. The main result of this chapter is that
parametric INAR models enjoy the Local Asymptotic Normality property. A key
step, which makes the analysis tractable, is a certain conditional expectation
representation of the transition-scores. This representation is motivated by an
information-loss interpretation of the model. As a consequence of the LAN-
property, we obtain an efficient estimator of (θ,α) if there is available a

p
n-

consistent estimator. We prove that such an initial estimator always exists. This
yields a computationally attractive and efficient estimator.

Local Asymptotic Normality 2.1
We always restrict ourselves to the stationary parameter regime, i.e., θ ∈ (0,1)p

with
∑p

i=1θi < 1 (see Chapter 4 for the asymptotic structure of an INAR(1) model
at the boundary of the parameter space). In a first model, the immigration-
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distribution G and the initial distribution ν are completely known. Observing
(X−p , . . . , Xn) leads to the following sequence of statistical experiments

E (n)
1 (ν,G) =

(
Z

n+1+p
+ ,2Z

n+1+p
+ ,

(
P

(n)
ν,θ,G | θ ∈Θ

))
, n ∈Z+,

where the initial distribution ν and the immigration distribution G ∈ G are
fixed, Θ = {θ ∈ (0,1)p | ∑p

i=1θi < 1}, and P(n)
ν,θ,G denotes the law of (X−p , . . . , Xn)

on the measurable space
(
Z

n+1+p
+ ,2Z

n+1+p
+

)
underPν,θ,G . In this model G is com-

pletely known, but we also want to consider the case where G belongs to a para-
metric model, for example, G = Poisson(α). So let A ⊂ Rq and GA = (Gα)α∈A be
a family of elements in G , such that α 7→Gα is sufficiently smooth (this will be
made precise later). We then consider the sequence of experiments, induced by
observing (X−p , . . . , Xn),

E (n)
2 (ν,GA) =

(
Z

n+1+p
+ ,2Z

n+1+p
+ ,

(
P

(n)
ν,θ,α | θ ∈Θ,α ∈ A

))
, n ∈Z+,

where, for notational convenience, we abbreviate Gα in sub- and superscripts
by α. In particular, νθ,Gα

is denoted by νθ,α. In this section we prove the LAN-
property for the sequence of experiments E (n)

2 (ν,GA), n ∈Z+, immediately im-

plying the LAN-property for the sequence of experiments E (n)
1 (ν,G), n ∈Z+.

Let GA = (Gα|α ∈ A) be a parametric family of innovation distributions, where
A is an open, convex subset of Rq such that,

(A1) the support of Gα does not depend on α and we have 0 < gα(0) < 1;

(A2) for all e ∈Z+ and α ∈ A, the expressions,

hα(e) = ∂

∂α
log

(
gα(e)

)
1(0,1]

(
gα(e)

) ∈Rq ,

ḣα(e) = ∂2

∂αT∂α
log

(
gα(e)

)
1(0,1]

(
gα(e)

) ∈Rq×q ,

are defined and, for all e ∈Z+, they are continuous in α;

(A3) for every (θ,α) ∈Θ× A, there exists δ> 0 and a constant C > 0 such that

sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

Eθ̃,α̃

[|hα̃(ε0)|2 | X0, . . . , X−p
]≤C

(
p∑

i=0
X−i

)2

, (2.1)

and, for i , j = 1, . . . , q ,

sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

Eθ̃,α̃

[∣∣ḣα̃,i j (ε0)
∣∣ | X0, . . . , X−p

]≤C

(
p∑

i=0
X−i

)2

, (2.2)

where ḣα,i j (e) is the (i , j )-entry of the matrix ḣα(e);



Section 2.1 Local Asymptotic Normality 17

(A4) the information-equality EαhαhT
α (ε0) =−Eαḣα(ε0) is satisfied, and the q×

q matrix EαhαhT
α (ε0) is non-singular and continuous in α;

(A5) Eαε2
0 <∞ for α ∈ A;

(A6) Gα =Gα′ implies α=α′.

Remark 2. Assumption (A1) is necessary to make sure that the INAR process
can reach state 0. This is a reasonable assumption for virtually all applications.
From a technical point of view, this assumption will help us to prove invertibil-
ity of the Fisher information.

Remark 3. It is well-known that Assumptions (A2) and (A4) ensure that GA is dif-
ferentiable in quadratic mean with score hα(ε0) (see, for example, Lemma 7.6
in Van der Vaart (2000)) and consequently Eαh(ε0) = 0, see the proof of Theo-
rem 7.2 in Van der Vaart (2000).

Remark 4. Assumptions (A1)-(A6) are of the Cramér-type. Conditions (2.1) and
(2.2) in Assumption (A3) are rather awkward. A simple sufficient condition is
given by |hα,i (e)| ≤ aα + cαe and |ḣα,i j | ≤ bα+dαe2 for aα,bα,cα and dα that
are (locally) bounded in α. Now it is easy to see that the (in the literature often-
used) example A = (0,∞) and Gα = Poisson(α) satisfies the conditions above.

We note that in (2.1) and (2.2) the upper-bound C
(∑p

i=0 X−i
)2

can be replaced

by Pνθ,α,θ,α-integrable variables Mθ,α
1 and Mθ,α

2 in case the initial distribution ν
has finite support (in that case ergodicity instead of V2-uniform ergodicity (see
Proposition 1.2.1.2) suffices).

To see that the sequence of experiments (E (n)
2 (ν,GA))n∈Z+ has the LAN-property,

we need to determine the asymptotic behavior of a localized log-likelihood ra-
tio. To that end we first write down the likelihood. By the p-th order Markov-
structure, the likelihood is given by,

Ln(θ,α | X−p , . . . , Xn) = ν{X−1, . . . , X−p }
n∏

t=0
Pθ,α

(X t−1,...,X t−p ),X t
.

Since the likelihood is extremely smooth in (θ,α), it seems to be appropriate to
establish the LAN-property directly, using a Taylor-expansion. This is the path
we take. To obtain useful expressions for the transition-scores for θ and α, we
briefly discuss how we can view upon the model as an information-loss model.
Suppose that, instead of just observing X−p , . . . , Xn , we would also be able to
observe ϑi ◦ X t−i , i = 1, . . . , p, t = 0, . . . ,n. Then εt = X t −

∑p
i=1ϑi ◦ X t−i also

belongs to the information set at time t , just as in the classical AR(p) model.
In our model, with only observations on X−p , . . . , Xn , this does not hold true;
there is loss of information. The ‘information-loss principle’, see for example
Le Cam and Yang (1988) or Bickel et al. (1998, Proposition A.5.5), suggests that
the transition-score for θi in the model where we only observe X t−p , . . . , X t ,
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equals the conditional expectation, given X t−p , . . . , X t , of the transition-score
for θi in the model with also observations on ϑi ◦ X t−i , i = 1, . . . , p. It is not dif-
ficult to see that the transition-score for θi in the model with the additional
observations ϑi ◦X t−i is nothing but the score of a BinX t−i ,θi distribution. Recall
that the score of a Binx,θ distribution is given by, for θ ∈ (0,1),

ṡx,θ(k) =
(
∂

∂θ
logbx,θ(k)

)
1(0,1](bx,θ(k)) = k −θx

θ(1−θ)
1{0,...,x}(k), x ∈Z+. (2.3)

Hence, the information-loss structure suggests that the transition-score for θi

in our model equals,

Eθ,α
[
ṡX t−i ,θi (ϑi ◦X t−i ) | X t , . . . , X t−p

]
.

Similarly, the transition-score for α is conjectured to be equal to,

Eθ,α
[
hα(εt ) | X t , . . . , X t−p

]
.

One way to make this reasoning precise, is to show that the model is differen-
tiable in quadratic mean with respect to (θ,α). Instead, since the model is ex-
tremely smooth, we may derive the transition-scores directly by calculating the
partial derivatives of logPθ,α

(xt−1,...,xt−p ),xt
with respect to both θ andα. It is easy to

see that, for xt−p , . . . , xt ∈Z+, i = 1, . . . , p, θ ∈ (0,1)p , we have,

˙̀
θ,i (xt−p , . . . , xt−1, xt ;θ,α) = ∂

∂θi
log

(
Pθ,α

(xt−1,...,xt−p ),xt

)
1(0,1]

(
Pθ,α

(xt−1,...,xt−p ),xt

)

=
∑

k ṡxt−i ,θi (k)bxt−i ,θi (k)
(
Gα * j 6=i Binxt− j ,θ j

)
{xt −k}

Pθ,α
(xt−1,...,xt−p ),xt

1(0,1]

(
Pθ,α

(xt−1,...,xt−p ),xt

)

= Eθ,α
[
ṡX t−i ,θi (ϑi ◦X t−i ) | X t = xt , . . . , X t−p = xt−p

]
, (2.4)

where we put Eθ,α
[ · | X t = xt , . . . , X t−p = xt−p

]= 0 if Pν,θ,α{X t−p = xt−p , . . . , X t =
xt } = 0. Similarly we find, for xt−p , . . . , xt ∈Z+, and i = 1, . . . , q ,

˙̀
α,i (xt−p , . . . , xt−1, xt ;θ,α) = ∂

∂αi
log

(
Pθ,α

(xt−1,...,xt−p ),xt

)
1(0,1]

(
Pθ,α

(xt−1,...,xt−p ),xt

)

=
∑

e hα,i (e)gα(e)
(
* j=1,...,p Binxt− j ,θ j

)
{xt −e}

Pθ,α
(xt−1,...,xt−p ),xt

1(0,1]

(
Pθ,α

(xt−1,...,xt−p ),xt

)

= Eθ,α
[
hα,i (εt ) | X t = xt , . . . , X t−p = xt−p

]
. (2.5)

For the case p = 1 and Gα = Poisson(α), representation (2.4) was also found by
Freeland and McCabe (2004). Although we established (2.4) and (2.5) also by
direct calculations, we stress that the structure is due to the information-loss
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interpretation of the model. From the representation it immediately follows
that the score is a martingale. If we would not have the representations avail-
able, this would be a tedious matter. A Taylor-expansion of the localized log-
likelihood ratio, a martingale central limit theorem, and a law of large numbers
now suggest that the sequence of experiments (E (n)

2 (ν,GA))n∈Z+ has the LAN-
property. The following theorem gives the precise result.

Theorem 2.1. Let GA ⊂G satisfy Assumptions (A1)-(A5),ν a probability measure
on Z

p
+, and (θ,α) ∈ Θ× A. Then the sequence of experiments (E (n)

2 (ν,GA))n∈Z+
has the LAN-property in (θ,α), i.e. for every u = (u1,u2) ∈ Rp ×Rq the following
expansion holds,

log
dP(n)

ν,θ+u1/
p

n,α+u2/
p

n

dP(n)
ν,θ,α

(X−p , . . . , Xn) = log
Ln

(
θ+ u1p

n
,α+ u2p

n
| X−p , . . . , Xn

)

Ln
(
θ,α | X−p , . . . , Xn

)

= uT Sn − 1

2
uT Ju +Rn ,

where the score (also called central sequence),

Sn = Sn(θ,α) = 1p
n

n∑
t=0

( ˙̀
θ(X t−p , . . . , X t ;θ,α)

˙̀
α(X t−p , . . . , X t ;θ,α)

)
, (2.6)

satisfies

Sn
d−→ N(0, J ), under Pν,θ,α. (2.7)

The Fisher-information defined by,

J = J (θ,α) =
(

Jθ Jθ,α

Jα,θ Jα

)

=
(
Eνθ,α,θ,α

˙̀
θ

˙̀T
θ

(X−p , . . . , X0;θ,α) Eνθ,α,θ,α
˙̀
θ

˙̀T
α(X−p , . . . , X0;θ,α)

Eνθ,α,θ,α
˙̀
α

˙̀T
θ

(X−p , . . . , X0;θ,α) Eνθ,α,θ,α
˙̀
α

˙̀T
α(X−p , . . . , X0;θ,α)

)
,

is non-singular, and Rn = Rn(u,θ,α)
p−→ 0 under Pν,θ,G .

Remark 5. If one wants to draw the initial value, (X−1, . . . , X−p )′, according to the

stationary distribution, one considers the sequence of experiments Ẽ (n)
2 (GA) =

(Zn+1+p
+ ,2Z

n+1+p
+ , (P(n)

νθ,α,θ,α | θ ∈ Θ,α ∈ A)), n ∈ Z+. If the conditions in Theo-

rem 2.1 are satisfied and if the initial value is negligible: for all u = (u1,u2) ∈Rp×
Rq we have νθ+u1/

p
n,α+u2/

p
n{X−1, . . . , X−p }−νθ,α{X−1, . . . , X−p } = o(Pνθ,α,θ,α;1),

then we also have the LAN-property for (Ẽ (n)
2 (GA))n∈Z+ . In case p = 1, A = (0,∞),

and Gα = Poisson(α), it is easy to see, using generating functions, that νθ,α =
Poisson(α/(1−θ)). For this case the negligibility of the initial value readily fol-
lows. See the proof of Lemma 3.3.1 how to verify, in general, the negligibility.
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Remark 6. For the case p = 1 and Gα = Poisson(α), the non-singularity of J was
obtained, via direct calculation, by Franke and Seligmann (1993).

Proof.
Using Assumption (A5) on GA and Lemma 1.2.1 we obtain Eν0,θ,αX 2

0 <∞, where,
for notational convenience, we denote ν0 = νθ,α.

Expansion of log-likelihood ratio: Let u = (u1,u2) ∈Rp×Rq , u 6= 0 (the case u = 0
is, of course, trivial). Since Θ× A is open and convex we obtain, by Taylor’s the-
orem,

log
Ln

(
θ+ u1p

n
,α+ u2p

n
| X−p , . . . , Xn

)

Ln
(
θ,α | X−p , . . . , Xn

) = uT Sn(θ,α)− 1

2
uT Jn(θ̃n , α̃n)u, (2.8)

where (θ̃n , α̃n) is a random point on the line-segment between (θ,α) and (θ+
u1/

p
n,α+u2/

p
n) and

Jn(θ,α) =− 1p
n

∂

∂(θ,α)T
Sn(θ,α). (2.9)

First, we give some auxiliary calculations in Part 0. Part 1 shows that Sn(θ,α)
d−→

N(0, J ) under Pν,θ,α, in Part 2 we prove that Jn(θ̃n , α̃n)
p−→ J under Pν,θ,α, and,

finally, in Part 3 we prove the non-singularity of J .

Part 0: auxiliary calculations In this part we show that certain expressions are
integrable, which is needed in Step 1 and Step 2.
It is easy to see that, for θ ∈ (0,1), ` ∈N, we have

∂`

∂θ`
logbx,θ(k) = (−1)`+1(`−1)!

k

θ`
− (`−1)!

x −k

(1−θ)`
,

and hence
∣∣∣∣
∂`

∂θ`
logbx,θ(k)

∣∣∣∣≤ (`−1)!x

(
1

(1−θ)`
∨ 1

θ`

)
≤ (`−1)!

x

(1−θ)`θ`
. (2.10)

For notational convenience we denote

ṡx,θ(k) = ∂

∂θ
logbx,θ(k), and s̈x,θ(k) = ∂2

∂θ2
logbx,θ(k).

From (2.4) and (2.10) we obtain the bound

∣∣ ˙̀
θ,i (X−p , . . . , X0;θ,α)

∣∣≤ 1

θi (1−θi )
X−i . (2.11)
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From Assumption (A3) on GA we obtain δ> 0. If necessary, decrease δ such that
the ball round θ with radius δ is a subset of Θ. Of course, this has no influence
on the validity of (2.1) and (2.2). Using (2.11) and Cauchy-Schwarz, we obtain,
for i , j = 1, . . . , p,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣ ˙̀
θ,i

˙̀
θ, j (X−p , . . . , X0; θ̃, α̃)

∣∣

≤ Mθ

√
Eν0,θ,αX 2

−iEν0,θ,αX 2
− j = MθEν0,θ,αX 2

0 <∞, (2.12)

for some constant Mθ > 0. Using (2.1) from Assumption (A3) on GA we obtain,
for i , j = 1, . . . , q ,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

| ˙̀
α,i

˙̀
α, j (X−p , . . . , X0; θ̃, α̃)|

≤ Eν0,θ,α sup
(θ̃,α̃)∈Bδ

√
Eθ̃,α̃

[|hα̃,i (ε0)|2 | X0, . . . , X−p
]
Eθ̃,α̃

[|hα̃, j (ε0)|2 | X0, . . . , X−p
]

≤CEν0,θ,α

(
p∑

i=0
X−i

)2

<∞, (2.13)

where Bδ = {(θ̃, α̃)| |(θ̃, α̃)− (θ,α)| < δ}. Using Cauchy-Schwarz, (2.10) and (2.1)
from Assumption (A3) on GA we also have, for i = 1, . . . , p, j = 1, . . . , q ,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣ ˙̀
θ,i

˙̀
α, j (X−p , . . . , X0; θ̃, α̃)

∣∣<∞. (2.14)

In the same way as we derived (2.4) we obtain the representations,

∂2

∂θ2
i

Pθ,α
(X−1,...,X−p ),X0

Pθ,α
(X−1,...,X−p ),X0

= Eθ,α

[
s̈X−i ,θi (ϑi ◦X−i )+ ṡ2

X−i ,θi
(ϑi ◦X−i ) | X0, . . . , X−p

]
,

and for i 6= j ,

∂2

∂θ j∂θi
Pθ,α

(X−1,...,X−p ),X0

Pθ,α
(X−1,...,X−p ),X0

= Eθ,α

[
ṡX−i ,θi (ϑi ◦X−i )ṡX− j ,θ j (ϑ j ◦X− j ) | X0, . . . , X−p

]
.

Using (2.10) we obtain the bound, for i , j = 1, . . . , p,
∣∣∣∣∣∣

∂2

∂θi∂θ j
Pθ,α

(X−1,...,X−p ),X0

Pθ,α
(X−1,...,X−p ),X0

∣∣∣∣∣∣
≤ 1

θi (1−θi )

1

θ j (1−θ j )

(
X 2
−i +X 2

− j

)
,

which, since Eν0,θ,αX 2
t <∞, implies, for i , j = 1, . . . , p,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣∣∣∣∣

∂2

∂θi∂θ j
P θ̃,α̃

(X−1,...,X−p ),X0

P θ̃,α̃
(X−1,...,X−p ),X0

∣∣∣∣∣∣∣
<∞. (2.15)
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In the same way as we derived (2.5) we obtain the representation, for i , j =
1, . . . , q ,

∂2

∂αi∂α j
Pθ,α

(X−1,...,X−p ),X0

Pθ,α
(X−1,...,X−p ),X0

= Eθ,α
[
ḣα, j i (ε0)+hα, j (ε0)hα,i (ε0) | X0, . . . , X−p

]
.

Using (2.1) from Assumption (A3) on GA we obtain,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣Eθ̃,α̃

[
hα̃, j (ε0)hα̃,i (ε0) | X0, . . . , X−p

]∣∣∣

≤ Eν0,θ,α sup
(θ̃,α̃)∈Bδ

√
Eθ̃,α̃

[|hα̃, j (ε0)|2 | X0, . . . , X−p
]
Eθ̃,α̃

[|hα̃,i (ε0)|2 | X0, . . . , X−p
]

≤CEν0,θ,α

(
p∑

i=0
X−i

)2

<∞,

where Bδ = {(θ̃, α̃)| |(θ̃, α̃)− (θ,α)| < δ}. Hence, an combination with (2.2) from
Assumption (A3), yields, for i , j = 1, . . . , q ,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣∣∣∣∣

∂2

∂αi∂α j
P θ̃,α̃

(X−1,...,X−p ),X0

P θ̃,α̃
(X−1,...,X−p ),X0

∣∣∣∣∣∣∣
<∞. (2.16)

Next we compute for i = 1, . . . , p, j = 1, . . . , q , the representation,

∂2

∂α j∂θi
Pθ,α

(X−1,...,X−p ),X0

Pθ,α
(X−1,...,X−p ),X0

= Eθ,α
[
hα, j (ε0)ṡX−i ,θi (ϑi ◦X−i ) | X0, . . . , X−p

]
,

which, using (2.10) and (2.1), yields,

Eν0,θ,α sup
(θ̃,α̃):|(θ̃,α̃)−(θ,α)|<δ

∣∣∣Eθ̃,α̃

[
hα̃, j (ε0)ṡX−i ,θ̃i

(ϑi ◦X−i ) | X0, . . . , X−p

]∣∣∣

≤ Mθ

√
Eν0,θ,αX 2

0

√√√√CEν0,θ,α

(
p∑

i=0
X−i

)2

<∞. (2.17)

Part 1: the score From (2.4) it follows that,

Eθ,α
[

˙̀
θ,i (X t−p , . . . , X t ;θ,α) | X t−1, . . . , X t−p

]

= Eθ,α
[
ṡX t−i ,θi (ϑi ◦X t−i ) | X t−1, . . . , X t−p

]= 0, (2.18)

sinceϑi ◦X t−i , conditional on X t−p , . . . , X t−1, has expectation θi X t−i . From (2.5)
it follows that,

Eθ,α
[

˙̀
α, j (X t−p , . . . , X t ;θ,α) | X t−1, . . . , X t−p

]
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= Eθ,α
[
hα, j (εt ) | X t−1, . . . , X t−p

]= 0, (2.19)

since εt is independent of X t−p , . . . , X t−1 and Eαhα, j (ε0) = 0. Let w = (w1, w2) ∈
Rp ×Rq . From (2.18) and (2.19) it follows that,

Eθ,α
[
w T

1
˙̀
θ(X t−p , . . . , X t ;θ,α)+w T

2
˙̀
α(X t−p , . . . , X t ;θ,α) | X t−1, . . . , X t−p

]= 0,

and, by (2.12) and (2.13),

Eν0,θ,α
[
wT

1
˙̀
θ(X−p , . . . , X0;θ,α)+w T

2
˙̀
α(X−p , . . . , X0;θ,α)

]2 = wT J w <∞.

Hence we have, by Proposition 1.2.1A,

1p
n

n∑
t=0

[
wT

1
˙̀
θ(X t−p , . . . , X t ;θ,α)+w T

2
˙̀
α(X t−p , . . . , X t ;θ,α)

] d−→ w T N(0, J ),

under Pν,θ,α. Display (2.7) now follows by applying the Cramér-Wold device,
which concludes Part 1.

Part 2: the Fisher information In this part we prove that Jn(θ̃n , α̃n)
p−→ J under

Pν,θ,α, where

Jn(θ,α) =
(

Jθn Jθ,α
n

Jα,θ
n Jαn

)

=− 1

n

n∑
t=0

(
∂
∂θT

˙̀
θ(X t−p , . . . , X t ;θ,α) ∂

∂αT
˙̀
θ(X t−p , . . . , X t ;θ,α)

∂
∂θT

˙̀
α(X t−p , . . . , X t ;θ,α) ∂

∂αT
˙̀
α(X t−p , . . . , X t ;θ,α)

)
. (2.20)

Using Assumption (A2) on GA it is easy to see that for x−p , . . . , x0 ∈Z+ the follow-
ing mappings are all continuous: (θ,α) 7→ (∂/∂θ) log ˙̀

θ(x−p , . . . , x0;θ,α), (θ,α) 7→
(∂/∂θ) log ˙̀

α(x−p , . . . , x0;θ,α), (θ,α) 7→ (∂/∂α) log ˙̀
θ(x−p , . . . , x0;θ,α) and (θ,α) 7→

(∂/∂α) log ˙̀
α(x−p , . . . , x0;θ,α). Since we already proved (2.12), (2.13), (2.14), (2.15),

(2.16), and (2.17), it is sufficient, by Proposition 1.2.1.3, to prove that we have

Jn(θ,α)
p−→ J .

First we consider the diagonal of Jθn . For i ∈ {1, . . . , p}, the calculations in Part 0
and a Markov law of large numbers (see Dacunha-Castelle and Duflo (1986,
Theorem 4.3.15)), yield,

Jθn,i i
p−→−Eν0,θ,αEθ,α

[
s̈X−i ,θi (ϑi ◦X−i )+ ṡ2

X−i ,θi
(ϑi ◦X−i ) | X0, . . . , X−p

]

+Eν0,θ,α
˙̀2
θ,i (X−p , . . . , X0;θ,α) = Jθi i ,

where the last equality follows from,

Eν0,θ,α

[
s̈X−i ,θi (ϑi ◦X−i )+ ṡ2

X−i ,θi
(ϑi ◦X−i )

]
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= Eν0,θ,αEθ,α

[
s̈X−i ,θi (ϑi ◦X−i )+ ṡ2

X−i ,θi
(ϑi ◦X−i ) | X−1, . . . , X−p

]
= 0,

which is standard once one realizes that ϑi ◦ X−i given X−p , . . . , X−1 is BinX−i ,θi

distributed. Next we consider the off-diagonal elements of Jθ. Let i 6= j . Apply-
ing the representations in Part 0 and a Markov law of large numbers gives,

Jθn,i j
p−→−Eν0,θ,αEθ,α

[
ṡX−i ,θi (ϑi ◦X−i )ṡX− j ,θ j (ϑ j ◦X− j ) | X0, . . . , X−p

]

+Eν0,θ,α
˙̀
θ,i

˙̀
θ, j (X−p , . . . , X0;θ,α) = Jθi j ,

since,

Eν0,θ,α ṡX−i ,θi (θi ◦X−i )ṡX− j ,θ j (ϑ j ◦X− j )

= Eν0,θ,αEθ,α

[
ṡX−i ,θi (ϑi ◦X−i )ṡX− j ,θ j (ϑ j ◦X− j ) | X−1, . . . , X−p

]
= 0,

because ϑi ◦ X−i and ϑ j ◦ X− j given X−p , . . . , X−1 are mean-zero and indepen-

dent. Next we consider the block Jθ,α
n (by symmetry this also yields the result

for the block Jα,θ
n ). Using the representations derived in Part 0 and a law of large

numbers for Markov chains we obtain,

Jθ,α
n,i j

p−→−Eν0,θ,αEθ,α
[
hα, j (ε0)ṡX−i ,θi (ϑi ◦X−i ) | X0, . . . , X−p

]

+Eν0,θ,α
˙̀
α, j

˙̀
θ,i (X−p , . . . , X0;θ,α) = I θ,α

i j ,

since,

Eν0,θ,α
[
Eθ,α

[
hα, j (ε0)ṡX−i ,θi (ϑi ◦X−i ) | X0, . . . , X−p

]]

= Eν0,θ,αhα, j (ε0)ṡX−i ,θi (ϑi ◦X−i ) = 0,

because hα, j (ε0) and ṡX−i ,θi (ϑi ◦X−i ) are independent and have mean zero.
Finally we treat Jαn . Using the representations in Part 0 and the law of large num-
bers again, we obtain

Jαn
p−→−Eν0,θ,αEθ,G

[
ḣα(ε0)+hαhT

α (ε0) | X0, . . . , X−p
]

+Eν0,θ,α
˙̀
α

˙̀T
α(X−p , . . . , X0;θ,α) = Jα,

since, by Assumption (A4) on GA,

Eν0,θ,αEθ,α
[
ḣα(ε0)+hαhT

α (ε0) | X0, . . . , X−p
]= Eαḣα(ε0)+EαhαhT

α (ε0) = 0.

Part 3: non-singularity of J Finally we prove that J is non-singular. First we prove
that Jα is non-singular. If Jα would be singular we would have,

aT
2

˙̀
α

(
X−p , . . . , X0;θ,α

)= 0 Pν0,θ,α-a.s. for certain a2 ∈Rq \{0}.
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Note that we have, for all k ∈ support(Gα), Pν0,θ,α
{

X−p = ·· · = X−1 = 0, X0 = k
}>

0, and on the event Ek = {
X−p = ·· · = X−1 = 0, X0 = k

}
we have ε0 = k. Hence, for

k ∈ support(Gα), we obtain on the event Ek

0 = aT
2

˙̀
α

(
X−p , . . . , X0;θ,α

)= aT
2 Eθ,α

[
h(ε0) | X0, . . . , X−p

]= aT
2 hα(k),

which contradicts Assumption (A4) on GA that Eαhα(ε0)hT
α (ε0) is non-singular.

Hence Jα is indeed non-singular.
Suppose that (a1, a2) is such that

aT
1

˙̀
θ

(
X−p , . . . , X0;θ,α

)+aT
2

˙̀
α

(
X−p , . . . , X0;θ,α

)= 0 Pν0,θ,α-a.s. (2.21)

Let i ∈ {1, . . . , p} and note that for k ∈Z+ the event

{X j = 0 for j ∈ {−p, . . . ,0}\{−i }, X−i = k}

has positive probability under Pν0,θ,α and that on this event we have,

˙̀
θ,i

(
X−p , . . . , X0;θ,α

)= Eθ,α
[
ṡX−i ,θi (ϑi ◦X−i ) | X0, . . . , X−p

]=− θi k

θi (1−θi )
,

˙̀
θ, j

(
X−p , . . . , X0;θ,α

)= Eθ,α

[
ṡX− j ,θ j (ϑ j ◦X− j ) | X0, . . . , X−p

]
= 0, for j 6= i ,

and,

˙̀
α,m(X−p , . . . , X0;θ,α) = Eθ,α

[
hα,m(ε0) | X0, . . . , X−p

]= hα,m(0).

Hence we obtain from (2.21), for k ∈Z+, i = 1, . . . , p, the equality,

−a1,iθi k

θi (1−θi )
+aT

2 hα(0) = 0,

which is only possible if a1 = 0. Hence a1 = 0, so from (2.21) we get

aT
2

˙̀
α

(
X−p , . . . , X0;θ,α

)= 0 Pν0,θ,α-a.s.

This is only possible if a2 = 0, since we already proved that Jα is non-singular.
Thus (a1, a2) = 0, and we conclude that J is non-singular.

If we want to consider the sequence of experiments E (n)
1 (ν,G), n ∈ Z+, we can

always embed G in a parametric model GA which satisfies Assumptions (A1)-
(A5). Then an application of the preceding theorem with u2 = 0 immediately
yields the following corollary.

Corollary 2.2. Let θ ∈Θ, let G ∈G with EGε
2
0 <∞, and g (0) ∈ (0,1), and let ν be

a probability measure on Zp
+. Then the sequence of experiments (E (n)

1 (ν,G))n∈Z+
has the LAN-property in θ, i.e. for every u ∈Rp the following expansion holds,

log
dP(n)

ν,θ+ up
n

,G

dP(n)
ν,θ,G

(X−p , . . . , Xn) = uT Sθn − 1

2
uT Jθu +Rn ,

where Sθn = n−1/2 ∑n
t=0

˙̀
θ(X t−p , . . . , X t ;θ,G)

d−→ N(0, Jθ) underPν,θ,G , Jθ = Jθ(θ,G)

is invertible, and Rn = Rn(u,θ,G)
p−→ 0 under Pν,θ,G .
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2.2 E�cient estimation
This section provides efficient estimators of the parameters in an INAR(p) model
based on the ubiquitous one-step update method.

2.2.1 Innovation distribution is known
In case µG <∞, an initial estimator of θ is the OLS-estimator,

θ̂G
n =




∑n
t=0 X 2

t−1 . . .
∑n

t=0 X t−1X t−p
...

. . .
...∑n

t=0 X t−p X t−1 . . .
∑n

t=0 X 2
t−p




−1 


∑n
t=0 X t−1(X t −µG )

...∑n
t=0 X t−p (X t −µG )


 .

If we assume the existence of a third moment of X0 under the stationary distri-
bution (which is, by Lemma 1.2.1, equivalent to imposing EGε

3
0 <∞), θ̂G

n yields
a
p

n-consistent estimator of θ. The following proposition is well-known (see
Du and Li (1991)).

Proposition 2.2.1. Let θ ∈ Θ, ν a probability measure on Zp
+, G ∈ G with g (0) ∈

(0,1) and EGε
3
0 <∞. Then

p
n

(
θ̂G

n −θ)
converges in distribution under Pν,θ,G .

Next, we apply the one-step-Newton-Raphson-method to update this initialp
n-consistent estimator into an efficient estimator. To state this theorem, we

need the concept of a discretized estimator. For n ∈Nmake a grid of cubes, with
sides of length 1/

p
n, over Rp and, given θ̂G

n , define θ̂G ,∗
n to be the midpoint of

the cube into which θ̂n has fallen (for ties take one of the possibilities). Then
θ̂G ,∗

n is also
p

n-consistent and is called a discretized version of θ̂n .

Theorem 2.3. Let ν a probability measure on Zp
+, G ∈ G with g (0) ∈ (0,1) and

EGε
3
0 <∞. Let θ̂∗n be a discretized version of θ̂n . Then

θ̂∗∗n = θ̂∗n + 1

n

n∑
t=0

Ĵ−1
n,θ

˙̀
θ(X t−p , . . . , X t ; θ̂∗n ,G),

where,

Ĵn,θ =
1

n

n∑
t=0

˙̀
θ

˙̀T
θ (X t−p , . . . , X t ; θ̂∗n ,G),

is an efficient estimator of θ in the sequence of experiments (E (n)
1 (ν,G))n∈Z+ . More-

over, Ĵ−1
n,θ is a consistent estimator of the asymptotic covariance matrix of θ̂G

n , i.e.

Ĵ−1
n,θ

p−→ J−1
θ , under Pν,θ,G .

Remark 7. Instead of θ̂G
n , any other

p
n-consistent estimator of θ can be used.

Remark 8. If one can find a
p

n-consistent initial estimator ofθ under the weaker
assumption EGε

2
0 <∞, the condition EGε

3
0 <∞ may be replaced by EGε

2
0 <∞.

The proof of this theorem runs along the same lines as the proof of Theorem 2.4.
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Innovation distribution belongs to a parametric model 2.2.2
To use the OLS-estimator as an initial estimator of θ we need the existence of a
third moment of X t under the stationary distribution. Therefore we replace, in
this section, Assumption (A5) on GA by,

(A5′) for all α ∈ A: Eαε3
0 <∞.

This yields, by Lemma 1.2.1, the existence of a third moment of X0 under the
stationary distribution. Just as for the case G known, OLS yields a

p
n-consistent

estimator of (θ,µG ) (see, for example, Du and Li (1991)).

Proposition 2.2.2. Let θ ∈Θ, ν a probability measure on Zp
+, G ∈ G with EGε

3
0 <

∞ and g (0) ∈ (0,1). Then
(p

n
(
θ̂n −θ)

,
p

n
(
µ̂G ,n −µG

))
converges in distribu-

tion under Pν,θ,G , where,

(
µ̂G ,n

θ̂n

)
=




n
∑n

t=0 X t−1 . . .
∑n

t=0 X t−p∑n
t=0 X t−1

∑n
t=0 X 2

t−1 . . .
∑n

t=0 X t−1X t−p
...

...
. . .

...∑n
t=0 X t−p

∑n
t=0 X t−p X t−1 . . .

∑n
t=0 X 2

t−p




−1 


∑n
t=0 X t∑n

t=0 X t−1X t
...∑n

t=0 X t−p X t


 .

Note that µ̂G ,n yields a
p

n-consistent estimator of α for the popular choice
GA = (Poisson(α) |α> 0), since then µGα =α.

For other specific choices of Gα, it might by easy to find a (moment-based) es-
timator of α. This is the approach we recommend. However, it would be reas-
suring to know that a

p
n-consistent estimator ofα always exists. The following

observation is the key to the general existence of a
p

n-consistent estimator of
α. Although we do not observe the innovation process (εt )t∈Z+ , we have obser-
vations on some innovations (if g (0) > 0), since

X t 1{X t−1 = 0, . . . , X t−p = 0} = εt . (2.22)

By Assumptions (A1)-(A6) GA is an identified regular parametric model (see
Definition 2.1.1 and Proposition 2.1.1 in Bickel et al. (1998)). By a theorem by Le
Cam (see, e.g., Theorem 2.5.1 in Bickel et al. (1998)) there exists an ‘estimator’
Tn = tn(ε1, . . . ,εn) ofα such that

p
n(Tn−α) is tight underPν,θ,α for allα ∈ A. Us-

ing display (2.22) we could use such an ‘estimator’ to construct a
p

n-consistent
estimator of α.

Proposition 2.2.3. Let GA ⊂ G satisfy Assumptions (A1)-(A6), ν a probability
measure on Zp

+, and (θ,α) ∈Θ× A. Let

τ0 = 0, τk = inf{t > τk−1 | X t−p = ·· · = X t−1 = 0}, k ∈N,

and

Nn = max{ j ∈Z+ | τ j ≤ n}.
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Then α̂n = tNn

(
Xτ1 , . . . , XτNn

)
, defines a

p
n-consistent estimator ofα. In partic-

ular, if for some σ2 > 0,

p
n (tn(ε1, . . . ,εn)−α)

d−→ N(0,σ2), under Pν,θ,α,

we have,

p
n (α̂n −α)

d−→ N

(
0,

σ2

νθ,α{0, . . . ,0}

)
, under Pν,θ,α.

Proof.
By Prohorov’s theorem it suffices to prove that there exists a subsequence nk

such that
p

nk (α̂nk −α) converges in distribution.
Note first that, by a law of large numbers for Markov chains (see, for example
Dacunha-Castelle and Duflo (1986, Theorem 4.3.15)),

Nn

n
→ νθ,α{0, . . . ,0} > 0, Pν,θ,α−a.s.

Let, for u ∈Rq ,

φn(u) = Eαexp
(
i uT (

p
n(tn(ε1, . . . ,εn)−α))

)
.

Since tn(ε1, . . . ,εn) is a
p

n-consistent estimator ofα, there exists, by Prohorov’s
theorem, a subsequence nk such that

p
nk (tnk (ε1, . . . ,εnk )−α) converges in dis-

tribution under Pν,θ,α. Hence for all u ∈Rq ,

lim
k→∞

φnk (u) =φ(u),

where φ is a characteristic function of an Rq -valued random variable, which
we denote by Z . Using the strong Markov property, it is not very hard to see
that (Xτk )k∈N are i.i.d. G-distributed independent of Nn . Hence (use dominated
convergence),

lim
k→∞

Eν,θ,αexp
(
i uT (

√
Nnk (α̂nk −α))

)
= lim

k→∞
Eν,θ,αφNnk

(u) = Eν,θ,αφ(u) =φ(u),

which yields,

√
Nnk (α̂nk −α)

d−→ Z , under Pν,θ,α as k →∞.

Now,

p
nk (α̂nk −α) =

√
nk

Nnk

√
Nnk (α̂nk −α)

d−→ 1√
νθ,α{0, . . . ,0}

Z ,

under Pν,θ,α as k →∞, which concludes the proof.
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Remark 9. For the construction in the proposition it is essential that the pro-
cess can drive to state 0 for which it is necessary that the immigration distri-
bution assigns positive mass to state 0. If the immigration distribution does
not assign mass to state 0 the situation is more complicated. However, notice
that, conditional on the past, the law of X t is the convolution of the immigra-
tion distribution with binomial distributions. The parameters in these binomial
distributions can be estimated by OLS and we can also estimate the transition-
probabilities from our observations. So the idea is that, in general, α can be
estimated by a deconvolution argument.

Since we have a
p

n-consistent estimator of (θ,α), we can update this estimator
into an efficient estimator.

Theorem 2.4. Let ν a probability measure on Z
p
+, and GA ⊂ G satisfying As-

sumptions (A1)-(A6) with (A5′) instead of (A5). Let (θ̂n , α̂n) be a
p

n-consistent
estimator of (θ,α) and (θ̂∗n , α̂∗

n) a discretized version of it. Then,
(
θ̂∗∗n
α̂∗∗

n

)
=

(
θ̂∗n
α̂∗

n

)
+ 1

n

n∑
t=0

Ĵ−1
n

( ˙̀
θ(X t−p , . . . , X t ; θ̂∗n , α̂∗

n)
˙̀
α(X t−p , . . . , X t ; θ̂∗n , α̂∗

n)

)
,

with,

Ĵn =
( 1

n

∑n
t=0

˙̀
θ

˙̀T
θ

(X t−p , . . . , X t ; θ̂∗n , α̂∗
n) 1

n

∑n
t=0

˙̀
θ

˙̀T
α(X t−p . . . , , X t ; θ̂∗n , α̂∗

n)
1
n

∑n
t=0

˙̀
α

˙̀T
θ

(X t−p , . . . , X t ; θ̂∗n , α̂∗
n) 1

n

∑n
t=0

˙̀
α

˙̀T
α(X t−p , . . . , X t ; θ̂∗n , α̂∗

n)

)
,

is an efficient estimator of (θ,α) in the sequence of experiments (E (n)
2 (ν,GA))n∈Z+ .

Moreover, Ĵ−1
n yields a consistent estimator of the asymptotic covariance matrix

of (θ̂∗∗n , α̂∗∗
n ), i.e.,

Ĵ−1
n

p−→ J−1, under Pν,θ,α.

Remark 10. The same comments as after Theorem 2.3 apply.

Proof.
Let (θ,α) ∈Θ× A. To prove that (θ̂∗∗n , α̂∗∗

n ) is efficient at (θ,α) it suffices (see, for
example, Theorem 2.3.1 in Bickel et al. (1998)) to prove that it is asymptotically
linear in the efficient influence function at (θ,α), i.e.

p
n

(
θ̂∗∗n −θ
α̂∗∗

n −α
)
= J−1(θ,α)Sn(θ,α)+o(Pν,θ,α;1).

If we can show that the following conditions hold,

(C1) Sn(θ,α) converges in distribution under Pν,θ,α;

(C2) for every deterministic sequence (θn ,αn) = (θ0,α0)+O(1/
p

n) we have,

Sn(θn ,αn)−Sn(θ,α)+ J (θ,α)
p

n

(
θn −θ
αn −α

)
p−→ 0, under Pν,θ,α;
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C3 Ĵn
p−→ J (θ,α) under Pν,θ,α,

then we obtain, from Theorem 5.48 in Van der Vaart (2000) ((θ̂∗n , α̂∗
n) is consis-

tent and discretized) the desired result.
Condition 1 has already been proved in Part 1 of the proof of Theorem 2.1;
Condition 3 is proved in Part 0 and Part 2 of the proof of Theorem 2.1. Let
(θn ,αn) = (θ,α)+O(n−1/2) be a deterministic sequence. From the proof of The-
orem 2.1 we have,

Sn(θn ,αn) = Sn(θ,α)− Jn(θ̃n , α̃n)
p

n

(
θn −θ
αn −α

)
,

where (θ̃n , α̃n) is a point between (θ,α) and (θn ,αn). Using Part 0 in the proof

of Theorem 2.1 and Proposition 1.2.1.3 we obtain Jn(θ̃n , α̃n)
p−→ J (θ,α) under

Pν,θ,α. This yields Condition 2, which concludes the proof.



3 Semiparametric stationary INAR(p)
models

In the previous chapter we discussed parametric INAR(p) models, i.e. the in-
novation distribution G is assumed to belong to a (smooth) parametric family.
However, this exposes the researcher to possible misspecification. Therefore,
one wants to consider a more realistic model. This chapter consider a semi-
parametric model, where hardly any assumptions are made on G . We focus on
efficient estimation of (θ,G) from observations X−p , . . . , Xn . As far as we know,
even inefficient estimation of G has not been addressed before. A possible ex-
planation for this is that, even if θ1, . . . ,θp are known, observing X t−p , . . . , X t

does not imply observing εt . Consequently, estimation of G cannot be based
on residuals (as is the case for AR(p) processes). Estimation of the innovation
distribution is however, just as for standard AR models, an important topic. For
INAR(p) processes this might be even more important, since in some applica-
tions G has a physical interpretation. For example, Pickands III and Stine (1997)
were interested in how often a physician prescribes a particular drug to new pa-
tients. The data are collected at the time of purchase, and so it is not possible to
distinguish between new patient prescriptions and those of patients who have
been using this medication. As a result, only the total prescriptions for a given
drug for each doctor is observed. This can be modeled by an INAR(1) process,
where the ε represent the number of new patients. In such examples the pa-
rameter G is the main parameter of interest.

Just as in the previous chapter, we restrict ourselves to the ‘stationary parame-
ter regime’, i.e. Θ = {θ ∈ (0,1)p | ∑p

i=1θi < 1}. Formally, we are interested in the
experiments

E (n) =
(
Z

n+1+p
+ ,2Z

n+1+p
+ ,

(
P

(n)
νθ,G ,θ,G | θ ∈Θ,G ∈Gp+4

))
, n ∈Z+,
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where P(n)
νθ,G ,θ,G denotes the law of (X−p , . . . , Xn), under Pνθ,G ,θ,G , on the measur-

able space (Zn+1+p
+ ,2Z

n+1+p
+ ), and where Gp+4 denotes the set of all probability

distributions G on Z+ with finite (p +4)th moment and 0 < G{0} < 1, and νθ,G

is the stationary initial distribution (see Theorem 1.1). Let us comment on the
model assumptions on G . The assumption 0 < G{0} < 1 ensures that it is pos-
sible that X becomes zero (and is not always equal to 0), which is reasonable
for virtually all applications. Perhaps the assumption that the (p+4)th moment
of G is finite appears to be odd at first sight. We need this assumption in estab-
lishing weak convergence of certain empirical processes. The size of the class of
functions involved increases with p, which explains that we need a more strin-
gent condition for larger p.

Compared to parametric models, the semiparametric model E (n) is more gen-
eral. However this comes at a cost: estimation in a semiparametric model is ‘at
least as difficult’ as in any parametric submodel. Although the OLS-estimator
still yields an asymptotically normal estimator of θ (see Du and Li (1991)) in
the semiparametric model, it is not an efficient estimator of θ. This paper con-
tributes a semiparametric efficient estimator of (θ,G). We stress once more that
even inefficient estimation of G has not been considered before. Our estima-
tor might be viewed upon as a nonparametric maximum likelihood estimator
(NPMLE).

The monographs Bickel et al. (1998) and Van der Vaart (2000, Chapter 25) are
fairly complete accounts on the state of the art in semiparametric efficient es-
timation for i.i.d. models. Semiparametric efficiency considerations in time se-
ries originated by Kreiss (1987b) for ARMA-type models, Drost et al. (1997) con-
sidered group models covering nonlinear location-scale time series, and We-
felmeyer (1996) considered models with general Markov type transitions. How-
ever, the semiparametric INAR model cannot be analyzed by these approaches.
The main problem is that one needs to have explicit expressions for the efficient
influence operator. For the present model it however seems to be impossible to
obtain a closed form formula for this efficient influence operator. Nevertheless
we are able to prove efficiency. This proceeds along the following lines. First
we show that the NPMLE can be viewed upon as a solution to an infinite num-
ber of moment-conditions, i.e. as an infinite-dimensional Z-estimator. For i.i.d.
models Van der Vaart (1995) gives high-level conditions to prove efficiency of
infinite-dimensional Z-estimators without having to calculate the efficient in-
fluence operator. The basic idea is that often a NPMLE can be viewed upon
as a Hadamard differentiable mapping of another estimator which is efficient
for a certain artificial parameter. Since efficiency is retained under Hadamard
differentiable maps (Van der Vaart (1991b)) this can be exploited to obtain an
efficiency proof. As we show, the i.i.d. framework of Van der Vaart (1995) ex-
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tends to our Markovian setting. The main steps are proving Fréchet differentia-
bility of the limiting estimating equation, and continuously invertibility of this
derivative. These proofs are facilitated by ‘information-loss’ representations of
the transition-scores, which we established in Chapter 2. Another important
aspect is that the empirical estimating equation weakly converges, in an ap-
propriate function space, to a Gaussian process. Since we are dealing with a
Markovian structure, we rely on empirical processes for dependent data. An-
other crucial ingredient, essentially established in Chapter 2, is that parametric
submodels of the semiparametric model enjoy the local asymptotic normality
(LAN) property.

The setup of the rest of this chapter is as follows. Section 3.1 introduces the
NPMLE and discusses its consistency. In Section 3.2 we show that the NPMLE
is a Z-estimator, i.e. it can be viewed upon as a solution to an infinite system
of moment-conditions, and exploit this to derive the limiting distribution of
the NPMLE. Here the main steps are the Fréchet differentiability of the limiting
estimating equation, and the continuously invertibility of this operator. Sec-
tion 3.3 proves that the NPMLE is efficient. Here we first show that parametric
submodels have the LAN-property and that the NPMLE is regular. Next, follow-
ing Van der Vaart (1995), the efficiency of the NPMLE follows from the regularity
and the special representation of the limiting distribution. Finally, Section 3.4
discusses a small Monte Carlo simulation study and empirical application to
analyze the finite sample behavior of the proposed estimator.

The estimator 3.1
In general, maximum likelihood estimation is not (directly) applicable in semi-
parametric models. For the INAR(p) model, due to the discreteness of G , non-
parametric maximum likelihood estimation is feasible. We call an estimator
((θ̂n ,Ĝn))n∈Z+ of (θ,G) a nonparametric maximum likelihood estimator (NPMLE)
of (θ,G) if (θ̂n ,Ĝn) maximizes the conditional likelihood, i.e.

∀n ∈Z+ : (θ̂n ,Ĝn) ∈ argmax
(θ,G)∈[0,1]p×G

n∏
t=0

Pθ,G
(X t−1,...,X t−p ),X t

. (3.1)

Note that, to guarantee the existence of a maximum likelihood estimator, we
allow (θ̂n ,Ĝn) to take values outsideΘ×Gp+4. It is easy to see that, when it exists,
Ĝn assigns all its mass to a subset of {u−, . . . ,u+}, where

u− = 0∨ min
t=0,...,n

(
X t −

p∑
i=1

X t−i

)
, and u+ = max

t=0,...,n
X t .

Now (θ̂n ,Ĝn) maximizes the likelihood if and only the following holds: (i) ĝn(k) =
0 for k < u− and k > u+, and (ii) (θ̂n,1, . . . , θ̂n,p , ĝn(u−), . . . , ĝn(u+)) is a solution to
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the constrained optimization problem

max
x1,...,xp

zu− ,...,zu+

n∏
t=0

X t∑

e=0∨(X t−
∑p

i=1 X t−i )

ze
∑

0≤k`≤X t−`
`=1,...,p

k1+···+kp=X t−e

p∏
`=1

(
X t−`

k`

)
xk`
`

(1−x`)X t−`−k`

s.t. xk ≥ 0 for k = 1, . . . , p;
xk ≤ 1 for k = 1, . . . , p;
z j ≥ 0 for j = u−, . . . ,u+;
zu− +·· ·+ zu+ = 1.

(3.2)

Thus maximizing the likelihood is equivalent to optimizing a certain polyno-
mial on a compact set. Hence a (global) maximum location indeed exists. We
stress that we nowhere (will) impose that such a maximum location is unique.

The next proposition, which follows by standard arguments, states that any
maximum likelihood estimator is consistent.

Proposition 3.1.1. Let ν be a probability measure on Z
p
+, θ0 ∈ Θ, and G0 ∈ G

with µG0 <∞ and g0(0) < 1. Then any NPMLE (θ̂n ,Ĝn) = (θ̂n , ĝn(0), ĝn(1), . . . ), of
(θ,G) is consistent in the following sense,

θ̂n
p−→ θ0 and

∞∑
k=0

∣∣ĝn(k)− g0(k)
∣∣ p−→ 0, under Pν,θ0,G0 . (3.3)

Proof.
Let (θ̂n ,Ĝn) be a maximum likelihood estimator of (θ,G). It is easy to see, and

well-known, that to prove (3.3) it suffices to prove θ̂n
p−→ θ0 and ĝn(k)

p−→ g0(k)
for all k ∈ Z+. We prove that this pointwise convergence holds by an applica-
tion of Wald’s consistency proof. This method works best for compact param-
eter spaces. Therefore we introduce G̃ : the class of all probability distributions
on Z+∪ {∞}. Associate to each G ∈ G̃ the sequence (g (k))k∈Z+ . Notice that this
correspondence is 1-to-1, since g (∞) = 1−∑∞

k=0 g (k). So we can regard G̃ as a

subset of [0,1]Z+ equipped with the norm ‖a‖ = ∑∞
k=0 2−k |a(k)|, i.e. we endow

[0,1]Z+ with the product topology. Notice that a sequence in [0,1]Z+ converges if
and only if all coordinates, which are sequences in [0,1], converge. Using Helly’s
lemma (see, for example, Van der Vaart (2000, Lemma 1.5)) it is an easy exercise
to show that G̃ is a compact subset of [0,1]Z+ . Define Ē = [0,1]p × G̃ , and equip
Ē with the ‘sum-distance’ d((θ,G), (θ′,G ′)) = |θ−θ′|+‖(g (k))k∈Z+−(g ′(k))k∈Z+‖,

and note that Ē is compact. For G ∈ G̃ define Pθ,G
x,∞ = 1−∑

j∈Z+ Pθ,G
x, j = g (∞) for

x ∈Zp
+ and Pθ,G

x,∞ = 1 if maxp
i=1 xi =∞. Define mθ,G (x−p , . . . , x0) = logPθ,G

(x−1,...,x−p ),x0
.

And define the (random) function Mn : Ē → [−∞,∞) by

Mn(θ,G) = 1

n

n∑
t=0

mθ,G (X t−p , . . . , X t ),
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and the function M : Ē → [−∞,∞) by (by Theorem 1.1 νθ0,G0 exists)

M(θ,G) = Eνθ0,G0 ,θ0,G0 mθ,G (X−p , . . . , X0).

The following holds.

(A) For fixed x−p , . . . , x0 ∈Z+, the map Ē 3 (θ,G) 7→ mθ,G (x−p , . . . , x0) is contin-
uous. This is easy to see, since there appear only a finite number of g ( j )’s
in Pθ,G

(x−1,...,x−p ),x0
.

(B) For all x−p , . . . , x0 ∈Z+ we have mθ,G (x−p , . . . , x0) ≤ log(1) = 0.

(C) The map Ē 3 (θ,G) 7→ M(θ,G) has a unique maximum at (θ0,G0). Since
we have the identification Pθ,G

(X−1,...,X−p ),X0
= Pθ0,G0

(X−1,...,X−p ),X0
Pνθ0,G0 ,θ0,G0 -a.s.

=⇒ (θ,G) = (θ0,G0), this easily follows using the following well-known
argument (recall that Yt = (X t−1, . . . , X t−p )′, and use log x ≤ 2(

p
x −1) for

x ≥ 0):

M(θ,G)−M(θ0,G0) ≤ 2Eνθ0,G0 ,θ0,G0




√√√√√
Pθ,G

Y0,X0

Pθ0,G0
Y0,X0

−1




= 2
∑

y∈Zp
+

νθ0,G0 {y}
∞∑

x0=0

√
Pθ,G

y,x0
Pθ0,G0

y,x0
−2

≤−
∑

y∈Zp
+

νθ0,G0 {y}
∞∑

x0=0

(√
Pθ,G

y,x0
−

√
Pθ0,G0

y,x0

)2

≤ 0.

(D) Mn(θ̂n ,Ĝn) ≥ Mn(θ0,G0), since (θ̂n ,Ĝn) maximizes the likelihood.

Hence all conditions to Wald’s consistency theorem hold (see, for example, the
proof of Theorem 5.14 in Van der Vaart (2000) (in this proof the law of large
numbers for the i.i.d. case has to be replaced by an appropriate strong law of

large numbers for Markov chains). Hence we obtain d((θ̂n ,Ĝn), (θ0,G0))
p−→ 0,

which easily yields θ̂n
p−→ θ0 and, for all k ∈Z+, ĝn(k)

p−→ g0(k).

Limit distribution 3.2
Next we investigate whether the NPMLE has a limiting distribution. To this end,
we first have to specify which topology we use. We identify G ∈G with its point
mass function Z+ 3 k 7→ g (k) = G{k} and view the point mass functions as ele-
ments of the Banach space `1 = `1(Z+), i.e. the space of real-valued sequences
(ak )k∈Z+ for which ‖a‖1 =

∑
k∈Z+ |ak | <∞. In the following, linG and its subsets

are always regarded as subsets of `1(Z+). If no confusion can arise G will denote
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G = (g (k))k∈Z+ , and we write ‖G‖1 = ‖g‖1.Θ is equipped by the Euclidean topol-
ogy, and we equip the product space Rp × `1(Z+) with the product topology,
which can be metrized by the sum-norm ‖(θ,G)‖ = |θ| + ‖G‖1. Our parameter
space, Θ×Gp+4, is viewed upon as a subset of this Banach space Rp ×`1(Z+).
In this section we determine the limiting distribution of

p
n((θ̂n ,Ĝn)− (θ,G)),

viewed upon as a random element in Rp ×`1(Z+).

3.2.1 Likelihood equations

This section shows that (θ̂n ,Ĝn) can be viewed upon as an infinite-dimensional
Z-estimator, i.e. (θ̂n ,Ĝn) solves an infinite number of moment conditions.

To show that the NPMLE is a Z-estimator, we consider certain (artificial) sub-
models of the semiparametric model and subsequently exploit the fact that the
maximum likelihood estimator also maximizes, by construction, the likelihood
in these submodels. These submodels are such that the maximum is taken in a
stationary point, which yields a score equation.

Fix the ‘truth’ (θ0,G0) ∈Θ×Gp+4. And fix a realization ω, which yields the data
X1(ω), . . . , Xn(ω) and (θ̂n(ω),Ĝn(ω)), the realization of the maximum likelihood
estimator. If θ̂n(ω) ∈Θwe obtain, since (θ̂n(ω),Ĝn(ω)) maximizes the likelihood
and Θ is open,

1

n

n∑
t=0

˙̀
θ(X t−p (ω), . . . , X t (ω); θ̂n(ω),Ĝn(ω)) = 0,

where, for xt−p , . . . , xt ∈Z+,

˙̀
θ(xt−p , . . . , xt ;θ,G) = ∂

∂θ
log

(
Pθ,G

(xt−1,...,xt−p ),xt

)
1{Pθ,G

(xt−1,...,xt−p ),xt
> 0}.

By Proposition 3.1.1 we have Pνθ0,G0 ,θ0,G0 {θ̂n ∈Θ} → 1. In Chapter 2 we showed,
motivated by an ‘information-loss’ interpretation of the model, that this θ-part
of the transition-score can be represented as,

˙̀
θ(xt−p , . . . , xt ;θ,G) =




Eθ,G
[
ṡX t−1,θ1 (ϑ1 ◦X t−1) | X t = xt , . . . , X t−p = xt−p

]
...

Eθ,G

[
ṡX t−p ,θp (ϑp ◦X t−p ) | X t = xt , . . . , X t−p = xt−p

]


 ,

where ṡn,θ(·) is the score of a Binomial(n,θ) distribution, i.e.

ṡn,θ(k) = k −nθ

θ(1−θ)
, k ∈ {0, . . . ,n}, n ∈Z+.

The conditional expectation representation of the transition-score is heavily
used later on. Obtaining score-equations for the G-direction is more difficult.
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Construct (artificial) probability distributions on Z+, in direction h : Z+ → R,
h 6= 0 and bounded, by

gs(k,ω) = gs(k,h,ω) =
[

1+ s

(
h(k)−

∫
h dĜn(ω)

)]
ĝn(k,ω),

for k ∈ Z+, |s| < (2‖h‖∞)−1. Note that g0 = ĝn and Gs(ω) ∈ Gp+4 for all s. By
construction (θ̂n(ω),Gs(ω)) satisfies, for all s, the constraints of the optimiza-
tion problem (3.2). Since s = 0 corresponds to (θ̂n(ω),Ĝn(ω)), which is a global
maximum location if the outcome is ω, we obtain

0 = 1

n

n∑
t=0

∂

∂s
logP θ̂n (ω),Gs (ω)

(X t−1(ω),...,X t−p (ω)),X t (ω)

∣∣∣∣
s=0

.

To obtain a useful representation of this derivative, we recall from Chapter 2
that we have the representation,

∂

∂s
logPθ,Gs (ω)

(xt−1,...,xt−p ),xt

∣∣∣∣
s=0

= Aθ,Ĝn (ω)h(xt−p , . . . , xt )−
∫

h d(Ĝn(ω)),

where, for xt−p , . . . , xt ∈Z+,

Aθ,G h(xt−p , . . . , xt ) = Eθ,G
[
h(εt ) | X t = xt , . . . , X t−p = xt−p

]
.

Hence we obtain, if the realization is ω,

0 = 1

n

n∑
t=0

∂

∂s
logP θ̂n (ω),Gs (ω)

(X t−1,...,X t−p ),X t

∣∣∣∣
s=0

= 1

n

n∑
t=0

(
Aθ̂n (ω),Ĝn (ω)h(X t−p , . . . , X t )−

∫
h dĜn(ω)

)
.

Since this holds for all realizations ω (for different realizations different paths
s 7→ Gs(ω) are used) we obtain, for every bounded function h : Z+ → R, a mo-
ment condition:

0 = 1

n

n∑
t=0

(
Aθ̂n ,Ĝn

h(X t−p , . . . , X t )−
∫

h dĜn

)
.

Let H1 be the unit ball of `∞(Z+), i.e. all functions h : Z+ → R that satisfy
supe∈Z+ |h(e)| ≤ 1. We will only use the moment conditions arising from h ∈
H1. We summarize these in an estimating equation Ψn = (Ψn1,Ψn2) : [0,1]p ×
Gp+4 →Rp ×`∞(H1) defined by

Ψn1(θ,G) = 1

n

n∑
t=0

˙̀
θ(X t−p , . . . , X t ;θ,G),

Ψn2(θ,G)h = 1

n

n∑
t=0

(
Aθ,G h(X t−p , . . . , X t )−

∫
h dG

)
, h ∈H1.
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Indeed,Ψn2(θ,G) is an element of`∞(H1) since suph∈H1
|Ψn2(θ,G)h| ≤ 2. From

the discussion above we know that any maximum likelihood estimator satisfies
Ψn2(θ̂n ,Ĝn) = 0, and from Proposition 3.1.1 we have Pνθ0,G0 ,θ0,G0 {Ψn1(θ̂n ,Ĝn) =
0} → 1. For (θ0,G0) ∈ Θ×Gp+4 we introduce the ‘limit’ of the estimating equa-
tion: Ψθ0,G0 : [0,1]p ×Gp+4 →Rp ×`∞(H1) by,

Ψ
θ0,G0
1 (θ,G) = Eνθ0,G0 ,θ0,G0

˙̀
θ(X−p , . . . , X0;θ,G),

Ψ
θ0,G0
2 (θ,G)h = Eνθ0,G0 ,θ0,G0

(
Aθ,G h(X−p , . . . , X0)−

∫
h dG

)
, h ∈H1.

It is easy to see that

Eνθ0,G0 ,θ0,G0Ψ
θ0,G0
1 (θ0,G0) = 0, and, for all h ∈H1,Eνθ0,G0 ,θ0,G0Ψ

θ0,G0
2 (θ0,G0)h = 0,

which is the usual result that, under the truth, scores have expectation zero.

3.2.2 Asymptotic normality
In this section we exploit that the NPMLE can be seen as a solution to the
estimating equation Ψn . The following lemma is the key result of this chap-
ter. It establishes conditions to an asymptotic normality theorem for infinite-
dimensional M-estimators. Compared to a semiparametric analysis where one
only wants to estimate the Euclidean part of the parameter, we now have to
deal with functional calculus instead of Euclidean calculus, and with empirical
processes instead of weak convergence in Euclidean spaces.

Lemma 3.2.1. Let (θ0,G0) ∈ Θ×Gp+4. Denote ν0 = νθ0,G0 . Then the following
properties hold.

(L1) The mapΨθ0,G0 : [0,1]p ×Gp+4 →Rp ×`∞(H1) is Fréchet-differentiable at
(θ0,G0), i.e.

‖Ψθ0,G0 (θ,G)−Ψθ0,G0 (θ0,G0)−Ψ̇θ0,G0 (θ−θ0,G−G0)‖ = o(‖(θ,G)−(θ0,G0)‖),

as (θ,G) → (θ0,G0) withinΘ×Gp+4 where Ψ̇0 = Ψ̇θ0,G0 : lin
(
[0,1]p ×Gp+4

)→
Rp ×`∞(H1) is a continuous, linear mapping given by

Ψ̇0(θ−θ0,G−G0) = (
Ψ̇0

11(θ−θ0)+ Ψ̇0
12(G −G0),Ψ̇0

21(θ−θ0)+ Ψ̇0
22(G −G0)

)
,

where Ψ̇0
11 : Rp → Rp , Ψ̇0

12 : linGp+4 → Rp , Ψ̇0
21 : Rp → `∞(H1), and Ψ̇0

22 :
linGp+4 → `∞(H1) are defined by

Ψ̇0
11(θ−θ0) =−(

Eν0,θ0,G0
˙̀
θ

˙̀T
θ (X−p , . . . , X0;θ0,G0)

)
(θ−θ0),

Ψ̇0
12(G −G0) =−

∫
Eν0,θ0

[
˙̀
θ(X−p , . . . , X0;θ0,G0) | ε0 = e

]
d(G −G0)(e),
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and for h ∈H1,

Ψ̇0
21(θ−θ0)h

=−(θ−θ0)TEν0,θ0,G0

[
˙̀
θ(X−p , . . . , X0;θ0,G0)Aθ0,G0 h(X−p , . . . , X0)

]
,

Ψ̇0
22(G −G0)h =−

∫
Eν0,θ0

[
Aθ0,G0 h(X−p , . . . , X0) | ε0 = e

]
d(G −G0)(e),

where we use the following version of conditional probabilities, for G ∈G

and x−p , . . . , x0,e ∈Z+,

Pν0,θ0,G
{

X−p = x−p , . . . , X0 = x0 | ε0 = e
}

=Pν0,θ0

{
X−p = x−p , . . . , X0 = x0 | ε0 = e

}

= ν0{(x−1, . . . , x−p )}
(
Binx−p ,θp ∗·· ·∗Binx−1,θ1

)
{x0 −e}.

(L2) The inverse Ψ̇−1
θ0,G0

: Range(Ψ̇θ0,G0 ) → lin
(
Θ×Gp+4

)
exists and is continu-

ous1.

(L3) We have, under Pν0,θ0,G0 ,

S
θ0,G0
n =p

n(Ψn(θ0,G0)−Ψθ0,G0 (θ0,G0)) ÃSθ0,G0 in Rp ×`∞(H1),

where Sθ0,G0 is a tight, Borel measurable, Gaussian process.

(L4) Let (θ̂n ,Ĝn), n ∈Z+, be a NPMLE. We have
p

n
(
Ψn −Ψθ0,G0

)
(θ̂n ,Ĝn)−p

n
(
Ψn −Ψθ0,G0

)
(θ0,G0) = o(1;Pν0,θ0,G0 ).

The next subsection is devoted to the proof of the lemma. Let us briefly com-
ment on some elements of this proof. The proof of (L1) is facilitated by the
conditional expectation representations in the estimating equation Ψθ0,G0 . In
particular, we heavily exploit that, due to the chosen versions of conditional
probabilities with respect to εt ,

Eνθ0,G0 ,θ0,G
[

f (X t−p , X t−p , . . . , X t ) | εt
]= Eνθ0,G0 ,θ0,G0

[
f (X t−p , X t−p , . . . , X t ) | εt

]
,

for all G ∈ G . These representations are also crucial in the proof of (L2). Un-
fortunately, it seems to be impossible to obtain an explicit formula for Ψ̇−1

θ0,G0
.

This is related to the problem that it seems to be impossible to determine ex-
plicit expressions for the efficient influence operator. The processSθ0,G0

n can be
interpreted as a ‘score process’, since its marginals are elements of the tangent
space (see Section 3.3). Since all conditions to an infinite-dimensional version
of Huber’s classical theorem on asymptotic normality of M-estimators hold, we
obtain the next theorem.

1Ψ̇−1
θ0,G0

has a unique continuous extension to the closure of Range(Ψ̇θ0,G0 ), which we also

denote by Ψ̇−1
θ0,G0

, and this operator is the inverse of the unique extension of Ψ̇θ0,G0 to the clo-

sure of lin
(
[0,1]p ×Gp+4

)
.
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Theorem 3.1. For (θ0,G0) ∈Θ×Gp+4 we have

p
n

(
(θ̂n ,Ĝn)− (θ0,G0)

)=−Ψ̇−1
θ0,G0

S
θ0,G0
n +o(1;Pνθ0,G0 ,θ0,G0 )

Ã−Ψ̇−1
θ0,G0

Sθ0,G0 , (3.4)

under Pνθ0,G0 ,θ0,G0 in Rp ×`1(Z+).

Proof.
Proposition 3.1.1 and Lemma 3.2.1 show that all conditions to Theorem 3.3.1 in
Van der Vaart and Wellner (1993) are satisfied, which yields the result.

3.2.3 Proof of Lemma 3.2.1
Throughout ν0 is shorthand for νθ0,G0 . If no confusion can arise, sub- and su-
perscripts are sometimes dropped for notational convenience. In order to con-
serve space we sometimes use the processes Yt = (X t−1, . . . , X t−p )′ and Zt =
(X t , . . . , X t−p )′, t ≥ 0.

Proof of (L1)

To enhance readability the proof is decomposed in three steps. In the first step
we show that Ψ̇ is indeed linear and continuous. And in the second and third
step we prove the Fréchet-differentiability of Ψ1 and Ψ2 respectively.

Step 1:

The linearity of Ψ̇ is obvious. For the continuity, note that it suffices to prove
that both Ψ̇1 and Ψ̇2 are continuous. We consider Ψ̇1 which is the sum of Ψ̇11

and Ψ̇12; the continuity of Ψ̇2 proceeds in the same way. Of course, Ψ̇11 is con-
tinuous. So the only thing left is to show that Ψ̇12 is continuous. From Chapter 2
we have, here ˙̀

θ,i refers to the i th coordinate of the p-vector ˙̀
θ,

∣∣ ˙̀
θ,i (x−p , . . . , x0;θ,G)

∣∣≤ x−i

θi (1−θi )
, (3.5)

which yields, using that ε0 and X−i are independent,

∣∣Eν0,θ0

[
˙̀
θ,i (X−p , . . . , X0;θ,G) | ε0

]∣∣≤ Eν0 X−i

θi (1−θi )
.

Thus the map

Z+ 3 e 7→
∣∣Eν0,θ0

[
˙̀
θ(x−p , . . . , x0;θ,G) | ε0 = e

]∣∣

is bounded, say by C . This yields, for H ,G ∈ linGp+4,

|Ψ̇12(G −H)| =
∣∣∣∣
∫
Eν0,θ0

[
˙̀
θ(X−p , . . . , X0;θ0,G0) | ε0 = e

]
d(H −G)(e)

∣∣∣∣
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≤C
∞∑

e=0
|h(e)− g (e)| =C‖H −G‖1,

which yields the continuity of Ψ̇12.

Step 2:
Rewrite,

Ψ1(θ,G)−Ψ1(θ0,G0)− Ψ̇11(θ−θ0)− Ψ̇12(G −G0)

=Ψ1(θ,G)−Ψ1(θ0,G)− Ψ̇11(θ−θ0)

+Ψ1(θ0,G)−Ψ1(θ0,G0)− Ψ̇12(G −G0).

Let θn be a sequence in [0,1]p converging to θ0 and Gn a sequence in Gp+4

converging to G0. In Step 2a we show that
∣∣Ψ1(θn ,Gn)−Ψ1(θ0,Gn)− Ψ̇11(θn −θ0)

∣∣
|θn −θ0|+‖Gn −G0‖1

→ 0, (3.6)

and in Step 2b we show that
∣∣Ψ1(θ0,Gn)−Ψ1(θ0,G0)− Ψ̇12(Gn −G0)

∣∣
|θn −θ0|+‖Gn −G0‖1

→ 0, (3.7)

which will conclude the proof of Step 2.
Step 2a:
From Chapter 2 we recall that the usual information-identity holds, i.e.

Iθ(θ0,G0) = Eν0,θ0,G0
˙̀
θ

˙̀T
θ (X−p , . . . , X0;θ0,G0)

=−Eν0,θ0,G0

∂

∂θT
˙̀
θ(X−p , . . . , X0;θ0,G0).

From the mean-value theorem we obtain, for i = 1, . . . , p,

˙̀
θ,i (Z0;θ,G)− ˙̀

θ,i (Z0;θ0,G) = ∂

∂θT
˙̀
θ,i (X−p , . . . , X0; θ̃i (θ,G),G)(θ−θ0),

where θ̃i (θ,G) = θ̃i (X−p , . . . , X0;θ,G ,θ0) is a point on the line segment between
θ and θ0. Let J (X−p , . . . , X0;θ,G) be the p ×p random matrix given by

J (X−p , . . . , X0;θ,G) =




∂
∂θT

˙̀
θ,1(X−p , . . . , X0; θ̃1(θ,G),G)

...
∂
∂θT

˙̀
θ,p (X−p , . . . , X0; θ̃p (θ,G),G)


 .

It is easy to see, since we only have to deal with a finite number of g (k)’s, that we
have for fixed x−p , . . . , x0, J (x−p , . . . , x0;θn ,Gn) → (∂/∂θT ) ˙̀

θ(X−p , . . . , X0;θ0,G0).
From Chapter 2 we have the bound,

∣∣∣∣
∂

∂θ j

˙̀
θ,i (x−p , . . . , x0;θ,G)

∣∣∣∣≤
3

2θi (1−θi )θ j (1−θ j )
(X 2

−i +X 2
− j ),
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which is Pν0,θ0,G0 -integrable. Thus, using dominated convergence, we obtain
∣∣Ψ1(θn ,Gn)−Ψ1(θ0,Gn)− Ψ̇11(θn −θ0)

∣∣
|θn −θ0|

≤ Eν0,θ0,G0 |(Iθ(θ0,G0)+ J (Z0;θn ,Gn)) (θn −θ0)|
|θn −θ0|

→ 0,

which yields (3.6).
Step 2b:
We have, using that Eν0,θ0,G [· | ε0] does not depend on G ,

Ψ1(θ0,G)−Ψ1(θ0,G0)− Ψ̇12(G −G0)

= Eν0,θ0,G0
˙̀
θ(X−p , . . . , X0;θ0,G)+EGEν0,θ0

[
˙̀
θ(X−p , . . . , X0;θ0,G0) | ε0

]

= Eν0,θ0,G0
˙̀
θ(X−p , . . . , X0;θ0,G)+Eν0,θ0,G

˙̀
θ(X−p , . . . , X0;θ0,G0)

= Eν0 f (X−p , . . . , X−1;G),

where (using that Eν0,θ0,H
[

˙̀
θ(X−p , . . . , X0;θ0; H) | X−1, . . . , X−p

]= 0 for H ∈G )

f (X−p , . . . , X−1;G)

=
∞∑

x0=0

(
Pθ0,G

Y0,x0
−Pθ0,G0

Y0,x0

)(
˙̀
θ(Y0, x0;θ0,G0)− ˙̀

θ(Y0, x0;θ0,G)
)

=
∞∑

x0=0

∞∑
k=0

(g (k)− g0(k))(∗i BinX−i ,θ0i ){x0 −k}( ˙̀
θ(Y0, x0;θ0,G0)− ˙̀

θ(Y0, x0;θ0,G))

=
∞∑

k=0
(g (k)− g0(k))

∞∑
x0=0

(∗i BinX−i ,θ0i ){x0 −k}( ˙̀
θ(Y0, x0;θ0,G0)− ˙̀

θ(Y0, x0;θ0,G)).

From this we obtain the bound,

| f (X−1, . . . , X−p ;G)| ≤ ‖G −G0‖1

X−1+···+X−p∑
x0=0

∣∣ ˙̀
θ(Y0, x0;θ0,G0)− ˙̀

θ(Y0, x0;θ0,G)
∣∣ .

Since Gn is a sequence in Gp+4 converging to G0, we obtain, for fixed x−p , . . . , x−1,

x−1+···+x−p∑
x0=0

∣∣ ˙̀
θ(x−p , . . . , x−1, x0;θ0,G0)− ˙̀

θ(x−p , . . . , x−1, x0;θ0,Gn)
∣∣→ 0.

Furthermore, using (3.5),
∑

i X−i∑
x0=0

| ˙̀
θ(X−p , . . . , X−1, x0;θ0,G0)− ˙̀

θ(X−p , . . . , X−1, x0;θ0,Gn)| ≤
p∑

j=1

2X− j

θ0 j (1−θ0 j )
.

Thus f (X−p , . . . , X−1;Gn)/‖Gn −G0‖1 converges Pν0 -a.s. to 0, and is dominated
by aPν0 -integrable function. An application of the dominated convergence the-
orem yields (3.7).
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Step 3:
Rewrite,

Ψ2(θ,G)−Ψ2(θ0,G0)− Ψ̇21(θ−θ0)− Ψ̇22(G −G0)

=Ψ2(θ,G)−Ψ2(θ0,G)− Ψ̇21(θ−θ0)

+Ψ2(θ0,G)−Ψ2(θ0,G0)− Ψ̇22(G −G0).

Let θn be a sequence in [0,1]p converging to θ0 and Gn a sequence in Gp+4

converging to G0. We will verify that

suph∈H1

∣∣Ψ2(θn ,Gn)h −Ψ2(θ0,Gn)h − Ψ̇21(θn −θ0)h
∣∣

|θn −θ0|+‖Gn −G0‖1
→ 0, (3.8)

and,

suph∈H1

∣∣Ψ2(θ0,Gn)h −Ψ2(θ0,G0)h − Ψ̇22(Gn −G0)h
∣∣

|θn −θ0|+‖Gn −G0‖1
→ 0, (3.9)

which will conclude the proof.
Step 3a:
First note that

Ψ2(θn ,Gn)h −Ψ2(θ0,Gn)h − Ψ̇21(θn −θ0)h

= Eν0,θ0,G0

(
Aθn ,Gn h(Z0)− Aθ0,Gn h(Z0)+ Aθ0,G0 h(Z0) ˙̀T

θ (Z0;θ0,G0)(θn −θ0)
)

.

It is straightforward to check that, for i = 1, . . . , p,

∂

∂θi
Aθ,G h(X−p , . . . , X0) = Eθ,G

[
h(ε0)ṡX−i ,θi (ϑi ◦X−i ) | X0, . . . , X−p

]

− Aθ,G h(X−p , . . . , X0) ˙̀
θ,i (X−p , . . . , X0;θ,G),

and, for i , j = 1, . . . , p,

∂2

∂θ j∂θi
Aθ,G h(X−p , . . . , X0)

= Eθ,G

[
h(ε0)ṡX−i ,θi (ϑi ◦X−i )ṡX− j ,θ j (ϑ j ◦X− j )|X0, . . . , X−p

]

−Eθ,G
[
h(ε0)ṡX−i ,θi (ϑi ◦X−i )|X0, . . . , X−p

]
˙̀
θ, j (X−p , . . . , X0;θ,G)

− Aθ,G h(X−p , . . . , X0) ῭
θ,i j (X−p , . . . , X0;θ,G)

− ˙̀
θ,i (X−p , . . . , X0;θ,G)

∂

∂θ j
Aθ,G h(X−p , . . . , X0)

+1{i = j }Eθ,G
[
h(ε0)s̈X−i ,θi (ϑi ◦X−i ) | X0, . . . , X−p

]
,
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where s̈n,α(k) = (∂/∂α)ṡn,α(k). Now it is easy, but a bit tedious, to see that there
exists a constant Cθ > 0, which is bounded in θ in a neighborhood of θ0 and not
depending on h, such that, for i , j = 1, . . . , p,

∣∣∣∣
∂

∂θi
Aθ,G h(X−p , . . . , X0)

∣∣∣∣+
∣∣∣∣

∂2

∂θ j∂θi
Aθ,G h(X−p , . . . , X0)

∣∣∣∣≤Cθ(X 2
−i +X 2

− j ). (3.10)

A second order Taylor expansion in θ yields

Aθn ,Gn h(Z0)− Aθ0,Gn h(Z0)+ Aθ0,Gn h(Z0) ˙̀T
θ (Z0;θ0,Gn)(θn −θ0)

=
p∑

i=1
(θn,i −θ0,i )Eθ0,Gn

[
h(ε0)ṡX−i ,θ0,i (ϑi ◦X−i ) | X0, . . . , X−p

]

+ 1

2
(θn −θ0)T ∂2

∂θ∂θT
Aθ̃n ,Gn

h(X−p , . . . , X0)(θn −θ0),

where θ̃n is a random point on the line segment between θ0 and θn (also de-
pending on h, Z0, and Gn). Using (3.10) it easily follows, using dominated con-
vergence, that

sup
h∈H1

∣∣∣Eν0,θ0,G0 (θn −θ0)T ∂2

∂θ∂θT Aθ̃n ,Gn
h(X−p , . . . , X0)(θn −θ0)

∣∣∣
|θn −θ0|+‖Gn −G0‖1

→ 0.

Hence we obtain (3.8) once we show that

sup
h∈H1

∣∣∣∣∣
∑

i
(θni −θ0i )Eν0,θ0,G0Eθ0,Gn

[
h(ε0)ṡX−i ,θ0i (ϑi ◦X−i ) | Z0

]
∣∣∣∣∣

|θn −θ0|+‖Gn −G0‖1
→ 0, (3.11)

and,

sup
h∈H1

∣∣Eν0,θ0,G0

(
Aθ0,Gn h(Z0) ˙̀T

θ (Z0;θ0,Gn)− Aθ0,G0 h(Z0) ˙̀T
θ (Z0;θ0,G0)

)
(θn −θ0)

∣∣

= o(|θn −θ0|+‖Gn −G0‖1), (3.12)

both hold. It is easy to see that we have, for i = 1, . . . , p,
∣∣Eθ0,Gn

[
h(ε0)ṡX−i ,θ0,i (ϑi ◦X−i ) | Z0

]−Eθ0,G0

[
h(ε0)ṡX−i ,θ0,i (ϑi ◦X−i ) | Z0

]∣∣

≤
∣∣∣∣∣∣
Pθ0,G0

(X−1,...,X−p ),X0

Pθ0,Gn
(X−1,...,X−p ),X0

−1

∣∣∣∣∣∣
X−i

θ0,i (1−θ0,i )

+

X0∑
e=0

X−i∑
k=0

|gn(e)− g0(e)|
(
∗ j 6=i BinX− j ,θ0, j

)
{X0 −k −e}ṡX−i ,θ0,i (k)bX−i ,θ0,i (k)

Pθ0,Gn
(X−1,...,X−p ),X0

,
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which for fixed X−p , . . . , X0 converges to 0. Note that the left-hand-side of this
display is bounded by the ν0-integrable variable 2X−i /(θ0,i (1−θ0,i )). By inde-
pendence of ε0 and ϑi ◦X−i −θ0,i X−i we obtain Eν0,θ0,G0 h(ε0)ṡX−i ,θi (ϑi ◦X−i ) = 0.
Display (3.11) now easily follows using dominated convergence. In a similar
fashion we obtain (3.12).
Step 3b:
Note first that we have

Ψ2(θ0,Gn)h −Ψ2(θ0,G0)h − Ψ̇22(Gn −G0)h

= Eν0,θ0,G0 Aθ0,Gn h(Z0)−
∫

h dGn +Eν0,θ0,Gn Aθ0,G0 h(Z0)−
∫

h dG0.

It now follows that we have

Ψ2(θ0,Gn)h −Ψ2(θ0,G0)h − Ψ̇22(Gn −G0)h = Eν0 f h(X−p , . . . , X−1;Gn),

where

f h(X−p , . . . , X−1;Gn) =
∞∑

x0=0

(
Pθ0,Gn

Y0,x0
−Pθ0,G0

Y0,x0

)(
Aθ0,G0 h(Y0, x0)− Aθ0,Gn h(Y0, x0)

)
.

Proceeding as in Step 2b we obtain the bound

| f h(X−p , . . . , X−1;Gn)| ≤ ‖Gn −G0‖1

X−p+···+X−1∑
x0=0

∣∣Aθ0,G0 h(Y0, x0)− Aθ0,Gn h(Y0, x0)
∣∣ .

Using that, for x0 ∈ {0, . . . , X−p +·· ·+X−1},

sup
h∈H1

∣∣Aθ0,Gn h(X−p , . . . , X−1, x0)− Aθ0,G0 h(X−p , . . . , X−1, x0)
∣∣

≤
∣∣∣∣∣∣
Pθ0,G0

(X−p ,...,X−1),x0

Pθ0,Gn
(X−p ,...,X−1),x0

−1

∣∣∣∣∣∣
|Aθ0,G0 h(X−p , . . . , X−1, x0)|

+
∑x0

e=0 |gn(e)− g0(e)|(∗p
i=1 BinX−i ,θ0,i

)
{x0 −e}

Pθ0,Gn
(X−p ,...,X−1),x0

,

we see that for fixed (X−p , . . . , X−1) suph∈H1
| f h(X−p , . . . , X−1;Gn)|/‖Gn −G0‖1 →

0. Since suph∈H1
| f h(X−p , . . . , X−1;Gn)|/‖Gn −G0‖1 is bounded by 2(X−p + ·· ·+

X−1) which is ν0-integrable, dominated convergence yields (3.9).

Proof of (L2)

First we prove (L2) for the case support(G0) = Z+. To enhance readability we
decompose the proof into the following steps.
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(1) In this step we show that we can rewrite some parts of the derivative Ψ̇ as
follows,

Ψ̇12(G −G0) =−
∫

A∗
0

˙̀
θ(e)d(G −G0)(e), (3.13)

Ψ̇22(G −G0)h =−
∫

A∗
0 A0h(e)d(G −G0)(e), h ∈H1, (3.14)

where A∗
0 is the L2-adjoint of A0 = Aθ0,G0 . This representation allows us to

invoke results from Hilbert space theory.

(2) This step shows that to prove that Ψ̇ has a continuous inverse, it suffices
to prove that a certain operator from `∞(Z+) into itself is onto and con-
tinuously invertible.

(3) This step shows that the operator from Step 2 is indeed onto and contin-
uously invertible.

Step 1:

Let [ε] denote { f (ε0) | f : Z+ → R,EG0 f 2(ε0) < ∞} equipped with the L2(G0)

norm and let [X ] denote { f (X−p , . . . , X0) | f :Zp+1
+ →R,Eν0,θ0,G0 f 2(X−p , . . . , X0) <

∞} equipped with the L2(ν0 ⊗Pθ0,G0 ) norm. It is not hard to see that both these
spaces are, in fact, Hilbert spaces (that these spaces are already in their ‘a.s.-
equivalence class form’, follows from support(G0) = Z+). We view upon A0 as
an operator from [ε] into [X ]. From the definition it is easy to see that A0 is lin-
ear and continuous. Since A0 is a continuous linear map between two Hilbert
spaces, it has an adjoint map A∗

0 : [X ] → [ε] (which is a continuous linear map
that satisfies and is uniquely determined by the equations < A∗

0 h2,h1 >[ε]=<
h2, A0h1 >[X ] for h1 ∈ [ε], h2 ∈ [X ]) given by

A∗
0 f = A∗

0 f (ε0) = Eν0,θ0 [ f (X−p , . . . , X0) | ε0].

Now, invoking the definitions of Ψ̇12 and Ψ̇22, (3.13) and (3.14) are immediate.

Step 2:

To prove that Ψ̇ is continuously invertible, it suffices to prove that Ψ̇11 :Rp →Rp

and V̇ = Ψ̇22 − Ψ̇21Ψ̇
−1
11 Ψ̇12 : linGp+4 → `∞(H1) are both continuously invert-

ible. The invertibility of Ψ̇11 is immediate, since the p ×p Fisher information-
matrix Iθ0 = Eν0,θ0,G0

˙̀
θ

˙̀T
θ

(Z0;θ0,G0) is invertible (see Theorem 2.1). To prove
that V̇ is continuously invertible is much harder. In this step, we will give an
easier sufficient condition which is proved to hold true in Step 3. Introduce the
operator C : H1 → [ε] by

C h(e) =−[
Eν0,θ0,G0 A0h(Z0) ˙̀T

θ (Z0;θ0,G0)
]

I−1
θ0

(A∗
0 ( ˙̀

θ(·;θ0,G0)))(e),
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for e ∈ Z+, where A∗
0 ( ˙̀

θ(·;θ0,G0)) = (A∗
0 ( ˙̀

θ,1(·;θ0,G0)), . . . , A∗
0 ( ˙̀

θ,p (·;θ0,G0)))′ ∈
[ε]p . Then V̇ can be rewritten as

V̇ (G −G0)h =−
∫ (

A∗
0 A0h +C h

)
(e)d(G −G0)(e), h ∈H1.

The mapping V̇ : linGp+4 → `∞(H1) has a continuous inverse on its range if
and only if there exists ε> 0 such that

‖V̇ (G −G0)‖ = sup
h∈H1

|V̇ (G −G0)h| ≥ ε‖G −G0‖1, for all G ∈ linGp+4.

Notice that we have, since (e 7→ sgn(g (e)− g0(e))) ∈H1,

‖G −G0‖1 =
∞∑

e=0
|g (e)− g0(e)| ≤ sup

h∈H1

∣∣∣∣
∫

h d(G −G0)

∣∣∣∣ .

Hence it suffices to prove that there exists ε> 0 such that, for all G ∈ linGp+4,

‖V̇ (G −G0)‖ = sup
h∈H1

|V̇ (G −G0)h| = sup
h∈H1

∣∣∣∣
∫

(A∗
0 A+C )h d(G −G0)

∣∣∣∣

≥ ε sup
h∈H1

|
∫

h d(G −G0)|.

Of course, a sufficient condition for this is εH1 ⊂
{
(A∗

0 A0 +C )h | h ∈H1
}
, which

in turn holds if B = A∗
0 A0 +C : `∞(Z+) → `∞(Z+) is onto and continuously in-

vertible. To see this, first note that εH1 ⊂ {
(A∗

0 A0 +C )h | h ∈H1
}

is equivalent
to εB−1H1 ⊂ H1. Since H1 is the unit-ball of `∞(Z+) it thus suffices to show
that there exists ε> 0 such that ‖B−1h‖∞ ≤ ε−1 for all h ∈H1. Since B−1 is con-
tinuous, there exists ε > 0 such that ‖B f ‖∞ ≥ ε‖ f ‖∞ for all f ∈ `∞(Z+). Taking
h ∈ H1 and f = B−1h (which is possible, because B is onto), we indeed arrive
at ‖B−1h‖∞ = ‖ f ‖∞ ≤ ε−1‖B f ‖∞ = ε−1‖h‖∞ ≤ ε−1.
Thus Ψ̇ is continuously invertible if we prove that A∗

0 A0+C : `∞(Z+) → `∞(Z+)
is onto and continuously invertible. This concludes Step 2.

Step 3:
In this step we prove that B = A∗

0 A0+C : `∞(Z+) → `∞(Z+) is onto and continu-
ously invertible, which will conclude the proof of (L2). Notice that C : `∞(Z+) →
`∞(Z+) is a compact operator, since it has finite dimensional range. From func-
tional analysis (see, for example, Van der Vaart (2000) Lemma 25.93), it is known
that (all operators are defined on and take values in a common Banach space)
the sum of a compact operator and a continuous operator, which is onto and
has a continuous inverse, is continuously invertible and onto if the sum oper-
ator is 1-to-1. Thus it suffices to prove that A∗

0 A0 : `∞(Z+) → `∞(Z+) is contin-
uous, onto, and has a continuous inverse (Step 3a), and that B is one-to-one
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(Step 3b).
Step 3a:
The continuity of A∗

0 A0 is immediate,

‖A∗
0 A0h − A∗

0 A0h′‖∞ = sup
e∈Z+

∣∣Eν0,θ0

[
Eθ0,G0

[
h(ε0)−h′(ε0) | X0, . . . , X−p

] | ε0 = e
]∣∣

≤ sup
e∈Z+

|h(e)−h′(e)|.

Next we show that to prove that A∗
0 A0 : `∞(Z+) → `∞(Z+) is onto and contin-

uously invertible, it suffices to prove that A∗
0 A0 : [ε] → [ε] is onto and contin-

uously invertible. If we already know that A∗
0 A0 : [ε] → [ε] is invertible, then

A∗
0 A0 : `∞(Z+) → `∞(Z+) is also invertible (since there are no ‘a.s.-problems’ if

support(G0) = Z+). If h ∈ `∞(Z+) it is clear that A∗
0 A0h ∈ `∞(Z+) Suppose next

that A∗
0 A0h ∈ `∞(Z+). Since

A∗
0 A0h(e) =

∑

y∈Zp
+

∞∑
x0=0

ν0{y}
(∗p

i=1 Binyi ,θ0,i

)
{x0 −e}Eθ0,G0 [h(ε0) | Y0 = y]

≥ ν0{0, . . . ,0}h(e),

this implies h ∈ `∞(Z+). Thus, since A∗
0 A0 : [ε] → [ε] is onto and `∞(Z+) ⊂ [ε],

A∗
0 A0 : `∞(Z+) → `∞(Z+) is indeed onto. Thus A∗

0 A0 : `∞(Z+) → `∞(Z+) is a lin-
ear continuous operator, whose range is a Banach space, we conclude, from
Banach’s theorem, that A∗

0 A0 : `∞(Z+) → `∞(Z+) is continuously invertible.
Hence, the proof of Step 3a is complete once we show that A∗

0 A0 : [ε] → [ε] is
onto and continuously invertible. First we show that A0 : [ε] → R2(A0) ⊂ L2(ν0⊗
Pθ0,G0 ) (R2(A0) is the range of A0, where we use the ‘subscript 2’ to stress that
we working in L2) is one-to-one, i.e. that the null space of A0 is trivial. Let
h :Z+ →R such that EG0 h2(ε0) <∞ and

0 = Eθ0,G0 [h(ε0) | X0, . . . , X−p ] Pν0,θ0,G0 −a.s.

Since support(G0) =Z+, we can drop the ‘a.s.’ and we obtain

0 = Eθ0,G0 [h(ε0) | X0 = e, X−1 = 0, . . . , X−p = 0] = h(e) ∀e ∈Z+

We see that h(ε0) = 0 and hence A0 is invertible, with inverse

(A−1
0 f )(ε0) = f (0, . . . ,0,ε0).

Of course this is a linear operator. Moreover it is continuous since (remember
that Pθ0,G0

(0,...,0),x0
= g0(x0))

EG0

(
A−1

0 f (ε0)− A−1
0 f ′(ε0)

)2 = EG0

(
f (0, . . . ,0,ε0)− f ′(0, . . . ,0,ε0)

)2

≤ 1

ν0{0, . . . ,0}
Eν0,θ0,G0

(
f (X−p , . . . , X0)− f ′(X−p , . . . , X0)

)2 .
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Since A0 : [ε] → R2(A0) is linear, continuous, one-to-one, and has a continuous
inverse, we conclude from Banach’s theorem that R2(A0) is a closed subspace
of L2(ν0⊗Pθ0,G0 ). Since A0 is one-to-one, and R2(A0) is closed we conclude that
the operator A∗

0 A0 : [ε] → [ε] is one-to-one, onto and has a continuous inverse
(fact from Hilbert-space theory). This concludes Step 3a.
Step 3b:
In this step we show that B : `∞(Z+) → `∞(Z+) is one-to-one. This essentially
follows from the proof of Lemma 25.92 in Van der Vaart (2000). For complete-
ness we repeat the arguments, where we circumvent the need to consider the
efficient information matrix forθ. Let h ∈ `∞(Z+), with Bh = 0. We have to prove
that h = 0. Introduce Rp 3 a = −I−1

θ0
Eν0,θ0,G0 A0h(Z0) ˙̀

θ(Z0;θ0,G0), and notice

that C h = aT A∗
0

˙̀
θ(·;θ0,G0). Let S = aT ˙̀

θ(Z0;θ0,G0)+ A0h(Z0)− ∫
h dG0. First

we show that for a 6= 0 we have Eν0,θ0,G0 S2 > 0. Suppose that S = 0 Pν0,θ0,G0 -a.s.
Then conditioning on X−p = ·· · = X−1 = 0 yields h(e)−∫

h dG0 = 0 for all e. And
we obtain, since Iθ0 is positive definite (Theorem 2.1), Eν0,θ0,G0 S2 = aT Iθ0 a > 0
for a 6= 0, which contradicts Eν0,θ0,G0 S2 = 0. Conclude that we have, for a 6= 0,

0 < Eν0,θ0,G0 S2 = Eν0,θ0,G0

(
A0h(Z0)−

∫
h dG0

)2

−aT Iθ0 a.

On the other hand Bh = 0, yields

0 = Eν0,θ0,G0 h(ε0)Bh(ε0) = Eν0,θ0,G0 (A0h(Z0))2 +aTEν0,θ0,G0 A0h(Z0) ˙̀
θ(Z0;θ0,G0)

≥ Eν0,θ0,G0

(
A0h(Z0)−

∫
h dG0

)2

−aT Iθ0 a.

From the previous two displays we conclude a = 0, which by definition of a
and C yields C h = 0. Hence A∗

0 A0h = 0, which, by Step 3a, yields h = 0. This
concludes the proof.

So we have proved (L2) for the case support(G0) =Z+. The proof for the general
case uses exactly the same arguments, if we replace in the arguments where
‘a.s.’ plays a roleZ+ by support(G0). Recall that we always have, by assumption,
g0(0) > 0.

Proof of (L3)

Proposition 1.2.1.1 yields the weak-convergence of
p

n
(
Ψn1 −Ψθ0,G0

1

)
(θ0,G0),

since we are dealing with a finite function class and since we have the bound
| ˙̀
θ,i (Z0;θ0,G0)| ≤ X−i (θ0,i (1 − θ0,i ))−1, i = 1, . . . , p. Hence, due to the form ofp
n

(
Ψn −Ψθ0,G0

)
(θ0,G0), it suffices to prove weak convergence, under Pν0,θ0,G0 ,

of the process
p

n
(
Ψn2 −Ψθ0,G0

2

)
(θ0,G0) in `∞(H1) to a tight Gaussian pro-

cess. This can be reexpressed as the weak convergence of the empirical process
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{
Zn f | f ∈F

}
, where F = {Zp+1

+ 3 (x−p , . . . , x0) 7→ A0h(x−p , . . . , x0) | h ∈ H1}. We
use Proposition 1.2.1.5 to verify this. Let δ> 0. By Markov’s inequality we have

Pν0,θ0,G0 { max
i=0,...,p

X−i ≥ Mδ} ≤ δ2

8
,

for Mδ = d(8(p+1)Eν0,θ0,G0 X p+2
0 )1/(p+2)δ−2/(p+2)e. Next, form a grid of cubes with

sides of length εδ = δ/2
p

2 over [−1,1]{0,...,Mδ−1}p+1
. This yields Nδ ≤ d2/εδeM

p+1
δ

points. Each point yields a mapping f : {0, . . . , Mδ − 1}p+1 → [−1,1]. We label
these as f1, . . . , fNδ

. Since for h ∈H1 we have |A0h| ≤ 1, there exists i ∈ {1, . . . , Nδ}
such that fi (x−p , . . . , x0)−δ/2

p
2 ≤ A0h(x−p , . . . , x0) ≤ fi (x−p , . . . , x0)+δ/2

p
2 for

x−p , . . . , x0 ≤ Mδ − 1. Next we introduce mappings f L
i , f U

i , i = 1, . . . , Nδ, from

Z
p+1
+ into [−1,1] by f L

i =−1∨ ( fi −δ/2
p

2) if max{x−p , . . . , x0} ≤ Mδ−1, f L
i =−1

for max{x−p , . . . , x0} ≥ Mδ, and f U
i = 1∧ ( fi +δ/2

p
2) if max{x−p , . . . , x0} ≤ Mδ−1

and f U
i = 1 if max{x−p , . . . , x0} ≥ Mδ. Conclude that for h ∈ H1 there exists

i ∈ {1, . . . , Nδ} such that f L
i ≤ A0h ≤ f U

i . So the brackets
[

f L
i , f U

i

]
, i = 1, . . . , Nδ,

cover F and satisfy

Eν0,θ0,G0 ( f U
i − f L

i )2 ≤
(
δp
2

)2

+4Pν0,θ0,G0 { max
i=0,...,p

X−i ≥ Mδ} ≤ δ2.

Conclude that N[ ](δ,F ) ≤ Nδ. Using log(x) ≤ m(x1/m − 1) for x > 0, m ∈ N, it
follows that we can find ζ< 1 such that log N[ ](x,F ) =O(x−2ζ). Since the enve-
lope of F is bounded by 2, an application of Proposition 1.2.1.5 concludes the
proof.

Proof of (L4)

In step A we prove

p
n

(
Ψn2 −Ψθ0,G0

2

)
(θ̂n ,Ĝn)−p

n
(
Ψn2 −Ψθ0,G0

2

)
(θ0,G0) = o(1;Pν0,θ0,G0 ), (3.15)

and in step B we prove

p
n

(
Ψn1 −Ψθ0,G0

1

)
(θ̂n ,Ĝn)−p

n
(
Ψn1 −Ψθ0,G0

1

)
(θ0,G0) = o(1;Pν0,θ0,G0 ), (3.16)

which will conclude the proof. Introduce for δ > 0 B0(δ) = {(θ,G) ∈ Θ×Gp+4 |
|θ−θ0|+‖G −G0‖1 ≤ δ}.

Step A: If we prove that there exists δ> 0 such that

lim
n→∞ sup

h∈H1

Eν0,θ0,G0

(
Aθn ,Gn h(X−p , . . . , X0)− Aθ0,G0 h(X−p , . . . , X0)

)2 = 0,
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for all sequences (θn ,Gn) inΘ×Gp+4 converging to (θ0,G0), and that the empir-
ical process {Zn f | f ∈F δ} with F δ given by

F δ = {
(x−p , . . . , x0) 7→ (Aθ,G h − Aθ0,G0 h)(x−p , . . . , x0) | h ∈H1, (θ,G) ∈ B0(δ)

}
,

weakly converges to a tight Gaussian process, then (3.15) follows from (the proof
of) Lemma 3.3.5 in Van der Vaart and Wellner (1993). Since

sup
h∈H1

|Aθn ,Gn h(X−p , . . . , X0)− Aθ0,G0 h(X−p , . . . , X0)| ≤ 2,

and since, for fixed X−p , . . . , X0,

sup
h∈H1

|Aθn ,Gn h(Z0)− Aθ0,G0 h(Z0)| ≤
∣∣∣∣∣∣

Pθ0,G0
Y0,X0

Pθn ,Gn
Y0,X0

−1

∣∣∣∣∣∣
+ ‖Gn −G0‖1

Pθn ,Gn
Y0,X0

→ 0,

the first condition easily follows by an application of the dominated conver-
gence theorem. That the process {Zn f | f ∈ F δ} weakly converges to a tight
Gaussian process follows by the same arguments as in the proof of (L3).

Step B: We consider the first coordinate. The others proceed in exactly the same
way. If we prove that there exists δ> 0 such that

lim
n→∞Eν0,θ0,G0

(
˙̀
θ,1(X−p , . . . , X0;θn ,Gn)− ˙̀

θ,1(X−p , . . . , X0;θ0,G0)
)2 = 0,

for all sequences (θn ,Gn) inΘ×Gp+4 converging to (θ0,G0), and that the empir-
ical process {Zn f | f ∈F δ} with F δ given by

F δ = {
z0 7→ ˙̀

θ,1(x−p , . . . , x0;θ,G)− ˙̀
θ,1(x−p , . . . , x0;θ0,G0) | (θ,G) ∈ B0(δ)

}
,

converges weakly to a tight Gaussian process, then (3.16) follows from (the proof
of) Lemma 3.3.5 in Van der Vaart and Wellner (1993). Choose δ> 0 such that for
all θ in the ball we have (θi (1−θi ))−1 ≤ C for certain C > 0 and all i = 1, . . . , p.
The first condition easily follows using dominated convergence (use 4C X 2

−1 as
dominating function). We use Proposition 1.2.1.5 to verify the second condi-
tion. Let η > 0. Take Mη = dα1/(p+4)η−2/(p+2)e, where the constant α is given by

α= (p +1)
(
8C 2Eν0,θ0,G0 X p+4

0

)(p+4)/(p+2)
. By Markov’s inequality we have

Pν0,θ0,G0 { max
i=0,...,p

X−i ≥ Mη} ≤ Eν0,θ0,G0 X p+4
0(

8C 2Eν0,θ0,G0 X p+4
0

)(p+4)/(p+2)
η

2 p+4
p+2 ,

and using Hölder’s inequality we now obtain

Eν0,θ0,G0 X 2
−11{ max

i=0,...,p
X−i ≥ Mη}
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≤
(
Eν0,θ0,G0 X p+4

−1

)2/(p+4)
(
Pν0,θ0,G0 { max

i=0,...,p
X−i ≥ Mη}

)(p+2)/(p+4)

≤ η2

8C 2
. (3.17)

Notice that for all (θ,G) ∈ B0(δ) we have

| ˙̀
θ,1(x−p , . . . , x0;θ,G)− ˙̀

θ,1(x−p , . . . , x0;θ0,G0)| ≤ 2C x−1.

Next, construct a grid of cubes with sides of length εη = η/2
p

2 over the cube

[−2C Mη,2C Mη]{0,...,Mη−1}p+1
. This yields Nη ≤ d4C Mη/εηeM

p+1
η points. Each point

yields a mapping f : {0, . . . , Mη−1}p+1 → [−2C Mη,2C Mη]. We label these func-
tions as f1, . . . , fNη . So, for (θ,G) ∈ B0(δ), there exists i ∈ {1, . . . , Nη} such that, for
all x−p , . . . , x0 ≤ Mη−1,

fi (z0)− η

2
p

2
≤ ˙̀

θ,1(z0;θ,G)− ˙̀
θ,1(z0;θ0,G0) ≤ fi (z0)+ η

2
p

2
.

Next we introduce mappings f L
i , f U

i , i = 1, . . . , Nη, from Z
p+1
+ into R by f L

i =
−2C Mη ∨ ( fi − η/2

p
2) if max{x−p , . . . , x0} ≤ Mη − 1 and f L

i = −2C x−1 in case

max{x−p , . . . , x0} ≥ Mη, and f U
i = 2C Mη∧( fi +η/2

p
2) if max{x−p , . . . , x0} ≤ Mη−1

and f U
i = 2C x−1 if max{x−p , . . . , x0} ≥ Mη. Conclude that for (θ,G) ∈ B0(δ) there

exists i ∈ {1, . . . , Nη} such that f L
i ≤ ˙̀

θ,1(θ,G)− ˙̀
θ,1(θ0,G0) ≤ f U

i . So the brackets[
f L

i , f U
i

]
, i = 1, . . . , Nη, cover F δ and satisfy, by (3.17),

Eν0,θ0,G0 ( f U
i − f L

i )2 ≤
(
ηp
2

)2

+4C 2Eν0,θ0,G0 X 2
−11{ max

i=0,...,p
X−i ≥ Mη} ≤ η2.

Conclude that N[ ](η,F δ) ≤ Nη. Using log(x) ≤ m(x1/m −1) for x > 0, m ∈ N, it
easily follows that we can find ζ< 1 such that log N[ ](x,F δ) =O(x−2ζ). Since the
envelope of F δ is bounded by the integrable variable 2C X−1, an application of
Proposition 1.2.1.5 concludes the proof.

3.3 E�ciency

In this section we prove efficiency of (θ̂n ,Ĝn). As mentioned in the introduction
it is a nonstandard problem to demonstrate efficiency. This since it does not
seem to be possible to obtain explicit expressions for the efficient influence op-
erator. Fortunately, the special representation of the limiting distribution (The-
orem 3.1) can be exploited to demonstrate efficiency. Basically, the argument is
that the ‘score-process’ Sθ,G

n can be seen as an efficient estimator of a certain
artificial parameter, and that efficiency is retained under Hadamard differen-
tiable mappings.

It is well-known that the local structure of a model needs to be considered
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to obtain lower-bounds to the precision of estimators. Tangent spaces are the
mathematical tool for this. The next lemma yields a tangent space: it shows that
certain parametric submodels enjoy the LAN-property.

Lemma 3.3.1. Let (θ,G) ∈Θ×Gp+4. Let a ∈ Rp , and h :Z+ → R bounded. Intro-
duce probability measures Gτ by

gτ(k) = g (k)

[
1+τ

(
h(k)−

∫
h dG

)]
, k ∈Z+, |τ| < ε̃= (2‖h‖∞)−1.

Note that, for |τ| < ε̃, Gτ ∈ Gp+4. Let 0 < ε≤ ε̃ be such that θ+τa ∈Θ for |τ| ≤ ε,
and denote ντ = νθ+τa,Gτ

. Then the sequence of experiments

E θ,G
n (a,h) =

(
Z

n+1+p
+ ,2Z

n+1+p
+ ,

(
P

(n)
ντ,θ+τa,Gτ

| τ ∈ (−ε,ε)
))

, n ∈Z+,

has the LAN-property at τ= 0 (recall that Zt = (X t , . . . , X t−p )′):

log
dP(n)

νn ,θn ,Gn

dP(n)
νθ,G ,θ,G

= 1p
n

n∑
t=0

(
aT 1

)( ˙̀
θ(Zt ;θ,G)

Aθ,G h(Zt )−∫
h dG

)
− 1

2

(
aT 1

)
Jθ,G ,h

(
a
1

)

+o(1;Pνθ,G ,θ,G ),

where θn = θ+a/
p

n, Gn =G1/
p

n , and νn = ν1/
p

n , and where Jθ,G ,h is given by,

Eνθ,G ,θ,G

(
˙̀
θ

˙̀T
θ

(Z0;θ,G) ˙̀
θ(Z0;θ,G)

(
Aθ,G h(Z0)−∫

h dG
)

˙̀T
θ

(Z0;θ,G)
(

Aθ,G h(Z0)−∫
h dG

) (
Aθ,G h(Z0)−∫

h dG
)2

)
.

In this way we obtain a tangent set (which is already a linear space)

T 0
θ,G =

{
aT ˙̀

θ(Z0;θ,G)+ Aθ,G h(Z0)−
∫

h dG | a ∈Rp , h ∈ `∞(Z+)

}
,

and the corresponding tangent space is the L2(νθ,G⊗Pθ,G )-closure of T 0
θ,G : Tθ,G =

T 0
θ,G .

Proof.
By an application of Theorem 2.1 the lemma is proved once we prove that the

initial value satisfies νn{X−p , . . . , X−1}−νθ,G {X−p , . . . , X−1}
p−→ 0, under Pνθ,G ,θ,G .

By Proposition 1.2.1.6 this follows if we show (recall that Yt = (X t−1, . . . , X t−p )′)

lim
n→∞ sup

y∈Zp
+

sup f : | f |≤V

∣∣∣Eδy ,θn ,Gn f (Y1)−Eδy ,θ,G f (Y1)
∣∣∣

V (y)
= 0, (3.18)

where V (y) = 1+∑p
i=1 ci yi , ci = θi + . . . ,θp for i = 1, . . . , p. Straightforward com-

putations yield

Eδy ,θn ,Gn f (Y1)−Eδy ,θ,G f (Y1) = 1p
n
Eδy ,θn ,G (h(ε0)−EG h(ε0)) f (Y1)
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+
∫ 1p

n

0

p∑
i=1

aiEδy ,θ+τa,G f (Y1)ṡX−i ,θi+τai (ϑi ◦X−i )dτ.

We have, for a constant C > 0, the bound

sup
f : | f |≤V

∣∣∣Eδy ,θn ,G (h(ε0)−EG h(ε0)) f (Y1)
∣∣∣

≤ 2‖h‖∞
(

1+
p∑

i=2
ci yi−1 +µG +

(
θ+ ap

n

)T

y

)
≤CV (y).

Next let i ∈ {1, . . . , p}. Of course the supremum in

sup
f : | f |≤V

∣∣∣Eδy ,θ+τa,G f (Y1)ṡX−i ,θi+τai (ϑi ◦X−i )
∣∣∣

is taken for f = V 1A −V 1Ac , where A = {ṡX−i ,θi (ϑ ◦ X−i ) > 0}. Consequently, in
the first equality we exploit Eδy ,θ+τa,G ṡX−i ,θi+τai (ϑi ◦X−i ) = 0,

sup
f : | f |≤V

∣∣∣Eδy ,θ+τa,G f (Y1)ṡX−i ,θi+τai (ϑi ◦X−i )
∣∣∣

= sup
f : | f |≤V

∣∣∣Eδy ,θ+τa,G ( f (Y1)−Eδy ,θ+τa,G f (Y1))ṡX−i ,θi+τai (ϑi ◦X−i )
∣∣∣

= Eδy ,θ+τa,G 1A(V (Y1)−Eδy ,θ+τa,GV (Y1))ṡX−i ,θi+τai (ϑi ◦X−i )

−Eδy ,θ+τa,G 1Ac (V (Y1)−Eδy ,θ+τa,GV (Y1))ṡX−i ,θi+τai (ϑi ◦X−i )

(fill in V and use Eδy ,θ+τa,G ṡX−i ,θi+τai (ϑi ◦X−i ) = 0)

= c1Eδy ,θ+τa,G 1A(X0 −Eδy ,θ+τa,G X0)ṡX−i ,θi+τai (ϑi ◦X−i )

−c1Eδy ,θ+τa,G 1Ac (X0 −Eδy ,θ+τa,G X0)ṡX−i ,θi+τai (ϑi ◦X−i )

≤ c1

√
Eδy ,θ+τa,G (X0 −Eδy ,θ+τa,G X0)2

√
Eδy ,θ+τa,G ṡ2

X−i ,θi+τai
(ϑi ◦X−i )

= c1

√√√√σ2
G +

p∑
j=1

(θ j +τa j )y j

√
θi (1−θi )yi

≤CV (y),

for a constant C > 0. A combination of the previous four displays easily yields
(3.18).

Now we are able to recall the concept of a regular estimator for (θ,G): an esti-
mator Tn of (θ,G) is regular at Pνθ,G ,θ,G if there exists a tight Borel measurable
random element L in Rp ×`1(Z+) such that for all a ∈Rp , h ∈ `∞(Z+), we have,

p
n (Tn − (θn ,Gn)) ÃZ under Pνn ,θn ,Gn , (3.19)
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where θn = θ+a/
p

n, gn = g (1+(h−∫
h dG)/

p
n), and νn = νθn ,Gn . An interpre-

tation of (3.19) is that the limiting-distribution of Tn is not disturbed by van-
ishing perturbations in direction (a,h). An estimator Tn of (θ,G) is regular if it
is regular at all Pνθ,G ,θ,G , (θ,G) ∈ Θ×Gp+4. Since Lemma 3.3.1 established the
LAN-property along parametric submodels of our semiparametric experiment
E (n), and it is straightforward to check pathwise differentiability, the following
theorem is an immediate consequence of an infinite-dimensional analogue of
the famous Hájek-Le Cam convolution theorem (see, for example, Bickel et al.
(1998) Theorem 5.2.1 or Van der Vaart (1991b) Theorem 2.1).

Theorem 3.2. Let (θ,G) ∈Θ×Gp+4, and Tn an estimator of (θ,G) which is regular
at Pνθ,G ,θ,G . In particular,

L
(p

n (Tn − (θ,G)) |Pνθ,G ,θ,G
) w−→Z=Zθ,G ,(Tn )n∈N .

Then there exist independent random elements Lθ,G , which is a centered Gaus-
sian process only depending on the model, and Nθ,G ,(Tn )n∈N , which generally de-
pends on both the model and the estimator, such that

Zθ,G ,(Tn )n∈N =L (Lθ,G +Nθ,G ,(Tn )n∈N).

So the scaled estimation error
p

n(Tn − (θ,G)) can, in the limit, be represented
by the convolution of the process Lθ,G andNθ,G ,(Tn )n∈N . Since Lθ,G only depends
on the model and not on the estimator itself, it represents inevitable noise.
Therefore an estimator is called efficient at Pνθ,G ,θ,G if it is regular with lim-
iting distribution Lθ,G . An estimator is efficient if it is efficient at all Pνθ,G ,θ,G ,
(θ,G) ∈Θ×Gp+4.

Using Le Cam’s third lemma and Lemma 3.3.1 it is easy to see (see also the proof
of Theorem 2 in Van der Vaart (1995) ) that (θ̂n ,Ĝn) is regular at Pνθ,G ,θ,G if and

only if the Fréchet derivative of the estimating equation, Ψ̇θ,G satisfies, for all
a ∈Rp and h∗ ∈ `∞(Z+) with EG h∗(ε1) = 0,

Ψ̇θ,G
1

(
a,

(
k 7→ h∗(k)g (k)

))=−Eνθ,G ,θ,G
(
aT ˙̀

θ(Z0;θ,G)a + Aθ,G h∗(Z0)
)

˙̀
θ(Z0;θ,G),

and, for all h ∈H1,

Ψ̇θ,G
2

(
a,

(
k 7→ h∗(k)g (k)

))
h =−Eνθ,G ,θ,G

(
aT ˙̀

θ(Z0;θ,G)+ Aθ,G h∗(Z0)
)

Aθ,G h(Z0).

These displays can be interpreted as the infinite-dimensional analogue of the
information-matrix equality, i.e. the expectation of the outer-product of scores
often equals minus the expectation of the Hessian of the log-likelihood. Plug-
ging in the definitions of Ψ̇θ,G

1 and Ψ̇θ,G
2 , these displays are easily checked. We

organize the result in the following proposition.
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Proposition 3.3.1. Let (θ,G) ∈ Θ×Gp+4. Any NPMLE ((θ̂n ,Ĝn))n∈Z+ is a regular
estimator of (θ,G) at Pνθ,G ,θ,G .

To prove efficiency we first recall the following characterization of efficiency.
Fix (θ0,G0) ∈ Θ×Gp+4 and denote ν0 = νθ0,G0 . Since (θ̂n ,Ĝn) is a regular esti-
mator of (θ,G), we can conclude (see, for example, Bickel et al. (1998) Corol-
lary 5.2.1) that (θ̂n ,Ĝn) is efficient at Pν0,θ0,G0 , once we show that each com-
ponent of (θ̂n ,Ĝn) is asymptotically linear at Pν0,θ0,G0 with an influence func-
tion contained in the tangent space Tθ0,G0 . More precise: there should exist
f1, . . . , fp ∈Tθ0,G0 and hk , k ∈Z+ from Tθ0,G0 such that

p
n(θ̂n −θ) = 1p

n

n∑
t=0




f1(X t−p , . . . , X t )
· · ·

fp (X t−p , . . . , X t )


+o(1;Pν0,θ0,G0 ), (3.20)

and for all k ∈Z+,

p
n(ĝn(k)− g (k)) = 1p

n

n∑
t=0

hk (X t−p , . . . , X t )+o(1;Pν0,θ0,G0 ). (3.21)

Since we have no explicit formulas for Ψ̇−1
θ0,G0

we cannot check directly whether
this is the case. However, we will exploit the representation (see Theorem 3.1)

p
n

(
θ̂n −θ0

(ĝn(k)− g0(k))k∈Z+

)
=−Ψ̇−1

θ0,G0
S
θ0,G0
n +o(1;Pν0,θ0,G0 ), (3.22)

to demonstrate efficiency by an indirect argument. Recall that the Euclidean of
S
θ0,G0
n is given by

S
θ0,G0
n1 = 1p

n

n∑
t=0

˙̀
θ(X t−p , . . . , X t ;θ0,G0), (3.23)

and the infinite-dimensional part by,

S
θ0,G0
n2 h = 1p

n

n∑
t=0

(
Aθ0,G0 h(X t−p , . . . , X t )−

∫
h dG0

)
, h ∈H1. (3.24)

So Sθ0,G0
n is a process of certain elements of the tangent space. Introduce the

artificial parameters (notice that we use ν0 instead of νθ,G )

Θ×Gp+4 3 (θ, g ) 7→ ν
θ0,G0
1 (θ, g ) = Eν0,θ,G

˙̀
θ(X t−p , . . . , X0;θ0,G0),

and, for h ∈H1,

Θ×Gp+4 3 (θ, g ) 7→ ν
θ0,G0
h (θ, g ) = Eν0,θ,G Aθ0,G0 h(X t−p , . . . , X0)−

∫
h dG0.
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And note that νθ0,G0
1 (θ0, g0) = ν

θ0,G0
h (θ0, g0) = 0. From (3.23) we now see that,

at Pν0,θ0,G0 , Sθ0,G0
n1 is an asymptotically linear estimator of νθ0,G0

1 (θ, g ) with in-
fluence function contained in Tθ0,G0 . And, from (3.24) we see that, at Pν0,θ0,G0 ,

and for h ∈H1,Sθ0,G0
n2 h is an asymptotically linear estimator of νθ0,G0

h (θ, g ), with
influence function contained in Tθ0,G0 . Consequently, these estimators are ef-
ficient at Pν0,θ0,G0 one we show that they are regular at Pν0,θ0,G0 . Using Le Cam’s
third lemma and Lemma 3.3.1 this regularity follows once we show that for all
a ∈Rp and f ∈ `∞(Z+) with EG0 f (ε1) = 0, we have,

lim
t→0

ν
θ0,G0
1 (θ+ t a, g0(1+ t ( f −∫

f dG0)))−νθ0,G0
1 (θ0, g0)

t
=

Eν0,θ0,G0

(
aT ˙̀

θ(X−p , . . . , X0;θ0,G0)+ Aθ0,G0 f (X−p , . . . , X0)
)

˙̀
θ(X−p , . . . , X0),

and, for h ∈H1,

lim
t→0

ν
θ0,G0
h (θ+ t a, g0(1+ t ( f −∫

f dG0)))−νθ0,G0
h (θ0, g0)

t
=

Eν0,θ0,G0

(
aT ˙̀

θ(Z0;θ0,G0)+ Aθ0,G0 f (Z0)
)(

Aθ0,G0 h(Z0)−
∫

h dG0

)
,

which are quite straightforward to check (see also the proof of Lemma 3.3.1).
Hence we conclude that, at Pν0,θ0,G0 , Sθ0,G0

n1 is an efficient estimator of the pa-

rameter (θ, g ) 7→ ν
θ0,G0
1 (θ, g ), and, for h ∈H1, Sθ0,G0

n2 h is, at Pν0,θ0,G0 , an efficient

estimator of the parameter (θ, g ) 7→ ν
θ0,G0
h (θ, g ). Since we already established

tightness of Sθ0,G0
n (see Lemma 3.2.1L3), and marginal efficiency plus tightness

is equivalent to efficiency, we conclude that Sθ0,G0
n is, at Pν0,θ0,G0 , an efficient

estimator of the parameter (θ, g ) 7→ (νθ0,G0
1 (θ, g ), (νθ0,G0

h (θ, g ))h∈H1 ). From (3.22)

we see that, at Pν0,θ0,G0 ,
p

n(θ̂n −θ0, (ĝn(k)− g0(k))k∈Z+) is a continuous, linear

transformation of the efficient estimatorSθ0,G0
n . Since efficiency is retained un-

der Hadamard differentiable mappings we conclude that
p

n(θ̂n −θ0, (ĝn(k)−
g0(k))k∈Z+), at Pν0,θ0,G0 , an efficient estimator of a certain parameter (for details
we refer to the proof of Theorem 3 in Van der Vaart (1995)). Hence the influence
functions of the components of

p
n(θ̂n −θ0, (ĝn(k)−g0(k))k∈Z+) are, at Pν0,θ0,G0 ,

contained in the tangent space Tθ0,G0 , which yields (3.20) and (5.19). Since we
already proved regularity this proves efficiency of the NPMLE at Pν0,θ0,G0 . Since
(θ0,G0) ∈Θ×Gp+4 was arbitrary, we obtain the following theorem.

Theorem 3.3. Any NPMLE ((θ̂n ,Ĝn))n∈Z+ is an efficient estimator of (θ,G) within
the experiments E (n), n ∈Z+. So we have (see Lemma 3.2.1 and Theorem 3.2), for
all (θ,G) ∈Θ×Gp+4,

L (Lθ,G ) =L (−Ψ̇−1
θ,GS

θ,G ).
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3.4 Monte Carlo study & Empirical Application
To enhance the interpretation and to investigate the validity of our theoretical
results a small Monte Carlo study and empirical application is presented.

In the Monte Carlo study the finite sample behavior of the NPMLE is investi-
gated. All simulations were carried out in Matlab 6.5 and the NPMLE is com-
puted using the optimization routine fmincon. As starting values for the op-
timization routine we use the OLS-estimator for θ and as starting value for G
we use the uniform distribution on {0, . . . ,maxt=1,...,n X t }. Due to the form of the
likelihood the computational effort in the simulations is substantial. Therefore,
the number of replications is limited to 2500, we only consider p = 1, and we
only consider relatively small values of µG /(1− θ1). Four innovation distribu-
tions G are considered. Two of these choices are inspired by the estimates in the
empirical application (see Table 3.3): Poisson(0.5) and Geometric(exp(−0.5)).
We also consider the Poisson(1) and the Geometric(exp(−1)) distribution as in-
novation distributions. For each choice of the innovation distribution we con-
sider three θ-values and two sample sizes: θ = 0.25, 0.5, 0.75, and n = 500, 2000.
Notice that the Poisson(µ) distribution assigns the same mass to the state 0 as
the Geometric(exp(−µ)) distribution, which explains the choice of parameters
for the Geometric distributions. For the Poisson distribution it is well-known,
and easy to check, that νθ,G = Poisson(µG /(1−θ)). Hence for Poisson innova-
tions we use ‘exact’ simulations for the initial value. For the Geometric innova-
tion structures we let the chain start in the stationary mean (rounded to obtain
an integer) and let it ‘run’ for 250 periods. As first observation in our studies we
use the value of the process at time 251.

Table 3.1 presents the results for n = 500, and Table 3.2 presents the results for
n = 2000. To conserve space we only report the results for ĝn(k) for k = 0, . . . ,5.
Comparing the entries in Table 3.1 with the corresponding entries in Table 3.2,
we confirm the theoretical results developed before. First, even for the smaller
sample, the NPMLE for θ is always more precise than the OLS estimator. The
efficiency gain seems to be increasing in θ and runs up to 200%. This corrob-
orates the result of Chapter 4 that shows that near unity the least-squares esti-
mator does not even attain the optimal rate of convergence. Since estimation
of G has not been considered before in the literature, the behavior of ĝn is per-
haps more interesting. We see that also for the smaller sample the probability
estimates are unbiased. It appears that the standard errors of ĝn tend to in-
crease with θ. A possible explanation for this is the following. If the INAR(1)
process drives to state 0, the next observation yields a direct observation on ε.
The NPMLE exploits both these direct observations as well as the other obser-
vations for which we observe a (true) convolution of εt with ϑ1 ◦ X t−1. Asymp-
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Table 3.1: Simulation results for n = 500 (based on 2500 replications)

Parameter Value Estimator Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

θ = 0.25 θ = 0.5 θ = 0.75

G = Geometric(exp(−0.5))

θOLS
n 0.2457 0.0482 0.4934 0.0441 0.7436 0.0317
θ̂n 0.2463 0.0391 0.4970 0.0315 0.7489 0.0178

g (0) 0.6065 ĝn (0) 0.6041 0.0290 0.6047 0.0311 0.6046 0.0339
g (1) 0.2387 ĝn (1) 0.2405 0.0259 0.2395 0.0291 0.2402 0.0336
g (2) 0.0939 ĝn (2) 0.0943 0.0165 0.0946 0.0187 0.0942 0.0209
g (3) 0.0369 ĝn (3) 0.0369 0.0105 0.0372 0.0117 0.0370 0.0132
g (4) 0.0145 ĝn (4) 0.0148 0.0068 0.0147 0.0078 0.0145 0.0084
g (5) 0.0057 ĝn (5) 0.0056 0.0043 0.0056 0.0049 0.0059 0.0051

G = Poisson(0.5)

θOLS
n 0.2474 0.0494 0.4944 0.0447 0.7436 0.0335
θ̂n 0.2478 0.0470 0.4964 0.0364 0.7484 0.0210

g (0) 0.6065 ĝn (0) 0.6061 0.0297 0.6048 0.0318 0.6036 0.0347
g (1) 0.3033 ĝn (1) 0.3035 0.0276 0.3048 0.0304 0.3056 0.0342
g (2) 0.0758 ĝn (2) 0.0759 0.0149 0.0759 0.0161 0.0765 0.0167
g (3) 0.0126 ĝn (3) 0.0127 0.0062 0.0126 0.0064 0.0126 0.0069
g (4) 0.0016 ĝn (4) 0.0015 0.0022 0.0016 0.0024 0.0016 0.0024
g (5) 0.0002 ĝn (5) 0.0002 0.0007 0.0002 0.0008 0.0001 0.0006

G = Geometric(exp(−1))

θOLS
n 0.2475 0.0461 0.4960 0.0411 0.7419 0.0308
θ̂n 0.2466 0.0342 0.4971 0.0288 0.7478 0.0189

g (0) 0.3679 ĝn (0) 0.3660 0.0363 0.3643 0.0462 0.3598 0.0739
g (1) 0.2325 ĝn (1) 0.2327 0.0321 0.2347 0.0463 0.2377 0.0861
g (2) 0.1470 ĝn (2) 0.1478 0.0252 0.1474 0.0379 0.1478 0.0670
g (3) 0.0929 ĝn (3) 0.0927 0.0204 0.0929 0.0314 0.0934 0.0531
g (4) 0.0587 ĝn (4) 0.0588 0.0165 0.0590 0.0259 0.0591 0.0389
g (5) 0.0371 ĝn (5) 0.0378 0.0133 0.0371 0.0209 0.0376 0.0282

G = Poisson(1)

θOLS
n 0.2460 0.0466 0.4947 0.0419 0.7427 0.0430
θ̂n 0.2443 0.0463 0.4956 0.0372 0.7450 0.0381

g (0) 0.3679 ĝn (0) 0.3657 0.0352 0.3626 0.0461 0.3586 0.0671
g (1) 0.3679 ĝn (1) 0.3676 0.0313 0.3709 0.0440 0.3740 0.0653
g (2) 0.1839 ĝn (2) 0.1851 0.0275 0.1849 0.0352 0.1841 0.0406
g (3) 0.0613 ĝn (3) 0.0624 0.0166 0.0625 0.0210 0.0619 0.0242
g (4) 0.0153 ĝn (4) 0.0153 0.0087 0.0154 0.0104 0.0161 0.0110
g (5) 0.0031 ĝn (5) 0.0030 0.0037 0.0030 0.0042 0.0031 0.0042

totically, we have nνθ,G {0} direct observations on ε. Since νθ,G {0} decreases as
θ increases, we obtain less direct observations on ε as θ increases. So we have
to deconvolute even more observations, which yields increasing standard er-
rors. Comparing the Geometric distributions with their Poisson counterpart it
seems that estimation of (θ,G) for Poisson innovations is more difficult than for
Geometric innovations. Furthermore, the efficiency gain of θ̂n with respect to
the OLS-estimator of θ is less large for Poisson innovations.

To demonstrate that the NPMLE is applicable in practice, we conclude this sec-
tion with a simple empirical example based on ultra-high frequency data. We
consider the IBM stock traded at the NYSE. We use quote data from the TAQ
dataset for February 2005. In this month there were 19 trading days (on Mon-
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Table 3.2: Simulation results for n = 2000 (based on 2500 replications)

Parameter Value Estimator Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

θ = 0.25 θ = 0.5 θ = 0.75

G = Geometric(exp(−0.5))

θOLS
n 0.2488 0.0247 0.4989 0.0228 0.7489 0.0164
θ̂n 0.2488 0.0194 0.4998 0.0157 0.7499 0.0088

g (0) 0.6065 ĝn (0) 0.6059 0.0145 0.6062 0.0160 0.6066 0.0165
g (1) 0.2387 ĝn (1) 0.2392 0.0129 0.2386 0.0148 0.2387 0.0165
g (2) 0.0939 ĝn (2) 0.0939 0.0084 0.0943 0.0097 0.0940 0.0102
g (3) 0.0369 ĝn (3) 0.0370 0.0052 0.0370 0.0059 0.0367 0.0067
g (4) 0.0145 ĝn (4) 0.0146 0.0033 0.0145 0.0038 0.0146 0.0042
g (5) 0.0057 ĝn (5) 0.0058 0.0021 0.0058 0.0024 0.0057 0.0026

G = Poisson(0.5)

θOLS
n 0.2494 0.0245 0.4991 0.0248 0.7486 0.0222
θ̂n 0.2497 0.0231 0.4991 0.0206 0.7497 0.0180

g (0) 0.6065 ĝn (0) 0.6066 0.0148 0.6059 0.0199 0.6063 0.0205
g (1) 0.3033 ĝn (1) 0.3033 0.0135 0.3037 0.0162 0.3030 0.0177
g (2) 0.0758 ĝn (2) 0.0756 0.0074 0.0757 0.0082 0.0759 0.0085
g (3) 0.0126 ĝn (3) 0.0127 0.0031 0.0126 0.0033 0.0126 0.0033
g (4) 0.0016 ĝn (4) 0.0015 0.0011 0.0015 0.0012 0.0016 0.0012
g (5) 0.0002 ĝn (5) 0.0002 0.0003 0.0002 0.0004 0.0001 0.0003

G = Geometric(exp(−1))

θOLS
n 0.2493 0.0232 0.4990 0.0211 0.7484 0.0158
θ̂n 0.2490 0.0165 0.4995 0.0140 0.7494 0.0087

g (0) 0.3679 ĝn (0) 0.3678 0.0178 0.3672 0.0234 0.3655 0.0334
g (1) 0.2325 ĝn (1) 0.2327 0.0156 0.2333 0.0233 0.2341 0.0388
g (2) 0.1470 ĝn (2) 0.1470 0.0127 0.1467 0.0185 0.1474 0.0307
g (3) 0.0929 ĝn (3) 0.0925 0.0102 0.0930 0.0154 0.0933 0.0255
g (4) 0.0587 ĝn (4) 0.0594 0.0083 0.0588 0.0126 0.0587 0.0203
g (5) 0.0371 ĝn (5) 0.0369 0.0064 0.0370 0.0101 0.0371 0.0163

G = Poisson(1)

θOLS
n 0.2492 0.0238 0.4972 0.0287 0.7486 0.0157
θ̂n 0.2490 0.0228 0.4977 0.0268 0.7491 0.0109

g (0) 0.3679 ĝn (0) 0.3676 0.0180 0.3663 0.0269 0.3661 0.0292
g (1) 0.3679 ĝn (1) 0.3675 0.0155 0.3678 0.0263 0.3688 0.0296
g (2) 0.1839 ĝn (2) 0.1844 0.0137 0.1838 0.0184 0.1844 0.0191
g (3) 0.0613 ĝn (3) 0.0616 0.0084 0.0613 0.0103 0.0615 0.0111
g (4) 0.0153 ĝn (4) 0.0153 0.0042 0.0156 0.0051 0.0155 0.0053
g (5) 0.0031 ĝn (5) 0.0030 0.0020 0.0030 0.0022 0.0031 0.0023
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Table 3.3: Estimation results IBM
Avg. Estimate Std. Error

θOLS
n 0.2552 0.0159
θ̂n 0.2307 0.0116

ĝn (0) 0.6385 0.0260
ĝn (1) 0.2440 0.0129
ĝn (2) 0.0844 0.0099
ĝn (3) 0.0239 0.0043
ĝn (4) 0.0066 0.0014
ĝn (5) 0.0018 0.0006

day February 21 the NYSE was closed because of Washington’s Birthday). We re-
move all quotes that took place outside the opening hours; i.e. before 9.30 AM
and after 4.00 PM. The variable of interest is the number of quotes per sec-
ond, where we start the measurement at the first quote of the day and end at
the last quote of the day. For the trading days in February 2005, the maximum
number of quotes per second was on average 9.8, and the average number of
quotes per second during the trading days was 0.68. For each trading day we
estimate an INAR(1) model. In Table 3.3 we present the average of the parame-
ter estimates and the standard errors of these estimates. To conserve space we
only report the results for ĝn(k) for k = 0, . . . ,5. From the standard errors we see
that the estimates for the different days are quite close, So, at least for February
2005, there seems to be some common structure in the arrival of quotes. The
OLS estimates and the NPMLE estimates of θ are not too far away from each
other, so this provides ‘no evidence’ against the model. We have the following
estimated autoregression Ê[X t | X t−1] ≈ 0.24+0.52, and the following estimated
conditional variance ˆvar[X t | X t−1] ≈ 0.18X t−1 +0.70. Interpreting the INAR(1)
model as a branching process with immigration, we can ‘decompose’ the num-
ber of quotes per second into two parts. The first part, consists of quotes which
are ‘offspring’ of quotes in the previous second, and so models the predictable
part. The estimated value for θ, which is about 0.24, means that a quote arriv-
ing at time t ‘generates’ a new quote at period t +1 with probability 0.25. The
estimates ĝn(k) give the probability on k ‘new unpredictable’ quotes.





4 The limit experiment of nearly
unstable INAR(1) models

Recall that the INAR(1) process starting at 0 is defined by X0 = 0 and the recur-
sion,

X t =ϑ◦X t−1 +εt , t ∈N, (4.1)

where,

ϑ◦X t−1 =
X t−1∑
j=1

Z (t )
j .

Here (Z (t )
j ) j∈N,t∈N is a collection of i.i.d. Bernoulli variables with success proba-

bility θ ∈ [0,1], independent of the i.i.d. innovation sequence (εt )t∈N with distri-
bution G on Z+ =N∪ {0}. All these variables are defined on a probability space
(Ω,F ,Pθ,G ). If we work with fixed G , we drop the subscript G . From Theorem 1.1
we know that, if θ ∈ [0,1) and EGε1 <∞, which is called the ‘stable’ case, there
exists an initial distribution, νθ,G , such that X is stationary if L (X0) = νθ,G . Of
course, the INAR(1) process is non-stationary if θ = 1: underP1 the process X is
nothing but a standard random walk with drift onZ+ (but note that X is nonde-
creasing under P1). We call this situation ‘unstable’ or say that the process has
a ‘unit root’. Although the unit root is on the boundary of the parameter space,
it is an important parameter value since Hellström (2001) documented that in
many applications the estimates of θ are close to 1.

As before, we denote the law of (X0, . . . , Xn) underPθ,G (on the measurable space

(Xn ,An) = (Zn+1
+ ,2Z

n+1
+ )) by P(n)

θ,G . In the applications in this chapter we mainly
consider two sets of assumptions on G : (i) G is known or (ii) G is completely un-
known (apart from some regularity conditions). For expository reasons, let us,
for the moment, focus on the case that G is completely known and that the goal
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is to estimate θ. We use ‘local-to-unity’ asymptotics to take the ‘increasing sta-
tistical difficulty’ in the neighborhood of the unit root into account, i.e. we con-
sider local alternatives to the unit root in such a way that the increasing degree
of difficulty to discriminate between these alternatives and the unit root com-
pensates the increase of information contained in the sample as the number of
observations grows. This approach is well-known; it traces back to the work of
Chan and Wei (1987) and Philips (1987), who studied the behavior of a given es-
timator (OLS) in a nearly unstable AR(1) setting, and Jeganathan (1995), whose
results yield the asymptotic structure of nearly unstable AR models. Following
this approach, we introduce the sequence of nearly unstable INAR experiments

En(G) =
(
Xn ,An ,

(
P

(n)
1−h/n2 | h ≥ 0

))
, n ∈N.

The ‘localizing rate’ n2 will become apparent later on. It is surprising that the
localizing rate is n2, since for the classical nearly unstable AR(1) model one has
rate n

p
n (non-zero intercept) or n (no intercept). Suppose that we have found

an estimator ĥn with ‘nice properties’, then this corresponds to the estimate
θ̂n = 1−ĥn/n2 of θ in the experiment of interest. To our knowledge, Ispány et al.
(2003b) were the first to study estimation in a nearly unstable INAR(1) model.
These authors study the behavior of the OLS estimator and they use a localiz-
ing rate n instead of n2. However, as we will see shortly, n2 is indeed the proper
localizing rate and in Proposition 4.3.4 we show that the OLS estimator is an
exploding estimator in (En(G))n∈N, i.e. it has not even the ‘right’ rate of conver-
gence. The question then arises how we should estimate h. Instead of analyzing
the asymptotic behavior of a given estimator, we derive the asymptotic struc-
ture of the experiments themselves by determining the limit experiment (in the
Le Cam sense) of (En(G))n∈N. This limit experiment gives bounds to the accu-
racy of inference procedures and suggests how to construct efficient ones.

The main goal of this chapter is to determine the limit experiment of (En(G))n∈N.
Remember that (see, for example, Le Cam (1986), Le Cam and Yang (1990), Van
der Vaart (1991a), Shiryaev and Spokoiny (1999) or Van der Vaart (2000, Chap-
ter 9)), the sequence of experiments (En(G))n∈N is said to converge to a limit
experiment (in Le Cam’s weak topology) E = (X ,A , (Qh | h ≥ 0)) if, for every
finite subset I ⊂R+ and every h0 ∈R+, we have




dP(n)

1− h
n2

dP(n)

1− h0
n2




h∈I

d−→
(

dQh

dQh0

)

h∈I

, under P(n)

1− h0
n2

.

To see that it is indeed reasonable to expect n2 as the proper localizing rate, we
briefly discuss the case of geometrically distributed innovations (in the remain-
der we treat general G). In case G = Geometric(1/2), i.e., G puts mass (1/2)k+1
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at k ∈Z+, it is an easy exercise1 to verify for h > 0,

dP(n)

1− h
rn

dP(n)
1

p−→





0 if rn
n2 → 0,

exp
(
−hG(0)EGε1

2

)
= exp

(
−h

4

)
if rn

n2 → 1,

1 if rn
n2 →∞,

under P1.

This simple calculation has two important implications. First, it indicates that
n2 is indeed the proper localizing rate. Intuitively, if we go faster than n2 we
cannot distinguish P

(n)
1−h/rn

from P
(n)
1 , and if we go slower we can distinguish

P
(n)
1−h/rn

perfectly from P
(n)
1 . Secondly, since exp(−h/4) < 1 we cannot, by Le

Cam’s first lemma, hope, in general, for contiguity of P(n)
1−h/n2 with respect to

P
(n)
1 (Remark 12 after Theorem 4.1 gives an example of sets that yield this non-

contiguity). This lack of contiguity is unfortunate for several reasons. Most im-
portantly, if we would have contiguity the limiting behavior of the random vec-
tors (dP(n)

1−h/n2 /dP(n)
1 )h∈I determines the limit experiment, whereas we need to

consider the behavior of (dP(n)
1−h/n2 /dP(n)

1−h0/n2 )h∈I for all h0 ≥ 0. So to be clear:

the preceding display does not yet yield the limit experiment for this Geometric
case. And it implies that the global sequence of experiments has not the com-
mon Local Asymptotic Quadratic structure (see Jeganathan (1995)) at θ = 1.
This differs from the traditional AR(1) process Y0 = 0, Yt = µ+ θYt−1 +ut , ut

i.i.d. N(0,σ2), with µ 6= 0 and σ2 known, that enjoys this LAQ property at θ = 1:
the limit experiment at θ = 1 is the usual normal location experiment (i.e., the
model is Locally Asymptotically Normal) and the localizing rate is n3/2. The
limit experiment at θ = 1 for Y0 = 0, Yt = θYt−1 +ut , ut i.i.d. N(0,σ2), with σ2

known, does not have the LAN-structure; the limit experiment is of the Locally
Asymptotically Brownian Functional type (see Jeganathan (1995)) and the lo-
calizing rate is n. Thus although the INAR(1) process and the traditional AR(1)
process both are a random walk with drift at θ = 1, their statistical properties
‘near θ = 1’ are very different. In Section 4.2 we prove that the limit-experiment
of (En(G))n∈N corresponds to one draw from a Poisson distribution with mean
hG(0)EGε1/2, i.e.

E (G) =
(
Z+,2Z+ ,

(
Poisson

(
hG(0)EGε1

2

)
| h ≥ 0

))
.

We indeed recognize exp(−hG(0)EGε1/2) as the likelihood ratio at h relative
to h0 = 0 in the experiment E (G). Due to the lack of enough smoothness of
the likelihood ratios around the unit root, this convergence of experiments is
not obtained by the usual (general applicable) techniques, but by a direct ap-
proach. Since the transition probability is the convolution of a Binomial dis-
tribution with G and the fact that certain Binomial experiments converge to

1The Geometric distribution allows us, using Newton’s Binomial formula, to obtain explicit
expressions for the transition-probabilities from X t−1 to X t if X t ≥ X t−1: Pθ,G

X t−1,X t
= 2−(X t+1)(1+

θ)X t−1 .
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a Poisson limit experiment (see Remark 16 after Theorem 4.2 for the precise
statement), one might be tempted to think that the convergence En(G) → E (G)
follows, in some way, from this convergence. Remark 16 after Theorem 4.2 shows
that this reasoning is not valid.

The remainder of this chapter is organized as follows. In Section 4.1 we dis-
cuss some preliminary properties which provide insight in the behavior of a
nearly unstable INAR(1) process. The main result of this chapter is stated and
proved in Section 4.2. Section 4.3 uses this result to analyze some estimation
and testing problems. In Section 4.3.1 we consider efficient estimation of h, the
deviation from a unit root, in the nearly unstable case for two settings. The first
setting, discussed in Section 4.3.1, treats the case that the immigration distribu-
tion G is completely known. The second setting, analyzed in Section 4.3.1, con-
siders a semiparametric model, where hardly any conditions on G are imposed.
Since the INAR(1) process is a particular branching process with immigration,
this also partially solves the question (see Wei and Winnicki (1990)) how to es-
timate the offspring mean efficiently.. Furthermore, we show in Section 4.3.1
that the OLS-estimator, considered by Ispány et al. (2003b, 2003a, 2005), is ex-
plosive. In Section 4.3.2 we provide an efficient estimator of θ in the ‘global’
model. Finally, we discuss testing for a unit root in Section 4.3.3. We show that
the traditional Dickey-Fuller test has no (local) power, but that an intuitively
obvious test is efficient.

4.1 Preliminaries
This section discusses some basic properties of nearly unstable INAR(1) pro-
cesses. Besides giving insight in the behavior of a nearly unstable INAR(1) pro-
cess, these properties are a key input in the next sections.

In this chapter we focus on the statistical properties of the INAR(1) process for
parameter values θ close to one. To this end it is convenient to use another rep-
resentation of the transition-probabilities (1.3). Since, conditional on X t−1 =
xt−1, the random variables εt and ϑ◦X t−1 are independent, and X t−1−ϑ◦X t−1,
‘the number of deaths during (t −1, t ]’, follows a Binomial(X t−1,1−θ) distribu-
tion, we obtain, for xt−1, xt ∈Z+,

Pθ
xt−1,xt

=Pθ {X t = xt | X t−1 = xt−1}

=
xt−1∑
k=0

Pθ {εt = xt −xt−1 +k, X t−1 −ϑ◦X t−1 = k | X t−1 = xt−1}

=
xt−1∑
k=0

bxt−1,1−θ(k)g (∆xt +k),
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where ∆xt = xt − xt−1, and g (i ) = 0 for i < 0. Under P1 we have X t = µG t +∑t
i=1

(
εi −µG

)
, and P 1

xt−1,xt
= g (∆xt ), xt−1, xt ∈Z+. Hence, under P1, an INAR(1)

process is nothing but a random walk with drift.

The next proposition is basic, but often applied in the sequel.

Proposition 4.1.1. If σ2
G <∞, we have, for h ≥ 0,

lim
n→∞E1− h

n2

[
1

n2

n∑
t=1

X t −
µG

2

]2

= 0, (4.2)

and we have, for α> 0 and every sequence (θn)n∈N in [0,1],

lim
n→∞

1

n3+α
n∑

t=1
Eθn X 2

t = 0. (4.3)

Proof.
We obviously have, var1

(∑n
t=1 X t

) = O(n3) and limn→∞ n−2 ∑n
t=1E1X t = µG /2,

which yields (4.2) for h = 0. Next, we prove (4.2) for h > 0. Straightforward cal-
culations show, for θ < 1,

Eθ

n∑
t=1

X t =µG

n∑
t=1

1−θt

1−θ =µG

[
n

1−θ − θ−θn+1

(1−θ)2

]
,

which yields

lim
n→∞

1

n2
E1− h

n2

n∑
t=1

X t

= lim
n→∞

µG

n2


 n

h/n2
−

1− h
n2 −

[
1− (n +1) h

n2 + (n+1)n
2

h2

n4 +o
(

1
n2

)]

h2/n4




= µG

2
. (4.4)

To treat the variance of n−2 ∑n
t=1 X t , we use the following simple relations, see

also Ispány et al. (2003b), for 0 < θ < 1, s, t ≥ 1,

covθ(X t , Xs) = θ|t−s| varθ X t∧s ,

varθ X t =
1−θ2t

1−θ2
σ2

G + (θ−θt )(1−θt )

1−θ2
µG ≤ (σ2

G +µG )
1−θ2t

1−θ2
. (4.5)

From this we obtain

var1− h
n2

(
1

n2

n∑
t=1

X t

)
= 1

n4

n∑
t=1

(
1+2

n∑
s=t+1

(
1− h

n2

)s−t)
var1− h

n2
X t
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≤ 1

n
2n(σ2

G +µG )
1

n2

1

1−
(
1− h

n2

)2

1

n

n∑
t=1

(
1−

(
1− h

n2

)2t)
→ 0,

as n → ∞. Together with (4.4) this completes the proof of (4.2) for h > 0. To
prove (4.3), note that X t ≤

∑t
i=1εi . Hence Eθn X 2

t ≤ E1X 2
t = σ2

G t +µ2
G t 2, which

yields the desired conclusion.

Remark 11. Convergence in probability for the case h > 0 in (4.2) cannot be
concluded from the convergence in probability in (4.2) for h = 0 by contiguity
arguments. The reason is (see Remark 12 after the proof of Theorem 4.1) that
P

(n)
1−h/n2 is not contiguous with respect to P(n)

1 .

Next, we consider the thinning process (ϑ◦ X t−1)t≥1. Under P1−h/n2 , X t−1 −ϑ◦
X t−1, conditional on X t−1, follows a Binomial(X t−1,h/n2) distribution. So we
expect that there do not occur many ‘deaths’ in any time-interval (t −1, t ]. The
following proposition gives a precise statement, where we use the notation, for
h ≥ 0 and n ∈N,

Ah
n =

{
z ∈Z+

∣∣∣∣
h(z +1)

n2
< 1

2

}
, A h

n = {(X0, . . . , Xn−1) ∈ Ah
n ×·· ·× Ah

n}. (4.6)

The reasons for the introduction of these sets are the following. By Proposi-
tion 4.4.1 we have, for x ∈ Ah

n ,
∑x

k=r bx,h/n2 (k) ≤ 2bx,h/n2 (r ) for r = 2,3 and terms

of the form (1− h
n2 )−2 can be bounded neatly, without having to make state-

ments of the form ‘for n large enough’, or having to refer to ‘up to a constant
depending on h’. Furthermore, recall the notation ∆X t = X t −X t−1.

Proposition 4.1.2. Assume G satisfies σ2
G <∞. Then we have for all sequences

(θn)n∈N in [0,1], h ≥ 0,

lim
n→∞Pθn (A h

n ) = 1. (4.7)

And for h ≥ 0 we have,

lim
n→∞P1− h

n2
{∃t ∈ {1, . . . ,n} : X t−1 −ϑ◦X t−1 ≥ 2} = 0. (4.8)

Proof.
For a sequence (θn)n∈N in [0,1], (4.3) implies

Pθn

{∃0 ≤ t ≤ n : X t > n7/4}≤ 1

n7/2

n∑
t=1
Eθn X 2

t → 0 as n →∞. (4.9)

From this we easily obtain (4.7).
To obtain (4.8) note that, for X t−1 ∈ Ah

n we have, using the bound (4.43),

P1− h
n2

{X t−1 −ϑ◦X t−1 ≥ 2 | X t−1} =
X t−1∑
k=2

bX t−1, h
n2

(k) ≤ 2bX t−1, h
n2

(2) ≤ h2X 2
t−1

n4
.
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By (4.3) this yields,

lim
n→∞P1− h

n2

(
{∃t ∈ {1, . . . ,n} : X t−1 −ϑ◦X t−1 ≥ 2}∩A h

n

)

≤ lim
n→∞

h2

n4

n∑
t=1
E1− h

n2
X 2

t−1 = 0.

Since we already showed limn→∞P1−h/n2 (A h
n ) = 1, this yields (4.8).

As main result of this section, we derive the limit distribution of the number
of downward movements of X during [0,n]. The probability that the Bernoulli
variable 1{∆X t < 0} equals one is small. Intuitively the dependence over time of
this indicator-process is not too strong, so it is not unreasonable to expect that
a ‘Poisson law of small numbers’ holds. As the following theorem shows, this is
indeed the case.

Theorem 4.1. Assume that G satisfies σ2
G <∞. Then we have, for h ≥ 0,

n∑
t=1

1{∆X t < 0}
d−→ Poisson

(
hg (0)µG

2

)
, under P1− h

n2
. (4.10)

Proof.
If g (0) = 0 then ∆X t < 0 implies X t−1 −ϑ◦ X t−1 ≥ 2. Hence, from (4.8) it follows

that
∑n

t=1 1{∆X t < 0}
p−→ 0 under P1−h/n2 . Since the Poisson distribution with

mean 0 concentrates all its mass at 0, this yields the result. The cases h = 0 or
g (0) = 1 (recall X0 = 0) are also trivial.
So we consider the case h > 0 and 0 < g (0) < 1. For notational convenience,
abbreviate P1−h/n2 by Pn and E1−h/n2 by En . Put Zt = 1{∆X t = −1,εt = 0}, and
notice that

0 ≤ 1{∆X t < 0}−Zt = 1{∆X t ≤−2}+1{∆X t =−1,εt ≥ 1}.

From (4.8) it now follows that

0 ≤
n∑

t=1
1{∆X t < 0}−

n∑
t=1

Zt ≤ 2
n∑

t=1
1{X t−1 −ϑ◦X t−1 ≥ 2}

p−→ 0, under Pn .

Thus it suffices to prove that
∑n

t=1 Zt
d−→ Poisson(hg (0)µG /2) under Pn . We do

this by applying Lemma 4.4.1. Introduce random variables Yn , where Yn follows
a Poisson distribution with mean λn = ∑n

t=1En Zt . And let Z follow a Poisson
distribution with mean hg (0)µG /2. From Lemma 4.4.1 we obtain the bound

sup
A⊂Z+

∣∣∣∣Pn

{ n∑
t=1

Zt ∈ A

}
−Pr{Yn ∈ A}

∣∣∣∣



70 Nearly unstable INAR(1) models Chapter 4

≤
n∑

t=1
(En Zt )2 +

n∑
t=1
En |En [Zt −En Zt | Z1, . . . , Zt−1]| .

If we prove that

(i )
n∑

t=1
(En Zt )2 → 0,

(i i )
n∑

t=1
En Zt →

hg (0)µG

2
,

(i i i )
n∑

t=1
En |En [Zt −En Zt | Z1, . . . , Zt−1]|→ 0,

all hold as n →∞, then the result follows since we then have, for all z ∈R,
∣∣∣∣Pn

{ n∑
t=1

Zt ≤ z

}
−Pr(Z ≤ z)

∣∣∣∣≤
∣∣∣∣Pn

{ n∑
t=1

Zt ≤ z

}
−Pr{Yn ≤ z}

∣∣∣∣
+|Pr{Yn ≤ z}−Pr(Z ≤ z)|→ 0.

First we tackle (i). Notice that, use that, conditional on X t−1, εt and X t−1 −ϑ ◦
X t−1 ∼ BinX t−1,h/n2 are independent,

En Zt =Pn{εt = 0, X t−1 −ϑ◦X t−1 = 1} = hg (0)

n2
En X t−1

(
1− h

n2

)X t−1−1

≤ hg (0)

n2
En X t−1.

Then, using (4.3), (i) easily follows,

lim
n→∞

n∑
t=1

(En Zt )2 ≤ lim
n→∞

h2g 2(0)

n4

n∑
t=1
En X 2

t−1 = 0.

Next we consider (ii). If we prove the relation,

lim
n→∞

∣∣∣∣
1

n2

n∑
t=1
En X t−1 −

1

n2

n∑
t=1
En X t−1

(
1− h

n2

)X t−1−1∣∣∣∣= 0,

it is immediate that (ii) follows from (4.2). To prove the previous display, we
introduce Bn = {∀t ∈ {1, . . . ,n} : X t ≤ n7/4} with limn→∞Pn(Bn) = 1 (see (4.9)).
On the event Bn we have n−2X t ≤ n−1/4 for t = 1, . . . ,n. This yields

0 ≤ En X t−1

(
1−

(
1− h

n2

)X t−1−1)

≤ En X t−1

(
1−

(
1− h

n2

)X t−1
)

1Bn +En X t−11B c
n
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≤ En

[
1Bn X t−1

X t−1∑
j=1

(
X t−1

j

)(
h

n2

) j
]
+En X t−11B c

n

≤ 1

n1/4
exp(h)En X t−1 +En X t−11B c

n
.

Using Pn(Bn) → 1 and (4.2) we now obtain,

lim
n→∞

1

n2

n∑
t=1
En X t−11B c

n
≤ lim

n→∞

√√√√En

(
1

n2

n∑
t=1

X t−1

)2

Pn(B c
n) =

√(µG

2

)2
·0 = 0.

By (4.3) we have limn→∞ n−9/4 ∑n
t=1En X t−1 = 0. Combination with the previous

two displays yields the result.
Finally, we prove (iii). Let F ε = (F ε

t )t≥1 and F X = (F X
t )t≥0 be the filtrations

generated by (εt )t≥1 and (X t )t≥0 respectively, i.e. F ε
t = σ(ε1, . . . ,εt ) and F X

t =
σ(X0, . . . , X t ). Note that we have, for t ≥ 2,

En |En [Zt −En Zt | Z1, . . . , Zt−1]|
≤ En

∣∣En
[

Zt −En Zt |F ε
t−1,F X

t−1

]∣∣

= hg (0)

n2
En

∣∣∣∣X t−1

(
1− h

n2

)X t−1−1

−En X t−1

(
1− h

n2

)X t−1−1∣∣∣∣ . (4.11)

Using the reverse triangle-inequality we obtain

∣∣∣∣En

∣∣∣∣X t−1

(
1− h

n2

)X t−1−1

−En X t−1

(
1− h

n2

)X t−1−1∣∣∣∣−En |X t−1 −En X t−1|
∣∣∣∣

≤ En

∣∣∣∣X t−1

(
1−

(
1− h

n2

)X t−1−1)
−En X t−1

(
1−

(
1− h

n2

)X t−1−1)∣∣∣∣

≤ 2En X t−1

(
1−

(
1− h

n2

)X t−1−1)
.

We have already seen in the proof of (ii) that

lim
n→∞

1

n2

n∑
t=1

En X t−1

(
1−

(
1− h

n2

)X t−1−1)
= 0

holds. A combination of the previous two displays with (4.11) now easily yields
the bound

n∑
t=1
En |En [Zt −En Zt | Z1, . . . , Zt−1]| ≤ o(1)+ hg (0)

n2

n∑
t=1

√
varn X t−1. (4.12)

From (4.5) we have, for θ < 1, varθ X t ≤ (
σ2

G +µG
)

(1 − θ2t )(1 − θ2)−1. And for

1 ≤ t ≤ n we have 0 ≤ 1− (
1−h/n2

)2t ≤ n−1 exp(2h). Now we easily obtain, as
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n →∞,

1

n2

n∑
t=1

√
varn X t−1 ≤

√
σ2

G +µG

√√√√
1

n2

1

1−
(
1− h

n2

)2

1

n
n

√
exp(2h)

n
→ 0.

A combination with (4.12) yields (iii). This concludes the proof.

Remark 12. Since
∑n

t=1 1{∆X t < 0} equals zero under P(n)
1 and converges in dis-

tribution to a non-degenerated limit under P(n)
1−h/n2 (h > 0, 0 < g (0) < 1), we see

that P(n)
1−h/n2 is not contiguous with respect to P(n)

1 for h > 0.

4.2 The limit experiment: one observation from a Poisson dis-
tribution
For easy reference, we introduce the following assumption.

Assumption 1. A probability distribution G onZ+ is said to satisfy Assumption 1
if one of the following two condition holds.

(1) support(G) = {0, . . . , M } for some M ∈N;

(2) support(G) = Z+, σ2
G <∞ and g is eventually decreasing, i.e. there exists

M ∈N such that g (k +1) ≤ g (k) for k ≥ M .

The rest of this section is devoted to the following theorem.

Theorem 4.2. Suppose G satisfies Assumption 1. Then the limit experiment of
(En(G))n∈N is given by

E (G) = (
Z+,2Z+ , (Qh | h ≥ 0)

)
,

whereQh = Poisson
(
hg (0)µG /2

)
.

Remark 13. Notice that the likelihood-ratios for this Poisson limit experiment
are given by,

dQh

dQh0

(Z ) = exp

(
− (h −h0)g (0)µG

2

)(
h

h0

)Z

, (4.13)

for h ≥ 0, h0 > 0 and,

dQh

dQ0
(Z ) = exp

(
−hg (0)µG

2

)
1{0}(Z ), (4.14)

for h ≥ 0.
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Remark 14. Usually limit experiments are Locally Asymptotically Quadratic (see
Jeganathan (1995) and Le Cam and Yang (1990)) and even non-regular models
often enjoy a shift structure (see Hirano and Porter (2003a)), whereas the Pois-
son limit experiment does not enjoy these two properties. As discussed in the
introduction, the nearly unstable AR(1) model yields LAQ limit experiments.
The theorem is indeed rather surprising since Ispány et al. (2003b) established
a functional limit theorem with a Ornstein-Uhlenbeck limit process from which
one would conjecture a standard LAQ-type limit experiment.

Proof.
To determine the limit-experiment we need to determine the limit-distribution
of the log-likelihood ratios, h,h0 ≥ 0,

Ln(h,h0) = log

dP(n)

1− h
n2

dP(n)

1− h0
n2

=
n∑

t=1
log

P
1− h

n2

X t−1,X t

P
1− h0

n2

X t−1,X t

,

underP1−h0/n2 . Note that for h0 > 0 Ln(0,h0) =−∞, and thus dP(n)
0 /dP(n)

1−h0/n2 =
0, if

∑n
t=1 1{∆X t < 0} > 0. Because Ln(h,h0) is complicated to analyze, we first

make a suitable approximation of this object. Split the transition-probability
P 1−h/n2

xt−1,xt
into a leading term,

Ln(xt−1, xt ,h) =




∑−∆xt+1
k=−∆xt

bxt−1, h
n2

(k)g (∆xt +k) if ∆xt < 0,
∑1

k=0 bxt−1, h
n2

(k)g (∆xt +k) if ∆xt ≥ 0,

and a remainder term,

Rn(xt−1, xt ,h) =




∑xt−1
k=−∆xt+2 bxt−1, h

n2
(k)g (∆xt +k) if ∆xt < 0,

∑xt−1
k=2 bxt−1, h

n2
(k)g (∆xt +k) if ∆xt ≥ 0.

We introduce a simpler version of Ln(h,h0) in which the remainder terms are
removed,

L̃n(h,h0) =
n∑

t=1
log

Ln(X t−1, X t ,h)

Ln(X t−1, X t ,h0)
.

The difference between L̃n(h,h0) and Ln(h,h0) is negligible. To enhance read-
ability we organize this result and its proof in a lemma.

Lemma 4.2.1. Suppose G satisfies Assumption 1. We have, for h,h0 ≥ 0,

L̃n(h,h0) =Ln(h,h0)+o

(
P

1− h0
n2

;1

)
. (4.15)



74 Nearly unstable INAR(1) models Chapter 4

Proof.
We obtain, for h > 0,h0 ≥ 0, from the inequality

∣∣log((a +b)/(c +d))− log(a/c)
∣∣≤

b/a +d/c for a,c > 0, b,d ≥ 0, the bound

∣∣Ln(h,h0)−L̃n(h,h0)
∣∣≤

n∑
t=1

{
Rn(X t−1, X t ,h)

Ln(X t−1, X t ,h)
+ Rn(X t−1, X t ,h0)

Ln(X t−1, X t ,h0)

}
, (4.16)

P1−h0/n2 -a.s. It is easy to see, since bn,0(k) = 0 if k > 0, that, for h0 > 0, Ln(0,h0)
and L̃n(0,h0) both equal minus infinity if

∑n
t=1 1{∆X t < 0} ≥ 1. If

∑n
t=1 1{∆X t <

0} = 0 we have

∣∣Ln(0,h0)−L̃n(0,h0)
∣∣≤

n∑
t=1

Rn(X t−1, X t ,h0)

Ln(X t−1, X t ,h0)
P

1− h0
n2

−a.s.

Thus if we show that

n∑
t=1

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

p−→ 0, under P
1− h0

n2
,

holds for h′ = h and h′ = h0 the lemma is proved (exclude the case h′ = 0 and
h0 > 0, which need not be considered). We split the expression in the previous
display into four nonnegative parts

n∑
t=1

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

=
∑

t :∆X t≤−2

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

+
∑

t :∆X t=−1

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

+
∑

t :0≤∆X t≤M

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

+
∑

t :∆X t>M

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

.

Since ∆X t ≤−2 implies X t−1 −ϑ◦X t−1 ≥ 2 an application of (4.8) yields

∑
t :∆X t≤−2

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

p−→ 0, under P
1− h0

n2
.

Next we treat the terms for which∆X t =−1. If h0 = 0 we do not have such terms
(under P1−h0/n2 ), and remember that the case h′ = 0 and h0 > 0 need not be
considered. So we only need to consider this term for h′,h0 > 0. On the event
A h′

n (see (4.6) for the definition of this event), an application of (4.43) yields,

∑
t :∆X t=−1

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

≤
∑

t :∆X t=−1

∑X t−1
k=3 b

X t−1, h′
n2

(k)

g (0)b
X t−1, h′

n2
(1)

≤ 2
n∑

t=1

X 3
t−1
3!

h
′3

n6

(
1− h′

n2

)X t−1−3

g (0)X t−1
h′
n2

(
1− h′

n2

)X t−1−1
1{X t−1 ≥ 1}
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≤ 4h
′2

3g (0)n4

n∑
t=1

X 2
t−1,

since (1−h′/n2)−2 ≤ 4 by definition of A h′
n (see (4.6) for the definition of this

set). From (4.3) and (4.7) it now easily follows that we have

∑
t :∆X t=−1

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

p−→ 0, under P
1− h0

n2
.

Next, we analyze the terms for which 0 ≤ ∆X t ≤ M . We have, by (4.43), on the
event A h′

n ,

∑
t :0≤∆X t≤M

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

≤
∑

t :0≤∆X t≤M

∑X t−1
k=2 b

X t−1, h′
n2

(k)g (∆X t +k)

g (∆X t )b
X t−1, h′

n2
(0)

≤ 2

m∗
∑

t :0≤∆X t≤M

b
X t−1, h′

n2
(2)

b
X t−1, h′

n2
(0)

≤ 4h
′2

m∗n4

n∑
t=1

X 2
t−1,

where m∗ = min{g (k)|0 ≤ k ≤ M } > 0. Now (4.3), and (4.7) yield the desired
convergence,

∑
t :0≤∆X t≤M

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

p−→ 0, under P
1− h0

n2
.

Finally, we discuss the terms for which ∆X t > M . If the support of G was given
by {0, . . . , M} there are no such terms. So we only need to consider the case,
where the support of G is Z+. Since g is non-increasing on {M , M + 1, . . . }, we
have, by (4.43),

Rn(X t−1, X t ,h′) ≤ 2g (∆X t )b
X t−1, h′

n2
(2), X t−1 ∈ Ah′

n ,

which yields, for X t−1 ∈ Ah′
n ,

0 ≤ Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

≤
2g (∆X t )

X 2
t−1
2

h
′2

n4

(
1− h′

n2

)X t−1−2

g (∆X t )
(
1− h′

n2

)X t−1
≤ 4h

′2

n4
X 2

t−1.

From (4.3), and (4.7) it now easily follows that we have

∑
t :∆X t≥M

Rn(X t−1, X t ,h′)
Ln(X t−1, X t ,h′)

p−→ 0, under P
1− h0

n2
.

This concludes the proof of the lemma.
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Hence, the limit-distribution of the random vector (Ln(h,h0))h∈I , for a finite
subset I ⊂ R+, is the same as the limit-distribution of (L̃n(h,h0))h∈I . It easily
follows, using (4.8), that L̃n(h,h0) can be decomposed as

L̃n(h,h0) =
n∑

t=1

X t−1 −2

n2
log

(
1− h

n2

1− h0
n2

)n2

+S+
n (h,h0)+S−

n (h,h0)+o

(
P

1− h0
n2

;1

)
, (4.17)

where S+
n (h,h0) =∑

t :∆X t≥0 W +
tn and S−

n (h,h0) =∑
t :∆X t=−1 W −

tn , are defined by,

W +
tn = log




g (∆X t )
(
1− h

n2

)2
+X t−1

h
n2

(
1− h

n2

)
g (∆X t +1)

g (∆X t )
(
1− h0

n2

)2
+X t−1

h0
n2

(
1− h0

n2

)
g (∆X t +1)


 ,

and

W −
tn = log




X t−1
h

n2

(
1− h

n2

)
g (0)+ X t−1(X t−1−1)

2
h2

n4 g (1)

X t−1
h0
n2

(
1− h0

n2

)
g (0)+ X t−1(X t−1−1)

2
h2

0
n4 g (1)


 .

First, we treat the first term in (4.17). By (4.2) we have,

log




(
1− h

n2

1− h0
n2

)n2
 1

n2

n∑
t=1

(X t−1 −2)
p−→− (h −h0)µG

2
, under P

1− h0
n2

. (4.18)

Next, we discuss the behavior of S+
n (h,h0), the second term of (4.17). This is the

content of the next lemma.

Lemma 4.2.2. Suppose G satisfies Assumption 1. We have, for h,h0 ≥ 0,

S+
n (h,h0)

p−→ (h −h0) (1− g (0))µG

2
, under P

1− h0
n2

. (4.19)

Proof.
We write,

S+
n (h,h0) =

∑
t :∆X t≥0

log
[
1+U+

tn

]
,

where

U+
tn =

g (∆X t )
[

h2−h2
0

n4 −2 h−h0
n2

]
+X t−1g (∆X t +1)

[
h−h0

n2 − h2−h2
0

n4

]

g (∆X t )
(
1− h0

n2

)2
+X t−1g (∆X t +1) h0

n2

(
1− h0

n2

) .
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Notice that, for n large enough,

U+2
tn ≤

2

(
g 2(∆X t )

[
h2−h2

0
n4 −2 h−h0

n2

]2
+X 2

t−1g 2(∆X t +1)
[

h−h0
n2 − h2−h2

0
n4

]2
)

g 2(∆X t )
(
1− h0

n2

)4

≤ C

n4

(
X 2

t−1 +1
)

,

for some constant C , where we used that e 7→ g (e + 1)/g (e) is bounded. From
(4.3) we obtain,

lim
n→∞E1− h0

n2

∑
t :∆X t≥0

U+2
tn ≤ 0+ lim

n→∞E1− h0
n2

C

n4

n∑
t=1

X 2
t−1 = 0.

Hence
∑

t :∆X t≥0
U+2

tn
p−→ 0, under P1−h0/n2 , (4.20)

and

lim
n→∞P1− h0

n2

{
max

t :∆X t≥0
|U+

tn | ≤ 1/2

}
= 1, (4.21)

since

Pn{∃t : ∆X t ≥ 0, |U+
tn | > 1/2} ≤Pn

{ ∑
t :∆X t≥0

U+2
tn > 1

4

}
→ 0.

Using the expansion log(1+ x) = x + r (x), where the remainder term r satisfies
|r (x)| ≤ 2x2 for |x| ≤ 1/2, we obtain from (4.20) and (4.21),

S+
n (h,h0) =

∑
t :∆X t≥0

log
[
1+U+

tn

]=
∑

t :∆X t≥0
U+

tn +o

(
P

1− h0
n2

;1

)
.

Thus the problem reduces to determining the asymptotic behavior of
∑

t :∆X t≥0U+
tn .

Note that,

∑
t :∆X t≥0

U+
tn =

∑
t :∆X t≥0

X t−1g (∆X t +1)
[

h−h0
n2 − h2−h2

0
n4

]

g (∆X t )
(
1− h0

n2

)2
+X t−1g (∆X t +1) h0

n2

(
1− h0

n2

)

+o

(
P

1− h0
n2

;1

)
.

Using that e 7→ g (e +1)/g (e) is bounded and (4.3), we obtain

∑
t :∆X t≥0

∣∣∣∣∣∣∣

X t−1g (∆X t +1)
[

h−h0
n2 − h2−h2

0
n4

]

g (∆X t )
(
1− h0

n2

)2
+X t−1g (∆X t +1) h0

n2

(
1− h0

n2

)
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− (h −h0)

n2

X t−1g (∆X t +1)

g (∆X t )

∣∣∣∣

≤ C

n4

n∑
t=1

X 2
t−1

p−→ 0, under P
1− h0

n2
.

Thus the previous three displays and (4.8) yield

S+
n (h,h0) = h −h0

n2

n∑
t=1

X t−1
g (∆X t +1)

g (∆X t )
1{∆X t ≥ 0, X t−1 −ϑ◦X t−1 ≤ 1}

+o

(
P

1− h0
n2

;1

)
.

Finally, we will show that, under P1−h0/n2 ,

1

n2

n∑
t=1

X t−1
g (∆X t +1)

g (∆X t )
1{∆X t ≥ 0, X t−1−ϑ◦X t−1 ≤ 1}

p−→ (1− g (0))µG

2
, (4.22)

which will conclude the proof. For notational convenience we introduce

Zt =
g (∆X t +1)

g (∆X t )
1{∆X t ≥ 0, X t−1 −ϑ◦X t−1 ≤ 1}

= g (εt +1)

g (εt )
1{X t−1 −ϑ◦X t−1 = 0}+ g (εt )

g (εt −1)
1{εt ≥ 1, X t−1 −ϑ◦X t−1 = 1}.

Using that εt is independent of X t−1 −ϑ◦X t−1 we obtain

E
1− h0

n2
[Zt | X t−1 −ϑ◦X t−1] = (1− g (0))1{X t−1 −ϑ◦X t−1 = 0}

+1{X t−1 −ϑ◦X t−1 = 1}E
g (εt )

g (εt −1)
1{εt ≥ 1},

where we used that Eg (ε1+1)/g (ε1) = 1−g (0) and E1{ε1 ≥ 1}g (ε1)/g (ε1−1) <∞,
since we assumed that g is eventually decreasing. So we have

Zt−E1− h0
n2

[Zt | X t−1 −ϑ◦X t−1]

=
(

g (εt +1)

g (εt )
−Eg (εt +1)

g (εt )

)
1{X t−1 −ϑ◦X t−1 = 0}

+
(

g (εt )

g (εt −1)
1{εt ≥ 1}−E g (εt )

g (εt −1)
1{εt ≥ 1}

)
1{X t−1 −ϑ◦X t−1 = 1}.

From this it is not hard to see that we have, for t ∈N,

E
1− h0

n2
X t−1

(
Zt −E1− h0

n2
[Zt | X t−1 −ϑ◦X t−1]

)
= 0,
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for s < t ,

E
1− h0

n2
X t−1

(
Zt −E1− h0

n2
[Zt | X t−1 −ϑ◦X t−1]

)
Xs−1

(
Zs −E1− h0

n2
[Zs | Xs−1 −ϑ◦Xs−1]

)

= 0.

and,

E
1− h0

n2

(
Zt −E1− h0

n2
[Zt | X t−1 −ϑ◦X t−1]

)2

≤C , (4.23)

for C = 2(var
(
g (ε1 +1)/g (ε1)

)+var
(
1{εt≥1}g (ε1)/g (ε1 −1)

)
, which is finite by As-

sumption 1. Thus, by (4.3), it follows that

E
1− h0

n2

(
1

n2

n∑
t=1

X t−1

(
Zt −E1− h0

n2
[Zt | X t−1 −ϑ◦X t−1]

))2

= 1

n4

n∑
t=1
E

1− h0
n2

X 2
t−1

(
Zt −E1− h0

n2
[Zt | X t−1 −ϑ◦X t−1]

)2

≤ C

n4

n∑
t=1
E

1− h0
n2

X 2
t−1 → 0.

Hence (4.22) is equivalent to,

1

n2

n∑
t=1

X t−1E1− h0
n2

[Zt | X t−1 −ϑ◦X t−1]
p−→ (1− g (0))µG

2
, under P

1− h0
n2

. (4.24)

Since, by (4.3),

1

n2

n∑
t=1
E

1− h0
n2

X t−11{X t−1 −ϑ◦X t−1 = 1} = h0

n4

n∑
t=1
E

1− h0
n2

X 2
t−1

(
1− h0

n2

)X t−1−1

≤ h0

n4

n∑
t=1
E

1− h0
n2

X 2
t−1 → 0,

we have, using (4.8),

∣∣∣∣
1

n2

n∑
t=1

X t−1E1− h0
n2

[Zt | X t−1 −ϑ◦X t−1]− 1− g (0)

n2

n∑
t=1

X t−1

∣∣∣∣

≤
∣∣∣∣E

g (εt )

g (εt −1)
1{εt ≥ 1}− (1− g (0))

∣∣∣∣
1

n2

n∑
t=1

X t−11{X t−1 −ϑ◦X t−1 = 1}

+ 1− g (0)

n2

n∑
t=1

X t−11{X t−1 −ϑ◦X t−1 ≥ 2}
p−→ 0, under P

1− h0
n2

,

we conclude (4.24), which concludes the proof of the lemma.
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Finally, we discuss the term S−
n (h,h0) in (4.17). UnderP1 this term is not present,

so we only need to consider h0 > 0. We organize the result and its proof in the
following lemma.

Lemma 4.2.3. Suppose G satisfies Assumption 1. We have, for h0 > 0, h ≥ 0,

S−
n (h,h0) = log

[
h

h0

] n∑
t=1

1{∆X t < 0}+o

(
P

1− h0
n2

;1

)
, (4.25)

where we set log(0) =−∞ and −∞·0 = 0.

Proof.
First we consider h = 0. From the definition of S−

n (0,h0) we see that S−
n (0,h0) = 0

if
∑n

t=1 1{∆X t < 0} = 0 (since an empty sum equals zero by definition). And if∑n
t=1 1{∆X t < 0} ≥ 1 we have S−

n (0,h0) = −∞ (since W −
tn = −∞ for h = 0). This

concludes the proof for h = 0.
So we now consider h > 0. We rewrite

W −
tn = log




h
h0

(
1− h

n2

1− h0
n2

)
+ X t−1−1

2n2
h2g (1)

g (0)h0

(
1− h0

n2

)

1+ X t−1−1
2n2

h0g (1)

g (0)
(
1− h0

n2

)


 .

By (4.8), the proof is finished, if we show that

∑
t :∆X t=−1

∣∣∣∣W −
tn − log

[
h

h0

]∣∣∣∣
p−→ 0, under P

1− h0
n2

.

Using the inequality | log((a+b)/(c+d))−log(a/c)| ≤ b/a+d/c for a,c > 0, b,d ≥
0, we obtain

∣∣∣∣W −
tn − log

[
h

h0

]∣∣∣∣≤
∣∣∣∣∣W

−
tn − log

[
h

h0

(
1− h

n2

1− h0
n2

)]∣∣∣∣∣+O(n−2)

≤ X t−1 −1

2n2


 h2g (1)

g (0)h0

(
1− h0

n2

)
(

h

h0

(
1− h

n2

1− h0
n2

))−1

+ h0g (1)

g (0)
(
1− h0

n2

)

+O(n−2).

Hence, it suffices to show that

∑
t :∆X t=−1

X t−1

n2

p−→ 0, under P
1− h0

n2
.

Note first that we have, by (4.8),

0 ≤ 1

n2

n∑
t=1

X t−11{∆X t =−1} = 1

n2

n∑
t=1

X t−11{∆X t =−1,εt = 0}+o

(
P

1− h0
n2

;1

)
.
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We show that the expectation of the first term on the right-hand side in the
previous display converges to zero, which will conclude the proof. We have, by
(4.3),

lim
n→∞

1

n2

n∑
t=1
E

1− h0
n2

X t−11{∆X t =−1,εt = 0}

= lim
n→∞

h0

n4

n∑
t=1
E

1− h0
n2

g (0)X 2
t−1

(
1− h0

n2

)X t−1−1

≤ lim
n→∞

h0g (0)

n4

n∑
t=1
E

1− h0
n2

X 2
t−1 = 0,

which concludes the proof of the lemma.

To complete the proof of the theorem, note that we obtain from Lemma 4.2.1,
(4.17), (4.18), Lemma 4.2.2 and Lemma 4.2.3,

Ln(h,h0) = L̃n(h,h0)+o

(
P

1− h0
n2

;1

)

=− (h −h0) g (0)µG

2
+ log

[
h

h0

] n∑
t=1

1{∆X t < 0}+o

(
P

1− h0
n2

;1

)
,

where we interpret log(0) = −∞, log(0) ·0 = 0 and log(h/0)
∑n

t=1 1{∆X t < 0} = 0
when h0 = 0, h > 0. Hence, Theorem 4.1 implies that, for a finite subset I ⊂R+,

(Ln(h,h0))h∈I
d−→

(
log

dQh

dQh0

(Z )

)

h∈I

, under P
1− h0

n2
,

which concludes the proof.

Remark 15. In the proof we have seen that,

log

dP(n)

1− h
n2

dP(n)

1− h0
n2

=− (h −h0) g (0)µG

2
+ log

[
h

h0

] n∑
t=1

1{∆X t < 0}+o(P1−h0/n2 ;1).

So, heuristically, we can interpret
∑n

t=1 1{∆X t < 0} as an ‘approximately suffi-
cient statistic’.

Remark 16. It is straightforward to see that the experiments

B0
n =

(
Z+,2Z+ ,

(
Binomial

(
n,

h

n

)
| h ≥ 0

))
,

and

B1
n =

(
Z+,2Z+ ,

(
Binomial

(
n,1− h

n

)
| h ≥ 0

))
,
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n ∈N, both converge to the Poisson experiment

P = (
Z+,2Z+ , (Poisson(h) | h ≥ 0)

)
.

Since the law of X t , given X t−1, is the convolution of G with a Binomial(X t−1,θ)
distribution, one might be tempted to think that the convergence of experi-
ments En(G) → E (G) somehow follows from the convergence B1

n → P . How-
ever, a similar reasoning would yield that the sequence of experiments

E 0
n(G) =

(
Zn+1
+ ,2Z

n+1
+ ,

(
P

(n)
hp
n

| h ≥ 0

))
, n ∈N,

converges to some Poisson experiment. This is not the case. As Proposition 4.3.6
shows, the sequence

(
E 0

n(G)
)

n∈N converges to the normal location experiment
(R,B(R), (N(h,τ) | h ≥ 0)), for some τ> 0.

Remark 17. An obvious question is whether we can expect a similar limit ex-
periment for higher order INAR processes (similar to the classical AR(p) pro-
cesses, we say that an INAR(p) process has a unit root in case

∑p
i=1θi = 1). How-

ever, deriving the limit experiment for nearly unstable higher order INAR pro-
cesses seems to be extremely challenging due to the complicated form of the
transition-probabilities. But, intuitively, there is no reason to expect a Poisson
limit experiment. To great extent the Poisson limit experiment for the INAR(1)
model is coming from the property that the process is non-decreasing under
the unit root. In a unit root INAR(2) setting we need not have such a property,
since for, e.g., θ1 = θ2 = 1/2, the process can move down as well as up.

4.3 Applications
This section considers the following applications as an illustration of the sta-
tistical consequences of the convergence of experiments. In Section 4.3.1 we
discuss efficient estimation of h, the deviation from a unit root, in the nearly
unstable case for two settings. The first setting, discussed in Section 4.3.1, treats
the case that the immigration distribution G is completely known. And the sec-
ond setting considers a semiparametric model, where hardly any conditions
on G are imposed. In Section 4.3.2 we provide an efficient estimator of θ in the
‘global’ INAR model. Finally, we discuss testing for a unit root in Section 4.3.3.

4.3.1 E�cient estimation of h in nearly unstable INAR models
G known

In this section G is assumed to be known. So we consider the sequence of ex-
periments (En(G))n∈N. As before, we denote the observation from the limit ex-
periment E (G) by Z , andQh = Poisson(hg (0)µG /2).
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Since we have established convergence of (En(G))n∈N to E (G), an application
of the Le Cam-Van der Vaart Asymptotic Representation Theorem yields the
following proposition.

Proposition 4.3.1. Suppose G satisfies Assumption 1. If (Tn)n∈N is a sequence
of estimators of h in the sequence of experiments (En(G))n∈N such that L (Tn |
P1−h/n2 ) → Zh for all h ≥ 0, then there exists a map t : Z+× [0,1] → R such that
Zh =L (t (Z ,U ) |Qh×Uniform[0,1]) (i.e. U is distributed uniformly on [0,1] and
independent of the observation Z from the limit experiment E (G)).

Proof.
Under the stated conditions the sequence of experiments (En(G))n∈N converges
to the Poisson limit experiment E (G) (by Theorem 4.2). Since this experiment
is dominated by counting measure on Z+, the result follows by applying the
Le Cam-Van der Vaart Asymptotic Representation Theorem (see, for instance,
Theorem 3.1 in Van der Vaart (1991a) or Theorem 9.3 in Van der Vaart (2000)).

Thus, to any set of limit-laws of an estimator there is a randomized estimator in
the limit experiment which has the same set of laws. If the asymptotic perfor-
mance of an estimator is considered to be determined by its sets of limit laws,
the limit experiment thus gives a lower bound to what is possible: along the
sequence of experiments you cannot do better than the best procedure in the
limit experiment.

To discuss efficient estimation we need to prescribe what we judge to be op-
timal in the Poisson limit experiment. Often a normal location experiment is
the limit experiment. For such a normal location experiment, i.e. estimate h on
basis of one observation Y from N(h,τ) (τ known), it is natural to restrict to
location-equivariant estimators. For this class one has a convolution-property
(see, for example, Van der Vaart (2000, Proposition 8.4) or Janssen and Ostro-
vski (2005)): the law of every location-equivariant estimator T of h can be de-

composed as T
d= Y +V , where V is independent of Y . This yields, by An-

derson’s lemma (see, for example, Lemma 8.5 in Van der Vaart (2000)), effi-
ciency of Y (within the class of location-equivariant estimators) for all bowl-
shaped loss functions. More general, there are convolution-results for shift-
experiments (see, for example, Hirano and Porter (2003b)). However, the Pois-
son limit experiment E (G) has not a natural shift structure. In such a Poisson
setting it seems reasonable to minimize variance amongst the unbiased esti-
mators.

Proposition 4.3.2. Suppose G is such that 0 < g (0) < 1 and µG <∞. In the exper-
iment,

E (G) = (
Z+,2Z+ ,

(
Qh = Poisson(hg (0)µG /2) | h ≥ 0

))
,
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the unbiased estimator 2Z /g (0)µG minimizes the variance amongst all ran-
domized estimators t (Z ,U ) for which Eh t (Z ,U ) = h for all h ≥ 0, i.e.

varh t (Z ,U ) ≥ varh

(
2Z

g (0)µG

)
= 2h

g (0)µG
for all h ≥ 0.

Proof.
This is an immediate consequence of the Lehmann-Scheffé theorem.

A combination of this proposition with Proposition 4.3.1 yields a variance lower-
bound to asymptotically unbiased estimators in the sequence of experiments
(En(G))n∈N.

Proposition 4.3.3. Suppose G satisfies Assumption 1. If (Tn)n∈N is an estimator
of h in the sequence of experiments (En(G))n∈N such that L (Tn |P1−h/n2 ) → Zh

with
∫

z dZh(z) = h for all h ≥ 0, then we have

∫
(z −h)2 dZh(z) ≥ 2h

g (0)µG
, for all h ≥ 0. (4.26)

Proof.
By Proposition 4.3.1 there exists a randomized estimator t (Z ,U ) in the limit ex-
periment such that Zh = L (t (Z ,U ) | Qh ×Uniform[0,1]). Hence Eh t (Z ,U ) = h
and varh t (Z ,U ) = ∫

(z−h)2 dZh(z). Now the result follows from Proposition 4.3.2.

It is not unnatural to restrict to estimators that satisfy L (Tn |P1−h/n2 ) → Zh . We
make the additional restriction that

∫
z dZh(Z ) = h, i.e. the limit-distribution is

unbiased. Now, based on the previous proposition, it is natural to call an esti-
mator in this class efficient if it attains the variance-bound (4.26). To demon-
strate efficiency of a given estimator, one only needs to show that it belongs to
the class of asymptotically unbiased estimators, and that it attains the bound.

First we discuss the OLS estimator. Let θn = 1−h/n2. Rewriting X t = ϑ◦ X t−1 +
εt =µG +θn X t−1 +ut for ut = εt −µG +ϑ◦X t−1 −θn X t−1, we obtain the autore-
gression X t −µG = θn X t−1+ut , which can also be written as n2(X t −X t−1−µG ) =
h(−X t−1)+n2ut (note that indeed Eθn ut = Eθn X t−1ut = 0). So the OLS estimator
of θn is given by,

θ̂OLS
n =

∑n
t=1 X t−1(X t −µG )

∑n
t=1 X 2

t−1

, (4.27)

and the OLS estimator of h is given by,

ĥOLS
n =−n2 ∑n

t=1 X t−1(X t −X t−1 −µG )
∑n

t=1 X 2
t−1

= n2 (
1− θ̂OLS

n

)
.



Section 4.3 Applications 85

Ispány et al. (2003b) analyzed the asymptotic behavior of the OLS estimator
under localizing rate n. However, since the convergence of experiments takes
place at rate n2, we analyze the behavior of the OLS estimator also under local-
izing rate n2. The next proposition gives this behavior.

Proposition 4.3.4. If EGε
3
1 <∞, then we have, for all h ≥ 0,

∣∣ĥOLS
n

∣∣ p−→∞, under P1− h
n2

.

Proof.
Let h ≥ 0 and set θn = 1−h/n2, Pn =Pθn , and En (·) = Eθn (·). We have

n3/2 (
θ̂OLS

n −θn
)= n−3/2 ∑n

t=1 X t−1
(
εt −µG +ϑ◦X t−1 −θn X t−1

)

n−3 ∑n
t=1 X 2

t−1

.

We prove that,

n−3/2
n∑

t=1
X t−1 (ϑ◦X t−1 −θn X t−1)

p−→ 0, under Pn , (4.28)

n−3
n∑

t=1
X 2

t−1
p−→

µ2
G

3
, under Pn , (4.29)

n−3/2
n∑

t=1
X t−1

(
εt −µG

) d−→ N

(
0,
σ2

Gµ
2
G

3

)
, under Pn , (4.30)

all hold, which yields,

n3/2 (
θ̂OLS

n −θn
) d−→ N

(
0,

3σ2
G

µ2
G

)
, under Pn , (4.31)

which in turn will yield the result, since,

∣∣ĥOLS
n

∣∣=p
n

∣∣∣∣−n3/2 (
θ̂OLS

n −θn
)+ hp

n

∣∣∣∣ .

First, we treat (4.28). Since

En X t−1|ϑ◦X t−1 −θn X t−1| ≤ En X 2
t−1|Z (t )

1 −θn | = En X 2
t−1En |Z (t )

1 −θn |

= 2θn(1−θn)En X 2
t−1 ≤

2h

n2
En X 2

t−1,

we obtain, using (4.3),

1

n3/2

n∑
t=1
En X t−1|ϑ◦X t−1 −θn X t−1| ≤

2h

n7/2

n∑
t=1
En X 2

t−1 → 0,



86 Nearly unstable INAR(1) models Chapter 4

which implies (4.28). Next, we discuss (4.29). Introduce St =
∑t

i=1εi and Yt =
St − X t . Notice that Yt is nonnegative, Ys = Ys−1 + (Xs−1 −ϑ ◦ Xs−1) for s ≥ 1,
Y0 = 0, and thus Yt =

∑t
i=1(Xi−1 −ϑ ◦ Xi−1). Decompose X 2

t = Y 2
t +S2

t − 2St Yt .

It is straightforward to check that n−3 ∑n
t=1 S2

t
p−→ µ2

G /3, under Pn . To obtain

(4.29), it thus suffices to prove that n−3 ∑n
t=1EnY 2

t → 0 and n−3 ∑n
t=1 St Yt

p−→ 0
under Pn . First notice that, for a constant C > 0,

En(X j−1 −ϑ◦X j−1)Xi−1 ≤
√
En X 2

i−1En(X j−1 −ϑ◦X j−1)2 ≤Ci

(p
h

n

√
j + h

n2
j

)
.

Now we obtain, use that conditional on X t , X t −ϑ◦X t has a Binomial(X t ,h/n2)
distribution,

EnY 2
t =

t∑
i=1

t∑
j=1
En(Xi−1 −ϑ◦Xi−1)(X j−1 −ϑ◦X j−1)

=
t∑

i=1
En(Xi−1 −ϑ◦Xi−1)2 +2

t∑
i=1

i−1∑
j=1

h

n2
En(X j−1 −ϑ◦X j−1)Xi−1

≤
t∑

i=1

(
h

n2
En Xi−1 +

h2

n4
En X 2

i−1

)
+ 2C h

n2

t∑
i=1

i−1∑
j=1

i

(p
h

n

√
j + h

n2
j

)
.

Since n−4 ∑n
t=1

∑n
s=1En Xs X t converges by (4.2), we obtain n−3 ∑n

t=1EnY 2
t

p−→ 0,
under Pn . Furthermore, we have,

1

n3

n∑
t=1
EnSt Yt ≤

1

n3

n∑
t=1

√
EnS2

t EnY 2
t ≤

√
µ2 +σ2

n3

n∑
t=1

t
√
EnY 2

t

≤
√
µ2 +σ2

n3

√
n(2n +1)(n +1)

6

√
n∑

t=1
EnY 2

t → 0,

which concludes the proof of (4.29).
Finally, we treat (4.30). By a martingale central limit theorem for arrays (see
Theorem 3.2, Corollary 3.1 and the remark after that corollary in Hall and Heyde
(1980)) we have (4.30), if the following two conditions are satisfied,

1

n3

n∑
t=1

X 2
t−1En

[(
εt −µG

)2 | X t−1, . . . , X0

]
p−→

σ2
Gµ

2
G

3
, under Pn , (4.32)

and for all ε> 0,

1

n3

n∑
t=1

X 2
t−1En

[(
εt −µG

)2 1{X t−1|εt −µG | > εn3/2} | X t−1, . . . , X0

]
p−→ 0, , (4.33)
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underPn . Since εt is independent of X t−1 (4.32) immediately follows from (4.29).
To see that the Lindeberg condition (4.33) is satisfied, notice that, using the in-
dependence of εt and X t−1, Hölder’s inequality, and Markov’s inequality, we
have

En

[(
εt −µG

)2 1{X t−1|εt −µG | > εn3/2} | X t−1

]

≤ (
EG (ε1 −µG )3)2/3

(
Pn

[∣∣εt −µG
∣∣> εn3/2

X t−1
| X t−1

])1/3

≤ (
EG (ε1 −µG )3)2/3

(
X 3

t−1EG (ε1 −µG )3

ε3n9/2

)1/3

= X t−1EG (ε1 −µG )3

εn3/2
,

which yields,

1

n3

n∑
t=1

X 2
t−1En

[(
εt −µG

)2 1{X t−1|εt −µG | > εn3/2} | X t−1

]

≤ EG (ε1 −µG )3

εn9/2

n∑
t=1

X 3
t−1

p−→ 0 under Pn ,

since it is easily checked that n−(4+α) ∑n
t=1 X 3

t−1
p−→ 0, under Pn , for α > 0. This

concludes the proof.

Remark 18. A similar result holds for the OLS-estimator in the model where G
is unknown.

Thus the OLS estimator explodes. How should we estimate h then? Recall, that
we interpreted

∑n
t=1 1{∆X t < 0} as an approximately sufficient statistic for h.

Hence, it is natural to try to construct an efficient estimator based on this statis-
tic. Using Theorem 4.1 we see that this is indeed possible.

Corollary 4.3. Let G satisfy Assumption 1. The estimator,

ĥn = 2
∑n

t=1 1{∆X t < 0}

g (0)µG
, (4.34)

is an efficient estimator of h in the sequence (En(G))n∈N.

A semiparametric model

So far we assumed that G is known. In this section, where we instead consider
a semiparametric model, we hardly impose conditions on G (see, for example,
Wefelmeyer (1996) for semiparametric stationary Markov models). The depen-
dence of Pθ upon G is made explicit by adding a subscript: Pθ,G . Formally, we
consider the sequence of experiments,

En =
(
Zn+1
+ ,2Z

n+1
+ ,

(
P

(n)

1− h
n2 ,G

| (h,G) ∈ [0,∞)×G

))
, n ∈N,
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where G is the set of all distributions on Z+ that satisfy Assumption 1.

The goal is to estimate h efficiently. Here efficient, just as in the previous sec-
tion, means asymptotically unbiased with minimal variance. Since the semi-
parametric model is more realistic, the estimation of h becomes more difficult.
As we will see, the situation for our semiparametric model is quite fortunate:
we can estimate h with the same asymptotic precision as in the case that G is
known. In semiparametric statistics this is called adaptive estimation.

The efficient estimator for the case that G is known cannot be used anymore,
since it depends on g (0) and µG . The obvious idea is to replace these objects by
estimates. The next proposition provides consistent estimators.

Proposition 4.3.5. Let h ≥ 0 and G satisfy σ2
G <∞. Then we have,

ĝn(0) = 1

n

n∑
t=1

1{X t = X t−1}
p−→ g (0) and µ̂G ,n = Xn

n

p−→µG , under P1− h
n2 ,G .

Proof.
Notice first that we have,

1

n

n∑
t=1

(X t−1 −ϑ◦X t−1)
p−→ 0, under P1− h

n2 ,G , (4.35)

since, condition on X t−1 and use (4.2),

0 ≤ 1

n

n∑
t=1
E1− h

n2 ,G (X t−1 −ϑ◦X t−1) = h

n3

n∑
t=1
E1− h

n2 ,G X t−1 → 0.

Using that |1{X t = X t−1}− 1{εt = 0}| = 1 only if X t−1 −ϑ ◦ X t−1 ≥ 1, we easily
obtain, by using (4.35),

∣∣∣∣ĝn(0)− 1

n

n∑
t=1

1{εt = 0}

∣∣∣∣≤
1

n

n∑
t=1

1{X t−1 −ϑ◦X t−1 ≥ 1}

≤ 1

n

n∑
t=1

(X t−1 −ϑ◦X t−1)
p−→ 0.

Now the result for ĝn(0) follows by applying the weak law of large numbers to
n−1 ∑n

t=1 1{εt = 0}. Next, consider µ̂G ,n . We have, use (4.35) and the weak law of
large numbers for n−1 ∑n

t=1εt ,

µ̂G ,n = Xn

n
= 1

n

n∑
t=1

(X t −X t−1) = 1

n

n∑
t=1

εt −
1

n

n∑
t=1

(X t−1 −ϑ◦X t−1)
p−→µG ,

under P1−h/n2,G , which concludes the proof.
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From the previous proposition we have ĥn − h̃n
p−→ 0, under P1−h/n2,G , where

h̃n = 2
∑n

t=1 1{∆X t < 0}

ĝn(0)µ̂G ,n
.

This implies that estimation of h in the semiparametric experiments (En)n∈N
is not harder than estimation of h in (En(G))n∈N. In semiparametric parlor: the
semiparametric problem is adaptive to G . The precise statement is given in the
following corollary; the proof is trivial.

Corollary 4.4. If (Tn)n∈N is a sequence of estimators in the semiparametric se-
quence of experiments (En)n∈N such that L

(
Tn |P1−h/n2,G

)→ Zh,G ,
∫

z dZh,G (z) =
h for all (h,G) ∈ [0,∞)×G , then we have

∫
(z −h)2 dZh,G (z) ≥ 2h

g (0)µG
for all (h,G) ∈ [0,∞)×G .

The estimator h̃n satisfies the conditions and achieves the variance bound.

E�cient estimation in the global model in case G is known 4.3.2

For convenience we introduce Xn = Zn+1
+ and An = 2Z

n+1
+ , and the following

assumption.

Assumption 2. A probability distribution G onZ+ is said to satisfy Assumption 2
if g (k) > 0 for all k ∈Z+, EGε

3
1 <∞, and

∑∞
k=1 g 2(k −1)/g (k) <∞.

So far we considered nearly unstable INAR experiments. This section considers
global experiments for the case G known, i.e.

Dn(G) =
(
Xn ,An ,

(
P

(n)
θ

| θ ∈ [0,1]
))

, n ∈N.

The goal is to estimate the autoregression parameter θ efficiently.

We already analyzed the ‘stable’ sequence of experiments

D(0,1)
n (G) =

(
Xn ,An ,

(
P

(n)
θ

| θ ∈ (0,1)
))

, n ∈N,

in Chapter 2. Under Assumption 2 it follows from Theorem 2.1 that these ex-
periments are of the Local Asymptotic Normal form (at

p
n-rate). Recall that an

estimator Tn of θ is regular if for all θ ∈ (0,1) there exists a law Lθ such that for
all h ∈R,

L

(p
n

(
Tn −

(
θ+ hp

n

))
|Pθ+h/

p
n

)
→ Lθ,
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i.e. vanishing perturbations do not influence the limiting distribution (or more
accurately: the associated estimators in the local limit experiment are location-
equivariant). For LAN experiments, the Hájek-Le Cam convolution theorem
tells us that for every regular estimator Tn of θ we have: Lθ = N(0, I−1

θ
)⊕∆θ,(Tn ),

where Iθ > 0 (which does not depend on the estimator, and thus is unavoid-
able noise) is the Fisher-information (see Theorem 2.1 for the formula). Since
∆θ,(Tn ) is additional noise, one calls a regular estimator efficient if ∆θ,(Tn ) is de-
generated at {0}. Section 2.2 provides an (computationally attractive) efficient
estimator of θ by updating the OLS estimator into an efficient estimator. Let us
recall this estimator. Let θ̂∗n be a discretized version of θ̂OLS

n (for n ∈ N make a
grid of intervals with lengths 1/

p
n, over R and, given θ̂OLS

n , define θ̂∗n to be the
midpoint of the interval into which θ̂OLS

n falls). Then,

θ(0,1)
n = θ̂∗n + 1

n

n∑
t=1

Î−1
θ,n

˙̀
θ(X t−1, X t ; θ̂∗n ,G), (4.36)

where,

În,θ =
1

n

n∑
t=1

˙̀2
θ(X t−1, X t ; θ̂∗n ,G),

is an efficient estimator of θ in the sequence of experiments D(0,1)
n (G), n ∈N.

The difference between D(0,1)
n (G) and Dn(G) is that in Dn(G) the full param-

eter space is used. To consider estimation in the full model, we also need to
consider the local asymptotic structure of Dn(G) at θ = 0 and θ = 1. For θ = 1
we have already done this by determining the limit experiment of (En(G))n∈N.
The next proposition shows that for θ = 0 the situation is standard: we have the
LAN-property.

Proposition 4.3.6. Suppose G satisfies Assumption 2. Then (Dn(G))n∈N has the
LAN-property at θ = 0, i.e. for h ≥ 0 we have,

n∑
t=1

log
P h/

p
n

X t−1,X t

P 0
X t−1,X t

=
n∑

t=1
log

P h/
p

n
X t−1,X t

g (X t )
= hS0

n − h2

2
I0 +o(P0;1), (4.37)

where,

I0 = (σ2
G +µ2

G )EG

(
g (ε1)− g (ε1 −1)

g (ε1)

)2

,

S0
n = 1p

n

n∑
t=1

−X t−1

(
g (X t )− g (X t −1)

g (X t )

)
d−→ N(0, I0), under P0.

Proof.
Note first that under P0 we have X t = εt . Since we are localizing at θ = 0, the
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following representation of the transition probabilities is convenient, Pθ
xt−1,xt

=∑xt−1
k=0 bxt−1,θ(k)g (xt −k). Using the inequality log((a +b)/c)− log(a/c) ≤ b/a for

a,c > 0, b ≥ 0 we obtain, for h > 0,

log
P h/

p
n

X t−1,X t

g (X t )
− log

∑2
k=0 bX t−1, hp

n
(k)g (X t −k)

g (X t )
≤ Rt =

∑X t−1
k=3 bX t−1, hp

n
(k)g (X t −k)

∑2
k=0 bX t−1, hp

n
(k)g (X t −k)

.

On the event An = {∀t ∈ {1, . . . ,n} : hεt <
p

n
}

we have for some constant K ≥ 0,
using (4.43) and the assumption that G is eventually decreasing,

Rt ≤
2K bX t−1, hp

n
(3)

(
1− hp

n

)X t−1
≤ K h3X 3

t−1

3n
p

n
(
1− hp

n

)3 .

Using EGε
3
1 <∞ and Markov’s inequality, it is easy to see that limn→∞P0(Ac

n) =
0. From this it easily follows that

∑n
t=1 Rt

p−→ 0 under P0. We decompose,

Ltn = log

∑2
k=0 bX t−1, hp

n
(k)g (X t −k)

g (X t )
= (X t−1 −2)log

(
1− hp

n

)

+ log(1+ An +Btn +Ctn) ,

where,

An =− 2hp
n
+ h2

n
, Btn = hp

n
X t−1

(
1− hp

n

)
g (X t −1)

g (X t )
,

and,

Ctn = X t−1(X t−1 −1)

2

h2

n

g (X t −2)

g (X t )
.

From here on the proof continues in the classical way. Using the Taylor expan-
sion log(1+ x) = x − x2/2+ x2r (x), where r satisfies r (x) → 0 as x → 0, we make
the decomposition,

log(1+ An +Btn +Ctn) = An +Btn +Ctn +Rtn

− 1

2

(
A2

n +B 2
tn +C 2

tn +2AnBtn +2AnCtn +2BtnCtn
)

,

where Rtn = (An +Btn +Ctn)2 r (An +Btn +Ctn). It is easy to see that the terms∑n
t=1 C 2

tn ,
∑n

t=1 BtnCtn and
∑n

t=1 AnCtn are all o(P0;1). Furthermore, we have,

n∑
t=1

{
(X t−1 −2)log

(
1− hp

n

)
+ An − 1

2
A2

n

}
=− hp

n

n∑
t=1

X t−1 −
h2

2n

n∑
t=1

X t−1 +o(P0;1),
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and,

− hp
n

n∑
t=1

X t−1 +
n∑

t=1
Btn = hS0

n − h2

n

n∑
t=1

X t−1
g (X t −1)

g (X t )
.

Combining the previous displays we obtain,

Ltn = hS0
n +

n∑
t=1

{
Ctn − 1

2
B 2

tn − AnBtn − h2

2n
X t−1 −

h2

n
X t−1

g (X t −1)

g (X t )

}

+Rtn +o(P0;1).

By the law of large numbers we have (note that E0g (X t − i )/g (X t ) = 1, i = 1,2),∑n
t=1 Ctn

p−→ h2
(
σ2

G +µ2
G −µG

)
/2,

∑n
t=1 AnBtn

p−→ −2h2µG , (1/n)
∑n

t=1 X t−1
p−→

µG , (1/n)
∑n

t=1 X t−1g (X t−1)/g (X t )
p−→µG , and

∑n
t=1 B 2

tn
p−→ h2(σ2

G+µ2
G )E(g 2(ε1−

1)/g 2(ε1)) under P0. Thus, once we show that
∑n

t=1 Rtn = o(P0;1) the proposi-
tion is proved. Using the inequality (x+ y +z)2 ≤ 9(x2+ y2+z2) we easily obtain∑n

t=1(An +Btn +Ctn)2 =O(P0;1). And using Markov’s inequality it is easy to see
that, for ε> 0,P0{max1≤t≤n |An+Btn+Ctn | > ε} ≤∑n

t=1P0 {|An +Btn +Ctn | > ε} →
0. Thus

∑n
t=1(An +Btn +Ctn)2r (An +Btn +Ctn)

p−→ 0 under P0, which concludes
the proof.

Remark 19. The meaning of this LAN-result is that the sequence,

(
Xn ,An ,

(
P

(n)
h/

p
n
| h ≥ 0

))
, n ∈N,

of local experiments, converges to the experiment
(
(R,B(R),

(
N

(
h, I−1

0

) | h ≥ 0
))

.
Note that we are dealing here with a ‘one-sided’ LAN-result, i.e. we only con-
sider h positive. As a consequence, it is not possible to apply the standard re-
sults for experiments with the LAN-structure directly (this, since these are for-
mulated for interior points of the parameter space). Since we do not want to
discuss this issue further, we consider asymptotically centered estimators with
minimal asymptotic variance as a best estimator at θ = 0 (see below). We note
that the ‘information-loss principle’, which we used in Chapter 2 to establish
the LAN-property for θ ∈ (0,1), cannot be used here since the score of a Bino-
mial distribution does not exist (in the usual sense) at θ = 0. Finally we point
out that the proposition actually holds under the weaker assumption σ2

G <∞
instead of EGε

3
1 <∞. This requires a finer, lengthier analysis of the Taylor expan-

sions using the Borel-Cantelli lemma. Since this proposition is just an input in
the proof of Proposition 4.3.7 where we need EGε

3
1 < ∞ anyway, we give here

the simpler proof under EGε
3
1 <∞.

Now we completed the picture of the local asymptotic structures of (Dn(G))n∈N
we can discuss efficient estimation. First, we describe the class of estimators in
which we are interested. We consider estimators Tn that satisfy,
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(i) (θ = 0) for all h ≥ 0,

L

(p
n

(
Tn − hp

n

)
|Ph/

p
n

)
→ Lh , with

∫
z dLh(z) = 0, (4.38)

(ii) (0 < θ < 1) Tn is regular, i.e. for all h ∈R,

L

(p
n

(
Tn −

(
θ+ hp

n

))
|Pθ+h/

p
n

)
→ Lθ, (4.39)

(ii) (θ = 1) for all h ≥ 0,

L

(
n2

(
Tn −

(
1− h

n2

))
|P1−h/n2

)
→ Rh with

∫
z dRh(z) = 0. (4.40)

So for θ ∈ (0,1) we ask for regularity which we discussed earlier. For θ = 0 and
θ = 1 we only ask for a limiting distribution with mean zero. For any such esti-
mator we have (the first inequality follows by arguments completely analogue
to the derivation of the third inequality, we already discussed the second state-
ment, and the third follows from Proposition 4.3.3 by taking ĥn = n2(1−Tn) as
estimator of h),

∫
z2 dLh(z) ≥ I−1

0 , Lθ = N(0, I−1
θ )⊕∆θ,(Tn ),

∫
z2 dRh(z) ≥ 2h

g (0)µG
, (4.41)

for all h ≥ 0, θ ∈ (0,1). Hence it is natural to call an estimator in the global model
efficient if it satisfies (4.38)-(4.40) with Lθ = N(0, I−1

θ
),

∫
z2 dLh(z) = I−1

0 , and∫
z2 dRh(z) = 2h/g (0)µG for all h ≥ 0, θ ∈ (0,1).

Proposition 4.3.7. Suppose G satisfies Assumptions 1 and 2. Let α,β ∈ (0,1/2),
and cα,cβ > 0. The estimator,

θ̂n = θ0
n1

{∣∣θ̂OLS
n

∣∣≤ cαn−α}+θ(0,1)
n 1

{∣∣θ̂OLS
n

∣∣> cαn−α, |θ̂OLS
n −1| > cβn−β

}

+θ1
n1

{
|θ̂OLS

n −1| ≤ cβn−β
}

,

where θ(0,1)
n is defined in (4.36) and,

θ0
n = 1p

n
I−1

0 S0
n , θ1

n = 1− 2
∑n

t=1 1{∆X t < 0}

n2g (0)µG
,

is an efficient estimator of θ in the sequence of experiments (Dn(G))n∈N.

Proof.
From Le Cam’s third lemma and Proposition 4.3.6 it easily follows that θ0

n sat-
isfies (4.38) and attains its variance lower-bound in (4.41). Since θ(0,1)

n is an
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efficient estimator in the ‘stable experiments’ (D(0,1)
n (G))n∈N it follows, by def-

inition, that θ(0,1)
n satisfies (4.39) and attains the convolution lower-bound in

(4.41). And it is also clear (from Corollary 4.3) that θ1
n satisfies (4.40) and attains

its variance lower-bound in (4.41). Thus it suffices to show that
p

n
(
θ̂n −θ0

n

) p−→
0 under Ph/

p
n for all h ≥ 0,

p
n

(
θ̂n −θ(0,1)

n

)
p−→ 0 under Pθ+h/

p
n for all θ ∈ (0,1),

h ∈ R, and n2
(
θ̂n −θ1

n

) p−→ 0 under P1−h/n2 for all h ≥ 0. It is an easy exercise,
using a martingale central limit theorem, to show that

p
n

(
θ̂OLS

n − (θ+h/
p

n)
)

converges to a normal distribution under Pθ+h/
p

n for all θ ∈ [0,1) and h ∈R (for

θ = 0 we only consider h ≥ 0). And from (4.31) we have that n3/2(θ̂OLS
n − (1−

h/n2)) converges to a normal distribution under P1−h/n2 for h ≥ 0. This implies

that nαθ̂OLS
n

p−→ 0 under Ph/
p

n and Ph/
p

n

{∣∣θ̂OLS
n −1

∣∣≤ cβn−β} → 0 for h ≥ 0,

nαθ̂OLS
n

p−→∞ and nβ
∣∣θ̂OLS

n −1
∣∣ p−→∞ under Pθ+h/

p
n , for θ ∈ (0,1), h ∈ R, and

we have nβ
(
θ̂OLS

n −1
) p−→ 0 under P1−h/n2 and P1−h/n2

{∣∣θ̂OLS
n

∣∣≤ cαn−α}→ 0 for
h ≥ 0. This concludes the proof.

4.3.3 Testing for a unit root
This section discusses testing for a unit root in an INAR(1) model. We consider
the case that G is known and satisfies Assumption 1.

In the global experiments Dn(G) = (Xn ,An , (P(n)
θ

| θ ∈ [0,1])), n ∈ N, we want
to test the hypothesis H0 : θ = 1 versus H1 : θ < 1. In other words, we want to
test the null hypothesis of a unit root. Hellström (2001) considered this prob-
lem, from the perspective that one wants to use standard (that is, OLS) soft-
ware routines in the testing. He derives, by Monte Carlo simulations, the finite
sample null-distributions for a Dickey-Fuller test of a random walk with Pois-
son distributed errors. This (standard) Dickey-Fuller test statistic is given by the
usual (i.e. non-corrected) t-test that the slope parameter equals 1, i.e.

τn = θ̂OLS
n −1√

σ2
G

(∑n
t=1 X 2

t−1

)−1
,

where θ̂OLS
n is given by (4.27). Under H0, i.e. under P1, we have (we are now

dealing with a random walk with drift), τn
d−→ N(0,1). Hence, the size α ∈ (0,1)

Dickey-Fuller test rejects H0 if and only if τn < Φ−1(α). To analyze the perfor-
mance of a test, one needs to consider the local asymptotic behavior of the
test. Since En(G) → E (G) we should consider the performance of τn along the
sequence En(G). The following proposition shows, however, that the asymp-
totic probability that the null hypothesis is rejected equalsα for all alternatives.
Hence, the standard Dickey-Fuller test has no power.
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Proposition 4.3.8. If EGε
3
1 <∞ we have for all h ≥ 0,

τn
d−→ N(0,1), under P1− h

n2
,

which yields

lim
n→∞P1− h

n2

(
reject H0

)=α.

Proof.
From (4.29) and (4.31) the result easily follows.

So the standard Dickey-Fuller test for a unit root does not behave well in the
nearly unstable INAR(1) setting. In our sequence of experiments En(G), n ∈N,
we propose the intuitively obvious tests

ψn(X0, . . . , Xn) =
{
α, if

∑n
t=1 1{∆X t < 0} = 0,

1, if
∑n

t=1 1{∆X t < 0} ≥ 1,

i.e. reject H0 if the process ever moves down and reject H0 with probability α if
there are no downward movements. We will see that this obvious test is in fact
efficient.

To discuss efficiency of tests, we recall the implication of the Le Cam-Van der
Vaart asymptotic representation theorem to testing (see, for example, Theo-
rem 7.2 in Van der Vaart (1991a)). Let α ∈ (0,1) and φn be a sequence of tests
in (En(G))n∈N such that limsupn→∞E1φn (X0, . . . , Xn) ≤α. Then we have

limsup
n→∞

E1− h
n2
φn(X0, . . . , Xn) ≤ sup

φ∈Φα
Ehφ(Z ) for all h > 0,

where Φα is the collection of all level α tests for testing H0 : h = 0 versus H1 :
h > 0 in the Poisson limit experiment E (G). If we have equality in the previous
display, it is natural to call a testφn efficient. It is obvious that the uniform most
powerful test in the Poisson limit experiment is given by

φ(Z ) =
{
α, if Z = 0,
1, if Z ≥ 1.

Its power function is given by E0φ(Z ) =α and Ehφ(Z ) = 1−(1−α)exp(−hg (0)µG /2).
Using Theorem 4.1 we find

lim
n→∞E1ψn(X0, . . . , Xn) =α,

and,

lim
n→∞E1− h

n2
ψn(X0, . . . , Xn) = 1− (1−α)exp

(
−hg (0)µG

2

)
for h > 0.

We conclude that the test ψn is indeed efficient.
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4.4 Auxiliaries
This section contains auxiliary results from the literature that are specific to this
chapter.

The following ‘tail-result’ for the Binomial distribution is basic (see, for instance,
Feller (1968) pages 150-151), but since it is heavily applied, we recall it here for
convenience.

Proposition 4.4.1. Let m ∈N, p ∈ (0,1). If r > mp, we have

m∑
k=r

bm,p (k) ≤ bm,p (r )
r (1−p)

r −mp
. (4.42)

So, if 1 > mp, we have for r = 2,3,

m∑
k=r

bm,p (k) ≤ 2bm,p (r ). (4.43)

There is a large literature on Poisson approximation of the distribution of sums
of dependent indicator variables with small success probabilities. Results of
this kind are usually called ‘Poisson laws of small numbers’. For our applica-
tion the following theorem by Serfling (1975) is the most convenient.

Lemma 4.4.1. Let Z1, . . . , Zn (possibly dependent) 0-1 valued random variables
and set Sn = ∑n

t=1 Zt . Let Y be Poisson distributed with mean
∑n

t=1EZt . Then
we have

sup
A⊂Z+

|P {Sn ∈ A}−P{Y ∈ A}| ≤
n∑

t=1
(EZt )2 +

n∑
t=1
E |E [Zt | Z1, . . . , Zt−1]−EZt | .
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5 E�cient estimation of marginals by
exploiting knowledge on the copula

Let (X1,Y1), . . . , (Xn ,Yn) be independent random pairs with unknown (bivari-
ate) distribution function H . The only knowledge we have on H is that its cop-
ula is C , i.e. H(x, y) = C (F (x),G(y)), (x, y) ∈ R2, where F and G are the (un-
known) marginal distribution functions of H . These marginals can, of course,
be estimated by their empirical distribution functions. However, we show that,
amongst smooth copulas, these estimators are only efficient for the indepen-
dence copula. This chapter shows how to exploit the information on the de-
pendence structure in an optimal way.

Introduction 5.1

A (bivariate) copula C is the restriction to [0,1]2 of a bivariate distribution func-
tion with uniform marginal distributions; see Joe (1997) or Nelsen (1999) for
an extensive introduction to copulas. Copulas are extremely attractive in stud-
ies where one needs to construct a multivariate model, since copulas allow to
separate the modeling of the dependence between the coordinates from the
modeling of the marginal distributions. More precise, if C is a copula and F and
G are univariate distribution functions, then it is easy to show that H(x, y) =
C (F (x),G(y)), x, y ∈R, defines a (bivariate) distribution function with marginal
distributions F and G . The reverse is known as A. Sklar’s (1959) theorem (see, for
example, Nelsen (1999)): for a bivariate distribution function H with marginal
distribution functions F , G , there is a copula C such that H(x, y) =C (F (x),G(y)),
x, y ∈ R. Moreover, if F and G are continuous the copula C is unique. Hence,
when one has to model the distribution of a bivariate random variable, one
can separate without loss of generality the modeling of the marginal distribu-
tions from the modeling of the dependence structure, by choosing a pair of
marginal distribution functions and a copula. So a copula can be viewed upon
as a margin-free description of dependence. This could be an explanation of
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the popularity of copulas in (financial) econometrics. Without going into de-
tails we mention some recent financial applications: Li (2000), Embrechts et al.
(2003a), Embrechts et al. (2003b), Genest et al. (2005), Junker and May (2005),
and Hu (2006).

Throughout this chapter, F denotes the collection of all distribution functions
onR, and Fac denotes the subset of all absolutely continuous distribution func-
tions. Given a copula C and distribution functions F and G , define the proba-
bility measure PC

F,G on (R2,B(R2)) by

PC
F,G

(
(−∞, x]× (−∞, y]

)=C (F (x),G(y)), x, y ∈R.

Typical applications of copula models select specific parametric forms for the
dependence structure, i.e. Cθ, θ ∈Θ⊂Rm , and the marginals (for example, nor-
mal distributions or t-distributions). Next the question arises how we should
estimate the parameters from a random sample (X1,Y1), . . . , (Xn ,Yn). An obvi-
ous approach is to maximize the joint likelihood, either directly or in two steps
as proposed by Joe (2005). However, inappropriate choices for the marginals
could invalidate the estimation of the dependence parameter θ, i.e. expose the
researcher to possible misspecification of the marginals. To avoid this prob-
lem, margin-free ad hoc estimates of θ were, in special contexts, developed by,
amongst others, Clayton and Cuzick (1985), Oakes (1982, 1986), Genest (1987),
and Hougaard (1989). Oakes (1994) introduced a semiparametric estimator of
θ. This omnibus procedure consists of replacing, in the likelihood, F and G by
the marginal empirical distribution functions. Genest et al. (1995), Shih and
Louis (1995), and Tsukahara (2005) established consistency and asymptotic nor-
mality of this estimator. As an aside, we note that Chen and Fan (2006) showed
that this estimation method also works in a univariate (first-order) Markov con-
text. An obvious and interesting question is for which copulas the omnibus
estimator constitutes a semiparametric efficient estimator of θ. Klaassen and
Wellner (1997) proved that the omnibus procedure is efficient for the normal
copula family, and is asymptotically equivalent to the Van der Waerden normal
scores rank correlation estimator. Genest and Werker (2002) characterized the
efficiency of the omnibus procedure. Amongst popular copula families, only
two instances of semiparametric efficiency are identified: the case of indepen-
dence and the normal copula model.

Instead of focusing on (efficient) estimation of the dependence parameter, we
focus on using the knowledge on the dependence structure to construct im-
provements of the marginal empirical distribution functions. As far as we know
Klaassen and Wellner (1997) were the first to consider efficient estimation of
the marginals in a copula model: ‘It would be very interesting to know informa-
tion bounds and efficient estimators for estimation of the marginal distribution
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functions F and G in the bivariate normal copula model treated here, or in other
copula models.’ In this chapter we consider the following two models for one
observation (X ,Y ):

P (C ,G0) =
(
PC

F,G0
| F ∈Fac

)
, G0 ∈Fac, and, P (C ) =

(
PC

F,G | F,G ∈Fac

)
.

So in the model P (C ) the copula is known, and in the model P (C ,G0) the
second marginal is also known. For the model P (C ,G0) we consider efficient
estimation of the parameter F , seen as an element of the space `∞(R), from
a random sample (X1,Y1), . . . , (Xn ,Yn). And for the model P (C ) the goal is to
develop an efficient estimator of the parameter (F,G), seen as an element of
`∞(R)× `∞(R). Although interesting from a theoretical point of view, the as-
sumption that the copula is known is not realistic. Our results can however be
used to construct efficient estimators of (F,G) in the model

P =
(
P

Cθ

F,G | F,G ∈Fac, θ ∈Θ⊂Rm
)

,

where (Cθ | θ ∈ Θ) is a ‘smooth’ family of copulas: if one has an efficient esti-
mator of θ available, then the ‘plug-in principle’ constitutes, see Klaassen and
Putter (2005), an efficient estimator of (F,G). We also believe that the idea of
our estimation technique and efficiency proof can be extended to yield a direct
efficient estimator of the parameter (θ,F,G) in the model P . However, since
the semiparametric analysis of the models P (C ,G0) and P (C ) is already non-
standard, we think it is reasonable to concentrate first on these models. Fur-
thermore the analysis of the models P (C ,G0) and P (C ) can be considered as
the complement of Bickel et al. (1991), and Peng and Schick (2002, 2004, 2005).
who considered efficient estimation of some aspect of the bivariate distribu-
tion function if one has complete information on one or both marginals and
no further information.

Recently, and independently from our work, Chen et al. (2006) proposed an ele-
gant sieve maximum likelihood estimation procedure for semiparametric cop-
ula models. Their procedure approximates the infinite-dimensional unknown
marginal densities by linear combinations of finite-dimensional known basis
functions, and then maximizes the joint likelihood with respect to the copula
parameter and the sieve parameters of the approximating marginal densities.
To prove that this approximation is valid they require a more restricted class of
marginals than Fac: the support should be a compact interval or the whole real
line, and the square roots of the densities should satisfy certain differentiability
conditions. Relying on general theory, developed by Shen (1997), they provide
conditions under which their sieve estimation method provides efficient esti-
mates of real-valued smooth functionals of (θ,F,G). Unfortunately a sieve es-
timation method always brings ambiguity in the estimation method since one
has to select a finite subset of the class of basis functions, and different shapes
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of the density require different sieves. Our estimators, which are motivated by
an empirical likelihood argument, do not suffer this ambiguity. Furthermore, it
is not completely clear what restrictions the conditions of Chen et al. (2006) put
on the copula C .

The setup of the remainder of this chapter is as follows. Section 5.2 discusses
some preliminaries. Section 5.3 analyzes the model P (C ,G0). In Section 5.3.1
we discuss the lower-bound to the asymptotic variance of regular estimators
of F . We also prove that, amongst smooth copulas, the independence copula,
C (u, v) = uv , is the only copula for which the empirical distribution function of
X1, . . . , Xn is an efficient estimator of F . Furthermore, it is discussed that, in gen-
eral, we cannot obtain explicit expressions for the efficient influence operator
which makes it hard to prove efficiency of an estimator. Section 5.3.2 introduces
our estimator. We show that it can be computed by solving a linear system of
n + 1 equations in n + 1 variables. In Section 5.3.3 we determine the limiting
distribution of our estimator. The limiting distribution is a Gaussian process,
but it seems to be impossible to obtain explicit formulas for its covariance pro-
cess. Section 5.3.4 proves, using the special representation of the limiting distri-
bution, efficiency of our estimator. In Section 5.4 we analyze the model P (C ).
From the efficiency point of view, the major difference to Section 5.3 is that the
tangent space of the model is now the sum of two non-orthogonal spaces. At
first sight this complicates the semiparametric analysis even further. However,
the trick we used to prove efficiency in the model P (C ,G0) extends to the model
P (C ).

5.2 Assumptions and Notation
This section gives a precise description of our primitive assumption on the cop-
ula. Moreover, we introduce some notation we will use later on.

First we discuss our assumptions on the copula.

Assumptions on C

(C1) C is absolutely continuous w.r.t. Lebesgue measure. There is a version of
its density, c, which is strictly positive on (0,1)2.

(C2) The density c is two times continuously differentiable on (0,1)2. Hence,

˙̀
i (u1,u2) = ∂

∂ui
logc(u1,u2), u1,u2 ∈ (0,1), i = 1,2, (5.1)

῭
i j (u1,u2) = ∂2

∂ui∂u j
logc(u1,u2), u1,u2 ∈ (0,1), i , j = 1,2, (5.2)
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are well-defined. We impose that these objects are C -integrable and we
impose,

∫
˙̀

i (u1,u2)c(u1,u2)du3−i = 0, ui ∈ (0,1), i = 1,2.

Define

I11(x) =
∫ 1

0

˙̀2
1(x, y)c(x, y)dy, I22(y) =

∫ 1

0

˙̀2
2(x, y)c(x, y)dx.

We also impose,

Ii i (ui ) =−
∫

῭
i i (u1,u2)c(u1,u2)du3−i , ui ∈ (0,1), i = 1,2,

and, for some constant M > 0,

Ii i (u) ≤ M

(u(1−u))2
, u ∈ (0,1), i = 1,2.

(C3) Define r : (0,1) →R by r (u) = u(1−u).

(i) There exists M > 0 and α ∈ [0,1), such that, for i = 1,2,

∣∣ ˙̀
i (u1,u2)

∣∣≤ M

r (ui )rα(u3−i )
, (u1,u2) ∈ (0,1)2.

(ii) For i = 1,2, there exists M ≥ 0, ε ∈ (0,1/2] such that for all (u1,u2), (u′
1,u′

2) ∈
(0,1)2,

∣∣ ῭
i i (u1,u2)− ῭

i i (u′
1,u′

2)
∣∣≤ M

( |ui −u′
i |

r 3(ui )r 1/2−ε(u3−i )
+

|u3−i −u′
3−i |

r 2(ui )r (u3−i )

)
,

and,

∣∣ ῭
12(u1,u2)− ῭

12(u′
1,u′

2)
∣∣≤ M

|u1 −u′
1|+ |u2 −u′

2|
r (u1)r (u2)

.

Let us briefly discuss the assumptions. Assumptions (C1) and (C2) are stan-
dard in the semiparametric literature on copulas (the integrability condition
on ῭

i j can be relaxed; however this is beyond the scope of the thesis). Since for
some copulas the ˙̀

i ’s and ῭
i j ’s are not (extendable to be) bounded on [0,1]2,

we allow for explosive behavior on the boundary of [0,1]2. The last part of As-
sumption (C2) and Assumption (C3) put restrictions on this boundary behav-
ior. Since the copula is fixed, we denote, for notational convenience, PC

F,G from
now on by PF,G , and expectations with respect to PF,G by EF,G . For F,G ∈Fac the
measure PF,G has density (with respect to Lebesgue measure):

pF,G (x, y) = c(F (x),G(y)) f (x)g (y), x, y ∈R.
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The following invariance argument is heavily exploited (without notice) in the
sequel. If F,G ∈Fac then, under PF,G , (F (X ),G(Y )) ∼C =PUn[0,1],Un[0,1] . Conse-
quently,

EF,G f (F (X ),G(Y )) = EUn[0,1],Un[0,1] f (X ,Y ) =
∫

f (x, y)dC (x, y).

We denote the marginal empirical distributions by Fn and Gn , and the bivariate
empirical distribution function by Hn , for x, y ∈R,

Fn(x) = 1

n

n∑
i=1

1{Xi ≤ x}, Gn(y) = 1

n

n∑
i=1

1{Yi ≤ y},

and,

Hn(x, y) = 1

n

n∑
i=1

1{Xi ≤ x,Yi ≤ y}.

and we introduce scaled versions of Fn and Gn by

F̃n(x) = n

n +1
Fn(x), x ∈R, G̃n(y) = n

n +1
Gn(y), y ∈R.

The (right-continuous with left-hand limits) empirical copula is defined by

Cn(u, v) = 1

n

n∑
i=1

1{Fn(Xi ) ≤ u, Gn(Yi ) ≤ v} , (u, v) ∈ [0,1]2.

For f : [0,1]2 →R, we have the identity
∫

f (Fn(x),Gn(y))dHn(x, y) =
∫

[0,1]2
f (u, v)dCn(x, y).

Since we want to allow for integrands that are explosive on the boundary of
[0,1]2, it is more convenient to use a ‘shifted’ version of Cn :

C̃n(u, v) = 1

n

n∑
i=1

1
{
F̃n(Xi ) ≤ u,G̃n(Yi ) ≤ v

}
, u, v ∈ [0,1].

Now we have, for f : (0,1)2 →R, the identity
∫

f (F̃n(x),G̃n(y))dHn(x, y) =
∫

[0,1]2
f (u, v)dC̃n(x, y).

Gaenssler and Stute (1987), Van der Vaart and Wellner (1993, Section 3.9.4.4),
and Fermanian et al. (2004) considered weak convergence1 of the process (u, v) 7→

1Since we may encounter objects that are not sufficiently measurable we rely throughout
on the weak convergence theory à la Hoffman-Jørgensen (see, for example, Van der Vaart and
Wellner (1993)).
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p

n(Cn −C )(u, v). Recently, Biau and Wegkamp (2005) provided a maximal in-
equality for the empirical copula process indexed by certain sets. Our analysis
in the following sections would be facilitated if there were also results available
for the weak convergence of {

p
n

∫
f d(C̃n −C ) | f ∈ F }, the shifted empirical

copula process indexed by a collection functions. Since results of this kind are
not available we rely on Taylor expansions to invoke weak convergence of the
standard empirical process.

Copula and second marginal known 5.3
In this section the model for one observation (X ,Y ) is

P (C ,G0) = (
PF,G0 | F ∈Fac

)
,

where besides the copula C , satisfying the assumptions described below, the
second marginal G0 ∈ Fac is known. We study efficient estimation of the pa-
rameter F , seen as an element of the space `∞(R), from an i.i.d. sample (Xi ,Yi )
i = 1, . . . ,n.

Throughout Section 5.3 we impose on C , besides Assumption (C 1) the follow-
ing additional asssumption:

c > 0 on [0,1]2 and for all v ∈ [0,1] the mapping u 7→ logc(u, v) is two times
differentiable. Furthermore the derivatives, considered as functions on
[0,1]2, are continuous.

Hence ˙̀
1 and ῭

11 (see (5.1)-(5.2)) are finite on [0,1]2. As mentioned before, this
assumption is too strong for many interesting copulas. However, we impose
this assumption in this section to make the analysis more transparent. In the
next section, for which this section provides intuition, we impose the assump-
tions (C1)-(C3) which allow for exploding ˙̀

i ’s and ῭
i j ’s.

Information lower-bound & ine�ciency of Fn 5.3.1
To be able to state the convolution theorem, which gives a lower-bound to the
precision of regular estimators, we first recall the necessary notions from semi-
parametric theory. For details we refer to Bickel et al. (1998) and Van der Vaart
(2000, Chapter 25). To obtain asymptotic bounds to the precision of estimators,
it is well-known that one has to consider the local structure of the model, which
is described by the tangent space. Fix F0 ∈ Fac. We describe how to construct
a tangent space for the model P (C ,G0) at PF0,G0 . Let k : R→ R be defined by
k(z) = 2/(1+ exp(−2z)). Let v ∈ L0

2(Un[0,1]); here L0
2(Un[0,1]) is the subset of

L2(Un[0,1]) for which
∫ 1

0 a(u)du = 0. Next define for t ∈ (−1,1) the densities

f v
t (x) = cv

f (t )k (t v(F0(x))) f0(x), x ∈R, (5.3)
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where cv
f is such defined that f v

t are indeed densities2. The densities f v
t induce

distribution functions F v
t ∈Fac, and t 7→ F v

t passes F0 at t = 0. We introduce the
‘score-operator’ ˙̀

F : L0
2(Un[0,1]) → L2(PUn[0,1],Un[0,1]) by (see Proposition 4.7.5

in Bickel et al. (1998)),

˙̀
F v(X ,Y ) = v(X )+ ˙̀

1(X ,Y )
∫ X

0
v(z)dz. (5.4)

The following proposition yields a tangent space at PF0,G0 .

Lemma 5.3.1. Let v ∈ L0
2(Un[0,1]). Then the path t 7→ F v

t , as defined by (5.3) has
score ˙̀

F v(F0(X ),G0(Y )) at t = 0:

lim
t→0

∫ 1

0

∫ 1

0

(√
pt (x, y)−√

p0(x, y)

t
− 1

2
˙̀

F v(F0(x),G0(y))
√

p0(x, y)

)2

dx dy = 0,

where pt (x, y) = pF v
t ,G0 (x, y). This yields the following tangent set for the model

P (C ,G0) at PF0,G0 ,

T (PF0,G0 |P (C ,G0)) = {
˙̀

F v(F0(X ),G0(Y )) | v ∈ L0
2(Un[0,1])

}
,

which is a closed linear subspace of L2(PF0,G0 ).

Proof.
The part on the score is essentially Proposition 4.7.4 in Bickel et al. (1998). The
tangent space is closed, since the operator ˙̀

F : L0
2(Un[0,1]) →PUn[0,1],Un[0,1] has

closed range (see Bickel et al. (1998, Proposition 4.7.5).

Next we recall the concept of a regular estimator. An estimator (not necessarily
measurable) F∗

n of F is regular at PF0,G0 along the submodel t 7→PF v
t ,G0 through

PF0,G0 if there exists a tight Borel measurable element L0 in `∞(R) such that for
all un → u ∈R, we have

p
n

(
F∗

n −F v
un /

p
n

)
d−→ L0, under PF v

un /
p

n
,G0 in `∞(R).

An estimator F∗
n of F is (semiparametrically) regular in the model P (C ,G0) at

PF0,G0 if it is regular along all submodels t 7→ PF v
t ,G0 , v ∈ L0

2(Un[0,1]), through
PF0,G0 . Finally, an estimator is regular for the model P (C ,G0), if it is regular at
every PF,G0 , F ∈ Fac. Our parameter of interest is described by the mapping
(by Sklar’s theorem this is indeed a mapping) ν : P (C ,G0) → `∞(R) defined by
ν(PF,G0 ) = ((F (x))x∈R). Fix F0 ∈ Fac. We need the pathwise derivative of ν along
the paths that generate the tangent space T (PF0,G0 | P (C ,G0)). For a path t 7→
F v

t , defined by (5.3), it is an easy exercise to show t−1
(
ν(PF v

t ,G0 )−ν(PF0,G0 )
)
→

2It is trivial to check that we have 0 < k ≤ 2, 0 < k ′ ≤ 4, 0 < k ′/k ≤ 2 and k(0) = k ′(0) = 1,
cv

f (0) = 1, t 7→ cv
f (t ) is continuously differentiable with cv ′

f (0) = 0.
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ν′
PF0,G0

( ˙̀
F v(F0(X ),G0(Y ))) in `∞(R) as t → 0. Here the pathwise derivative is

given by ν′
PF0,G0

( ˙̀
F v(F0(X ),G0(Y )))(z) = ∫ F0(z)

0 v(u)du, z ∈ R. Since this opera-

tor, seen as map from T (PF0,G0 |P (C ,G0)) into `∞(R), is continuous there exist,
using the Riesz representation theorem for each coordinate, unique elements
ν∗z,PF0,G0

∈T (PF0,G0 |P (C ,G0)) such that for all v ∈ L0
2(Un[0,1]):

ν′PF0,G0
( ˙̀

F v(F0(X ),G0(Y )))(z) = EF0,G0ν
∗
z,PF0,G0

(X ,Y ) ˙̀
F v(F0(X ),G0(Y ))

Let us now recall the convolution theorem (see, for example, Van der Vaart
(1991b, Theorem 2.1) or Bickel et al. (1998, Theorem 5.2.1)).

Theorem 5.1. Let F0 ∈Fac. If F∗
n is a regular estimator of F atPF0,G0 in the model

P (C ,G0) with limit distribution W (under PF0,G0 ), then there exist tight Borel
measurable elements L and N in `∞(R) such that

L (W ) =L (L+N ),

where L and N are independent and L is a mean 0 Gaussian process whose co-
variances are determined by the efficient influence operator z 7→ ν∗z,PF0,G0

.

Proof. Since the tangent space (Lemma 5.3.1) is linear and ν is pathwise differ-
entiable all conditions of Bickel et al. (1998) Theorem 5.2.1 are met.

Since L (L) is determined by the model only, via its efficient influence oper-
ator, it represents inevitable noise. Therefore, it is natural to call an estimator
efficient at PF0,G0 if it is regular at PF0,G0 and if its limiting distribution (under
PF0,G0 ) is given by L. An estimator of F is efficient (in the model P (C ,G0)) if it is
efficient at all PF0,G0 .

Remark 1. It is easy to see that ν∗z,F0,G0
is the projection of 1{X ≤ z} − F0(z)

(the influence function of the empirical distribution function evaluated at z,
i.e. Fn(z)) on T (PF0,G0 |P (C ,G0)). It however seems to be impossible to obtain,
in general, explicit expressions for ν∗z,PF0,G0

, so it seems to be difficult to verify

efficiency of a proposed estimator.

The next theorem shows that, amongst smooth absolutely continuous copulas,
the independence copula is the only copula for which the empirical distribu-
tion function of X1, . . . , Xn constitutes an efficient estimator of F .

Theorem 5.2. Let C a copula satisfying the assumptions stated at the beginning
of Section 5.3, and F0 ∈ Fac. Let z ∈ R such that 1 > F0(z) > 0 Then Fn(z) is an
efficient estimator of F (z) in the model P (C ,G0) at PF0,G0 if and only if C (u, v) =
uv.
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Proof. Let F0 ∈Fac.
‘⇐=’ It is easy to check that for all z ∈Rwe have ν∗z,PF0,G0

= 1{X ≤ z}−F0(z). Now

efficiency directly follows from Bickel et al. (1998) Corollary 5.2.1. Of course,
efficiency of Fn in the model where one has i.i.d. observations from F ∈Fac un-
known is well known; see, for example, Bickel et al. (1998) Example 5.3.1.
‘=⇒’ Since Fn(z) is an efficient estimator of F (z), the influence function of Fn(z),
x 7→ 1{x ≤ z}−F0(z), belongs to the tangent space T (PF0,G0 |P (C ,G0)), i.e. there
exists az ∈ L0

2(Un[0,1]) such that

1{X ≤ z}−F0(z) = ˙̀
F az(F0(X ),G0(Y )) a.s. (5.5)

Since EF0,G0 [ ˙̀
F a(F0(X ),G0(Y )) | X ] = a(F0(X )) for all a ∈ L0

2(Un[0,1]) we obtain

az(F0(X )) = 1{X ≤ z}−F0(z), a.s.

Hence we must have, PF0,G0 -a.s.,

0 = ˙̀
1(F0(X ),G0(Y ))

∫ F0(X )

w=0
az(w)dw = ˙̀

1(F0(X ),G0(Y ))(F0(X∧z)−F0(z)F0(X )),

which, by continuity of F0 and G0, implies ˙̀
1 = 0, which yields c1 = 0 and conse-

quently the mappings x 7→ c(x, y) are constant for fixed y . Since
∫

c(x, y)dx = 1
we conclude c = 1, which completes the proof.

So Fn is an efficient estimator in case C (u, v) = uv , but in general inefficient.
Thus the obvious question is whether it is possible to construct an efficient es-
timator for general copulas.

5.3.2 The estimator
This section introduces our estimator. We start by considering a kind of empiri-
cal likelihood method (see, for example, Owen (2001)), and after several simpli-
fying approximations we will arrive at our estimator. This proposed estimator
is computationally attractive: the only computational difficulty is to determine
a solution to a linear system of n+1 equations in n+1 variables. We prove uni-
form consistency of this estimator.

Since the (unknown) joint distribution H has copula C and G0 as second marginal,
it seems natural to impose that the estimated joint distribution has copula C
and G0 as second marginal as well. Inspired by the literature on empirical likeli-
hood this leads to the idea to consider estimators F∗

n that maximize the ‘empirical-
copula-likelihood’

En(F,G0) = 1

n

n∑
i=1

logPF,G0 {(Xi ,Yi )},
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over F ∈ F . For the moment, ignore the existence of a maximum. The next
proposition shows that we only have to consider estimators that concentrate
on the data.

Proposition 5.3.1. If F∗
n maximizes En(·,G0) over F , then F∗

n is concentrated on
the data, i.e. F∗

n assigns mass 1 to the set {X1, . . . , Xn}.

Proof.
Let F 1

n be a maximizer of En(·,G0). Define the distribution function F∗
n , concen-

trated on {X1, . . . , Xn}, by, for i = 1, . . . ,n,

F∗
n (Xi :n) =

{
F 1

n(Xi :n) if i < n,
1 if i = n.

Now the proposition is certainly proved, once we show that, for all i , j = 1, . . . ,n,
we have PF∗

n ,G0 {(Xi :n ,Y j :n)} ≥ PF 1
n ,G0

{(Xi :n ,Y j :n)}, with equality for all i , j only if

F 1
n is already concentrated on the data. For convenience, denote X0:n = Y0:n =

−∞. Then, for 1 ≤ i , j < n, we have

PF∗
n ,G0 {(Xi :n ,Y j :n)} =C

(
F∗

n (Xi :n),G0(Y j :n)
)−C

(
F∗

n (Xi−1:n),G0(Y j :n)
)

−C
(
F∗

n (Xi :n),G0(Y j−1:n)
)+C

(
F∗

n (Xi−1:n),G0(Y j−1:n)
)

=C
(
F 1

n(Xi :n),G0(Y j :n)
)−C

(
F 1

n(Xi−1:n),G0(Y j :n)
)

−C
(
F 1

n(Xi :n),G0(Y j−1:n)
)+C

(
F 1

n(Xi−1:n),G0(Y j−1:n)
)

=PF 1
n ,G0

(
(Xi−1:n , Xi :n]× (Y j−1:n ,Y j :n]

)

≥PF 1
n ,G0

{(Xi :n ,Y j :n)},

where the last inequality is an equality if and only if the probability measure
PF 1

n ,G0
does not assign mass to the set

(
(Xi−1:n , Xi :n]× (Y j−1:n ,Y j :n]

)
\{(Xi :n ,Y j :n)}.

Similarly, we find for i = n and j < n,

PF∗
n ,G0 {(Xn:n ,Y j :n)} =PF 1

n ,G0

(
(Xn−1:n ,∞)× (Y j−1:n ,Y j :n]

)

≥PF 1
n ,G0

{(Xn,n ,Y j :n)},

where the last inequality is an equality if and only if the probability measure
PF 1

n ,G0
does not assign mass to the set

(
(Xn−1:n ,∞)× (Y j−1:n ,Y j :n]

)
\{(Xn:n ,Y j :n)}.

Analogous inequalities hold for the cases i < n, j = n, and i = j = n.

Therefore we restrict ourselves to estimators of the form

F∗
n (x) =

n∑
i=1

p(n)
i 1{Xi ≤ x}, x ∈R,

i.e. p(n)
i is the mass that F∗

n assigns to the point {Xi } (if there are no ties in
the data (which happens with probability 1)). Now we would like to maximize
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En(·,G0) as a function of p(n)
1 , . . . , p(n)

n under the nonnegativity constraints p(n)
i ≥

0 (i = 1, . . . ,n), and the equality constraint p(n)
1 + ·· · + p(n)

n = 1. This is a highly
nonlinear constrained optimization problem in n variables; to reduce the com-
putational complexity we make several approximations. Recall that pF,G (x, y) =
c(F (x),G(y)) f (x)g (y) for F,G ∈Fac. As a first simplification, we replace f (Xi ) by
p(n)

i , which motivates the following approximation to En(F∗
n ,G0) (up to a con-

stant):

Ẽ
G0
n (F∗

n ) = 1

n

n∑
i=1

log p(n)
i + 1

n

n∑
i=1

logc
(
F∗

n (Xi ),G0(Yi )
)

.

Although this approximation already simplifies life, we are still dealing with
a highly nonlinear constrained optimization problem in n variables. We ap-
proximate log p(n)

i = log(1+ (np(n)
i −1))− log(n) by (np(n)

i −1)− 1
2 (np(n)

i −1)2 −
logn. The motivation for this approximation is that we think of our estima-
tors as being ‘close to’ the empirical distribution function. Inspired by a Tay-
lor expansion, the equality

∑n
i=1(np(n)

i −1) = 0, and motivated by the equality

EF0,G0 [ ˙̀2
1(F0(X ),G0(Y )) | X ] = −EF0,G0 [ ῭

11(F0(X ),G0(Y )) | X ], we take as our ob-
jective function

L
G0
n (F∗

n ) = 1

n

n∑
i=1

˙̀
1(i )

(
F∗

n (Xi )−Fn(Xi )
)− 1

2n

n∑
i=1

˙̀2
1(i )

(
F∗

n (Xi )−Fn(Xi )
)2

− 1

2n

n∑
i=1

(
nF∗

n {Xi }−1
)2 ,

where we use the abbreviations

˙̀
1(i ) = ˙̀

1 (Fn(Xi ),G0(Yi )) , ῭
11(i ) = ῭

11 (Fn(Xi ),G0(Yi )) , i = 1, . . . ,n.

Next, we consider the constrained quadratic optimization problem

max
F∗

n

L
G0
n (F∗

n ),

s.t. F∗
n probability distribution concentrated on {X1, . . . , Xn}. (5.6)

Since we have to maximize a continuous function (of n variables) on a compact
set a maximum indeed exists. We propose to estimate F by a global maximum
F̂n of (5.6). Notice that for the independence copula, i.e. C (u, v) = uv , we find
F̂n = Fn . In general it seems impossible to obtain ‘explicit’ expressions for F̂n .
Although it is possible to determine a solution to (5.6) by numerical routines for
constrained quadratic optimizations, we will show that a solution can be found
by determining a solution (which is, with probability tending to 1, unique) to a
linear system of n +1 equations in n +1 variables. Besides yielding a computa-
tionally attractive estimator, we will use these Lagrange equations in the next
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section to obtain the limit distribution of F̂n . The next propositions, which give
a consistency result for F̂n , will allow us to get rid of the inequality constraints
in (5.6). This will allow us to show that F̂n is indeed a solution to a linear system
of equations.

Proposition 5.3.2. Let F0 ∈Fac. Let, for n ∈N, F̂n a global maximum location of
(5.6). Then we have

lim
n→∞

1

n

n∑
i=1

(
nF̂n{Xi }−1

)2 = 0, PF0,G0 -a.s.

Proof.
Notice that L

G0
n (Fn) = 0. Since F̂n maximizes, by definition, L

G0
n we thus have

L
G0
n (F̂n) ≥ 0 which yields

1

2n

n∑
i=1

(
nF̂n{Xi }−1

)2 ≤ 1

n

n∑
i=1

˙̀
1(i )

(
F̂n(Xi )−Fn(Xi )

)

− 1

2n

n∑
i=1

˙̀2
1(i )

(
F̂n(Xi )−Fn(Xi )

)2
.

Since ῭
11 is bounded, say by C > 0, we obtain

sup
F,G∈F

∣∣∣∣∣
1

n

n∑
i=1

˙̀
1(i ) (F (Xi )−G(Xi ))− 1

n

n∑
i=1

˙̀
1(F0(Xi ),G0(Yi )) (F (Xi )−G(Xi ))

∣∣∣∣∣
≤C‖Fn −F0‖∞ → 0, PF0,G0 -a.s.

Since EF0,G0 [ ˙̀
1(F0(X ),G0(Y ))|X ] = 0 it follows that EF0,G0

˙̀
1(F0(X ),G0(Y ))(F (X )−

G(X )) = 0 for all F,G ∈F . It is well-known that the class of monotone functions
fromR into [0,1] has for all ε> 0 a finite L1(Q)-ε-bracketing number for all prob-
ability measures Q on the real line. From this it easily follows that the class of
functions {(x, y) 7→ ˙̀

1(F0(x),G0(y))(F (x)−G(y)) | F, G ∈ F } has for all ε > 0 a
finite L1(PF0,G0 )-ε-bracketing number. A combination of the previous display
with the Glivenko-Cantelli theorem thus yields

sup
F,G∈F

∣∣∣∣∣
1

n

n∑
i=1

˙̀
1(i ) (F (Xi )−G(Xi ))

∣∣∣∣∣→ 0, PF0,G0 -a.s.

Hence we obtain

limsup
n→∞

1

2n

n∑
i=1

(
nF̂n{Xi }−1

)2

≤ 0+ limsup
n→∞

1

n

n∑
i=1

˙̀
1(i )

(
F̂n(Xi )−Fn(Xi )

)= 0, PF0,G0 -a.s.
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Proposition 5.3.2 immediately yields uniform consistency of F̂n . The following
corollary gives the precise statement.

Corollary 5.3. Let the setting be the same as in the previous proposition. Then
we have

lim
n→∞‖F̂n −F0‖∞ = 0, PF0,G0 -a.s.

Proof.
This immediately follows from the previous proposition and the classic Glivenko-
Cantelli theorem:

‖F̂n −F0‖∞ ≤ ‖F̂n −Fn‖∞+‖Fn −F0‖∞ ≤ 1

n

n∑
i=1

|nF̂n{Xi }−1|+‖Fn −F0‖∞

≤
√

1

n

n∑
i=1

(nF̂n{Xi }−1)2 +‖Fn −F0‖∞ → 0, PF0,G0 -a.s.

The following proposition shows that the inequality constraints in the first or-
der conditions are indeed not binding.

Proposition 5.3.3. Let the setting be the same as in the previous proposition.
Let F0 ∈Fac. Then the probabilityPF0,G0 (An), with An = {mini=1,...,n F̂n{Xi } > 0},
converges to 1.

Proof. In the following we always work on the event that there are no ties, which
has probability 1. Let p(n)

(i ) denotes the mass on {Xi :n}, i = 1, . . . ,n. Fix i ∈ {1, . . . ,n−
1}, and define pointmasses on {X1:n , . . . , Xn:n} by p t

( j ) = p(n)
( j ) for j 6∈ {i , i + 1},

p t
(i ) = p(n)

(i ) +t , and p t
(i+1) = p(n)

(i+1)−t . Consider the following three cases. Case (i):

if p(n)
(i ) ∧p(n)

(i+1) > 0 this defines a probability measure for |t | < η for some η > 0;

Case (ii): if p(n)
(i ) = 0, p(n)

(i+1) > 0 it defines a probability measure for 0 ≤ t ≤ η for

some η > 0; Case (iii): if p(n)
(i ) > 0, p(n)

(i+1) = 0 it defines a probability measure for
−η ≤ t ≤ 0 for some η > 0. Note that the resulting distribution function sat-
isfies Ft (X j :n) = F̂n(X j :n) for j 6= i , and Ft (Xi :n) = F̂n(Xi :n)+ t . In Case (i) we

have (∂/∂t )L G0
n (Ft ) |t=0= 0, in Case (ii) (∂/∂t )L G0

n (Ft ) |t=0≤ 0, and in Case (iii)
(∂/∂t )L G0

n (Ft ) |t=0≥ 0. So in Case (i) we obtain

0 = 1

n

{
˙̀∗

1 (i )− ˙̀∗2
1 (i )(F̂n(Xi :n)−Fn(Xi :n))

}+np(n)
(i+1) −np(n)

(i ) ,

where R−1
1:n denotes the inverse permutation of the ranks of {X1, . . . , Xn}, i.e.

R−1
1:n(i ) = k if and only if R X

k = i , and

˙̀∗
1 (i ) = ˙̀

1

(
Fn(Xi :n),G0(YR−1

1:n (i ))
)

, i = 1, . . . ,n,
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are the ‘X -ranked versions’ of ˙̀
1. Hence we obtain the bound

|np(n)
(i+1) −np(n)

(i ) | ≤
| ˙̀∗

1 (i )|+ | ˙̀∗2
1 (i )|

n
.

It is easy to check that this inequality also holds for Case (ii) and Case (iii), and
of course also if p(n)

(i ) = p(n)
(i+1) = 0. Next note that

1

n

s−1∑
r=0

{| ˙̀∗
1 (i + r )|+ | ˙̀∗2

1 (i + r )|}

= 1

n

n∑
j=1

(| ˙̀
1( j )|(1+| ˙̀

1( j )|)1

{
i

n
≤ Fn(X j ) ≤ i + s −1

n

}
.

Using the Glivenko-Cantelli theorem and some basic arguments, it follows that
for every ε> 0 there exists 1 > δ> 0 such that

limsup
n→∞

max
i=1,...,n

s=1,...,(n−i )∧dnδe

∣∣∣np(n)
(i+s) −np(n)

(i )

∣∣∣≤ ε PF0,G0 -a.s. (5.7)

Let

Bn =


 max

i=1,...,n
s=1,...,(n−i )∧dnδe

∣∣∣np(n)
(i+s) −np(n)

(i )

∣∣∣≤ ε


 .

On the event A c
n there exists 1 ≤ i ≤ n with p(n)

i = 0. Then there are, on the event

Bn , dnδe scaled probabilities np(n)
i+s less than or equal to ε. But then also

1

n

n∑
i=1

(nF̂n{Xi }−1)2 ≥ δ(1−ε)2.

Using Proposition 5.3.2 it now easily follows that indeed PF0,G0 (An) → 1.

For our asymptotic analysis it is more convenient to work with the relative de-
viations of the pointmasses F̂n{Xi } from 1/n. Introduce

a(n)
i = nF̂n{Xi }−1, i = 1, . . . ,n.

Now the optimization problem (5.6) can be reformulated in terms of a(n) =
(a(n)

1 , . . . , a(n)
n )′. To this end we introduce the n ×n matrices

A = (
1{X j ≥ Xi }

)
i , j=1,...,n , and M11 =



− ˙̀2

1(1) 0
. . .

0 − ˙̀2
1(n)


 ,
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and the n-vector M1 = ( ˙̀
1(1), . . . , ˙̀

1(n))′. Then (5.6) is equivalent to the opti-
mization problem

max
ã(n)∈Rn

L
G0
n (ã(n)) = 1

2
ã(n)′

[
−In + 1

n2
AM11 A′

]
ã(n) + 1

n
(AM1)′ã(n)

s.t. ã(n)
1 +·· ·+ ã(n)

n = 0, (5.8)

ã(n)
i ≥−1 (i = 1, . . . ,n),

where In denotes the n ×n identity matrix. It trivially follows that L
G0
n is con-

cave, so a(n) is the unique solution to (5.8) (and hence (5.6) has unique opti-
mizer F̂n). Furthermore, the corresponding Kuhn-Tucker conditions are nec-
essary and sufficient. By Proposition 5.3.3, the probability of the event An =
{mini=1,...,n a(n)

i >−1} tends to 1 as n →∞. On the event An the inequality con-
straints in (5.8) are not binding. Because the target function is concave the fol-
lowing set of Lagrange equations has, on the event An , (a(n),κ∗n) as unique so-
lution.





∂L
G0
n

∂ã(n)
k

−κ= 0, (k = 1, . . . ,n),

ã(n)
1 +·· ·+ ã(n)

n = 0.
(5.9)

Here κ is the Lagrange multiplier corresponding to the constraint ã(n)
1 + ·· · +

ã(n)
n = 0. The relevant partial derivatives are given by (if there are no ties), for

k = 1, . . . ,n,

n
∂

∂ã(n)
k

L
G0
n = 1

n

n∑
i=1

˙̀
1(i )1{Xi ≥ Xk }

− 1

n2

n∑
`=1

ã(n)
`

n∑
i=1

˙̀2
1(i )1{Xi ≥ Xk }1{Xi ≥ X`}− ã(n)

k , (5.10)

The system of Lagrange equations can be rewritten as the following linear sys-
tem of n +1 equations in n +1 variables

( 1
n2 AM11 A′− In −en

e ′
n 0

)(
ã(n)

κ

)
=

(− 1
n AM1

0

)
, (5.11)

where en is a n-vector of ones.

So with probability converging to 1 the linear system (5.11) has (a(n),κ∗n) as
unique solution.

5.3.3 The limit distribution

In this section we derive the limiting distribution of (F̂n)n∈N. First we reformu-
late the Lagrange equations of the previous section in operator notation. Next
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we show that a limiting version of this operator is continuously invertible. Us-
ing this result the limiting distribution of F̂n is obtained.

Recall from the previous section that a(n)
i = nF̂n{Xi }− 1 for i = 1, . . . ,n. Intro-

duce the function a(n) : [0,1] → [−1,n −1] as follows: a(n)(0) = 0, and

a(n)(u) = a(n)
i for u ∈

(
Fn(Xi )− 1

n
,Fn(Xi )

]
, i = 1, . . . ,n.

So we have the relation nF̂n{Xi } = 1+ a(n)(Fn(Xi )) a.s. Introduce An : [0,1] →
[−1,1] by

An(u) =
∫ u

0
a(n)(z)dz, u ∈ [0,1],

and note that we have

An(Fn(x)) = F̂n(x)−Fn(x), x ∈R, a.s.. (5.12)

Using that
∑n

k=1 a(n)
k = 0 we solve for the Lagrange multiplier κ in (5.9), and

substitute this in the Lagrange equations for a(n)
k , k = 1, . . . ,n. In this way we see

that, with probability tending to 1, the following equations hold, for k = 1, . . . ,n,

0 = 1

n

n∑
i=1

˙̀
1(i ) (1{Xi ≥ Xk }−Fn(Xi ))

− 1

n

n∑
i=1

˙̀2
1(i )

(
F̂n(Xi )−Fn(Xi )

)
(1{Xi ≥ Xk }−Fn(Xi ))−a(n)

k .

This implies that almost surely the following equation holds, for all v ∈ (0,1],

−a(n)(v)− 1

n

n∑
i=1

˙̀2
1(Fn(Xi ),G0(Yi ))An(Fn(Xi )) (1{Fn(Xi ) ≥ v}−Fn(Xi ))

=− 1

n

n∑
i=1

˙̀
1(Fn(Xi ),G0(Yi )) (1{Fn(Xi ) ≥ v}−Fn(Xi )) .

Integrating v over [0,u] yields almost surely, for all u ∈ [0,1],

−An(u)− 1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u)An(Fn(Xi )) ˙̀2
1(Fn(Xi ),G0(Yi ))

=− 1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u) ˙̀
1(Fn(Xi ),G0(Yi )). (5.13)

To facilitate our asymptotic analysis we introduce the operator3 Ψ̇n : D[0,1] →
D[0,1] by

Ψ̇n(h)(u) =−h(u)− 1

n

n∑
i=1

(Fn(Xi )∧u−Fn(Xi )u)h(Fn(Xi )) ˙̀2
1(Fn(Xi ),G0(Yi )),

3As usual, D[0,1] denotes the space of real-valued cadlag functions on [0,1], equipped with
the supremum norm.
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and we introduce the operator Ψ̇C : D[0,1] → D[0,1], which can be interpreted
as the ‘limit-version’ of Ψ̇n , by

Ψ̇C (h)(u) =−h(u)−
∫

(x ∧u −xu)h(x) ˙̀2
1(x, y)dC (x, y). (5.14)

Note that the operator Ψ̇C only depends on the copula, and not on the marginals.

Lemma 5.3.2. The operator Ψ̇C : D[0,1] → D[0,1] is onto and one-to-one, and
the inverse Ψ̇−1

C is continuous.

Proof.
In this proof expectations are always taken with respect to PUn[0,1],Un[0,1]. For
notational convenience we will drop subscripts if no confusion is possible. For
clarity we break the proof into two propositions. First, we prove that Ψ̇ is in-
vertible on its range. Next, we prove that Ψ̇ is onto and that the inverse is con-
tinuous.

Proposition 5.3.4. Ψ̇C is one-to-one.

Proof.
Since Ψ̇ is linear, we have to show that the null space of Ψ̇ is trivial. So let h ∈
D[0,1] be such that Ψ̇h = 0, or written more explicitly,

0 =−h(u)−E (u ∧X −uX ) ˙̀2
1(X ,Y )h(X ), ∀u ∈ [0,1]. (5.15)

Plugging in u = 0, and u = 1 we see that necessarily

h(0) = h(1) = 0. (5.16)

Notice that,

P (u) =−E(u ∧X −uX ) ˙̀2
1(X ,Y )h(X ) = uEX ˙̀2

1(X ,Y )h(X )

−
∫ u

x=0

∫ 1

y=0
x ˙̀2

1(x, y)h(x)c(x, y)dy dx

−u
∫ 1

x=u

∫ 1

y=0

˙̀2
1(x, y)h(x)c(x, y)dy dx,

is two times continuously differentiable with second derivative given by P ′′(u) =
I11(u)h(u). So from (5.15) it follows that h is two times continuously differen-
tiable. Using this and the boundary conditions (5.16) we see that any solution h
to (5.15) is a solution to the following Sturm-Liouville (see, for example, Tricomi
(1985)) differential equation

{ −h′′(u)+h(u)I11(u) = 0,
h(0) = h(1) = 0.
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It is easy to see that this differential equation has unique solution h = 0. Mul-
tiply the differential equation by h, use partial integration and the boundary
conditions to arrive at

∫ 1
0 (h′(u))2 du + ∫ 1

0 h2(u)I11(u)du = 0. Since I11 ≥ 0 this
yields h′ = 0, hence the boundary conditions yield h = 0. Thus we conclude
that Ψ̇ is one-to-one.

The next proposition will conclude the proof of the lemma.

Proposition 5.3.5. Ψ̇C is onto and the inverse Ψ̇−1
C : D[0,1] → D[0,1] is continu-

ous.

Proof.
The proof uses the following result from the Fredholm theory of linear opera-
tors (see, for example, Van der Vaart (2000, Lemma 25.93) or Rudin (1973, pp.
99-103)).

Lemma 5.3.3. Let B a Banach space. Let J : B→ B continuous, onto and con-
tinuously invertible, and K : B→ B a compact operator. Then J +K is onto and
continuously invertible if J +K is one-to-one.

We can write Ψ̇ = −I + K , where I is the identity, i.e. I h = h, and where K :
D[0,1] → D[0,1] is defined by

K (h)(u) =−E(u ∧X −uX ) ˙̀2
1(X ,Y )h(X ), u ∈ [0,1].

So, using the previous proposition, the proof of the present proposition is com-
plete, once we show that K is a compact operator. Note that the range of K is
a subset of4 C[0,1]. Remember that (Compactness criterion (see, for example,
Kreyszig (1978))) K is compact if and only if the following holds: for any se-
quence (hn)n∈N, in D[0,1] for which ‖hn‖∞ is bounded, the sequence K hn , in
C[0,1], has a convergent subsequence. So let hn , n ∈ N, a sequence in D[0,1]
with supn ‖hn‖∞ ≤ C . We have to show that the sequence K hn in C[0,1] has
a convergent subsequence. Let us remember (a basic version of) the Arzelà-
Ascoli theorem (see, for example, Kreyszig (1978))).

Lemma 5.3.4. A bounded equicontinuous sequence (xn)n∈N in C[0,1] has a sub-
sequence which converges5.

Thus the proof is complete if we show that the sequence K hn is bounded and
equicontinuous. Boundedness is immediate since supn ‖hn‖∞ ≤C . And equicon-
tinuity immediately follows from the estimate

∣∣K (hn)(u)−K (hn)(u′)
∣∣ ≤ C |u −

u′|E(1+X ) ˙̀2
1(X ,Y ).

4As usual, C[0,1] denotes the space of continuous functions on [0,1] equipped with the
supremum norm.

5Recall: a sequence xn in C[0,1] is equicontinuous if for all ε > 0 there is δ > 0 such that for
all n, for all u,u′ ∈ [0,1] with |u −u′| < δ we have |xn(u)−xn(u′)| < ε.
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In general it seems to be impossible to obtain ‘explicit’ expressions for Ψ̇−1
C .

Next we derive the limiting distribution of F̂n .

Theorem 5.4. Let F0 ∈ Fac, and let, for n ∈ N, F̂n a maximum of (5.6). Then,
under PF0,G0 , the following holds.

The process SF0,G0
n =

(
S

F0,G0
n (u)

)
u∈[0,1]

, with

S
F0,G0
n (u) = 1p

n

n∑
i=1

{1{F0(Xi ) ≤ u}−u + ˙̀
1(F0(Xi ),G0(Yi ))(F0(Xi )∧u −F0(Xi )u)

}
,

weakly converges in `∞([0,1]) to a tight zero-mean Gaussian process, denoted
by SC = (SC (u))u∈[0,1], whose covariance function only depends on C .
And we have, in `∞(R),

(p
n

(
F̂n(x)−F0(x)

))
x∈R =−

(
(Ψ̇−1

C S
F0,G0
n )◦F0(x)

)
x∈R

+o(1;PF0,G0 )

Ã−(
(Ψ̇−1

C SC )◦F0(x)
)

x∈R .

Remark 2. Notice that the coordinates of SF0,G0
n are build of elements of the

tangent space: taking v(·) = 1{· ≤ u}−u yields n−1/2 ∑n
i=1

˙̀
F v(F0(Xi ),G0(Yi )) =

S
F0,G0
n (u). We will exploit this in the next section to prove efficiency of F̂n .

Proof.
We split the proof into two parts. In Part A we prove weak convergence ofSF0,G0

n ,
and in Part B we prove weak convergence of

p
n(F̂n −F0).

Part A
This is an easy exercise. The quantile transformation yields L (SF0,G0

n |PF0,G0 ) =
L (SUn[0,1],Un[0,1]

n | PUn[0,1],Un[0,1]). So it suffices to consider uniform marginals.
We introduce the classes A1 = {(x, y) 7→ 1{x ≤ u} − u | u ∈ [0,1]}, and A2 =
{(x, y) 7→ ˙̀

1(x, y)(u∧x−ux) | u ∈ [0,1]}. Notice that EUn[0,1],Un[0,1]
[

˙̀
1(X ,Y ) | X

]=
0. So it suffices to show that the pairwise-sum A1 +A2 has the Donsker prop-
erty. Since |supa∈A1∪A2

∫
a dC | <∞, this pairwise-sum is indeed Donsker if A1

and A2 are both Donsker. Of course, A1 is Donsker. Since ˙̀
1 is bounded and we

have the bound | ˙̀
1(x, y)(u ∧x −ux)− ˙̀

1(x, y)(u′∧x −u′x)| ≤ 2| ˙̀
1(x, y)||u −u′|,

it follows that A2 is indeed Donsker (see, for example, Van der Vaart (2000)
page 271).

Part B
First we show that it suffices to consider F0 = G0 = Un[0,1]. Recall from (5.12)
that F̂n(x) = Fn(x)+An(Fn(x)), x ∈R a.s. Introduce Ui = F0(Xi ), i = 1, . . . ,n. Then
Ui , i = 1, . . . ,n, are i.i.d. Un[0,1] distributed. Let FU

n denote the empirical distri-
bution function of U1, . . . ,Un ; we have Fn(x) = FU

n (F0(x)), x ∈ R. Next note that
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An only depends on X1, . . . , Xn by their ranks. Hence if we compute AU
n , result-

ing from F̂U
n , our estimator calculated from the data (U1,Y1), . . . , (Un ,Yn), we

have An = AU
n a.s. Hence we have F̂n(x) = (F̂U

n ◦F0)(x). Thus, by the continuous
mapping theorem, it suffices to prove the theorem for F0 = Un[0,1]. Further-
more, it is easy to see that L (F̂n | PF0,G0 ) = L (F̂n | PF0,Un[0,1]). So it is indeed
sufficient to prove the theorem for F0 =G0 = Un[0,1]. Denote P=PF0,G0 .

We will need the following lemma several times.

Lemma 5.3.5. Suppose F is a P-Donsker class of functions, and that ( f u
n )u∈[0,1]

and (g u
n )u∈[0,1] are sequence of random functions with values in F that satisfy

sup
u∈[0,1]

∫
( f u

n (x, y)− g u
n (x, y))2 dC (x, y) = o(1;P).

Then we have

sup
u∈[0,1]

p
n

∣∣∣∣
∫

( f u
n (x, y)− g u

n (x, y))d(Hn −C )(x, y)

∣∣∣∣= o(1;P).

Proof. Since F is P-Donsker (which entails asymptotic equicontinuity of the
empirical process) we have, for every ε> 0,

lim
δ↓0

limsup
n→∞

P

{
sup

f ,g∈F :varP( f −g )(X ,Y )≤δ2

p
n|

∫
( f − g )d(Hn −C )| > ε

}
= 0.

Let η,ε> 0. There exists δ= δη,ε and N = Nδ such that for all n ≥ N ,

P

{
sup

f ,g∈F :varP( f −g )(X ,Y )≤δ2

p
n|

∫
( f − g )d(Hn −C )| > ε

}
≤ η

2
,

and there exists M = Nδ such that, for all n ≥ M ,

P

{
sup

u∈[0,1]

∫
(hu

n (x, y))2 dC (x, y) > δ2
}
≤ η

2
,

with hu
n (x, y) = f u

n (x, y)− g u
n (x, y). Hence we have for n ≥ M ∨N ,

P

{
sup

u∈[0,1]

p
n

∣∣∣∣
∫

hu
n (x, y)d(Hn −C )(x, y)

∣∣∣∣> ε
}

≤P
{

sup
f ∈F :varP f (X ,Y )≤δ2

p
n|

∫
f d(Hn −C )| > ε

}

+P
{

sup
u∈[0,1]

∫
(hu

n (x, y))2 dC (x, y) > δ2
}
≤ η,

which concludes the proof.
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With probability converging to 1 the process An satisfies (5.13), and by defini-
tion of Ψ̇n this can be written as, for u ∈ [0,1],

Ψ̇n(An)(u) =− 1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u) ˙̀
1(Fn(Xi ),G0(Yi )). (5.17)

For convenience we ignore the asymptotically null-set on which (5.13) does not
hold. In the following all expectations and probabilities are calculated under
P=PUn[0,1],Un[0,1]. To enhance readability some parts of the proof are organized
in propositions.

We will prove that
(p

n
(
F̂n(u)−u

))
u∈[0,1] =−Ψ̇−1

C SUn[0,1],Un[0,1]
n +o(1;P),

from which the result, by a combination of Lemma 5.3.2 with the continuous
mapping theorem, follows. Recall that we have F̂n(u)−u = Fn(u)−u+An(Fn(u)).
The next proposition shows that we may replace An(Fn(u))) by An(u).

Proposition 5.3.6. Under the conditions of the theorem we have

sup
u∈[0,1]

p
n |An(Fn(u))− An(u)| p−→ 0, under P.

Proof.
For notational convenience introduce

αn(x,u) = Fn(x)∧Fn(u)−Fn(x)∧u +Fn(x) (u −Fn(u)) .

And note that

sup
u∈[0,1]

|αn(Xi ,u)| ≤ 2‖Fn −F0‖∞.

From (5.13) we have

An(Fn(u))− An(u) = 1

n

n∑
i=1

˙̀
1(i )αn(Xi ,u)− 1

n

n∑
i=1

An(Fn(Xi )) ˙̀2
1(i )αn(Xi ,u).

Using that ˙̀
1 is bounded, say by C > 0, we obtain

sup
u∈[0,1]

1p
n

n∑
i=1

|An(Fn(Xi ))|| ˙̀2
1(i )||αn(Xi ,u)| ≤ 2C 2‖An‖∞

p
n‖Fn −F0‖∞

p−→ 0,

since, by Corollary 5.3, ‖An‖∞
p−→ 0 a.s. and

p
n‖Fn − F0‖∞ = O(1;P). Since

the class of non-decreasing functions from R→ [0,1] is a Donsker class it easily
follows (using permanence of the Donsker property) that the class of functions

B = {
(0,1)2 3 (x, y) 7→ ˙̀

1(x, y)(F (x)∧u −F (x)u) | F ∈F ,u ∈ [0,1]
}

,
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is P-Donsker. Since
∫

( ˙̀
1(x, y)αn(x,u))2 dC (x, y) ≤ 4‖Fn −F0‖2

∞

∫
˙̀2

1(x, y)dC (x, y)
p−→ 0,

Lemma 5.3.5 yields

sup
u∈[0,1]

∣∣∣∣∣
1p
n

n∑
i=1

˙̀
1(i )αn(Xi ,u)

∣∣∣∣∣
p−→ 0,

which completes the proof.

Hence we have

F̂n(u)−u = Fn(u)−u + An(u)+Rn(u), u ∈ [0,1],

where supu∈[0,1]
p

n|Rn(u)| p−→ 0. Applying Ψ̇C to both sides yields (let I denote
the identity on D[0,1]), since Ψ̇C is continuous,

Ψ̇C
(
F̂n − I

)= Ψ̇C (Fn − I )+ Ψ̇C (An)+o(1/
p

n;P). (5.18)

The next proposition establishes Ψ̇C (An) = Ψ̇n(An)+o(1/
p

n;P), which we will
exploit to invoke (5.13).

Proposition 5.3.7. Under the conditions of the theorem we have

p
n

(
Ψ̇n An − Ψ̇C An

) p−→ 0, in `∞([0,1]), under P.

Proof.
We have, from the definitions of Ψ̇n and Ψ̇C ,

p
n(Ψ̇n An − Ψ̇C An)(u) =− 1p

n

n∑
i=1

{
(Fn(Xi )∧u −Fn(Xi )u) An(Fn(Xi )) ˙̀2

1(i )

−
∫

(x ∧u −xu) An(x) ˙̀2
1(x, y)dC (x, y)

}
.

Using ‖An‖∞
p−→ 0,

p
n‖Fn −F0‖∞ = O(1;P), a Taylor expansion and the previ-

ous proposition we obtain

1p
n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u) An(Fn(Xi )) ˙̀2
1(i )

= 1p
n

n∑
i=1

(Xi ∧u −Xi u) An(Xi ) ˙̀2
1(Xi ,Yi )+Sn(u),

where supu∈[0,1] |Sn(u)| p−→ 0. Using ‖An‖∞
p−→ 0 an application of Lemma 5.3.5

yields the result.
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Hence a combination of the proposition with (5.18) yields

Ψ̇C
(
F̂n − I

)= Ψ̇C (Fn − I )+ Ψ̇n(An)+o(1/
p

n;P).

We have, from the definition of Ψ̇C ,

(Ψ̇C (Fn − I ))(u) =−(Fn(u)−u)−
∫

(x ∧u −xu)(Fn(x)−x) ˙̀2
1(x, y)dC (x, y)

=−(Fn(u)−u)+
∫

(x ∧u −xu)(Fn(x)−x) ῭
11(x, y)dC (x, y),

where we used E[ ῭
11(X ,Y ) | X ] =−E[ ˙̀2

1(X ,Y ) | X ].

Proposition 5.3.8. Under the conditions to the theorem we have, for u ∈ [0,1],

(Ψ̇C
(p

n(Fn − I )
)
)(u)+ (Ψ̇n

p
n An)(u) =−SUn[0,1],Un[0,1]

n (u)+Sn(u),

where ‖Sn‖∞
p−→ 0.

Proof.
From (5.17) we have, for u ∈ [0,1],

p
nΨ̇n(An)(u) =− 1p

n

n∑
i=1

(Xi ∧u −Xi u) ˙̀
1(Fn(Xi ),Yi )− rn1(u),

where

rn1(u) = 1p
n

n∑
i=1

(Fn(Xi )∧u −Xi ∧u +Xi u −Fn(Xi )u) ˙̀
1(Fn(Xi ),Yi ),

satisfies, by an application of Lemma 5.3.5, ‖rn1‖∞
p−→ 0. Next using a Taylor

expansion we obtain

1p
n

n∑
i=1

(Xi ∧u −Xi u) ˙̀
1(Fn(Xi ),G0(Yi )) = 1p

n

n∑
i=1

(Xi ∧u −Xi u) ˙̀
1(Xi ,Yi )

+ 1p
n

n∑
i=1

(Xi ∧u −Xi u)(Fn(Xi )−Xi ) ῭
11(Fi ,n ,Yi ),

where Fi ,n is on the line segment between Xi and Fn(Xi ). Since ῭
11 is uniformly

continuous and
p

n‖Fn −F0‖∞ =O(1;P) we have

1p
n

n∑
i=1

(Xi ∧u −Xi u)(Fn(Xi )−Xi ) ῭
11(Fi ,n ,Yi )

= 1p
n

n∑
i=1

(Xi ∧u −Xi u)(Fn(Xi )−Xi ) ῭
11(Xi ,Yi )+ rn2(u),
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where rn2
p−→ 0 in `∞([0,1]). Hence we obtain

(Ψ̇C
(p

n(Fn − I )
)
)(u)+ (Ψ̇n

p
n An)(u)

=−SUn[0,1],Un[0,1]
n (u)− rn1(u)− rn2u

−
(

1p
n

n∑
i=1

(Xi ∧u −Xi u)(Fn(Xi )−Xi ) ῭
11(Xi ,Yi )

−
∫

(x ∧u −xu)(Fn(x)−x) ῭
11(x, y)dC (x, y)

)
.

An application of Lemma 5.3.5 easily yields the result.

A combination of (5.18) with the previous two propositions finally yields

Ψ̇C
(p

n(F̂n − I )
)=−SUn[0,1],Un[0,1]

n +o(1;P).

E�ciency proof 5.3.4

In this section we establish efficiency of F̂n . As mentioned in Section 5.3.1 it is
a nonstandard problem to demonstrate efficiency. Fortunately, the special rep-
resentation of the limiting distribution (Theorem 5.4) can be exploited to prove
efficiency. Basically, following Van der Vaart (1995), the argument is that the
‘score-process’SF0,G0

n can be seen as an efficient estimator of a certain artificial
parameter, and that efficiency is retained under Hadamard differentiable map-
pings.

Since we were not able to derive explicit formulas for the lower-bound to the
asymptotic variances of regular estimators of F , we cannot prove efficiency of
F̂n by comparing the limiting distribution with the lower bound. We will exploit
the special representation of the limiting distribution.

Theorem 5.5. The estimator (F̂n)n∈N is an efficient estimator of F in the model
P (C ,G0).

Proof.
Fix F0 ∈Fac. We will show that F̂n is an efficient estimator of F at PF0,G0 .

First we recall the following characterization of efficiency (see, for example,
Bickel et al. (1998) Corollary 5.2.1): F̂n is an efficient estimator of F at PF0,G0

if and only if the following holds:

(E1) F̂n is a regular estimator of F at PF0,G0 ;
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(E2) for all x ∈ R, F̂n(x) is asymptotically linear at PF0,G0 with an influence
function contained in the tangent space T (PF0,G0 | P (C ,G0)). More pre-
cise: there should exist hx ∈T (PF0,G0 |P (C ,G0)) such that, for all x ∈R,

p
n(F̂n(x)−F0(x)) = 1p

n

n∑
i=1

hx(Xi ,Yi )+o(1;PF0,G0 ). (5.19)

Using Le Cam’s third lemma and Lemma 5.3.1 the regularity easily follows.

Proposition 5.3.9. Let F0 ∈Fac. Then F̂n is a regular estimator of F , in the model
P (C ,G0), at PF0,G0 .

Proof.
Let v ∈ L0

2(Un[0,1]), and consider the path t 7→ F v
t through F0 (see (5.3)). Let

αn → α ∈ R, and denote F (n) = F v
αn /

p
n

, P(n) = PF (n),G0
. And let, for u ∈ [0,1],

vu(x) = 1{x ≤ u}−u. Using Le Cam’s third lemma and Lemma 5.3.1 it is easy to
see (see also the proof of Theorem 2 in Van der Vaart (1995) ) that, under P(n),

S
F0,G0
n

d−→ (
SC (u)+αEF0,G0

˙̀
F v(F0(X ),G0(Y )) ˙̀

F vu(F0(X ),G0(Y ))
)

u∈[0,1] .

Using EF0,G0 [ ˙̀
1(F0(X ),G0(Y )) | X ] = 0 yields

EF0,G0
˙̀

F v(F0(X ),G0(Y )) ˙̀
F vu(F0(X ),G0(Y ))

= EF0 v(F0(X )) (1{F0(X ) ≤ u}−u)

+EF0,G0
˙̀2

1(F0(X ),G0(Y ))(F0(X )∧u −F0(X )u)
∫ F0(X )

0
v(z)dz

=
∫ u

z=0
v(z)dz +

∫ (
˙̀2

1(x, y)(x ∧u −xu)
∫ x

0
v(z)dz

)
dC (x, y). (5.20)

After some calculus we find

sup
u∈[0,1]

∣∣∣∣
p

n(F (n)(F−1
0 (u))−u)−α

∫ u

0
v(z)dz

∣∣∣∣→ 0,

and, for u ∈ [0,1],

Ψ̇C

(
x 7→

∫ x

0
v(z)dz

)
(u) =−

∫ u

0
v(z)dz

−
∫

˙̀2
1(x, y)(x ∧u −xu)

∫ x

0
v(z)dz dC (x, y).

By a combination of Lemma 5.3.1 with Le Cam’s first lemma we have o(1;PF0,G0 ) =
o(1;P(n)), so we obtain from Theorem 5.4, under P(n),

Ψ̇C

(p
n

(
F̂n(F−1

0 (u))−F (n)(F−1
0 (u))

)
u∈[0,1]

)
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= Ψ̇C

(p
n

(
F̂n(F−1

0 (u))−u
)

u∈[0,1]

)
− Ψ̇C

(p
n

(
F (n)(F−1

0 (u))−u
)

u∈[0,1]

)

=
(
−SF0,G0

n (w)
)

w∈[0,1]

+
(
α

(∫ w

0
v(z)dz +

∫
˙̀2

1(x, y)(x ∧w −xw)
∫ x

0
v(z)dz dC (x, y)

))

w∈[0,1]

+o(1;P(n))
d−→ (−SC (w)−αEF0,G0

˙̀
F v(F0(X ),G0(Y )) ˙̀

F vw (F0(X ),G0(Y ))

+α
∫ w

0
v(z)dz +

∫
˙̀2

1(x, y)(x ∧w −xw)
∫ x

0
v(z)dz dC (x, y)

)

w∈[0,1]
.

Invoking (5.20) we conclude Ψ̇C
(p

n
(
F̂n(F−1

0 (u))−F (n)(F−1
0 (u)

))
u∈[0,1]

d−→−SC

under P(n). An application of the continuous mapping theorem yields (notice
that F̂n(F−1

0 (F0(x))) = F̂n(x) and F (n)(F−1
0 (F0(x))) = F (n)(x)), underP(n),

p
n(F̂n−

F0)
d−→−(Ψ̇−1

C SC )◦F0. This concludes the proof.

So we can conclude efficiency of F̂n once we show that (E2) holds. Since we
have no explicit formulas for Ψ̇−1

C we cannot check directly whether this is the
case. However, we will exploit the representation of the limiting distribution to
demonstrate efficiency by an indirect argument. We already noticed that the
components of the process SF0,G0

n are composed of elements of the tangent
space. Let, for u ∈ [0,1], vu = 1{· ≤ u}−u. Introduce, for u ∈ [0,1]), the artifi-
cial parameters

Fac 3 H 7→ ν
F0
u (H) = EH ,G0

˙̀
F vu(F0(X ),G0(Y )).

And note that νF0
u (F0) = 0. Conclude that, at PF0,G0 , SF0,G0

n (u) is an asymptoti-
cally linear estimator of νF0

u (F ), with influence function contained in T (PF0,G0 |
P (C ,G0)). Consequently, these estimators are efficient at PF0,G0 one we show
that they are regular at PF0,G0 . Let v ∈ L0

2(Un[0,1]), and consider the path t 7→ F v
t

through F0. Let αn → α ∈ R, and denote F (n) = F v
αn /

p
n

, P(n) = PF (n),G0
. Using Le

Cam’s third lemma and Lemma 5.3.1 this regularity follows once we show

lim
n→∞

p
n

(
ν

F0
u (F v

αn /
p

n
)−νF0

u (F0)
)
=αEF0,G0

˙̀
F v(F0(X ),G0(Y )) ˙̀

F vu(F0(X ),G0(Y )),

which easily follows. Hence we conclude that, at PF0,G0 , SF0,G0
n (u) is, at PF0,G0 ,

an efficient estimator of the parameter F 7→ ν
F0
u (F ). Since we already estab-

lished tightness of SF0,G0
n , and since marginal efficiency plus tightness is equiv-

alent to efficiency, we conclude that SF0,G0
n is, at PF0,G0 , an efficient estimator

of the parameter F 7→ (νF0
u (F ))u∈[0,1]. Thus we see that, at PF0,G0 ,

p
n(F̂n −F0) is

a continuous, linear transformation of the efficient estimatorSF0,G0
n . Since effi-

ciency is retained under Hadamard differentiable mappings we conclude that



126 E�cient estimation of marginals Chapter 5

p
n(F̂n−F0), atPF0,G0 , an efficient estimator of a certain parameter that vanishes

at PF0,G0 ; for details we refer to the proof of Theorem 3 in Van der Vaart (1995).
Hence the influence functions of the components of

p
n(F̂n −F0) are, at PF0,G0 ,

contained in the tangent space T (PF0,G0 |P (C ,G0)), which yields (E2). Since we
already proved regularity this proves efficiency of the NPMLE at PF0,G0 .

5.4 Copula known
In this section the model for one observation (X ,Y ) is

P (C ) = (
PF,G | F,G ∈Fac

)
,

where the copula C satisfies Assumptions (C1)-(C3). We study efficient estima-
tion of the parameter (F,G), seen as an element of the space `∞(R)× `∞(R),
from an i.i.d. sample (Xi ,Yi ) i = 1, . . . ,n.

5.4.1 Tangent space & ine�ciency of (Fn,Gn)

In this section we derive the tangent space and show that, amongst the copulas
satisfying Assumptions (C1)-(C3), the independence copula is the only copula
for which the marginal empirical distribution functions are an efficient estima-
tor of (F,G).

Fix F0,G0 ∈ Fac. Let v, w ∈ L0
2(Un[0,1]). Just as in (5.3) we define densities, for

t ∈ (−1,1),

f v
t (x) = cv

f (t )k (t v(F0(x))) f0(x), g w
t (y) = cw

g (t )k
(
t w(G0(y))

)
g0(y), (5.21)

which induce distribution functions F v
t ,Gw

t ∈ Fac, and the paths t 7→ F v
t , t 7→

Gw
t pass F0 and G0 at t = 0. Analogous to the score operator (5.4) we define the

score operator for the second coordinate, ˙̀
G : L0

2(Un[0,1]) → L2(PUn[0,1],Un[0,1])
by (see Proposition 4.7.5 in Bickel et al. (1998)),

˙̀
G w(X ,Y ) = w(Y )+ ˙̀

2(X ,Y )
∫ Y

0
w(z)dz.

The following proposition yields a tangent space at PF0,G0 .

Lemma 5.4.1. Let v, w ∈ L0
2(Un[0,1]). Then the path t 7→ (F v

t ,Gw
t ), as defined by

(5.21) has the following score at t = 0,

˙̀v,w
F0,G0

(X ,Y ) = ˙̀
F v(F0(X ),G0(Y ))+ ˙̀

G w(F0(X ),G0(Y )),

i.e.,

lim
t→0

∫ 1

y=0

∫ 1

x=0

(√
pt (x, y)−√

p0(x, y)

t
− 1

2
˙̀v,w

F0,G0
(x, y)

√
p0(x, y)

)2

dx dy = 0,
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where, pt (x, y) = pF v
t ,Gw

t
(x, y). This yields the following tangent set at (F0,G0),

T (PF0,G0 |P (C )) =
{

˙̀v,w
F0,G0

(X ,Y ) | v, w ∈ L0
2(Un[0,1])

}
,

which is a closed linear subspace of L2(PF0,G0 ).

Proof.
The part on the score is Proposition 4.7.4 in Bickel et al. (1998). The closed-
ness of the tangent space follows from Proposition 4.7.6 and Theorem A.4.2.B
in Bickel et al. (1998).

An estimator (not necessarily measurable) (F∗
n ,G∗

n) of (F,G) is regular at PF0,G0

along the submodel t 7→PF v
t ,Gw

t
through PF0,G0 if there exists a tight Borel mea-

surable element L0 in `∞(R)×`∞(R) such that for all u1
n → u1 ∈ R, u2

n → u2 ∈ R
we have

p
n

(
(F∗

n ,G∗
n)− (F v

u1
n /

p
n

,Gw
u2

n /
p

n
)
)

d−→ L0, under PF v
u1

n /
p

n
,Gw

u2
n /

p
n

in `∞(R)×`∞(R).

An estimator (F∗
n ,G∗

n) of (F,G) is (semiparametrically) regular at PF0,G0 if it is
regular along all submodels t 7→ PF v

t ,Gw
t

, v, w ∈ L0
2(Un[0,1]), through PF0,G0 . Fi-

nally, an estimator is regular for the model P (C ), if it is regular at every (F,G) ∈
Fac ×Fac. Our parameter of interest is described by the mapping ν : P (C ) →
`∞(R)×`∞(R) defined by ν(PF,G ) = (

(F (x))x∈R, (G(y))y∈R
)
. Fix F0,G0 ∈ Fac. We

need the pathwise derivative of ν along the paths that generate the tangent
space T (PF0,G0 | P (C )). For a path t 7→ (F v

t ,Gw
t ), defined by (5.21), it is an easy

exercise to show t−1
(
ν(PF v

t ,Gw
t

)−ν(PF0,G0 )
)
→ ν′

PF0,G0
( ˙̀v,w

F0,G0
) in `∞(R)×`∞(R) as

t → 0. Here ν′
PF0,G0

( ˙̀v,w
F0,G0

) = (ν1′
PF0,G0

( ˙̀v,w
F0,G0

),ν2′
PF0,G0

( ˙̀v,w
F0,G0

)) is defined by

ν1′
PF0,G0

( ˙̀v,w
F0,G0

)(x) =
∫ F0(x)

0
v(z)dz, ν2′

PF0,G0
( ˙̀v,w

F0,G0
)(y) =

∫ G0(y)

0
w(z)dz, x, y ∈R.

By the Riesz representation theorem there exist unique elements ν1∗
x,PF0,G0

and

ν2∗
y,PF0,G0

in T (PF0,G0 |P (C )) such that, for all v, w ∈ L0
2(Un[0,1]).

ν′PF0,G0
( ˙̀v,w

F0,G0
)(x, y) =

(
ν′1,PF0,G0

( ˙̀v,w
F0,G0

)(x)

ν′2,PF0,G0
( ˙̀v,w

F0,G0
)(y)

)
=

(
EF0,G0ν

1∗
x,PF0,G0

˙̀v,w
F0,G0

(X ,Y )

EF0,G0ν
2∗
y,PF0,G0

˙̀v,w
F0,G0

(X ,Y )

)
.

Now the convolution theorem yields a lower bound to the precision of reg-
ular estimators: if (F∗

n ,G∗
n) is a regular estimator of (F,G) at PF0,G0 with limit

distribution W , then there exist tight Borel measurable elements L and N in
`∞(R)×`∞(R) such that L (W ) =L (L+N ), where L and N are independent and
L is a mean 0 Gaussian process whose covariances are determined by the effi-
cient influence operator (x, y) 7→ (ν1∗

x,PF0,G0
,ν2∗

y,PF0,G0
). Since L (L) is determined
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by the model only, via its efficient influence operator, it represents inevitable
noise. Therefore, it is natural to call an estimator efficient at PF0,G0 if it is reg-
ular at PF0,G0 and if its limiting distribution (under PF0,G0 ) is given by L. An es-
timator of (F,G) is efficient if it is efficient at all PF0,G0 . The next proposition
shows that, amongst the copulas satisfying Assumptions (C1)-(C3), the inde-
pendence copula is the only copula for which (Fn ,Gn) constitutes an efficient
estimator of (F,G). Compared to the proof of Theorem 5.2 the present proof
uses a more advanced argument, since the tangent space is now the sum of two
non-orthogonal spaces.

Theorem 5.6. Let C a copula satisfying Assumptions (C1)-(C3). Then (Fn ,Gn) is
an efficient estimator of (F,G) if and only if C (u, v) = uv.

Proof. Let F0,G0 ∈Fac.
Using Corollary 5.2.1 in Bickel et al. (1998) and the ‘transformation of axes’
structure of the tangent space, it is easy to see that (Fn ,Gn) is efficient at PF0,G0

if and only if (Fn ,Gn) is efficient at PUn[0,1],Un[0,1]. Therefore we only consider
uniform margins in the sequel of the proof. Since no confusion can arise we
drop the subscripts related to the margins.
‘⇐=’ It is easy to check that for all α,β ∈ [0,1] we have ν1∗

α = 1{X ≤ α} −α
and ν2∗

β
= 1{Y ≤ β}−β. Now efficiency directly follows from Bickel et al. (1998)

Corollary 5.2.1.
‘=⇒’ Since Fn is an efficient estimator of F , for all α ∈ [0,1], the influence func-
tion of Fn(α), x 7→ 1{x ≤ α}−α, belongs to the tangent space T (PUn[0,1],Un[0,1] |
P (C )), i.e. there exists aα,bα ∈ L0

2(Un[0,1]) such that

1{X ≤α}−α= ˙̀
F aα(X ,Y )+ ˙̀

G bα(X ,Y ) a.s. (5.22)

Using E[ ˙̀
F a(X ,Y )+ ˙̀

G b(X ,Y ) | X ] = a(X ) and E[ ˙̀
F a(X ,Y )+ ˙̀

G b(X ,Y ) | Y ] =
b(Y ) for a,b ∈ L0

2(Un[0,1]) (easy to check using partial integration) we obtain

aα(x) = 1{x ≤α}−α, bα(y) =
∫ α

z=0
c(z, y)dz −α.

A combination with (5.22) yields, for all x, y ∈ (0,1),α ∈ (0,1) (since all functions
involved are continuous the ‘a.s.’ disappears),

− ˙̀
1(x, y)(x ∧α−xα) =

∫ α

z=0
c(z, y)dz −α+ ˙̀

2(x, y)(C (α, y)−αy). (5.23)

In case x <α differentiating both sides of (5.23) with respect to x yields

−(1−α)
(
x ῭

11(x, y)+ ˙̀
1(x, y)

)= ῭
12(x, y)(C (α, y)−αy), (5.24)

and in case x >α we have

−α(
῭

11(x, y)(1−x)− ˙̀
1(x, y)

)= ῭
12(x, y)(C (α, y)−αy). (5.25)
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Fix x, y ∈ (0,1). Since all objects involved are continuous, we obtain, by letting
α ↓ x in (5.24) and α ↑ x in (5.25),

(1−x)
(
x ῭

11(x, y)+ ˙̀
1(x, y)

)= x
(

῭
11(x, y)(1−x)− ˙̀

1(x, y)
)

.

Trivially, this yields ˙̀
1(x, y) = 0. Hence c1(x, y) = 0. So x 7→ c(x, y) is constant.

This yields c(x, y) = 1.

Remark 3. From the proof we see that actually a stronger result holds: Fn (Gn)
is an efficient estimator of F (G) only for the independence copula, i.e. we only
need efficiency of one marginal to conclude that the copula must be the in-
dependence copula. Also notice that compared to Theorem 5.2 we now need
efficiency of all Fn(z), z ∈ R, to conclude that the copula is the independence
copula.

The estimator 5.4.2
Following the motivation in Section 5.3.2 it is natural to take as estimator of
(F,G) a maximum, denoted by (F∗

n ,G∗
n), of the constrained quadratic optimiza-

tion problem

max
F,G

Ln(F,G),

s.t. F probability distribution concentrated on {X1, . . . , Xn}, (5.26)

G probability distribution concentrated on {Y1, . . . ,Yn}.

where the objective function is given by, for F,G ∈F ,

Ln(F,G) = 1

n

n∑
i=1

{
˙̀

1(i ) (F (Xi )−Fn(Xi ))+ ˙̀
2(i ) (G(Yi )−Gn(Yi ))

}

− 1

2n

n∑
i=1

{
˙̀2

1(i ) (F (Xi )−Fn(Xi ))2 + ˙̀2
2(i ) (G(Yi )−Gn(Yi ))2}

+ 1

n

n∑
i=1

῭
12(i ) (F (Xi )−Fn(Xi )) (G(Yi )−Gn(Yi ))

− 1

2n

n∑
i=1

(nF {Xi }−1)2 − 1

2n

n∑
i=1

(nG{Yi }−1)2 ,

where we use the abbreviations6, for k,`= 1,2, i = 1, . . . ,n,

˙̀
k (i ) = ˙̀

k
(
F̃n(Xi ),G̃n(Yi )

)
, ῭

k`(i ) = ῭
k`

(
F̃n(Xi ),G̃n(Yi )

)
.

Notice that we now use the rescaled empirical distribution functions, since the
˙̀

i ’s and ῭
i j ’s are possible not defined on the boundary of [0,1]2. Unfortunately,

6Please note that ˙̀1(i ) and ῭11(i ) differ from those we used in Section 5.3.
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we are not able to prove, in general, consistency of (F̂n ,Ĝn). It seems impossible
to use the traditional arguments for consistency of M-estimators. This since our
criterion function is not smooth enough. Therefore we will develop, inspired by
the previous section, an alternative estimator.

Remark 4. If one is interested in the model where the copula is known and the
(absolutely continuous) marginals are unknown, but equal, it is natural to take
as estimator a maximum of the optimization problem (5.26) with the additional
constraint F = G . Then: if the copula satisfies ῭

12 ≤ 0 (for example a Gaussian
copula with negative correlation coefficient), consistency can be proved analo-
gous to the proof of Proposition 5.3.2.

To state our estimator we first introduce an analogue of (5.14). Define the oper-
ator Ψ̇C = (Ψ̇1

C ,Ψ̇2
C ) : D[0,1]×D[0,1] → D[0,1]×D[0,1] by, for u, v ∈ [0,1],

Ψ̇1
C (h1,h2)(u) =−h1(u)−

∫
(x ∧u −xu)

(
h1(x) ˙̀2

1(x, y)−h2(y) ῭
12(x, y)

)
dC (x, y),

Ψ̇2
C (h1,h2)(v) =−h2(y)−

∫ (
y ∧ v − y v

)(
h2(y) ˙̀2

2(x, y)−h1(x) ῭
12(x, y)

)
dC (x, y).

The following lemma is the analogue of Lemma 5.3.2.

Lemma 5.4.2. The operator Ψ̇C : D[0,1]×D[0,1] → D[0,1]×D[0,1] is onto and
one-to-one, and the inverse Ψ̇−1

C is continuous.

Proof.
In Step A we show that Ψ̇C is one-to-one, and in Step B we show that Ψ̇C is onto
and that the inverse Ψ̇−1

C is continuous. In the following we drop the subscript
C , and all expectations are taken under PUn[0,1],Un[0,1].

Step A Since Ψ̇ is linear, we have to show that the null space of Ψ̇ is trivial.
So let (h1,h2) ∈ D[0,1]×D[0,1] be such that Ψ̇(h1,h2) = 0:

0 =−h1(u)−E (u ∧X −uX )
(

˙̀2
1(X ,Y )h1(X )− ῭

12(X ,Y )h2(Y )
)

, u ∈ [0,1], (5.27)

0 =−h2(v)−E (v ∧Y − vY )
(

˙̀2
2(X ,Y )h2(Y )− ῭

12(X ,Y )h1(X )
)

, v ∈ [0,1]. (5.28)

Plugging in u = 0, v = 0, u = 1 and v = 1 we see that necessarily

h1(0) = h2(0) = h1(1) = h2(1) = 0. (5.29)

Notice that,

P1(u) =−E(u ∧X −uX )
(

˙̀2
1(X ,Y )h1(X )− ῭

12(X ,Y )h2(Y )
)

= uEX
(

˙̀2
1(X ,Y )h1(X )− ῭

12(X ,Y )h2(Y )
)

−
∫ u

x=0

∫ 1

y=0
x

(
˙̀2

1(x, y)h1(x)− ῭
12(x, y)h2(y)

)
c(x, y)dy dx
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−u
∫ 1

x=u

∫ 1

y=0

(
˙̀2

1(x, y)h1(x)− ῭
12(x, y)h2(y)

)
c(x, y)dy dx,

is two times differentiable with

P ′′
1 (u) = I11(u)h1(u)−

∫ 1

y=0

῭
12(u, y)h2(y)c(u, y)dy.

So from (5.27) it follows that h1 is two times continuously differentiable. We
get the same result for h2. Using this and the boundary conditions (5.29) we see
that any solution (h1,h2) to the system (5.27)-(5.28) is a solution to the following
system of differential equations





h′′
1 (u)−h1(u)I11(u)+∫ 1

0 h2(y) ῭
12(u, y)c(u, y)dy = 0,

h′′
2 (v)−h2(v)I22(v)+∫ 1

0 h1(x) ῭
12(x, v)c(x, v)dx = 0,

h1(0) = h2(0) = h1(1) = h2(1) = 0.
(5.30)

We will show that this system of differential equations has unique solution h1 =
h2 = 0. That implies that our system of interest has unique solution h1 = h2 = 0,
which concludes the proof of Step A. In the proof of Proposition 5.3.4 we en-
countered a certain one-dimensional version of the system (5.30). For that case
we were able to prove directly that the system only has the trivial solution.
For the present system it seems not possible to extend that argument. We give
an indirect proof. As we will show, the system (5.30) is exactly the homoge-
nous system corresponding to the system (4.57)-(4.58) in Klaassen and Well-
ner (1997) with the same boundary conditions. Since a solution of their system
yields a certain efficient score, which is unique, it follows that indeed h1 = h2 =
0. Let us make some brief remarks to gain a better understanding of the argu-
ments on pages 65-67 in Klaassen and Wellner (1997) (we use their notation).
In Klaassen and Wellner (1997) the copula depends on a Euclidean parameter
θ and they want to calculate the efficient score for θ, i.e. project the score ˙̀

θ =
(∂/∂θ) logcθ on the sum-space R(l̇g )+R(l̇h). Since this sum space R(l̇g )+R(l̇h)
is indeed closed under our assumptions, the projection is unique and is, by the
ACE method (Proposition A.4.1 in Bickel et al. (1998)), completely character-
ized by (4.42) and (4.43) in Klaassen and Wellner (1997). Before formula (4.49)
they operate (4.42) by l̇ T

g , the adjoint of l̇g . Note that (4.42) and (4.49)-(4.50)

are indeed equivalent (note that sofar they are working in L2[0,1]) since ˙̀T
g is

invertible (see Bickel et al. (1998) Proposition 4.7.2B). Hence we see that the
efficient score for θ is completely characterized by the system of differential
equations (4.57)-(4.58). Since the efficient score is unique, there is only one so-
lution to this system. Letting A correspond to h1 and B to h2, we obtain from
our boundary conditions for A′ and B ′:

∫ 1
0 A′(x)dx = ∫ 1

0 B ′(y)dy = 0, So our sys-
tem of differential equations can indeed be interpreted as the homogenous sys-
tem corresponding to (4.57)-(4.58) in Klaassen and Wellner (1997). Since their
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system has a unique solution, our system has only the trivial solution.

Step B This proceeds completely analogous to the proof of Proposition 5.3.5.

Next we introduce the processes S̃n1 = (S̃n1(u))u∈[0,1] and S̃n2 = (S̃n2(v))v∈[0,1]

by

S̃n1(u) =− 1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u) ˙̀
1
(
F̃n(Xi ),G̃n(Yi )

)
,

S̃n2(v) =− 1

n

n∑
i=1

(Gn(Yi )∧ v −Gn(Yi )v) ˙̀
2
(
F̃n(Xi ),G̃n(Yi )

)
.

Denote S̃n = (S̃n1,S̃n2) ∈ D[0,1]×D[0,1]. By Lemma 5.4.2 it is possible intro-
duce processes An ,Bn ∈ D[0,1] by

(An ,Bn) = Ψ̇−1
C S̃n .

Notice that the processes An and Bn only depend on the copula, and not on the
marginals. Inspired by (5.12) we now introduce our estimator (F̂n ,Ĝn):

F̂n(x) = Fn(x)+ An(Fn(x)), x ∈R, Ĝn(y) =Gn(y)+Bn(Gn(y)), y ∈R.

Note that F̂n ,Ĝn ∈ `∞(R), but they need not be distribution functions. The next
proposition establishes consistency.

Proposition 5.4.1. Let F0,G0 ∈Fac. Then we have

‖F̂n −F0‖∞+‖Ĝn −G0‖∞ → 0, PF0,G0 -a.s.

Proof.
Of course, it suffices to prove that ‖An‖∞+‖Bn‖∞ → 0 a.s. Since (An ,Bn) de-
pends on (Xi ,Yi ), i = 1, . . . ,n, only by (R X

i ,RY
i ), i = 1, . . . ,n, it suffices to prove

the proposition under P = PUn[0,1],Un[0,1]. Since Ψ̇−1
C is continuous it suffices to

prove that ‖S̃n‖∞ → 0 P-a.s. We prove ‖S̃n1‖∞ → 0 P-a.s.; the second compo-
nent of S̃n proceeds in exactly the same way. By the mean value theorem we
have,

S̃n1(u) =− 1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u) ˙̀
1(Xi ,Yi )

− 1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u)
{

῭
11(Fni ,Gni )(F̃n(Xi )−Xi )

+ ῭
12(Fni ,Gni )(G̃n(Yi )−Yi )

}
. (5.31)

where (Fni ,Gni ) is a point on the line segment between (F̃n(Xi ),G̃n(Yi )) and
(Xi ,Yi ), i = 1, . . . ,n. It is easy to see, using that ˙̀

1 is square-integrable, Cauchy-
Schwarz, and that the class of monotone functions from R into [0,1] has for all
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ε > 0 a finite L2(Q)-ε-bracketing number for all probability measures Q on the
real line, that the class of functions A = {(0,1)2 3 (x, y) 7→ (F (x)∧u−F (x)u) ˙̀

1(x, y) |
F ∈F , u ∈ [0,1]} satisfies for all ε> 0 N[ ](ε,A ,L1(P)) <∞. Since E[h(X ) ˙̀

1(X ,Y ) |
X ] = 0, we thus have, by the Glivenko-Cantelli theorem,

sup
u∈[0,1]

∣∣∣∣∣
1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u) ˙̀
1(Xi ,Yi )

∣∣∣∣∣≤ sup
a∈A

∣∣∣∣∣
1

n

n∑
i=1

a(Xi ,Yi )

∣∣∣∣∣→ 0,

PF0,G0 -a.s. Next we show that

sup
u∈[0,1]

∣∣∣∣∣
1

n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u) ῭
11(Fni ,Gni )(F̃n(Xi )−Xi )

∣∣∣∣∣
p−→ 0. (5.32)

This will conclude the proof, since the last term in (5.31) can be handled simi-
larly. Let α ∈ (5/12,1/2). Recall that the weighted empirical processes

p
n(Fn −

I )/rα and
p

n(Gn − I )/rα converge in distribution under P (here I denotes the
identity on [0,1]). Using Lemma 2.10.14 in Van der Vaart and Wellner (1993) we
conclude that, P-a.s.,

sup
x∈[0,1]

∣∣∣∣
Fn(x)−x

r 2α(x)

∣∣∣∣+ sup
y∈[0,1]

∣∣∣∣
Gn(y)− y

r 2α(y)

∣∣∣∣→ 0.

The probability of the event

En =
{

sup
x∈[0,1]

∣∣∣∣
Fn(x)−x

r 2α(x)

∣∣∣∣+ sup
y∈[0,1]

∣∣∣∣
Gn(y)− y

r 2α(y)

∣∣∣∣< 1

}

thus converges to 1 as n →∞. Using Assumption (C3) we have

∣∣ ῭
11(Fni ,Gni )− ῭

11(Xi ,Yi )
∣∣≤M

(∥∥(Fn − I )/r 2α
∥∥
∞ r 2α(Xi )

r 3(Xi )r 1/2−ε(Yi )

+
∥∥(Gn − I )/r 2α

∥∥
∞ r 2α(Yi )

r 2(Xi )r 1(Yi )

)
.

On the event En , we have the bound 0 ≤ u ∧Fn(Xi )−uFn(Xi ) ≤ 3r 2α(Xi ). De-
composing ῭

11(Fni ,Gni ) = ῭
11(Xi ,Yi )+ ῭

11(Fni ,Gni )− ῭
11(Xi ,Yi ) we obtain, on

the event En , the bound

sup
u∈[0,1]

1

n

n∑
i=1

∣∣(Fn(Xi )∧u −Fn(Xi )u) ῭
11(Fni ,Gni )(F̃n(Xi )−Xi )

∣∣

≤ ‖F̃n − I‖∞
n

n∑
i=1

| ῭
11(Xi ,Yi )|+

∥∥∥∥
Fn − I

r 2α

∥∥∥∥
2

∞

3

n

n∑
i=1

r 6α(Xi )

r 3(Xi )r 1/2−ε(Yi )

+
∥∥∥∥

Fn − I

r 2α

∥∥∥∥
∞

∥∥∥∥
Gn − I

r 2α

∥∥∥∥
∞

1

n

n∑
i=1

r 4α(Xi )r 2α(Yi )

r 2(Xi )r (Yi )
= o(1;P),

since Er−(3−6α)(Xi )r−(1/2−ε)(Yi ), and Er−(2−4α)(Xi )r−(1−2α)(Yi ) are finite (Cauchy-
Schwarz). Thus we conclude that (5.32) indeed holds.
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The next theorem presents the limiting distribution of our estimator.

Theorem 5.7. Let F0,G0 ∈Fac and C satisfy Assumptions (C1)-(C3). Then, under
PF0,G0 , the following holds.

The process SF0,G0
n =

((
S

F0,G0
n1 (u)

)
u∈[0,1]

,
(
S

F0,G0
n2 (v)

)
v∈[0,1]

)
, with

S
F0,G0
n1 (u) = 1p

n

n∑
i=1

{1{F0(Xi ) ≤ u}−u + ˙̀
1(F0(Xi ),G0(Yi ))(F0(Xi )∧u −F0(Xi )u)

}
,

S
F0,G0
n2 (v) = 1p

n

n∑
i=1

{1{G0(Yi ) ≤ v}− v + ˙̀
2(F0(Xi ),G0(Yi ))(G0(Yi )∧ v −G0(Yi )v)

}
,

weakly converges in `∞([0,1])×`∞([0,1]) to a tight zero-mean Gaussian process,
denoted by SC = (

(SC
1 (u))u∈[0,1], (SC

2 (v))v∈[0,1]
)

whose covariance function only
depends on C .
And we have, in `∞(R)×`∞(R),

p
n

( (
F̂n(x)−F0(x)

)
x∈R(

Ĝn(y)−G0(y)
)

y∈R

)
=−

(
(Ψ̇−1

C S
F0,G0
n )◦ (F0,G0)(x, y)

)
x,y∈R

+o(1;PF0,G0 )

Ã−(
(Ψ̇−1

C SC )◦ (F0,G0)(x, y)
)

x,y∈R .

Proof.
The weak convergence of SF0,G0

n follows by the same arguments as in part A of
the proof to Theorem 5.4 (see also the proof of Proposition 5.4.2). So we only
have to prove the weak convergence of

p
n(F̂n −F0,Ĝn −G0). Since S̃n depends

on (X1,Y1), . . . , (Xn ,Yn) only by the ranks (R X
1 ,RY

1 ), . . . (R X
n ,RY

n ), it is easy to see
that it suffices to consider F0 = G0 = Un[0,1]. In the following all probabilities
and expectations are calculated under P=PUn[0,1],Un[0,1].

We will prove that

p
nΨ̇C

(
F̂n −F0

Ĝn −G0

)
=−SUn[0,1],Un[0,1]

n +o(1;P),

which, by continuity of Ψ̇−1
C , yields the result. We will show that,

p
nΨ̇1

C

(
F̂n −F0

Ĝn −G0

)
=−SUn[0,1],Un[0,1]

n1 +o(1;P).

The second coordinate proceeds in exactly the same way.

We start by analyzing the structure of S̃n1.

Proposition 5.4.2. We have,

p
nS̃n1(u) =− 1p

n

n∑
i=1

(Xi ∧u −Xi u) ˙̀
1(Xi ,Yi )
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− 1p
n

n∑
i=1

(Xi ∧u −Xi u)
{

῭
11(Xi ,Yi )(Fn(Xi )−Xi )

+ ῭
12(Xi ,Yi )(Gn(Yi )−Yi )

}+o(1;P).

Proof.
For notational convenience we introduce

αn(x,u) = (u ∧Fn(x)−x ∧u −u(Fn(x)−x)) ,

and note that |αn(x,u)| ≤ 2‖Fn−F0‖∞. Using the mean value theorem we obtain
the expansion

p
nS̃n1(u) =− 1p

n

n∑
i=1

(Xi ∧u −Xi u) ˙̀
1(Xi ,Yi )− rn1(u)

− 1p
n

n∑
i=1

(Xi ∧u −Xi u)
{

῭
11(Xi ,Yi )(Fn(Xi )−Xi )

+ ῭
12(Xi ,Yi )(Gn(Yi )−Yi )

}

− rn2(u)− rn3(u)+ rn4(u),

with,

rn1(u) = 1p
n

n∑
i=1

αn(Xi ,u) ˙̀
1(Xi ,Yi ),

rn2(u) = 1p
n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u)
{(

῭
11(Fni ,Gni )− ῭

11(Xi ,Yi )
)(

F̃n(Xi )−Xi
)

+(
῭

12(Fni ,Gni )− ῭
12(Xi ,Yi )

)(
G̃n(Yi )−Yi

)}
,

rn3(u) = 1p
n

n∑
i=1

αn(Xi ,u)
(

῭
11(Xi ,Yi )(F̃n(Xi )−Xi )+ ῭

12(Xi ,Yi )(G̃n(Yi )−Yi )
)

,

rn4(u) = 1

n3/2

n∑
i=1

(Xi ∧u −Xi u)
{

῭
11(Xi ,Yi )Fn(Xi )+ ῭

12(Xi ,Yi )Gn(Yi )
}

,

where (Fni ,Gni ) is a (random) point on the line segment between (Xi ,Yi ) and
(F̃n(Xi ),G̃n(Yi )), i = 1, . . . ,n. The proposition is proved once we show ‖rn1‖∞+
‖rn2‖∞+‖rn3‖∞+‖rn4‖∞

p−→ 0. ‖rn4‖∞
p−→ 0 is trivial, since the expectation of

| ῭
1i |(X ,Y ) is finite for i = 1,2. ‖rn3‖∞

p−→ 0 easily follows from

‖rn3‖∞ ≤ 2
p

n‖F̃n −F0‖∞
(
‖Fn −F0‖∞

n

n∑
i=1

| ῭
11(Xi ,Yi )| +‖Gn −G0‖∞

n

n∑
i=1

| ῭
12(Xi ,Yi )|

)
.

Next we discuss ‖rn1‖∞. Since the class of non-decreasing functions from R→
[0,1] is a Donsker class it easily follows (using permanence of the Donsker prop-
erty) that the class of functions

B = {
(0,1)2 3 (x, y) 7→ ˙̀

1(x, y)(F (x)∧u −F (x)u) | F ∈F ,u ∈ [0,1]
}

,
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is P-Donsker. Since
∫

( ˙̀
1(x, y)αn(x,u))2 dC (x, y) ≤ 4‖Fn −F0‖2

∞

∫
˙̀2

1(x, y)dC (x, y)
p−→ 0,

Lemma 5.3.5 yields ‖rn1‖∞
p−→ 0 under P. Finally, we discuss rn2. We only dis-

cuss the first part (the ῭
11 part); the second part follows by a similar argument.

Notice first, with ε from Assumption (C3ii), that we can find p1, p2, q1, q2 > 1
andα ∈ [0,1/2) such that p−1

1 +q−1
1 = p−1

2 +q−1
2 = 1, p1(3−5α) < 1, q1(1/2−ε) < 1,

p2(2−3α) < 1, q2(1−2α) < 1 (which we need to apply Hölder’s inequality. Re-
member that the weighted empirical processes r−αpn(F̃n−F0) and r−αpn(G̃n−
F0) weakly converge, and that ‖(Fn −F0)/r 2α‖∞+‖(Gn −G0)/r 2α‖∞

p−→ 0. Thus
the probability of the event

En =
{

sup
x∈[0,1]

∣∣∣∣
Fn(x)−x

r 2α(x)

∣∣∣∣+ sup
y∈[0,1]

∣∣∣∣
Gn(y)− y

r 2α(y)

∣∣∣∣< 1

}
.

converges to 1 as n →∞. Recall, on En , the bound, 0 ≤ u ∧Fn(Xi )−uFn(Xi ) ≤
3r 2α(Xi ). We now obtain, on the event En , the bound,

sup
u∈[0,1]

∣∣∣∣∣
1p
n

n∑
i=1

(Fn(Xi )∧u −Fn(Xi )u)
(

῭
11(Fni ,Gni )− ῭

11(Xi ,Yi )
)(

F̃n(Xi )−Xi
)
∣∣∣∣∣

≤ ‖pn(F̃n −F0)/rα‖∞
3

n

n∑
i=1

r 3α(Xi )
∣∣ ῭

11(Fni ,Gni )− ῭
11(Xi ,Yi )

∣∣ .

So the proof of the proposition is complete once we show that

1

n

n∑
i=1

r 3α(Xi )
∣∣ ῭

11(Fni ,Gni )− ῭
11(Xi ,Yi )

∣∣1En

p−→ 0.

Using Assumption (C3ii) we obtain (use Hölder’s inequality in the last step)

1

n

n∑
i=1

r 3α(Xi )
∣∣ ῭

11(Fni ,Gni )− ῭
11(Xi ,Yi )

∣∣1En

≤ M

(∥∥∥∥
Fn −F0

r 2α

∥∥∥∥
∞

1

n

n∑
i=1

r−(3−5α)(Xi )r−(1/2−ε)(Yi )

+
∥∥∥∥

Gn −G0

r 2α

∥∥∥∥
∞

1

n

n∑
i=1

r−(2−3α)(Xi )r−(1−2α)(Yi )

)

= M(o(1;P)O(1;P)+o(1;P)O(1;P)) = o(1;P),

which concludes the proof.

The next proposition is the analogue of Proposition 5.3.6.
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Proposition 5.4.3. We have

sup
u∈[0,1]

p
n |An(Fn(u))− An(u)|+ sup

u∈[0,1]

p
n |Bn(Gn(u))−Bn(u)| p−→ 0, under P.

Proof.
By definition of (An ,Bn) we have (An ,Bn) = Ψ̇−1

C S̃n . Operating by Ψ̇C on both
sides thus yields Ψ̇C (An ,Bn) = S̃n . Next invoking the definition of Ψ̇C we obtain,
for all z ∈ [0,1],

−An(z)+
∫

(x ∧ z −xz)
(

῭
11(x, y)An(x)+ ῭

12(x, y)Bn(y)
)

dC (x, y) = S̃n1(z),

and,

−Bn(z)+
∫ (

y ∧ z − y z
)(

῭
22(x, y)Bn(y)+ ῭

12(x, y)An(x)
)

dC (x, y) = S̃n2(z).

We will prove supu∈[0,1]
p

n |An(Fn(u))− An(u)| p−→ 0 under P from the first dis-
play. The proof for Bn proceeds in the same way by using the second display.
From the first display we obtain, for u ∈ [0,1],

An(u)− An(Fn(u)) = S̃n1(Fn(u))− S̃n1(u)

−
∫
αn(Xi ,u)

(
῭

11(x, y)An(x)+ ῭
12(x, y)Bn(y)

)
dC (x, y),

where we denote, for x,u ∈ [0,1],

αn(x,u) = (x ∧Fn(u)−x ∧u −x(Fn(u)−u)) .

Since |αn(Xi ,u)| ≤ 2‖Fn−F0‖∞ and ‖An‖∞+‖Bn‖∞
p−→ 0 (Proposition 5.4.1) we

obtain, under P,

p
n

∣∣∣∣
∫
αn(Xi ,u)

(
῭

11(x, y)An(x)+ ῭
12(x, y)Bn(y)

)
dC (x, y)

∣∣∣∣

≤ 2
p

n‖Fn −F0‖∞
(
‖An‖∞

∫
| ῭

11|(x, y)dC (x, y)

+‖Bn‖∞
∫

| ῭
12|(x, y)|dC (x, y)

)
p−→ 0.

So the result follows once we prove supu∈[0,1]
p

n
∣∣S̃n1(Fn(u))− S̃n1(u)

∣∣ p−→ 0 un-
der P. Using Proposition 5.4.2 we obtain,

p
n

(
S̃n1(Fn(u))− S̃n1(u)

)=− 1p
n

n∑
i=1

αn(Xi ,u) ˙̀
1(Xi ,Yi )

− 1p
n

n∑
i=1

αn(Xi ,u)
{

῭
11(Xi ,Yi )(Fn(Xi )−Xi )+ ῭

12(Xi ,Yi )(Gn(Yi )−Yi )
}
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+o(1;P).

By the proof of Proposition 5.4.2 we have

sup
u∈[0,1]

∣∣∣∣∣
1p
n

n∑
i=1

αn(Xi ,u) ˙̀
1(Xi ,Yi )

∣∣∣∣∣= o(1;P).

So the result now follows from the bound

1p
n

∣∣∣∣∣
n∑

i=1
αn(Xi ,u)

{
῭

11(Xi ,Yi )(Fn(Xi )−Xi )+ ῭
12(Xi ,Yi )(Gn(Yi )−Yi )

}
∣∣∣∣∣

≤ 2
p

n‖Fn −F0‖∞
(
‖Fn −F0‖∞

1

n

n∑
i=1

| ῭
11(Xi ,Yi )|+‖Gn −G0‖∞

1

n

n∑
i=1

| ῭
12(Xi ,Yi )|

)

p−→ 0.

Recall that (F̂n ,Ĝn) = (Fn ,Gn)+ (An ◦Fn ,Bn ◦Gn). By the proposition we thus
have (F̂n ,Ĝn) = (Fn ,Gn)+(An ,Bn)+o(1/

p
n;P). Operating both sides by Ψ̇C , us-

ing that Ψ̇C is continuous, and using the definition of (An ,Bn) we obtain

Ψ̇C

(
F̂n −F0

Ĝn −G0

)
= Ψ̇C

(
Fn −F0

Gn −G0

)
+ Ψ̇C

(
An

Bn

)
+o(1/

p
n;P)

= Ψ̇C

(
Fn −F0

Gn −G0

)
+ S̃n +o(1/

p
n;P).

From the definition of Ψ̇C we obtain, for u ∈ [0,1],

Ψ̇1
C (Fn −F0,Gn −G0)(u) =−

(
1

n

n∑
i=1

1{Xi ≤ u}−u

)

+
∫

(x ∧u −xu)
{
(Fn(x)−x) ῭

11(x, y)+ (Gn(y)− y) ῭
12(x, y)

}
dC (x, y).

So, by Proposition 5.4.2 the proof is complete once we show that

sup
u∈[0,1]

p
n

∣∣∣∣
∫

(x ∧u −xu)(Fn(x)−x) ῭
11(x, y)d(Hn −C )(x, y)

∣∣∣∣
p−→ 0, (5.33)

and,

sup
u∈[0,1]

p
n

∣∣∣∣
∫

(x ∧u −xu)(Gn(y)− y) ῭
12(x, y)d(Hn −C )(x, y)

∣∣∣∣
p−→ 0. (5.34)
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We prove (5.33); (5.34) follows by similar arguments. Let H the class of distribu-
tions on [0,1]2 for which

∫ | ῭
11(x, y)|dH(x, y) < ∫ | ῭

11(x, y)|dC (x, y)+1. Notice
first that we have,

p
n

∫
(x ∧u −xu)(Fn(x)−x) ῭

11(x, y)d(Hn −C )(x, y)

=p
n

∫ ∫
(x ∧u −xu) ῭

11(x, y)1[0,x](z)d(Hn −C )(x, y)d(Fn −F0)(z)

=p
n

∫
f Hn

u (z)d(Fn −F0)(z),

with, for u ∈ [0,1] and H ∈H , f H
u : [0,1] →R defined by

f H
u (z) =

∫
(x ∧u −xu) ῭

11(x, y)1[0,x](z)d(H −C )(x, y).

And let A = { f H
u | u ∈ [0,1], H ∈H }. From the bound

| f H
u (z)− f H

u′ (z)| ≤ 2(2
∫

| ῭
11(x, y)|dC (x, y)+1)|u −u′|

it follows (see, e.g., Example 19.7 in Van der Vaart (2000)) that A is a F0-Donsker
class. Using the law of large numbers it follows that P{Hn ∈H } → 1, so P{∀u ∈
[0,1] : f Hn

u ∈ A } → 1. It is easy to show that the class of functions B = {(x, y) 7→
῭

11(x, y)(u ∧ x −ux)1[0,x](z) | u, z ∈ [0,1]} is a P-Glivenko-Cantelli class, which
implies

∫ 1

0
sup

u∈[0,1]
( f Hn

u (z))2 dz ≤ (sup
b∈B

|
∫

b d(Fn −F0)|)2 p−→ 0.

An application of Lemma 5.3.5 now yields (5.33).

E�ciency proof 5.4.3

This section is the analogue of Section 5.3.4. We prove that our estimator (F̂n ,Ĝn)
is efficient. The arguments are completely similar to the proof of Theorem 5.5.
The only complication is that we have to show that the artificial parameters we
use are indeed well-defined. In Section 5.3.4 the artificial parameters were au-
tomatically well-defined, because there we dealt with copulas for which there
are no problems on the boundary of [0,1]2.

Theorem 5.8. Let C a copula satisfying Assumptions (C1)-(C3). Then the esti-
mator (F̂n ,Gn)n∈N is an efficient estimator of the parameter (F,G) in the model
P (C ).
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Proof.
Fix (F0,G0) ∈ Fac. The proof is completely analogous to the proof of Theo-
rem 5.5. As mentioned above we should only verify that the artificial param-
eters (the expectation of certain scores calculated at PF0,G0 ) are well-defined.
Actually, it suffices to prove that the artificial parameter is well-defined for the
paths generating the tangent space. We consider the artificial parameter for F̂n .
Fix v, w ∈ L0

2(Un[0,1]) and use the paths t 7→ F v
t and t 7→ Gw

t through F0 and
G0 (see Section 5.4.1). This yields the path t 7→ Pt = PF v

t ,Gw
t

through PF0,G0 . Fix
u ∈ (0,1). We have to verify whether, at least for small t , the mapping

t 7→ EPt

[
1{F0(X ) ≤ u}−u + ˙̀

1(F0(X ),G0(Y ))(F0(X ∧u)−F0(X )F0(u))
]

,

is well-defined. Of course, the term 1{F0(X ) ≤ u}−u does not give any problems.
We have to deal with the second part. Since (F0(X ∧u)−F0(X )u) ≤ F0(X )(1−
F0(X )) we obtain from Assumption (C3)

EPt

∣∣ ˙̀
1(F0(X ),G0(Y ))(F0(X ∧u)−F0(X )F0(u))

∣∣≤ MuEGt

1

(G0(Y )(1−G0(Y )))α

= Mu

∫

R
cw

g0
(t )k(t w(G0(y)))g0(y)

1

(G0(y)(1−G0(y)))α
dy

= cw
g0

(t )
∫ 1

0
k(t w(q))

1

(q(1−q))α
dq < 2cw

g0
(t )

∫ 1

0

1

(q(1−q))α
dq <∞.



6 Semiparametric e�ciency bounds for
time series models with non-i.i.d.
innovations

This chapter derives semiparametric efficiency bounds for parametric compo-
nents in general semiparametric time series models. The time series models
are not assumed to be driven by a sequence of independent innovations with
unknown distribution as is the case in the usual semiparametric time series
approach. Instead of this, the dependence between the innovations is seen as
a nonparametric nuisance parameter in addition to the marginal distribution
of the innovations. We obtain a Local Asymptotic Normality (LAN) result un-
der quite natural and economical conditions implying a lower bound on the
asymptotic performance of (regular) estimators.

Introduction 6.1
The availability of large data sets is rapidly growing, especially in finance, as
well as computing power to analyze them. If these data are confronted with
classical parametric financial and econometric models, it is clear that these
are misspecified. Semiparametric and nonparametric models are popular al-
ternatives. Usually, from a practitioners point of view, some finite dimensional
parameter is of interest. For example the mean or median as a measure of loca-
tion, the Value at Risk as a measure of risk, etcetera. The question arises how to
efficiently estimate such quantities in general semi- and nonparametric mod-
els. Quite often, the efficiency issue is considered as being less important given
the enormous amount of data. While this may be the case in simple parametric
models, the standard deviations of simple, for example moment type, estima-
tors will substantially increase in general time series models due to the pres-
ence of infinite-dimensional nuisance parameters. These standard deviations
can sometimes be substantially reduced using a semiparametrically efficient
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estimator1.

To study what is best asymptotically in a semiparametric model, one needs
a bound on the asymptotic performance of estimators in the presence of the
infinite-dimensional nuisance parameter. Many models enjoy the Local Asymp-
totic Normality (LAN) property. Then the Hájek-Le Cam convolution theorem
yields a bound to the precision of regular estimators. For the i.i.d. case, ac-
counts on the present theory along these lines are Bickel et al. (1998) and Van
der Vaart (2000, Chapter 25). Survey papers in an econometric setting are, for
example, Robinson (1988), Newey (1990) and Stoker (1991). In financial data, of
course, the time dimension also plays an important role. Drost et al. (1997) and
Koul and Schick (1997) have developed a unified theory for time series mod-
els with independently and identically distributed innovations. This covers, for
example, semiparametric ARMA models (Kreiss (1987a, 1987b)) and semipara-
metric GARCH models (Engle and Gonzalez-Rivera (1991), Linton (1993), and
Drost and Klaassen (1997)). Steigerwald (1992) and Jeganathan (1995) have also
obtained results for more general time series. Efficient rank-based inference for
semiparametric time series models with i.i.d. innovations was considered by
Hallin and Werker (2001) and Hallin et al. (2004). And Wefelmeyer (1996) ob-
tained efficiency results in a Markovian context when only some moments are
given and the innovations are assumed to be martingale differences.

Recent work in applied financial econometrics shows that the assumption of
i.i.d. innovations does not hold when using standard semiparametric time se-
ries models, see Engle (2000), Drost and Werker (2004), and Gouriéroux et al.
(2004). Volatility is for example time varying. Usually GARCH type models or
stochastic volatility models are quite suitable to pick up the time-varying na-
ture of the first two conditional moments with only a few additional parame-
ters. However, the implications of this parametric model of volatility for higher
order conditional moments are not reflected in the data. More precisely for-
mulated, the conditional distribution of the errors cannot be described by just
a functional form of the conditional volatility and a fixed nonparametric dis-
tribution. The description of the conditional distribution of the innovations is
more delicate. To cover this problem we will take a more general approach by
taking the whole distribution of the errors as a nuisance parameter. It is the
purpose of this chapter to infer how the nonparametric nature of the condi-
tional error distribution influences the estimation problem for the parametric
component. In the most general case innovations are just martingales, nothing
is assumed on the conditional distribution of the innovations. On the other ex-
treme side, we have the ‘classical’ semiparametric time series model with i.i.d.

1In special occasions it is even possible to estimate the Euclidean parameter of interest
adaptively.
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innovations (the conditional distribution of the innovations is constant). One
can imagine several cases in between where the conditional distribution of the
innovations is not completely free.

In Section 6.2, we introduce the time series model in its general form by de-
scribing the possible dependence structures of the innovations. The observa-
tions will be obtained from the observations via an adapted time-varying group
operator. Examples are the location-group, the scale-group, and the location-
scale group. The regularity conditions needed for the efficiency result, are out-
lined in Section 6.3. These assumptions are related to the assumptions in time
series models with i.i.d. innovations. Our assumptions for the general class of
time series models (build from possibly dependent innovations) are minimal
in the sense that they reduce to the assumptions for the i.i.d. case if attention
is restricted to those models. The main results are presented in Section 6.4.
We present a Local Asymptotic Normality (LAN) Theorem in case the infinite-
dimensional nuisance parameter concerning the error distribution is known.
From this we derive the efficient score for the semiparametric problem. Accord-
ing to the Hájek-Le Cam Convolution Theorem regular estimators which attain
this bound are efficient. Loosely speaking this means that every other asymp-
totically normal estimator will have a larger variance than this lower bound.
The proofs are based on a general LAN result which we recall in Appendix 6.5.
Of course, the bound is only of value if one can construct an estimator attaining
this bound. Since a general construction is extremely difficult in a time series
setting, this chapter fully focuses on the derivation of a lower-bound.

Setup 6.2
This section (extensively) describes the model for a sequence of observations
(Yt )t∈N. To simplify exposition we will start by explaining the innovation struc-
ture underlying the model in Section 6.2.1. In Section 6.2.2 we build the obser-
vations (Yt )t∈N from the innovations by an adapted time-varying group oper-
ator. Special cases are the location-, the scale-, and the location-scale-group.
This (structural) construction induces the probability distribution of the obser-
vations2.

Innovation structure 6.2.1
Let X be the set of exogenous random variables, whose law is allowed to de-
pend on the parameters, and let (εt )t∈N be some sequence of innovations. Let
F0 = σ(X ) denote the information set generated by the exogenous variables

2Of course, one could alternatively immediately define the probability measures for the ob-
servation process and, as a consequence, derive the implications for the innovations.
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and let Ft = σ(X ,ε1, . . . ,εt ) be the σ-field corresponding to the information at
time t , t ≥ 1.

As in any model, we have to describe the distributional structure of the inno-
vation sequence (εt )t∈N. This will be done via the conditional distribution of
εt+1 given the information F t until time t ∈ Z+. To make the role of the de-
pendence structure of the innovation process in the efficiency analysis visible,
we can assume, without loss of generality, that some sub σ-field H t of F t is
given such that the conditional distribution of εt+1 given the (smaller) σ-field
H t coincides with the conditional distribution given all information F t avail-
able at time t . So, the additional information contained in F t is not helpful to
determine a better forecast of the error distribution of εt+1. Note that we do
not require that the sequence (H t )t∈Z+ is increasing like (Ft )t∈Z+ , we merely
impose that H t is a sub σ-field of F t , t ∈ Z+. Before providing some exam-
ples, we introduce some additional notation to describe this requirement on
the conditional error distributions:

Gt =L (εt+1|Ft ) =L (εt+1|H t ) ∈G (a.s.), t ∈Z+. (6.1)

Here G is a given class of distributions and (H t )t∈Z+ , with H t ⊂F t , is a given
sequence of σ-fields. The conditional distributions given in (6.1) are not re-
stricted, yet. However, to be able to derive lower bounds, we will need some
assumptions that avoid a large difference between conditional distributions if
the conditioning variables (including the parameters) are close. The assump-
tions will be presented in Section 6.3 once we have completed the statistical
model of our observations. To illustrate the generality of this innovation struc-
ture we give some examples.

1. Traditional models with independent error sequences (εt )t∈N are obtained
by taking H t = {;,Ω}. In this way the conditional distributions specified
in (6.1) do not depend on past observations. Requiring stationarity yields
i.i.d.-ness.

2. Quite another model will be obtained by letting H t be as large as possi-
ble, that is H t =F t . If G consists of zero mean distributions this results
in a model with martingale difference innovations.

3. As a model somewhere in between these two extremes consider a Marko-
vian setting, where the conditional error distribution is only allowed to
depend on the last observation. In this model we may take H t =σ(εt ).

Just as in classical semiparametric problems, the class of distributions G will
be large typically, although we do not exclude a parametric class of distribu-
tions. For example, one might consider the class of all zero mean distributions
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(satisfying some weak differentiability and integrability conditions). In semi-
parametric time series models with i.i.d. innovations one unknown element
G ∈ G , the marginal distribution of the innovations, serves as a nonparamet-
ric nuisance parameter. The present set-up is much more complicated since, at
each point in time, we may pick, depending upon past observations, another
distribution from G (however, if one requires stationarity of (εt )t∈Z+ , then Gt

cannot be chosen arbitrarily). In a (time-homogenous) Markovian context we
actually only have to deal with two (infinite-dimensional) parameters: the law
of ε1 (conditional on X ) and the transition-probability operator. In general, the
sequence of conditional error distributions (Gt )t∈Z+ will serve as the nonpara-
metric nuisance parameter in our semiparametric model of the observations.
In a semiparametric setting parts of this parameter may have to be estimated
from the data to obtain an estimate of the efficient score function. Of course,
imposing stationarity of the innovation process can help to accomplish this.

Summarizing: the general description of the error structure allows us to study
a big variety of time series models, including models with i.i.d. errors, models
with martingale difference innovations, Markovian innovations, and all kinds
of situations in between.

Group structure 6.2.2
Having described the structure of the innovations in our statistical model, we
describe how the observations are constructed from these innovations. To build
our observations (Yt )t∈N from the real-valued innovation sequence (εt )t∈N let a
group of measurable transformations be given, {au |u ∈ U }, where au : R→ R,
and U ⊂ Rm is open. Let ue be a unitary element, i.e. aue (e) = e. It is assumed
throughout that this group satisfies the following smoothness conditions.

Assumption 1. The group {au |u ∈U } with U ⊂Rm open satisfies the following
conditions.

(a) The mapping u 7→ au is one-to-one. Consequently, there exists for all
u0,u1 ∈U a unique element ω(u0,u1) ∈U such that aω(u0,u1) = a−1

u0
◦au1 .

Notice that ue is unique and that ω(u,u) = ue .

(b) For each u0 ∈U the mapping U 3 u 7→ω(u0,u) is continuously differen-
tiable at u0 with derivative ω̇(u0) ∈Rm×m , i.e. |ω(u0,u+h)−ue−ω̇(u0)h| =
o(|h|) as |h|→ 0.

(c) ω̇(ue ) = I , i.e. the m ×m identity matrix.

(d) With λ denoting Lebesgue measure, the measure λ◦a−1
u is equivalent to

λ. Denote

j (e;u) = d
(
λ◦a−1

u

)

dλ
(e).
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Remark 1. Actually, Assumptions (a)-(b) can be replaced by the weaker, but bit
more complex, Conditions (i)a-c on pages 90-91 in Bickel et al. (1998) which
allow for locally invertible parametrizations u 7→ au . Assumption (c) is not re-
strictive, since we can achieve it after a reparametrization.

Examples 1-3 below satisfy Assumption 1. Let (Ut (θ))t∈Z+ , be a sequence of U -
valued, Ft -adapted random vectors. Here θ ∈ Θ, with Θ ⊂ Rk open, is our pa-
rameter of interest, while the sequence of conditional distributions (Gt )t∈Z+ of
the innovations will be our nuisance parameter. The observations are defined
via

Yt+1 = aUt (θ)(εt+1), t ∈Z+. (6.2)

In (financial) econometrics we very often encounter the following examples of
the group-model.

1. Location group: au : R→ R defined by au(e) = u + e, U = R. This yields
Yt+1 =Ut (θ)+εt+1.

2. Scale group: au :R→R defined by au(e) = ue, U =R++. This yields Yt+1 =
Ut (θ)εt+1.

3. Location-scale group: au1,u2 : R→ R defined by au1,u2 (e) = u1 +u2e, U =
R×R++. This yields Yt+1 =Ut1(θ)+Ut2(θ)εt+1.

From (6.1) and (6.2) it is clear that the conditional distribution of Yt+1 given Ft

is given by

PUt (θ),Gt =L (Yt+1|Ft ) =Gt ◦a−1
Ut (θ) (a.s.), t ∈Z+. (6.3)

If Gt has density g t (with respect to Lebesgue measure) then (under Part (d) of
Assumption 1) the density of PUt (θ),Gt is given by

pt (y ;Ut (θ),Gt ) = g t (a−1
Ut (θ)(y)) j (y ;Ut (θ)). (6.4)

For the location-, the scale- and the location-scale-group pt (·;Ut (θ),Gt ) is re-
spectively given by

g t (·−Ut (θ)),
1

Ut (θ)
g t

( ·
Utθ

)
, and

1

Ut2(θ)
g t

( ·−Ut1(θ)

Ut2(θ)

)
.

For a fixed absolutely continuous distribution G with differentiable density the
standard parametric group model

(
G ◦a−1

u | u ∈U
)

, (6.5)

has score given by (see pages 90-91 in Bickel et al. (1998)),

φ(y ;u,G) = ω̇T (u)l̇ (a−1
u y ;G), with l̇ (y ;G) = ∂

∂u
log

(
g (a−1

u y) j (y ;u)
)∣∣∣∣

u=ue

.
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For the location-, scale- and location-scale group the objects l̇ and ω̇ are re-
spectively given by,

Location: l̇ (y ;G) =−g ′

g
(y), and ω̇(u) = 1,

Scale: l̇ (y ;G) =−
(
1+ y

g ′

g
(y)

)
, and ω̇(u) = 1

u
,

Location-scale: l̇ (y ;G) =

 − g ′

g (y)

−
(
1+ y g ′

g (y)
)

 and ω̇(u1,u2) = 1

u2

(
1 0
0 1

)
.

In our statistical model we thus have the flexibility of choosing both a suitable
group structure and a suitable time varying parametrization of the group oper-
ator. If time would be fixed, this would induce an i.i.d. group model with u ∈U

as the parameter of interest and G ∈G the unknown nuisance structure. Semi-
parametric i.i.d. group models have been studied in Bickel et al. (1998, pp. 88-
103). Adaptive time series group models with i.i.d. innovations are discussed
in Drost et al. (1997). Here we allow for time series group models with general
innovation structures. This concludes the set-up of our statistical model. To en-
hance readability we conclude this section with examples of models that fit into
our setup.

Examples 6.2.3
Example 6.1. (Classical AR(1) model)

Yt+1 = θYt +εt+1.

This is clearly a model with a location group structure and the time varying
location parameter is given by Ut (θ) = θYt . In a traditional parametric model
one often assumes that the errors are i.i.d. normal, that is the set G consists
of normal distributions centered around zero and the σ-field H t is the trivial
σ-field. A semiparametric model is obtained by enlarging the set G to the class
of all (symmetric) distributions centered around zero. If the i.i.d. assumption
is considered to be too restrictive, one may enlarge the σ-field H t . Take, for
example, the set of all events that are Yt -measurable, i.e. H t =σ(Yt ).

Example 6.2. (Random coefficient AR(1) model)

Yt+1 = f (Yt ;θ)Yt +εt+1.

Just as in the previous model this is a location group model with the time vary-
ing location parameter given by Ut (θ) = f (Yt ;θ)Yt . The choice between a para-
metric model or a semiparametric model or between i.i.d. innovations or, for
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example, martingale innovations can be treated similarly as in the previous ex-
ample.

Example 6.3. (AR(1)-ARCH(1) model)

Yt+1 =αYt +Stεt+1, with S2
t =ψ+βY 2

t .

In contrast to the previous two examples, we cannot formulate the present
model as a location model, since in that case the imposed structure of the con-
ditional variance cannot be recovered. Therefore, we take the location-scale op-
erator as the group structure with au1,u2 (e) = u1+u2e. The time varying location
parameter is given by Ut1(α,β,ψ) =αYt and the scale parameter is determined
by Ut2(α,β,ψ) = St . The remaining details can be treated in the same way as in
the previous examples.

Remark 2. Our setup also contains models with independent but not identi-
cally distributed observations. However, a Bayesian setup where the infinite-
dimensional nuisance parameter is random (see Bickel and Klaassen (1986)) is
not contained in our setup.

6.3 Assumptions
To be able to derive an asymptotic bound on the performance of regular es-
timators of θ we will need several assumptions. This section discusses these
assumptions in some detail. These assumptions will be used in Section 6.4.1 to
prove that the log-likelihood ratios corresponding to observations of the pro-
cess (Yt )t∈N are Locally Asymptotically Normal (LAN). This LAN-property will
yield, via the Hájek-Le Cam convolution theorem, a notion of efficiency in para-
metric models where the nuisance parameter (Gt )t∈Z+ is completely known. In
turn this result is a key input in Section 6.4.2 where we obtain efficiency bounds
for the semiparametric model.

The law of the process Y is determined by L (X ), θ, and (Gt )t∈Z+ . It is allowed
that L (X ) depends on θ and (Gt )t∈Z+ . Since we work in this section with a fixed
nuisance structure (Gt )t∈Z+ , we denote, for notational convenience, the under-
lying probability measure by Pθ.

In our first condition, we impose the technical assumption ensuring that ex-
ogenous and/or starting variables in F0 are indeed exogenous in the sense that
they contain almost no information about the parameter θ.

Assumption 2. Let θ0 ∈Θ and θn = θ0+hn/
p

n with hn → h0. LetΛX
n =ΛX

n (θn ,θ0)
denote the likelihood ratio of θn with respect to θ0 of the law of the exogenous
variables X . Then, under Pθ0 ,

ΛX
n

p→ 1, as n →∞.
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Remark 3. If the law of the exogenous variables X does not depend on θ, the as-
sumption is trivially satisfied. For Markovian structures which are ‘sufficiently
ergodic’ this assumption often can be verified using stability results for Markov
chains (see Kartashov (1985)).

Recall from Subsection 6.2.2 that, if time would be fixed, model (6.3) yields the
i.i.d. group model (6.5) with parameter u ∈U , with, under sufficient regularity,
score given by ϕ

(
y ;u,G

) = ω̇T (u) l̇
(
a−1

u y ;G
)
. Assumption 3 requires that this

core model is indeed regular (at each point in time) with respect to the param-
eter u ∈U .

Assumption 3. For each G ∈G , the model QG = (
G ◦a−1

u | u ∈U
)

is regular with
respect to Lebesgue measure (see Bickel et al. (1998, Chapter 2)) with score
given by ϕ

(
y ;u,G

)
and positive definite Fisher-information given by J (u;G) =

ω̇T (u)J (G)ω̇(u), where J (G) = ∫
l̇ l̇ T (e;G)dG(e) ∈Rm×m .

Remark 4. If each G ∈G has a differentiable density with J (u;G) invertible then,
by Lemma 4.2.1 in Bickel et al. (1998), Assumption 3 is satisfied.

Assumption 3 is the standard one in an i.i.d. semiparametric model without
time-varying parameters/distributions and in our general set-up this assump-
tion seems to be a natural starting point for our regularity conditions. Assump-
tion 3 implies that the densities p (·;u,G) satisfy the following properties:

1. The square-root density s (·;u,G) =
√

p (·;u,G) is Fréchet differentiable in
L2(λ) with derivative ṡ (·;u,G) = 1

2ϕ (·;u,G)
√

p (·;u,G), i.e.

lim
h→0

∫ (
s
(
y ;u +h,G

)− s
(
y ;u,G

)−hT ṡ
(
y ;u,G

))2
dy

|h|2
= 0. (6.6)

2. The mapping u → ṡ (·;u,G) from U to L2(λ) is continuous.

The function ϕ would be the score function for the parameter u =Ut (θ) in our
statistical model if a random sample would be taken at a fixed time point t .
However, we only have available one observation at each point in time and the
parameter u = Ut (θ) is time-varying. Therefore it is not enough to consider
the score function with respect to u. We have to infer the score function with
respect to the parameter θ. The chain rule suggests that the score of observation
t +1, should be given by, for t ∈Z+,

St+1 (θ) = U̇t (θ)ϕ (Yt+1;Ut (θ) ,Gt ) = V̇t (θ) l̇
(
a−1

Ut (θ)Yt+1;Gt

)

= V̇t (θ) l̇ (εt+1;Gt ) , (6.7)

where the k ×m matrix U̇t (θ) is a (kind of) derivative of U T
t (θ), see Assump-

tion 5 below, and where V̇t (θ) = U̇t (θ)ω̇T (Ut (θ)) ∈ Rk×m . By regularity of the
core model it is immediate that the total score is a martingale.
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Proposition 6.3.1. Let θ0 ∈Θ. If the process (V̇t (θ0))t≥0 is Pθ0 -square-integrable,
then (S̃t (θ0))t≥0, defined by S̃0(θ0) = 0 and S̃n(θ0) = ∑n

t=1 St (θ0), n ∈N, is a Pθ0 -
martingale (w.r.t. (Ft )t≥0).

Proof. This easily follows by conditioning and using that the score in a regular
parametric model (Assumption 3) has (conditional) mean zero.

The next assumptions will assure that the score has a normal limiting distribu-
tion3.

Assumption 4. Let θ0 ∈Θ. The following conditions hold under Pθ0 .

1. The process (V̇t (θ0))t≥0 is Pθ0 -square-integrable.

2. The following law of large numbers holds, for a non-singular k ×k matrix
I (θ0),

1

n

n∑
t=0

V̇t (θ0) J (Gt )V̇ T
t (θ0)

p−→ I (θ0) . (6.8)

3. For all ε> 0 the following Lindeberg conditions hold,

1

n

n∑
t=0

‖V̇t (θ0)J 1/2(Gt )‖21{‖V̇t (θ0)J 1/2(Gt )‖>εpn}
p−→ 0, (6.9)

and,

1

n

n∑
t=1
Eθ0

[|St (θ0)|21{|St (θ0)|>εpn} |Ft−1
] p−→ 0. (6.10)

Note that Assumptions 1-4 are exactly the standard conditions in i.i.d. semi-
parametric group models. There these assumptions imply a LAN Theorem. It
will be clear that we need some additional conditions to ensure that the time-
varying nature of our problem will not disturb the LAN property. The additional
assumptions we present below seem to be quite minimal since they are trivially
met in the situation where u and G are not depending on time. We will try as
much as possible to distinguish between differentiability conditions on the ‘pa-
rameter’ Ut (θ) (Assumption 5) and smoothness conditions on the conditional
distributions Gt (Assumption 6). Nevertheless, the conditional Fisher informa-
tion J (Gt ) will enter in all our conditions because the model does not exclude
that either the Fisher information or its inverse has unbounded terms. In the
proof of the main theorem, these two additional assumptions are needed to
obtain (6.15). Alternatively one might replace both conditions by this equation

3For a m ×n matrix A we denote ‖A‖ = sup{|Ax| | |x| ≤ 1}.
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which merges the conditions on differentiability of the parameter and smooth-
ness of the distribution. The next assumption imposes ‘differentiability’ condi-
tions with respect to the time varying ‘parameters’ω (Ut (θ0) ,Ut (θn)) and Ut (θn).
The pre-multiplication with J 1/2 (Gt ) is done, as mentioned before, to correct
for possible unboundedly growing Fisher information matrices.

Assumption 5. Let θ0 ∈ Θ, and θn = θ0 +un/
p

n with un → u0. As n → ∞ we
have, with ωnt =ω(Ut (θ0),Ut (θn)),

n∑
t=0

∣∣J 1/2 (Gt ) (ωnt −ue − ω̇ (Ut (θ0))(Ut (θn)−Ut (θ0)))
∣∣2 = o(1;Pθ0 ), (6.11)

n∑
t=0

∣∣J 1/2 (Gt )ω̇ (Ut (θ0))
(
Ut (θn)−Ut (θ0)−U̇ T

t (θ0)(θn −θ0)
)∣∣2 = o(1;Pθ0 ), (6.12)

where U̇ T
t (θ0) is implicitly defined as an appropriate differential of Ut (θ0).

Remark 5. For the location-group (6.11) is trivially satisfied, since for this group
ω(u0,u1) = u1 −u0, ue = 0, and ω̇(u) = 1. If Ut (θ) is linear in the parameters
(6.12) is trivial by taking U̇t (θ) equal to the gradient of Ut (θ). For i.i.d. innova-
tions (6.11) is satisfied, since, by the imposed group structure, we have, for each
fixed G ∈G ,

∣∣J 1/2 (G) (ω (u,u +h)−ue − ω̇ (u)h)
∣∣= o (|h|) .

Remark 6. If we combine (6.11) and (6.12) we obtain

n∑
t=0

∣∣J 1/2 (Gt )
(
ωnt −ue − ω̇ (Ut (θ0))U̇ T

t (θ0)(θn −θ0)
)∣∣2 = o(1;Pθ0 ). (6.13)

The behavior of the time-varying conditional distribution functions is restricted
by a uniformity condition on the function ṡ in item 2 above. By the group char-
acter we need this condition only at u = ue . Here deviations from the unitary
element are not measured by the usual distance in the Euclidean space, but
again the Fisher information matrix J (Gt ) is used to standardize.

Assumption 6. Let θ0 ∈Θ. Introduce, for t ∈Z+ and δ> 0,

Mt (δ) = sup
|h|≤δ

∫ ∣∣J−1/2 (Gt )
(
ṡ
(
y ;ue + J−1/2 (Gt )h,Gt

)− ṡ
(
y ;ue ,Gt

))∣∣2
dy.

There existsη> 0 and aPθ0 -integrable variable B such that supt≥0,0≤δ≤ηMt (δ) ≤
B , and for δn → 0 we have sup0≤t≤n Mt (δn)

p−→ 0.

Remark 7. In case the innovations are i.i.d. the assumption is trivially satisfied
since Assumption 3 implies that u 7→ ṡ(·;u,G) is continuous.
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6.4 Main Results

6.4.1 Parametric LAN theorem
Suppose that we observe X ,Y1, . . . ,Yn . We are considering estimation of θ in the
presence of the infinite dimensional nuisance structure (Gt )t∈Z+ . However, in
this subsection we will fix this nuisance parameter and in the resulting para-
metric model we will derive a bound on the asymptotic performance of regular
estimators of θ. In the next subsection we will discuss the consequences on the
bound when the nuisance structure is unknown.

To be able to derive such a bound in the parametric model we have to show that
the log-likelihood ratios of the observed random variables are locally asymp-
totically normal (LAN). Let P(n)

θ
denote the law of X ,Y1, . . . ,Yn when the Eu-

clidean parameter equals θ. The likelihood ratio statistic of the observations
X ,Y1, . . . ,Yn for θn with respect to θ0 is given by

dP(n)
θn

dP(n)
θ0

=ΛX
n (θn ,θ0)

n∏
t=1

pt−1(Yt ;Ut−1(θn),Gt−1)

pt−1(Yt ;Ut−1(θ0),Gt−1)
.

The next theorem shows that these likelihood ratios are of the LAN form.

Theorem 6.1. Under Assumptions 1-6 the statistical model defined by (6.3) sat-
isfies the LAN condition with scores (6.7), i.e. for θ0 ∈Θ and θn = θ0+un/

p
n with

un → u0 ∈Rk we have,

log
dP(n)

θn

dP(n)
θ0

= uT
0p
n

n∑
t=1

St (θ0)− 1

2
uT

0 I (θ0)u0 +o
(
1;P(n)

θ0

)
. (6.14)

Proof.
We use Theorem 6.4 to prove the theorem. Set P̃n = P(n)

θn
, Pn = P(n)

θ0
, Fnt = Ft ,

Snt = St (θ0) for t ≥ 1, and hn =p
n(θn −θ0) = un . Notice that, in the notation of

Theorem 6.4,

LRn0 =ΛX
n (θn ,θ0), and for 1 ≤ t ≤ n, LRnt =

pt−1(Yt ;Ut−1(θn),Gt−1)

pt−1(Yt ;Ut−1(θ0),Gt−1)
.

Thus the fourth condition of Theorem 6.4 is satisfied by Assumption 2. In the
following we denote pt (·;u) = pt (·;u,Gt ), and use the same notational conven-
tion for other objects depending on Gt . For 1 ≤ t ≤ n we have,

Rnt =
√

LRnt −1− 1

2
hT

n
Sntp

n
=

√
pt−1(Yt ;Ut−1(θn))

pt−1(Yt ;Ut−1(θ0))
−1− 1

2
(θn −θ0)T St (θ0).
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First we check the first set of Assumptions (6.25)-(6.27). Condition (6.25) is im-
mediate by Proposition 6.3.1. From Assumption 4 Condition (6.27) is immedi-
ate,

1

n

n∑
t=1
EPn

[
Sn,t ST

n,t |Fn,t−1
]= 1

n

n−1∑
t=0

V̇t (θ0)J (Gt )V̇ T
t (θ0)

p−→ I (θ0) , as n →∞,

and Condition (6.26) holds by Assumption 4. Next notice that,

n∑
t=1
EPn

[
R2

nt |Fn,t−1
]

=
n−1∑
t=0

∫

At

∣∣∣∣p1/2
t

(
y ;Ut (θn)

)−p1/2
t

(
y ;Ut (θ0)

)− uT
np
n

U̇t (θ0)ṡt
(
y ;Ut (θ0)

)∣∣∣∣
2

dy .

with At =
{

pt (·;Ut (θ0)) > 0
}
. And, since ṡt (·;Ut (θ0)) = 0 as pt (·;Ut (θ0)) = 0, we

have, with Bt =
{

pt (·;Ut (θ0)) = 0
}
,

n∑
t=1
EPn (1−LRnt ) =

n−1∑
t=0

∫

Bt

pt
(
y ;Ut (θn)

)
dy

=
n−1∑
t=0

∫

Bt

∣∣∣∣p1/2
t

(
y ;Ut (θn)

)−p1/2
t

(
y ;Ut (θ0)

)− uT
np
n

U̇t (θ0)ṡt
(
y ;Ut (θ0)

)∣∣∣∣
2

dy.

Consequently, (6.28) and (6.29) will both follow once we prove that

n∑
t=0

∫ ∣∣∣∣st (Ut (θn))− st (Ut (θ0))− uT
np
n

U̇t (θ0)ṡt (Ut (θ0))

∣∣∣∣
2

(y)dy = o
(
1;Pθ0

)
. (6.15)

Using that (see the proof of Lemma 4.2.1 in Bickel et al. (1998)),

pt (y ;u) = pt (a−1
Ut (θ0) y ;ω(Ut (θ0),u)) j (y,Ut (θ0)),

we obtain by the substitution y = a−1
Ut (θ0)z, and using thatω(Ut (θ0),Ut (θ0)) = ue ,

and ω̇(ue ) = I ,

n∑
t=0

∫ ∣∣st (z;Ut (θn))− st (z;Ut (θ0))− (θn −θ0)T U̇t (θ0)ṡt (z;Ut (θ0))
∣∣2

dz

=
n∑

t=0

∫ ∣∣st
(
y ;ωnt

)− st
(
y ;ue

)− (θn −θ0)T U̇t (θ0)ω̇T (Ut (θ0))ṡt
(
y ;ue

)∣∣2
dy,

with ωnt =ω(Ut (θ0),Ut (θn)). Plugging in ṡt (y ;ue ) = 2−1l̇ (y ;Gt )st (y ;ue ) we now
obtain,

≤ 2
n∑

t=0

∫ ∣∣st
(
y ;ωnt

)− st
(
y ;ue

)− (ωnt −ue )T ṡt
(
y ;ue

)∣∣2
dy
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+ 1

2

n∑
t=0

∫ ∣∣∣
(
ωnt −ue − ω̇(Ut (θ0))U̇ T

t (θ0) (θn −θ0)
)T

l̇
(
y ;Gt

)
st

(
y ;ue

)∣∣∣
2

dy,

using Assumption 3 and Proposition A.5.3 in Bickel et al. (1998) we now obtain,

= 2
n∑

t=0

∫ ∣∣∣∣(ωnt −ue )T
∫ 1

0

{
ṡt

(
y ;ue +λ (ωnt −ue )

)− ṡt
(
y ;ue

)}
dλ

∣∣∣∣
2

dy

+ 1

2

n∑
t=0

∣∣J 1/2(Gt )
(
ωnt −ue − ω̇(Ut (θ0))U̇ T

t (θ0) (θn −θ0)
)∣∣2

The second term on the right-hand side of (6.15) converges to zero in probabil-
ity by Assumption 5 and (6.13). The proof of the theorem is complete once we
show that the first term of this equation also converges to zero. Decompose,

|J 1/2(Gt )(ωtn −ue )| ≤ |J 1/2(Gt )(ωtn −ue − ω̇(Ut (θ0))U̇ T
t (θ0)(θn −θ0))|

+ |J 1/2(Gt )V̇ T
t (θ0)(θn −θ0)|.

Now a combination of (6.8) and (6.13) immediately yields,

n∑
t=0

|J 1/2(Gt )(ωtn −ue )|2 =O(1;Pθ0 ). (6.16)

And a combination of (6.9) and (6.13) easily yields,

max
0≤t≤n

|J 1/2(Gt )(ωtn −ue )| p−→ 0. (6.17)

For notational convenience we denote in the following Jt = J (Gt ). We have,

n∑
t=0

∫ ∣∣∣∣(ωnt −ue )T
∫ 1

0

{
ṡt

(
y ;ue +λ (ωnt −ue )

)− ṡt
(
y ;ue

)}
dλ

∣∣∣∣
2

dy

≤
n∑

t=0

∣∣J 1/2
t (ωnt −ue )

∣∣2
∫ ∣∣∣∣J−1/2

t

∫ 1

0

{
ṡt

(
y ;ue +λ (ωnt −ue )

)− ṡt
(
y ;ue

)}
dλ

∣∣∣∣
2

dy

≤
n∑

t=0

∣∣J 1/2
t (ωnt −ue )

∣∣2
∫ 1

0

∫ ∣∣J−1/2
t

{
ṡt

(
y ;ue +λ (ωnt −ue )

)− ṡt
(
y ;ue

)}∣∣2
dy dλ

≤ sup
0≤t≤n

Mt

(
max

0≤t≤n
|J 1/2

t (ωtn −ue )|
) n∑

t=0

∣∣J 1/2(Gt ) (ωnt −ue )
∣∣2

,

with Mt (max0≤t≤n |J 1/2
t (ωtn−ue )|) from Assumption 6. Hence a combination of

(6.16) and (6.17) with Assumption 6, and the dominated convergence theorem
(for convergence in probability) yields,

n∑
t=0

∫ ∣∣∣∣(ωnt −ue )T
∫ 1

0

{
ṡt

(
y ;ue +λ (ωnt −ue )

)− ṡt
(
y ;ue

)}
dλ

∣∣∣∣
2

dy
p−→ 0,

which concludes the proof.
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Recall that an estimator tn = tn(X ,Y1, . . . ,Yn) of θ is regular if for all θ0 ∈Θ and
all hn → h we have,

p
n(tn − (θ0 +hn/

p
n))

d−→ Lθ0 , under Pθ0+hn /
p

n .

Regularity of an estimator can be interpreted as a kind of uniform convergence,
in shrinking neighbourhoods, to the limiting distribution. Since we have ob-
tained the LAN-property the Hájek-Le Cam convolution theorem holds.

Corollary 6.2. Make the same assumptions as in the previous theorem. If (tn)n∈N
is a regular estimator of θ then, under Pθ0 ,

p
n(tn − (θ0 +hn/

p
n))

d−→ Lθ0 = N(0, I−1(θ0))⊕Z(tn ),θ0 .

Hence the limiting variance of a regular estimator is at least I−1(θ), hence this
gives a lower bound to the asymptotic precision of regular estimators.

Semiparametric lower bound 6.4.2
In the previous subsection we derived a lower bound for estimating θ in case
the nuisance structure as defined in (6.1) is known. In this paragraph we in-
vestigate the influence of not knowing the sequence of conditional distribution
functions (Gt )t∈Z+ belonging to the set G . Before presenting the mathematical
details leading to a lower bound in the presence of this infinite dimensional
nuisance structure, we give some intuition leading to the lower bound on the
(asymptotic) variance of regular estimators for the parameter θ. The previous
subsection showed that the lower bound, for estimation of θ, in the parametric
model with the nuisance structure (Gt )t∈Z+ known is determined by the cen-
tral sequence (St (θ))t∈N. In our heuristic calculation of the lower bound in the
semiparametric problem, we have to project the elements of this central se-
quence onto the tangent space with respect to this unknown nuisance struc-
ture.

An important building block of the central sequence (St (θ))t∈N is the score
φ(y ;u,Gt ) = ω̇T (u)l̇

(
a−1

u y ;Gt
)

of the parameter u in the group model with time
fixed and Gt ∈ G known. In the semiparametric i.i.d. group model, given by(
G ◦a−1

u | u ∈U , G ∈G
)
, with ε∼G and Y = au(ε), where G ∈G is considered as

an unknown nuisance parameter, the efficient score function at u = ue , l̇∗ (ε;G),
takes over the role that the score function at u = ue , l̇ (ε;G), plays in the para-
metric i.i.d. group model. See Section 4.2 of Bickel et al. (1998) for a detailed dis-
cussion. Denote the tangent space4 of this semiparametric i.i.d. group model by

4Let us, intuitively, recall the meaning of an element of this tangent space. Let h : R → R

be bounded and such that gη(e) = g (e)(1 + ηh(e)) defines a density in G . So in a neighbor-
hood of 0 η 7→ gη is a path in G that passes g at η = 0. This yields a path η 7→ p(y ;u,Gη)
through the semiparametric group model. The score of this path is given by, using (6.4),
(∂/∂η) log p(Y ;u,Gη)

∣∣
t=0 = h(ε). This shows that the element h(ε) belongs to the tangent space.
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TG . This tangent space TG is a L2(G)-closed linear subspace of the space {h(ε) |∫
h dG = 0,

∫
h2 dG <∞}. By definition, the efficient score ω̇T (u)l̇∗ (ε;G) is the

projection (in L2(G)) of the score on the orthoplement of TG . Hence the pro-
jection of the score ω̇T (u)l̇ (ε;G) on TG follows from Π

(
l̇ (ε;G) |TG

) = l̇ (ε;G)−
l̇∗ (ε;G) . Corresponding to the information at u = ue , J (G) = ∫

l̇ l̇ T (e;G)dG(e),
we define the efficient information matrix at u = ue , J∗ (G) = ∫

l̇∗l̇∗T (e;G)dG(e).
Since the location-scale group is of special interest in (financial) econometrics,
we will provide these efficient score functions in the following example.

Example 6.4. We consider four cases, the pure location model, the pure scale
model, the pure scale model with zero mean, and the location scale model,

Yt+1 =µt +εt+1,
∫

e dGt (e) = 0,

Yt+1 =σtεt+1,
∫

e2 dGt (e) = 1,

Yt+1 =σtεt+1,
∫

e dGt (e) = 0,
∫

e2 dGt (e) = 1,

Yt+1 =µt +σtεt+1,
∫

e dGt (e) = 0,
∫

e2 dGt (e) = 1.

Recall that the scores for the location and/or the scale parameter at u = ue are
given by l̇ (e;G) = −(g ′/g ) (e) and l̇ (e;G) = −{

1+e(g ′/g ) (e)
}
, respectively. In

these location-scale problems, where apart from the model assumption (6.1)
and some regularity conditions, nothing is known about the conditional error
distributions, the efficient score functions are uniquely defined by the afore-
mentioned restrictions. Put σ2 = EGε

2, γ = EGε
3, κ = EGε

4. It is easily verified
that the efficient score functions at u = ue , l̇∗ (ε;G), in the respective models
are given by,

l̇∗ (ε;G) = σ−2ε,

l̇∗ (ε;G) = 2[κ−1]−1 {
ε2 −1

}
,

l̇∗ (ε;G) = 2
[
κ−γ2 −1

]−1 {
ε2 −γε−1

}
,

l̇∗ (ε;G) = 1

κ−1−γ2

[
(κ−1)ε−γ(

ε2 −1
)

2(ε2 −γε−1)

]
.

The efficient information matrices J∗ (Gt ) can be simply calculated by evaluat-
ing the expected outerproduct of the score under Gt . It follows that these ma-
trces are given by the leading coefficients of the scores above. Sometimes more
information is available about the conditional error distributions, for example
it is known that they are symmetric about zero. This symmetry condition on
the conditional error distributions also implies that the corresponding tangent
space is restricted to symmetric functions. This also affects the projection of
l̇ (εt+1;Gt ) onto this smaller tangent space. In the symmetric location problem
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there is even adaptivity i.e. l̇∗ (εt+1;Gt ) = l̇ (εt+1;Gt ). The efficient score func-
tion in the symmetric scale problems do not alter since γt = 0 in the symmet-
ric problem. In the symmetric location-scale problem the efficient score func-
tions of the corresponding symmetric location problem and the symmetric scale
problem should be stacked. In a similar manner one can treat higher order mo-
ment conditions, fixed moments, etc., see Bickel et al. (1998) for more exam-
ples.

In our semiparametric time series setting we have to project the component
St+1(θ) of the central sequence on the tangent space at time t +1. Let us first
discuss this tangent space. Fix ht (εt+1) ∈TGt , where ht is allowed to depend on
the information in H t . Since ht (εt+1) is a score, it is often possible to find a path
η 7→ gη,t in G which passes g t atη= 0 and with (∂/∂η) log pt (εt+1;Ut (θ),Gη) |η=0=
ht (εt+1). Thus the time t + 1 tangent space is given by (a subset5 of) Tt+1 ={
ht (εt+1) | ht ∈TGt

}
. Thus this tangent space is a subset of all zero mean, H t -

measurable, square integrable functions of εt+1. We want to calculate the pro-
jection of St+1(θ), on this tangent space (in L2). To this end, we first introduce

Ht+1 (εt+1,θ) = Ṽt (θ)Π
(
l̇ (εt+1;Gt ) |TGt

)= Ṽt (θ)
(
l̇ (εt+1;Gt )− l̇∗ (εt+1;Gt )

)
,

with (the expectation taken under the parameters θ and (Gt )t∈Z+),

Ṽt (θ) = E[
V̇t (θ) |H t

]
.

Since Ṽt (θ) is H t -measurable and Π
(
l̇ (εt+1;Gt ) |TGt

)
belongs (component-

wise) to Tt+1, is is clear that Ht+1 (εt+1,θ) is (componentwise) in Tt+1. We now
show that Ht+1 (εt+1,θ) is the projection of St+1(θ) onto T ∗

t+1. Introduce S∗
t (θ) =

St (θ)−Ht (εt ,θ). Decompose,

S∗
t+1(θ) = (V̇t (θ)− Ṽt (θ))l̇ (εt+1;Gt )+ Ṽt (θ)l̇∗(εt+1;Gt ).

We will show that S∗
t+1(θ) is orthogonal (in L2) to Tt+1. Let ht (εt+1) ∈ Tt+1. In

the following expectations are taken under the parameters θ and (Gt )t∈Z+ . Us-
ing that the conditional distribution of εt+1 given Ft is given by Gt and since
ht (εt+1) is orthogonal to l̇∗(εt+1;Gt ) in L2(Gt ), we obtain

E
[
ht (εt+1)Ṽt (θ)l̇∗(εt+1;Gt ) |Ft

]= Ṽt (θ)
∫

ht (e)l̇∗(e;Gt )dGt (e) = 0.

And we have,

Eht (εt+1)(V̇t (θ)− Ṽt (θ))l̇ (εt+1;Gt ) = E(V̇t (θ)− Ṽt (θ))E
[
ht (εt+1)l̇ (εt+1;Gt ) |Ft

]
,

5If one puts stationarity of the innovation process into the model, then this puts extra re-
strictions on the conditional densities which may yield a smaller tangent space. This explains
the inclusion.



158 Time series models with non-i.i.d. innovations Chapter 6

using that ht only depends on Ft via H t and that the law of εt+1 depends only
on Ft via H t we now obtain,

= E(V̇t (θ)− Ṽt (θ))E
[
ht (εt+1)l̇ (εt+1;Gt ) |H t

]

= EE[
V̇t (θ)− Ṽt (θ) |H t

]
E
[
ht (εt+1)l̇ (εt+1;Gt ) |H t

]= 0,

by definition of Ṽt (θ). Hence S∗
t+1(θ) is indeed orthogonal to Tt+1. This deter-

mines
(
S∗

t (θ)
)

t∈N as central sequence for the semiparametric model and the
corresponding lower bound is given by the inverse of the probability limit I∗ (θ) =
plimn→∞

1
n

∑n
t=1 S∗

t (θ)S∗
t (θ)T .

Remark 8. Note that I (θ) = I∗(θ), which is a necessary condition for adaptive
estimation, in case plimn→∞

1
n

∑n
t=1 Ht (εt ,θ)H T

t (εt ,θ) = 0. This is certainly the
case if Ṽt (θ) = 0 for all t . As an example, this holds for an AR(1) model with
i.i.d. mean zero innovations. Another sufficient condition for I (θ) = I∗(θ) is
l∗(εt+1;Gt ) = l (εt+1;Gt ), which is, for example the case for the location group
and G a subset of symmetric distrubutions centered around 0.

To formalize these heuristic arguments it suffices to construct a parametric
least-favorable submodel. Let us recall what this means. First introduce, for
θ ∈ Θ and a nuisance structure (Gt )t∈Z+ , the probability measure Pθ,(Gt ) that
generates the observations. If we can find, at a fixed Pθ,(Gt ), a parametric sub-
model of the semiparametric model that contains Pθ,(Gt ), and has the LAN-
property at Pθ,(Gt ) with information bound for θ equal to I∗(θ)−1, then this sub-
model is least favorable, i.e. it determines the most difficult local direction for
estimation of θ. Since an estimator in the semiparametric model is by defini-
tion regular if it is regular along all parametric submodels, it then immediately
follows that I∗(θ)−1 is indeed a lower bound to the asymptotic variance of reg-
ular estimators of θ.

We will present high-level assumptions that yield such a least-favorable sub-
model. The first assumption essentially requires that the standard i.i.d. semi-
parametric group model has a least favorable submodel, and that the time-
varying nature does not disturb this property.

Assumption 7. Let θ0 ∈ Θ, and (Gt )t∈Z+ such that Pθ0,(Gt ) belongs to the semi-
parametric model. There exists ε> 0 such that, for all t ∈Z+ , we can find a path
(−ε,ε) 3 η 7→ g t ,η in G such that the following conditions hold.

1. At η= 0 the path passes g t , i.e. g t ,0 = g t .

2. The path is an allowed nuisance structure in the semiparametric model:
for all θ in a neighborhood of θ0 and all η ∈ (−ε,ε) the probability measure
Pθ,(Gt ,η) belongs to the semiparametric model.
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3. For all ηn = vn/
p

n with vn → v0 ∈Rk the following expansion holds,

n∑
t=0

log
g t ,ηn

g t
(εt+1) = vT

0p
n

n∑
t=0

Ht+1(εt+1;θ0)

− 1

2n

n∑
t=0

(vT
0 Ht+1(εt+1;θ0))2 +o(1;P(Gt )).

Remark 9. Items 1 and 3 require that the standard i.i.d. semiparametric group
model has a least favorable submodel satisfying the LAN-property, and that the
time varying nature does not disturb this LAN-expansion. If Gt may be chosen
arbitrarily from G then item 2 is automatically satisfied. This is, for example,
the case for i.i.d. innovations or for Markovian innovation structures for which
one only makes assumptions on the transition-density. However, if one wants
to put stationarity or mixing conditions on the innovations, item 2 needs to be
checked.

Remark 10. In semiparametrics, one typically wants to have the set G as large as
possible to avoid possible misspecifications. If G would consist of all densities
we could take the densities

g t ,η(e) = ct (η)g t (e)ψ
(
ηT Ht+1 (e,θ0)

)
, e ∈R, η ∈R, (6.18)

where ct
(
η
)= 1/EGtψ

(
ηT Ht+1 (εt+1,θ0)

)
is the constant such that the left-hand

side is a (conditional) density and6 ψ (e) = 1+ π
2 arctan(e). Now item 3 usually

follows by a second order Taylor expansion (the negligibility of the remainder
term follows if n−1 ∑n

t=1 |vT
0 Ht+1(εt+1)|2 = O(1;P(Gt ))). Quite often, some gen-

eral restrictions on the set G are still useful or even necessary to be able to
identify the finite dimensional parameter of interest. In the examples of Sec-
tion 6.1 symmetry and/or moment conditions are mentioned. It is clear that a
symmetry condition on the conditional densities is automatically transformed
to the same symmetry condition on the score Ht (εt+1,θ0) and (6.18) thus re-
mains a valid submodel. Moment conditions are more delicate since moment
conditions are not necessarily preserved. This problem can be handled along
the lines of Example 3 on pp.53–55 of Bickel et al. (1998).

Fix θ0 and a nuisance structure (Gt )t∈Z+ . Using Assumption 7 we obtain a path
(θ,η) 7→ Pθ,(Gt ,η) in our semiparametric model which passes Pθ0,(Gt ) at (θ,η) =
(θ0,0) (please note that this does not change the interpretation of θ, since we
are still dealing with a group model). We will show that θ 7→ Pθ,(Gt ,θ0−θ) yields a
least favorable submodel (at Pθ0,(Gt )). We need some further regularity condi-
tions to be able to derive the desired LAN property for this proposed submodel.
Assumption 8 requires a law of large numbers and a central limit theorem for
the efficient score. Often this can be verified by an application of the martingale

6Note thatψ is a bounded, smooth functionψ (0) =ψ′ (0) = 1,ψ′′ (0) = 0, andψ′/ψ bounded.
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central limit theorem (see, for example, Hall and Heyde (1980)). Assumption 9
is a smoothness condition on the empirical efficient Fisher information. Verifi-
cation can usually be done via a Taylor expansion of Ht+1(a−1

Ut (θ)Yt+1,θ0) around
θ0. Condition (6.19) is a continuity condition, and Condition (6.20) is a first or-
der expansion of Ht+1(a−1

Ut (θ)Yt+1,θ0) where the form of the ‘derivative’ is based
on the classical assumption that the Fisher information can be obtained by ei-
ther taking the expectation of the outerproduct of the scores or by minus the
expectation of the derivative of the score.

Assumption 8. Let θ0 and (Gt )t∈Z+ be such that Pθ0,(Gt ) is an element of the
semiparametric model. Under Pθ0,(Gt ) the efficient score satisfies the weak law
of large numbers,

1

n

n∑
t=1

S∗
t (θ0)S∗

t (θ0)T p−→ I∗(θ0),

and the central limit theorem,

1p
n

n∑
t=1

S∗
t (θ0)

d−→ N(0, I∗(θ0)).

Assumption 9. Let θ0 and (Gt )t∈Z+ be such that Pθ0,(Gt ) is an element of the
semiparametric model. For all sequences θn = θ0 +un/

p
n, with un → u0, we

have

1

n

n∑
t=0

∣∣∣Ht+1

(
a−1

Ut (θn )Yt+1,θ0

)
−Ht+1

(
a−1

Ut (θ0)Yt+1,θ0

)∣∣∣
2
= o(1;Pθ0,(Gt )), (6.19)

and,

1p
n

n∑
t=0

Ht+1

(
a−1

Ut (θn )Yt+1,θ0

)
= 1p

n

n∑
t=0

Ht+1

(
a−1

Ut (θ0)Yt+1,θ0

)

− 1

n

n∑
t=0

Ht+1

(
a−1

Ut (θ0)Yt+1,θ0

)
ST

t (θ0)u0 +o(1;Pθ0,(Gt )). (6.20)

Finally, we prove that the submodel θ 7→Pθ,(Gt ,θ0−θ) satisfies the LAN property at
θ = θ0 with information equal to I∗(θ0), which implies, as discussed above, that
I∗(θ) is indeed a lower bound to the asymptotic variance of regular estimators
of θ. Let P(n)

θ,η denote the law of X ,Y1, . . . ,Yn under Pθ,(Gt ,η), and let P(n)
θ

=P(n)
θ,θ0−θ.

Theorem 6.3. Let θ0 ∈Θ and (Gt )t∈Z+ such that Pθ0,(Gt )t∈Z+ belongs to the semi-
parametric model. Under Assumptions7 1-9 the statistical submodelθ 7→Pθ,(Gt ,θ0−θ),

7Assume that Assumption 2 also holds, at Pθ0,(Gt ), for the submodel θ 7→Pθ,(Gt ,θ0−θ).
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has the LAN property at θ = θ0, i.e. for all sequences θn = θ0 + un/
p

n, with
un → u0, we have

log
dP(n)

θn

dP(n)
θ0

= uT
0p
n

n∑
t=1

S∗
t (θ0)− 1

2n

n∑
t=1

(
uT

0 S∗
t (θ0)

)2 +o
(
1;P(n)

θ0

)

d−→ N

(
−1

2
uT

0 I∗ (θ0)u0,uT
0 I∗ (θ0)u0

)
.

Proof.
Notice first that, with ηn = θ0 −θn =−un/

p
n,

log
dP(n)

θn

dP(n)
θ0

= log
dP(n)

θn ,ηn

dP(n)
θ0,0

= log
dP(n)

θn ,0

dP(n)
θ0,0

+ log
dP(n)

θn ,ηn

dP(n)
θn ,0

. (6.21)

From Theorem 6.1 we have,

log
dP(n)

θn ,0

dP(n)
θ0,0

= uT
0p
n

n∑
t=1

St (θ0)− 1

2n

n∑
t=1

(uT
0 St (θ0))2 +o

(
1;P(n)

θ0

)
. (6.22)

Under Pθn ,0 we have, using Assumption 2, the identity εt+1 = a−1
Ut (θn )Yt+1 and

Assumption 7,

log
dP(n)

θn ,ηn

dP(n)
θn ,0

= o(1;P(n)
θn

)+
n−1∑
t=0

log
g t ,ηn (a−1

Ut (θn )Yt+1)

g t (a−1
Ut (θn )Yt+1)

= o(1;P(n)
θn

)− uT
0p
n

n−1∑
t=0

Ht+1(a−1
Ut (θn )Yt+1;θ0)

− 1

2n

n−1∑
t=0

(uT
0 Ht+1(a−1

Ut (θn )Yt+1;θ0))2.

By a combination of Le Cam’s first lemma with Theorem 6.1, we may replace,
in the previous display, the term o(1;P(n)

θn
) by o(1;P(n)

θ0
). Using Assumption 9 we

now obtain

log
dP(n)

θn ,ηn

dP(n)
θn ,0

=− uT
0p
n

n−1∑
t=0

Ht+1

(
a−1

Ut (θ0)Yt+1,θ0

)
− 1

2n

n−1∑
t=0

(
uT

0 Ht+1

(
a−1

Ut (θ0)Yt+1,θ0

))2

+ 1

n

n−1∑
t=0

uT
0 Ht

(
a−1

Ut (θ0)Yt+1,θ0

)
St (θ0)T u0 +o

(
1;P(n)

θ0

)
(6.23)

Inserting (6.22) and (6.23) into (6.21) proves the desired asymptotic linearity of
the loglikelihood ratio:

log
dP(n)

θn

dP(n)
θ0

= uT
0p
n

n∑
t=1

S∗
t (θ0)− 1

2n

n∑
t=1

(
uT

0 S∗
t (θ0)

)2 +o
(
1;P(n)

θ0

)
.

Now Assumption 8 completes the proof.
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6.5 Appendix: a general LAN theorem
In this appendix we provide a general setup to derive a (uniform) LAN theorem
for models with dependent observations. Theorem 6.4 generalizes the results of
Roussas (1972). A similar result was obtained by McNeney and Wellner (2000,
Theorem 3.1).

Let, for each n ∈ N, (Ωn ,Fn) be a measurable space on which two probabil-
ity measures P̃n and Pn are defined. Let, for each n ∈N, Fn0 ⊂ ·· · ⊂ Fnn ⊂ Fn ,
be a sequence of increasing σ-fields. On these σ-fields we define, for n ∈ N,
the probability measures P̃n = P̃n |Fnn , Pn = Pn |Fnn , and for t = 0, . . . ,n, P̃nt =
P̃n |Fnt and Pnt = Pn |Fnt . Denote the Lebesgue decomposition of P̃nt on Pnt

(with respect to Fnt ) by (Lnt , Nnt ), i.e. P̃nt (A) = ∫
A Lnt dPnt + P̃nt (A∩Nnt ), and

Pnt (Nnt ) = 0 for all A ∈ Fnt . Under Pn , the likelihood ratio statistic LRn for P̃n

with respect to Pn is, by definition, given by Lnn . Put LRn0 = Ln0 and define the
conditional likelihood ratio contribution of the t-th observation by

LRnt =
Lnt

Ln,t−1
, t = 1, . . . ,n,

with the convention 0/0 = 1. Then, the likelihood ratio statistic can be decom-
posed as

LRn =
n∏

t=0
LRnt , Pn-a.s.

This equality follows from the fact that, under Pn , {Lnt : 0 ≤ t ≤ n} is a super-
martingale with respect to the filtration {Fnt : 0 ≤ t ≤ n} (which is easy to check)
and by repeated application of the following trivial proposition with X = Lnt ,
Y = Ln,t−1, and F =Fn,t−1, t = 1, . . . ,n.

Proposition 6.5.1. Suppose X is a nonnegative, integrable random variable and

Y a F -measurable random variable satisfying Y ≥ E [X |F ]. Then, X 1{Y =0}
a.s.= 0.

Proof. This follows from 0 ≤ EX 1{Y =0} = EE [X |F ]1{Y =0} ≤ EY 1{Y =0} = 0.

For general models, this concludes the general description of the likelihood ra-
tio statistic as the product of conditional contributions. In the following theo-
rem, we develop general criteria which allow for a LAN result.

Theorem 6.4. Suppose that there exists k ∈ N, such that for each n ∈ N, there
exist Fnt -measurable mappings Snt : Ωn → Rk , Rnt : Ωn → R, t = 1, . . . ,n, such
that the conditional likelihood ratio contribution LRnt can be written as

LRnt =
(
1+ 1

2

hT
np
n

Snt +Rnt

)2

, (6.24)

where, with Fn,−1 = {;,Ωn},
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1. hn → h0 ∈Rk , as n →∞

2. for each n ∈N, {Snt : 1 ≤ t ≤ n} is a Pn-square integrable martingale differ-
ence array with respect to the filtration {Fnt : 0 ≤ t ≤ n} satisfying the con-
ditional Lindeberg condition and the WLLN for the squared conditional
moments, i.e. for some k × k non-singular matrix I and for all ε > 0, we
have,

EPn

[
Snt |Fn,t−1

]= 0, t = 1, . . . ,n, (6.25)

1

n

n∑
t=1
EPn

[
|Snt |2 1{|Snt |>ε

p
n} |Fn,t−1

]
p−→ 0, under Pn as n →∞, (6.26)

1

n

n∑
t=1
EPn

[
Snt ST

nt |Fn,t−1
] p−→ I , under Pn as n →∞. (6.27)

3. the remainder terms Rnt and the null-sets Nnt from the Lebesgue decom-
position of Pn on P̃n are sufficiently small,

n∑
t=1
EPn

[
R2

nt |Fn,t−1
] p−→ 0, under Pn as n →∞, (6.28)

n∑
t=1

(
1−EPn

[
LRnt |Fn,t−1

]) p−→ 0, under Pn as n →∞. (6.29)

4. the first term is asymptotically negligible, i.e. LRn0
p−→ 1 under Pn .

Then the model satisfies the Uniform Local Asymptotic Normality (ULAN) con-
dition, i.e.

logLRn = hT
np
n

n∑
t=1

Snt −
1

2n

n∑
t=1

hT
n Snt ST

nt hn +o (1;Pn) (6.30)

d−→ N

(
−1

2
hT

0 I h0,hT
0 I h0

)
, under Pn as n →∞. (6.31)

Proof.
Rewrite the likelihood ratio statistic as the two leading terms in (6.30) and some
remainder terms,

logLRn =
n∑

t=0
logLRnt = o(1;Pn)+

n∑
t=1

hT
np
n

Snt −
1

2

n∑
t=1

(
hT

np
n

Snt

)2

+2
n∑

t=1

(
Rnt −EPn

[
Rnt |Fn,t−1

])−
n∑

t=1
R2

nt −
n∑

t=1

hT
np
n

Snt Rnt

+2
n∑

t=1

{
EPn

[
Rnt |Fn,t−1

]+ 1

8

(
hT

np
n

Snt

)2}
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+
n∑

t=1
r

(
1

2

hT
np
n

Snt +Rnt

)
, (6.32)

where r (x) = 2log |1+x|−2x + x2. To prove the expansion (6.30), we show that
the five remainder terms at the right-hand side all converge to zero in probabil-
ity. First we recall the following implication of Theorem 2.23 and Corollary 3.1
in Hall and Heyde (1980) (see Drost et al. (1997, Lemma 2.2), for additional de-
tails).

Lemma 6.5.1. If the square-integrable process {Xnt : 1 ≤ t ≤ n} adapted to the

filtration (Fnt )0≤t≤n satisfies, under Pn ,
∑n

t=1EPn

[
X 2

nt |Fn,t−1
] p→ 0, then, under

Pn ,

n∑
t=1

X 2
nt

p→ 0, and
n∑

t=1

(
Xnt −EPn

[
Xnt |Fn,t−1

]) p→ 0.

2

Since (Lnt )0≤t≤n is a Pn-supermartingale we have EPn LRnt ≤ 1. Since Snt is Pn-
square integrable we see, from (6.24), that Rnt is Pn-square integrable. From
Lemma 6.5.1 and Condition (6.28), we now immediately obtain, under Pn ,

n∑
t=1

(
Rnt −EPn

[
Rnt |Fn,t−1

]) p−→ 0, and
n∑

t=1
R2

nt
p−→ 0.

Next we show that the third remainder n−1/2 ∑n
t=1 hT

n Snt Rnt
p−→ 0, under Pn .

First note that Conditions (6.25)-(6.27) and Theorem 2.23 of Hall and Heyde

(1980) imply the unconditional version of (6.27): n−1 ∑n
t=1 hT

n Snt ST
nt hn

p→ hT
0 I h0.

Thus an application of the Cauchy-Schwarz inequality, combined with the pre-

viously obtained
∑n

t=1 R2
nt

p−→ 0, yields the desired convergence of this remain-
der term. To prove the negligibility of the fourth remainder term in (6.32), ob-
serve that, (6.24), (6.25), (6.27), (6.28), and the Cauchy-Schwarz inequality, yield

n∑
t=1

(
EPn

[
LRnt |Fn,t−1

]−1
)=

n∑
t=1
EPn

[
hT

np
n

Snt |Fn,t−1

]
+2

n∑
t=1
EPn

[
Rnt |Fn,t−1

]
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Thus, by (6.29),

n∑
t=1
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[
Rnt |Fn,t−1

] p−→−1

8
hT

0 I h0.
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Substituting this result into the fourth remainder term and using the uncon-
ditional version of (6.27) yields convergence to zero. To show that the final re-
mainder term in (6.32) is negligible, we first show that,

max
t=1,...,n

∣∣∣∣
hT

np
n

Snt +Rnt

∣∣∣∣
p−→ 0, (6.33)

n∑
t=1

∣∣∣∣
hT

np
n

Snt +Rnt

∣∣∣∣
3

p−→ 0. (6.34)

Observe that, for all a,b ∈R,

|a +b|2 I{|a+b|>ε} ≤ 4 |a|2 I{|a|>ε/2} +4 |b|2 I{|b|>ε/2}.

Let ε> 0 and η> 0, then by a result due to Dvoretzky (see Hall and Heyde (1980),
Lemma 2.5) and by (6.26) [or by (6.25) if h0 = 0] and (6.28),
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4

}

+η→ η as n →∞.

This implies (6.33) since η is arbitrary. Equation (6.34) is obtained from this re-
sult by taking out the maximum (which tends to zero) and by observing that the
remaining quadratic term is bounded in probability (use the arguments leading
to the convergence of the third remainder term). By (6.33) it suffices to derive

the behavior of the final remainder term on the event
{∣∣∣1

2
hT

np
n

Snt +Rnt

∣∣∣≤ 1
2

}
. On

this set this remainder term is bounded by, using
∣∣log(1+x)−x + 1

2 x2
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2 ,
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4

3
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np
n
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)3

.

Convergence to zero is obtained from (6.34). This completes the proof of the
expansion (6.30). The convergence to the normal distribution in (6.31) follows
immediately from Corollary 3.1 of Hall and Heyde (1980). This completes the
proof of Theorem 6.4.

Remark 11. Let us discuss the assumptions in Theorem 6.4 shortly. First of all
note that Assumption 1 ensures the validity of a martingale central limit theo-
rem. Assumption 2 allows for the expansion of the logarithmic likelihood. For
an appreciation of using an expansion of the square root of the likelihood ratio,
see Pollard (1997).
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Dit proefschrift bestaat uit twee delen. Deel I bevat contributies aan de liter-
atuur over geheeltallige tijdreeksmodellen. Het tweede deel bestaat uit twee
hoofdstukken: een hoofdstuk over copula-modellen en een hoofdstuk over semi-
parametrische tijdreeksmodellen.

Deel I Veel interessante variabelen in de economische wetenschappen, maar
bijvoorbeeld ook in de medische wetenschappen en biologie, kunnen opgevat
worden als een niet-negatieve, geheeltallige tijdreeks. Denk bijvoorbeeld aan
het aantal transacties in het aandeel SNS-Reaal per dag, het aantal patiënten
in een ziekenhuis gemeten aan het einde van iedere dag, etcetera. Het belang
van adequate modellen en statistische technieken voor dergelijke processen
behoeft dus geen betoog. Tot eind jaren zeventig werd echter, relatief gezien,
weinig onderzoek verricht op dit gebied. Een verklaring hiervoor is dat het con-
strueren van adequate probabilistische modellen veel lastiger is dan voor con-
tinue data. De laatste twintig jaar zijn er verschillende probabilistische mod-
ellen voorgesteld. Deel I van dit proefschrift ontwikkelt statistische methoden
voor een van de meest, in empirische applicaties, gebruikte modellen: de klasse
van INAR processen. Deze kunnen gezien worden als een niet-negatief geheeltal-
lig analogon van de bekende (continue) autoregressieve (AR) processen.

Hoofdstuk 1 presenteert enkele probabilistische resultaten voor INAR pro-
cessen, welke gebruikt worden in latere hoofdstukken van Deel 1. In het bij-
zonder worden condities gegeven voor de existentie van een stationair INAR
proces, en de existentie van momenten en (uniforme) ergodiciteit.

In Hoofdstuk 2 wordt de structuur van parametrische, stationaire INAR mod-
ellen bekeken. De conclusie van dit hoofdstuk is dat, onder zekere gladhei-
dsvoorwaarden, deze modellen de Lokale Asymptotisch Normale (LAN) struc-
tuur hebben. Een zeer belangrijk ingrediënt in het bewijs van dit resultaat is
dat we de overgangsscores kunnen representeren als conditionele verwachtin-
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gen. De LAN-structuur is van belang voor Hoofdstuk 3. Bovendien volgt uit deze
structuur een nieuwe schatter die, behalve asymptotisch efficiënt, ook attrac-
tief is uit computationeel oogpunt (ten opzichte van de meest aannemelijke
schatter).

In Hoofdstuk 3 worden semiparametrische INAR modellen bestudeerd. In
deze semiparametrische modellen wordt de verdelingsveronderstelling op de
innovatie-structuur nagenoeg losgelaten. Dit geeft een groter en dus realistis-
cher model. De prijs hiervoor is dat het schatten van een parameter moeilijker
is dan het schatten van dezelfde parameter in een parametrisch deelmodel.
In dit hoofdstuk wordt een schatter, van zowel de Euclidische parameter als
de puntmassa functie van de innovaties, voorgesteld, die geïnterpreteerd kan
worden als een niet-parametrische meest aannemelijke schatter. Asymptotis-
che efficiëntie van deze schatter wordt bewezen.

In Hoofdstukken 1-3 wordt gekeken naar stationaire modellen. Om het ef-
fect van niet-stationairiteit op de statistische eigenschappen te onderzoeken,
wordt in Hoofdstuk 4 het limiet-experiment van een onstabiel INAR proces
afgeleid. Het resultaat is zeer opmerkelijk, aangezien het limiet-experiment niet
de gebruikelijke equivariantie- en kwadratische structuur heeft. De statistis-
che implicaties van dit resultaat worden ook besproken. In het bijzonder wordt
aangetoond dat de Dickey-Fuller toets (asymptotisch en lokaal) geen onder-
scheidend vermogen heeft, terwijl, dankzij het limiet-experiment, aangetoond
wordt dat een intuïtieve toets asymptotisch optimaal is.

Deel II
In Hoofdstuk 5 wordt het efficiënt schatten van de marginale verdelings-

functies op basis van een aselecte steekproef uit een bivariate verdeling, waar-
van de copula bekend is en de marginalen onbekend zijn, bestudeerd. Er wordt
aangetoond dat, in het algemeen, de marginale empirische verdelingsfuncties
niet efficiënt zijn. Op basis van de empirische aannemelijkheidsfunctie wordt
een schatter voorgesteld die de kennis over de copula uitbuit. Asymptotische
optimaliteit van deze schatter wordt aangetoond.

Chapter 6 leidt semiparametrische ondergrenzen af voor Euclidische com-
ponenten in algemene (continue) tijdreeksmodellen met een groep-structuur.
In deze modellen wordt niet, zoals gebruikelijk, aangenomen dat de innovaties
onderling onafhankelijk en identiek verdeeld zijn. In plaats hiervan wordt de
afhankelijkheidsstructuur als een (extra) oneindig-dimensionale hinderparam-
eter gezien.


