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Abstract. The main feature of the penalty schemes described in current sentencing guidelines is

that the fine is based on the accumulated gains from cartel or price-fixing activities for the firm.

The regulations thus suggest modelling the penalty as an increasing function of the accumulated

illegal gains from price-fixing to the firm, so that the history of the violation is taken into account.

We incorporate these features of the penalty scheme into an optimal control model of a profit-

maximizing firm under antitrust enforcement. To determine the effect of taking into account the

history of the violation, we compare the outcome of this model with a model where the penalty

is fixed. The analysis of the later model implies that complete deterrence can be achieved only

at the cost of shutting down the firm. The proportional scheme improves upon the fixed penalty,

since it can ensure complete deterrence in the long run, even when penalties are moderate.

Phase-diagram analysis shows that the higher the probability and severity of punishment, the

sooner cartel formation is blocked. Further, a sensitivity analysis is provided to show which

strategies are most successful in reducing the degree of price-fixing. It turns out that, when the

penalties are already high, the antitrust policy aiming at a further increase in the severity of

punishment is less efficient than the policy that increases the probability of punishment.
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1 Introduction

This paper analyses the optimal policies for the deterrence of violations of antitrust law. We study

the effects of penalty schemes, determined according to the current US and EU antitrust laws, on

the behavior of the firm. We investigate intertemporal aspects of this problem using a dynamic

optimal control model of utility maximization by the firm under antitrust enforcement.

This paper addresses the problem of whether the fine, determined on the basis of accumulated

turnover of the firm participating in a cartel, can provide a complete deterrence outcome. We

assume that the imposed fine takes into account the history of the violation. This means that

when the violation of antitrust law is discovered, the regulator is able to observe all accumulated

rents from cartel formation. Consequently, it will impose the fine that takes into account this

information. We also compare the deterrence power of this system with the fixed penalty scheme.

The OECD report (2002) provides a description of the available sanctions for cartels according

to the laws of member countries (Ref. 1). Those laws allow for considerable fines against enterprises

found to have participated in price-fixing agreements. In some cases, however, the maximal fines

determined by these laws may not be sufficiently large to accommodate multiples of the gain to

the cartel, as suggested by expected utility theory. In most of the countries the maximal fines
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are expressed either in absolute terms or as a percentage (10%) of the overall annual turnover

of the firm (Ref. 2). However, according to experts’ estimations, the best policy is to impose

the penalties, which are a multiple of the illegal gains from price-fixing agreements to the firms.

This, of course, would be difficult to estimate in real life, so it is still common practice to use the

percentage of turnover as a proxy of the gains from price-fixing activities.

Several countries, namely the US, Germany, and New Zealand, have already accommodated

this more advanced system, where the fine is stated in terms of unlawful gains (Ref. 3). In general,

the determination of the final amount of the fine, to be paid by the firm in each particular case, is

based on the degree of offence, which is proportional either to the amount of accumulated illegal

gains from the cartel or to its proxy, turnover involved throughout entire duration of infringement.

At the same time there exists an upper bound for the penalties for violations of antitrust law. The

fine is constrained from above by the maximum of a certain monetary amount, a multiple of the

illegal gains from the cartel, or if the illegal gain is not known, 10% of the total annual turnover

of the enterprise. The idea of the current paper is to incorporate these features of the current

penalty systems into a dynamic model of intertemporal utility maximization by a firm, which is

subject to antitrust enforcement.
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Similar to Fent et al. (Ref. 4)) or Leung (Ref. 5), the set up of the problem leads to an

optimal control model. The main difference compared to Ref. 4 or 6 is that the gain from the

cartel accumulated by the firm over the period of infringement takes the role of a state variable,

whereas the idea of Ref. 4 was to take the offender’s criminal record as a state variable of the

dynamic game. An increase in the state variable is thus positively related to the degree of price

fixing by the firm, and increases the fine the firm can expect in case of being convicted.

Furthermore, this framework allows us to analyze the consequences of two major modifications

of the penalty systems for violations of competition law, which have been recently suggested by

the OECD and US Department of Justice (DOJ). The modification suggested by the OECD was

concerned with the increase of the multiplier for the base fine, while DOJ (Ref. 7) suggests to

increase the upper bound for the fine up to $100 million. By solving the optimal control problem of

the firm under antitrust enforcement, we will investigate the implications of the different penalty

schedules.

The main results are that, for the benchmark case, i.e., when the penalty is fixed, the outcome

with complete deterrence of cartel formation is possible but only at the cost of shutting down the

firm. In other words, the fixed penalty, which can ensure complete deterrence, is too high, because
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it leads to immediate bankruptcy. However, the result can be improved by relating the penalty to

the illegal gains from price-fixing. The proportional scheme appears to be more appropriate than

the fixed penalty, since it can ensure complete deterrence in the long run even in case penalties are

moderate. We also study the impact of the main parameters of the penalty scheme (probability

and severity of punishment) on the efficiency of deterrence and analyze the optimal trade-off

between changes in the scale parameter of the proportional penalty scheme and probability of law

enforcement. It turns out that, the higher the probability and severity of punishment, the earlier

the cartel formation is blocked. The sensitivity analysis shows that when the penalties are already

high, the antitrust policy aiming at a further increase in the severity of punishment is less efficient

than the policy that increases the probability of punishment.

The paper is organized as follows. In Section 2 we describe the general setup of an optimal

control model of the firm under antitrust enforcement. In Section 3 we consider the case where

the upper bound for the penalty is an exogenously given fixed monetary amount. Moreover, we

will derive an analytical expression for this upper bound, which allows to achieve the result of

complete deterrence of price-fixing. In Section 4 we investigate the implications of the penalty

being proportional to the accumulated gains from price-fixing. We also conduct sensitivity analysis
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of the equilibrium values of the variables of the model with respect to the parameters of the penalty

scheme.

2 Optimal Control Model: General Setup

We introduce the basic ingredients of the intertemporal optimization problem of a profit maximiz-

ing firm, which participates in an illegal cartel. The key variable is the accumulated gains from

prior criminal offences (in case of a cartel, these offences are price-fixing activities).

2.1. Dynamics of the Accumulated Rents from Price-Fixing.

The accumulated rents from price-fixing, w(t), is the state variable of the model, which increases

depending on the degree of offence (price-fixing). Using a continuous time scale the dynamics of

the accumulated rents from price-fixing equals4

.
w(t) = πmq(t)(2− q(t)), with w(0) = w0 ≥ 0. (1)

Where
.
w(t) stands for the change in the value of the state variable, q(t) denotes the degree

of price-fixing by the firm at instant t, and w0 is the initial wealth of the firm before the start

4To simplify the analysis for the rest of this section we assume w0 = 0. However, relaxing this assumption does
not change the results stated in the propositions of the paper.
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of the planning horizon. Expression (1) rests on the assumption of the demand function being

linear. A complete derivation of expression (1) is given in Appendix 1 of the paper, where
.
w(t)

is associated with instantaneous producer surplus for the firm caused by fixing price levels above

the competitive. The main idea behind this formulation is that cartel formation leads to higher

prices. The ”normal” price is c (competitive equilibrium) leading to zero profits. Then q denotes

the degree of violation, i.e. when the cartel fixes a higher price than ”normal”. From the definition

of q in the Appendix it is clear that in case of such a violation, i.e. when price is higher than

competitive level, q is positive. Based on a simple linear demand function5 , profit (or producer

surplus), can be expressed as a concave function of q. Now the state variable w(t) adds up the

profits over time, and as such w(t) is the total gain from crime (too high prices) from time 0 up

to t.

There are strong legal and economic reasons for introduction of the state variable in the form

of accumulated rents from price-fixing. It is related to the fact, that in US and EU guidelines

for imposition of fines for antitrust violations, the penalty imposed in many cases is based mainly

on the turnover involved in the infringement throughout the entire duration of the infringement.

Clearly, the accumulated turnover serves as a proxy for accumulated gains from cartel or price-

5See Appendix, Section 5.

7



fixing activities for the firm.

2.2. Profit Function.

The instantaneous illegal gains from price-fixing for the firm equal πmq(t)(2− q(t)); this func-

tion has been derived from the microeconomic model underlying the problem of price-fixing6.

Obviously, this function implies that the marginal profit for the firm is always positive and strictly

declining in the interval q(t) ∈ [0, 1]. Moreover, for each positive level of offence the profit is also

positive.

The instantaneous profit at time t will also be influenced by accumulated rents from price-

fixing. This variable also measures the experience the firm has in forming a cartel. The more it has

experience, the more efficiently the firm colludes and, consequently, the higher the instantaneous

profits from price-fixing. This influence is reflected in the term γw(t) which enters additively the

objective function of the firm; see expression (4) below7.

2.3. Law Enforcement Policy.

The goal of the current section is to incorporate the features of the penalty system for antitrust

6For complete derivation of this expression see the Appendix (Section 5).
7It may be more realistic to express this term as a nonlinear function of w. In particular, a concave formulation

may be very tractable since there might be decreasing marginal returns from experience. However, it will not
change the results of the paper in a qualitative sense. The solution of the model in case experience gain is modeled
as γ

√
w gives the outcome with complete deterrence similar to Proposition 2 and results of sensitivity analysis for

the model with proportional penalty still hold. The analysis of the model, where penalty is fixed, with γ
√

w term
gives the same qualitative result but the model can only be solved numerically.

A complete proof of this statement is available from author upon request.
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law violations, described above, into the optimal control model of intertemporal utility maximiza-

tion by the firm in the presence of a benevolent antitrust authority, whose aim is to minimize

the loss of consumer surplus, i.e. to block any degree of price-fixing. So, in order to capture

the specifics of the sentencing guidelines and current antitrust practice, we model the penalty for

violations of antitrust law as a linear increasing function of the accumulated rents from price-fixing

for the firm. Therefore, it can be written as

s(w(t)) = αw(t). (2)

This setup will also allow to study the effects of the changes of the multiplier for the base fine

(refinement suggested by OECD) on the deterrence power of the penalty scheme.

According to Becker (Ref. 8)) the cost of different punishment to an offender can be made

comparable by converting them into their monetary equivalent or worth. And this is satisfied in

our model, since we measure the accumulated rents from price-fixing for the firm in monetary

units. Moreover, our specification of the penalty function satisfies three main conditions specified

in Ref. 4, namely: it is strictly increasing in the level of offence (since w(t) is strictly increasing

in q(t)), firms which do not collude at all should not be punished (s(w0) = 0), and any detected
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positive level of offence should lead to a positive amount of punishment (s(w(t)) > 0, for any

w(t) > w0, which is equivalent to q(t) > 0 for some t ∈ [0, T ]). This implies that, if the firm

has been checked, violated the law in the current period and participated in the cartel in some of

the previous periods, the fine will be imposed on the basis of the whole accumulated gains from

price-fixing, w(t), and thus not only on the basis of the current degree of offence, q(t).

Further, we will compare the efficiency and deterrence power of the penalty systems for a

model in which the penalty is given by expression (2) and a model in which the penalty is fixed

(s(t) = Smax), where Smax is the fixed upper bound for the penalty introduced in the sentencing

guidelines, which is not related to the level of offence.

2.4. Costs of Being Punished.

The cost of being punished at time t equals the expected value of the fine that has to be paid.

This will be defined as the multiple of the probability of being checked by antitrust authority, p

(level of law enforcement), times the degree of offence at time t, q(t), times the level of punishment,

which depends on time as well:

exp ected penalty = s(t)q(t)p, with p ∈ [0, 1]. (3)
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So, the expected penalty is determined by expression (3), where pq(t) is the probability of

being punished at time t and s(t) is the fine, which may either be fixed or can be expressed as a

function of accumulated gains from price-fixing.

We should stress here that the firm can only be caught at time t if q(t) > 0, i.e. the offence is

committed exactly at this time. Of course this need not be the case for criminal acts in general:

you can convict a thief, if the police has found the stolen things without having caught the

burglar in action.8 However, it does apply to antitrust law practices. According to Refs. 1 and 3,

investigation concerning past behavior only starts at the moment it is observed that the current

price exceeds the competitive price, thus when q(t) > 0. After this is proved (usually on the

basis of empirical analysis of price mark-ups), the antitrust authority will start a more detailed

investigation and get access to accounting books and documents that can prove the existence of a

cartel agreement. Only after that the gains from price-fixing (w(t)) become “perfectly observable”,

so that the court (or competition authority) can take them into account while determining the

amount of fine to be paid.9

8We thank an anonymous referee who pointed out this difference.
9Here it is also important to realize that the probability of being caught at instant t is pq(t). So that the firm

can only be caught at time t1 if it does price fixing on that date, so if q(t1) > 0. Later in time, say at time t2 > t1,
the firm cannot be punished because of the offence at time t1. At t2 it can only be caught and punished if q(t2) > 0.
At the moment the firm is caught it has to pay a fine, s(t). In one scenario this fine is an increasing function of
w(t). So, this means that if the firm did a lot of price-fixing in the past, implying that w(t) is large, the fine will
be larger. In this sense repeated offenders are more heavily punished, and this is what quite frequently happens in
modern democratic societies. So if the firm is caught at time t2, it is convicted for the crime on t2, and the level of
the fine depends on what the firm did in the past, thus also what it did at time t1 < t2 as well. In other words, the
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2.5. Optimization Problem.

The firm making the decision about the degree of price-fixing faces the following intertemporal

decision problem:

max J(q(t)) :=

∞∫

0

e−rt[πmq(t)(2− q(t)) + γw(t)− s(t)pq(t)]dt (4)

s.t.
.
w(t) = πmq(t)(2− q(t)) and q(t) ∈ [0, 1].

The parameter r is the discount rate. The objective functional J(q(t)) is the discounted profit

stream gained from engaging in price-fixing activities. The term πmq(t)(2 − q(t)) reflects the

instantaneous rents from collusion and the term −s(t)p(t)q(t) reflects the possible punishment for

the firm, if it is caught. Note that the higher the degree of collusion, the higher the q(t), the

higher the expected punishment. γw(t) reflects the experience of the firm in cartel formation that

increases future instantaneous gains from cartel formation.

Having made the assumptions of section 2 we define the current value Hamiltonian:

Hc(q, w, µ) = πmq(t)(2− q(t)) + γw(t)− s(t)pq(t) + µ(t)(πmq(t)(2− q(t))) (5)

higher the degree of price fixing at t1, the larger the fine will be at t2. This is independent of how many times the
firm was caught in the past: the fine the firm paid before will not be subtracted from w. Since w is non-decreasing
over time, it is implicitly taken into account that repeated offenders will be more heavily punished.
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where µ(t) is the current value adjoint variable representing the shadow price of the offence.

The Hamiltonian is well-defined and differentiable for all nonnegative values of the state variable

w(t) and all values of the control variable q(t) in its domain [0, 1].

3 Penalty Represented by a Fixed Monetary Amount

In this section we would like to model the situation where penalty for violations of antitrust law is

represented by a fixed monetary amount. In this case we assume that the fine does not depend on

the accumulated gains from price-fixing and constant over time. This might be a good framework

to study the efficiency of antitrust enforcement in an environment where there exists an upper

bound for penalties and offences are so grave that punishment always reaches its upper bound,

which is true for highly cartelized markets. The analysis of this model is quite essential, since the

imposition of the upper bound for penalties for violations of antitrust law is still a current practice

in most countries. Only Norway and Denmark do not have this limitation. This model will also

allow to take into account DOJ new policy that suggests to increase the upper bound for the fine

for violations of antitrust law up to $100 million. We modify the model of Section 2 in such a way

that the fine is given by some fixed monetary amount, Smax, which denotes the maximal penalty.
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In other words, the antitrust authority commits to a policy of the following form: the rate of law

enforcement is constant p(t) = p ∈ (0, 1] for all t, and, when the firm is inspected, the penalty is

s(t) = Smax if q(t) > 0 and s(t) = 0 if q(t) = 0.

In this section we show that if the fixed penalty (or upper bound for the fine imposed by law)

is not high enough, complete deterrence is never possible. Moreover, we will derive an analytical

expression for the upper bound, which allows to achieve the result of complete deterrence of price-

fixing. The main difference with the model with proportional penalty is that the penalty does

not depend on accumulated illegal gains. For simplicity, we assume that there is no discounting10

(r = 0), the planning horizon is finite (T < ∞), salvage values for both players are equal to zero,

so that the transversality conditions are λ(T ) = 0, µ(T ) = 0 for both players.

We derive the dynamic system for the optimal control q(t) from the following necessary opti-

mality conditions:

q(t) = argmax
q

Hc(q, w, µ) (6)

and
.
µ(t) = −∂H(q, w, µ)

∂w
(7)

10To make the analysis more transparent and analytically solvable we assume here that r = 0. However, imposing
that r > 0 does not change the qualitative predictions of the model. Only the dynamics of the costate variable
of the firm changes. The equation for µ(t) becomes µ(t) = γ

r (1 − e(t−T )). A complete proof of this statement is
available from author upon request.
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The expression (7) gives
.
µ(t) = −γ. Solving this simple differential equation in case of finite

planning horizon, we get µ(t) = γ(T − t). Consequently, we get µ(t) ≥ 0 for all t ∈ [0, T ] . This

allows us to conclude that the Hamiltonian (5) is strictly concave with respect to q. Therefore,

condition (6) is equivalent to Hc
q = 0. It leads to

q∗(t) = 1− pSmax

2πm(1 + γ(T − t))
= C (8)

However, the control region of the offence rate q is limited by [0, 1], by construction. This

implies that the expression for the optimal degree of price-fixing by the firm is given by q∗(t) =

{
0 if C≤0

C if 0<C≤1
.

Following expression (8), we can represent the optimal degree of price-fixing by the firm, q, as

a decreasing function of both the penalty for violation and time. The first part of this statement is

quite intuitive, since a higher expected penalty will, obviously, increase the incentives for the profit

maximizing firms to avoid participation in price-fixing agreements and thus reduce the degree of

offence, q. The negative relationship between the degree of price-fixing and time is related to

the fact that higher gains from price-fixing in the beginning imply that for a longer time period

the firm can take an advantage of it, in the sense that due to increased experience profits from

price-fixing will be higher. So, incentives to commit crime decrease over time and, hence, the
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degree of offence falls.

3.1. State-Control Dynamics.

After we substitute (8) into (1) the differential equation describing the dynamics of the state

variable will be as follows:

.
w(t) = πm(1− (

Smaxp

2πm(1 + γ(T − t))
)2) (9)

The results of the solution of this differential equation for different values of Smax and other

parameters being p = 1
2
, πm = 2, γ = 1

2
, T = 10, w(0) = 1 are summarized in the following table:

Table 1

Penalty Accumulated gains from collusion Degree of price-fixing

Smax = 2 w(t) = 1
2(−12+t)

+ 2t + 25
24

,→ w(T ) ≈ 20. 792 q∗(t) = 1− 1
24−2t

,→ q(T ) ≈ 3
4

Smax = 10 w(t) = 25
2(−12+t)

+ 2t + 49
24

,→ w(T ) ≈ 15. 792 q∗(t) = 1− 5
24−2t

,→ q(T ) = 0

Smax = 20 w(t) = 50
(−12+t)

+ 2t + 31
6
,→ w(T ) ≈ 0. 166 q∗(t) = 1− 10

24−2t
,→ q(T ) = 0

Consequently, when all the parameters of the model are fixed, w(t) is increasing over time

and the degree of offence is a decreasing function of time. Unfortunately, we must conclude that,

for example, when the fixed penalty equals 2, which is the instantaneous monopoly profit for the

firm for these parameter values, it does not allow to achieve complete deterrence even in the last

16



period. On the contrary, the last period degree of price-fixing is quite high (75% out of 100%).

We can conclude that the policies with fixed penalty appear to be highly inefficient, since to

achieve q∗(t) = 0 for all t ∈ [0, T ] we should have 1 − s(t)p
2πm(1+γ(T−t))

≤ 0, which implies s(t) ≥

2πm(1+γ(T−t))
p

. In the example with parameter values T = 10, πm = 2, γ = 1
2
, p = 1

2
we get

s(0) ≥ 48 = 24πm and s(T ) = s(10) ≥ 8 = 4πm. This enormous penalty will drive the firm

bankrupt immediately. Moreover, this result is counterintuitive and unfair, since the firm colluding

for one period will obtain less extra gain than a firm colluding for ten periods, and, consequently,

should be punished less.

The main result of the analysis of the model with fixed penalty is represented in the following

proposition:

Proposition 3.1. In the optimal control model, where p(t) = p > 0 for all t ∈ [0, T ], the no

collusion outcome (i.e. complete deterrence of price-fixing) occurs when Smax(t) ≥ 2πm(1+γ(T−t))
p

for all t ∈ [0, T ] , thus when Smax(0) ≥ 2πm(1+γT )
p

.

The implication of this result is that the penalty for antitrust violation, which potentially can

provide complete deterrence, should be imposed by the antitrust authority (thus, not by the court),

i.e. by the authority which has complete information about the probability of law enforcement.
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The fine should be inversely related to the probability of investigation (similar to Ref.8). Moreover,

the penalty should be based mainly on the instantaneous monopoly profits in the industry. Of

course, this value is different for each industry, so the specifics of the industry also should be

taken into account when the optimal fine for antitrust violations is determined. The length of the

planning horizon should also be taken into account.

However, in real life the implementation of this scheme is problematic, since the court (not the

antitrust authority) imposes the penalty and, consequently, the parameter p cannot be verified.

Unfortunately, the fixed penalty system does not always work. For Sfixed < 2πm(1+γ(T−t))
p

for

some t, the result with no price-fixing outcome during the whole planning period is not possible.

However, the new DOJ policy may be quite successful, since $100 million seems to be higher than

2πm(1+γT )
p

for reasonable parameter values, such as p = 1
5
, πm = $1million,γ = 1

5
, T = 10.

Moreover, this result resembles the result of Emons (Ref. 9), where the subgame perfect pun-

ishment for repeated offenders in a repeated games setting was investigated. The final conclusion

of the paper is that if the regulator’s aim is to block violation at the lowest possible cost, the

penalty should be a decreasing function of time. Moreover, he concludes that the first period

penalty (penalty for the first detected violation) should be the highest and should extract the
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entire wealth of the offender. So, another drawback of this system is that it does not explain esca-

lating sanctions based on offense history which are embedded in many penal codes and sentencing

guidelines.

Another problem with this result is that the fixed penalty, which can ensure complete de-

terrence, is too high. It is clearly unbearable for the firm and leads to immediate bankruptcy.

Already for the first violation we have to punish twenty times more than the maximal per-period

monopoly profit. To resolve this ”impossibility result” we look at the other scheme that relates

the penalty to the illegal gains from price-fixing. In particular, in the next section we introduce

the penalty as a linear increasing function of accumulated gains from price fixing for the firm given

by the expression (2) above. The proportional scheme is preferred to the fixed penalty, since it

can ensure complete deterrence in the long run even in the case where penalties are moderate.

4 Analysis of the Model where the Penalty Schedule Is

Given by s(t) = αw(t).

This setup reflects another important feature of the penalty systems for violations of antitrust law

suggested by current sentencing guidelines. Namely, that the fine is proportional to the illegal
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gains from cartel formation. This more advanced system has already been implemented in the

US, Germany, New Zealand, and some other countries.

4.1. Utility maximization.

As before, we derive the optimal control q(t) from the following necessary optimality conditions:

q(t) = argmax
q

Hc (10)

.

µ(t)− rµ(t) = −γ + αpq(t) (11)

Since the control region of the offence rate q is limited by [0, 1], the maximization condition

(10) is equivalent to

q∗(t) =

{
0 if C≤0

C if 0<C≤1

1 if C > 1
, where C = 1− αw(t)p

2πm(1 + µ(t))
(12)

We conclude that the optimal degree of price-fixing by the firm is a decreasing function of

both the penalty for violation and the probability of law enforcement. This is also quite intuitive

from an economic point of view. The profit maximizing firm will reduce their optimal degree of

price-fixing in response to the increase in the rate of law enforcement, since it makes conviction

more likely. Secondly, increase in accumulated rents from collusion also rises the expected penalty,

20



and this gives an additional incentive for the firm to reduce the degree of price-fixing. This allows

the system to gradually converge to the socially desirable outcome with no price-fixing.

4.2. State-Costate Dynamics.

Substituting (12) into (1) and (11) gives the following system of differential equations:

.
w(t) = πm(1− ( αwp

2πm(1+µ)
)2) = 0

.

µ(t) = −γ + αp(1− αwp
2πm(1+µ)

) + rµ = 0

(13)

A stationary point can be obtained by intersecting the locuses
.
w = 0 and

.
µ = 0. Which are

given respectively by

w(µ) = 2πm µ + 1

pα
and w(µ) = 2πm−γµ− γ + pαµ + pα + µ2r + rµ

α2p2
.

The steady state of the system (13), being located in the positive orthant, is given by µ∗ =

γ
r
, w∗ =

2πm(1+ γ
r
)

αp
. This implies that q∗ = 0.

The necessary conditions for existence of stationary points in the positive orthant are γ < r

and p > 0.11 This means that, when the extra benefits for the firm from cartel formation do not

11The detailed proof of this statement is available from authors upon request.
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increase much with the experience of the firm in cartel formation (γ < r), the outcome with no

collusion is more likely to be sustained in the long run, since it is less attractive for the firm to

participate in the cartel agreements. So, a unique stationary point in the positive orthant always

exists, except when p = 0 (i.e the probability to be caught is zero) or when γ > r (i.e. the extra

benefits for the firm from cartel formation increase very fast when the experience of the firm in

cartel formation increases). The optimal control problem does not have a stable solution in cases

p = 0 or γ > r.

Example 4.1: Next, the solution procedure and construction of the phase portrait is illus-

trated via an example. We construct the phase portrait when the parameters are γ = 0.5, πm =

1, α = 2, p = 0.2, r = 0.2. The
.
w = 0 isocline is given by µ = −1 + 1

5
w. Similarly, the

.
µ = 0

isocline is given by µ = −1
4

+ 1
20

√
(225 + 160w). The stationary point then satisfies w∗ = 35

2
and

µ∗ = 2.5.

[Place Figure 1 about here]

Studying the stability of the steady state equilibrium w∗ = 35
2

and µ∗ = 2.5 we obtain the

following expressions for the values of trace and determinant of the Jacobian matrix of the system

(13): trace J = 1
5

> 0 and det J = − 4
175

< 0.
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This allows us to conclude that the point with w∗ = 35
2
, µ∗ = 2.5, q∗ = 0 is a saddle point.

4.3. Stability Analysis.

Starting with the system dynamics (13) in the state-costate space, we can calculate the Jacobian

matrix

J =




−( αp
(1+µ)

)2 2w
4πm

2(αpw)2

4πm(1+µ)3

− (αp)2

2πm(1+µ)
(αp)2w

2πm(1+µ)2
+ r




.

Obviously, the determinant has to be evaluated in the steady state (µ∗, w∗, q∗). It turns out

that trace J > 0 and det J < 0, so that the steady state is a saddle point.

In general, with arbitrary values of the parameters and arbitrary equilibrium values the matrix

J has two real eigenvalues of opposite sign and the steady state has the local saddle-point property.

This means that there exists a manifold containing the equilibrium point such that, if the system

starts at the initial time on this manifold and at the neighborhood of the equilibrium point, it will

approach the equilibrium point at t →∞.

This proves the following proposition.

Proposition 4.1. The outcome with complete deterrence is sustainable in the long run, given

that the parameter p is strictly greater than zero. The steady state with µ∗ = γ
r
, w∗ =

2πm(1+ γ
r
)

αp
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and q∗ = 0 is a saddle point.

Proposition implies that in the long run the full compliance behavior arises in a sense that

the outcome with q∗ = 0 is the saddle point equilibrium of the model. This means that one can

always choose the initial value for the adjoint variable such that the equilibrium trajectory starts

on the stable manifold and converges to the steady state. Economically speaking, the firm which

maximizes profits over time under a proportional penalty scheme will gradually reduce the degree

of violation to zero. However there is one exception: for p = 0 the degree of offence is maximal.

The parameter α influences only the speed of convergence to the steady state value, not the steady

state value of the control variable. Clearly, a higher α increases incentives for the firm to stop

the violation earlier. Basically, deciding on the time of stopping the violation the firm compares

the expected punishment and expected benefits from crime. Consequently, since in the setup with

proportional penalty the expected punishment also rises when the benefits from price-fixing rise,

in the long run the system will end up in the equilibrium with full compliance.

4.4. Sensitivity Analysis.

Here we investigate in which direction the saddle point equilibrium moves if the set of parameter

values changes. Analyzing the properties of the proportional penalty scheme (s(t) = αw(t)),
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the main parameters of our interest are the scale parameter of the penalty schedule, α, and the

parameter which determines the certainty of punishment, p. They appear to be also quite important

parameters for the firm, whose objective is to maximize the expected rents from price-fixing in the

presence of antitrust enforcement. Clearly, the firm will condition its behavior on the parameters

of the penalty scheme, chosen by the regulator (see expression (4)). Moreover, the result obtained

below will provide hints on how to choose the optimal enforcement policy to minimize the steady

state degree of price-fixing by the firms.

As a result of the necessary optimality conditions, in the steady state equilibrium it holds that

.

w(t) = f(q, w, µ, α) = πmq(2− q) = 0,

.

µ(t) = rµ(t)−Hw(q, w, µ, α) = rµ− γ + αpq = 0,

Hq(q, w, µ, α) = (2πm − 2πmq)(1 + µ)− αwp = 0.

Computing the total derivatives of the above equations with respect to α and appling Cramer’s

rule12 we obtain that ∂µ
∂α

= − qp
r

< 0. In a similar way we study the behavior of the costate variable

with respect to a change in the probability of law enforcement, ∂µ
∂p

= −αq
r

< 0. This means that

the equilibrium steady state value of the shadow price decreases when the slope of the penalty

function (α) increases or the rate of law enforcement increases. The reason is that with higher α

12More detailed derivations of these results are available from authors upon request.
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or p a higher accumulated wealth increases the expected punishment much faster than in the case

when α or p are low.

In the same way we can derive the sign of ∂w
∂α

and ∂w
∂p

. Again, application of Cramer’s rute

implies that ∂w
∂α

= −w
α
− 2πm(1−q)q

rα
< 0. Similar calculations for the parameter p give that ∂w

∂p
=

−w
p
− 2πm(1−q)q

rp
< 0. This means that either an increase in the scale parameter of the penalty

scheme or an increase in the certainty of punishment would cause a reduction of the equilibrium

accumulated rents from collusion, so that the firms will try to reduce their gains in order to be

punished less.

Finally, we have a look at the change of the offence level caused by a change in the slope of

the punishment function or a change in the rate of law enforcement. That means we are now

interested in the signs of ∂q
∂α

and ∂q
∂p

. Computing the determinants we find that ∂q
∂α

= ∂q
∂p

= 0.

So, we can conclude that the effect of either change in certainty or in severity of the penalty on

the equilibrium value of the degree of offence is absent. It follows logically from the model, since

q∗ = 0 is a steady state solution of the model and its absolute value and existence does not depend

on the size of the parameters α and p.

The change in α or in p only influences the t∗∗ value in the Figure 213. Numerical analysis of

13A no price-fixing outcome (q(t) = 0) can be sustained, but it occurs only at the end of the planning period. To
be more precise, the dynamics of the optimal behavior of the firm is such that, given the parameters of the penalty
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the behavior of the state and control variables of the model with respect to the main parameters of

the penalty scheme (α and p) shows that a higher α or p leads to earlier deterrence, i.e. t∗∗ moves

closer to the origin (see Figure 2). Consequently, the degree of price fixing is lower at each instant

of time and total accumulated gains from price-fixing by the colluding firm are lower. Moreover,

this policy allows to reduce the costs for society as well, since we can block violation earlier and

hence reduce the control efforts earlier.

[Place Figure 2 about here]

Looking at the partial derivatives of the state variable of the model with respect to the main

parameters of the penalty scheme we obtain the following proposition.

Proposition 4.2.

a) Under the policies that provide underdeterrence, i.e. when α is low, i.e. α = p ∈ [0, 1], the

effects of detection probability and severity of punishment on the deterrence power of the penalty

scheme in the steady state are equal.

b) When α is high, i.e. under the policies that can potentially provide more efficient deterrence,

system (p and α), the firm gradually reduces the degree of offence to zero, which happens at time t∗∗. After that
no more collusion will take place. Consequently, accumulated gains from price-fixing will gradually increase and
after t = t∗∗ will stay at the level w(t∗∗). The parameters of the penalty system (p and α) have an impact on the
optimal behavior of the firm and consequently on the deterrence power of the penalty system, which is measured
by the timing of optimal deterrence or, in other words, by the value of t∗∗. The higher the α and p the closer the
t∗∗ to the origin, and consequently the earlier the cartel formation is blocked.

27



the effect of the increase of probability of punishment on the deterrence power of the penalty

scheme in steady state is much stronger.

Proof:

Consider the partial derivatives of the state variable of the model with respect to the main

parameters of the penalty scheme. Following the above analysis, based on Cramer’s rule, we derive

∂w

∂α
= −w

α
− 2πm(1− q)q

rα
and

∂w

∂p
= −w

p
− 2πm(1− q)q

rp
.

Now we can show that, when α is potentially higher than p, thus, for instance, when α > 1,

the decrease in w, in absolute terms, when α increases, is much less than the decrease in w,

in absolute terms, when p increases. Assume α > 1, then from expression for ∂w
∂α

we obtain

∣∣∂w
∂α

∣∣ < wr+2πm(1−q)q
r

. Similarly, keeping in mind that p ∈ [0, 1] by construction, from the expression

for ∂w
∂p

we obtain that
∣∣∣∂w

∂p

∣∣∣ > wr+2πm(1−q)q
r

.

End of the proof.

The general conclusion of this subsection is that, when w0 = 0, only partial deterrence is

feasible. But nevertheless, q(t) = 0 for some t ∈ [t∗∗, T ] can be achieved in the model if p(t) > 0

for all t ∈ [0, T ] and the equilibrium with q∗ = 0 can be sustained as the long run saddle point

steady state equilibrium of the model with penalty system given by s(t) = αw(t) and p > 0 under
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certain additional conditions on the parameters of the model.

Moreover, studying the sensitivity of the steady state values of the main variables of the

model with respect to the parameters of the penalty scheme we found an interesting result, which

gives new insights into the problem of optimal trade-off between the probability and severity of

punishment. This problem has been studied quite extensively in a static setting by Polinsky and

Shavell (Ref. 10) and later by Garoupa (Refs. 11-12). The result, stated in proposition 4.2, shows

that, when the penalty is high a further increase in the severity of punishment is less efficient than

an increase in probability of punishment.

5 Appendix: Static Microeconomic Model of Price-fixing

Let us consider an industry with N symmetric firms engaged in a price fixing agreement. Assume

that they can agree and increase prices from pc = c to p > c each, where c is the marginal cost

in the industry. Since firms are symmetric, each of them has equal weight in the coalition and

consequently total cartel profits will be divided equally among them.14 Hence, the whole market

for the product (in which the price-fixing agreement has been achieved) will be divided equally

14We assume also that there is no strategic interaction between the firms in the coalition in the sense that we
abstract from the possibility of self-reporting or any other non-cooperative behavior of the firms towards each other.

29



among N firms, so each firm operates in a specific market in which the inverse demand function

equals p(Q) = 1 − Q. They are identical in all submarkets. Under these assumptions we can

simplify the setting by considering not the whole cartel (group of violators) but only one firm, and

apply similar sanctions to all the members of cartel.15 Further we denote: pm is the monopoly

price in the industry under consideration and p = 1−Q is the inverse demand for a particular firm.

In order to be able to represent consumer surplus and extra profits from price fixing for the firm

(π) in terms of the degree of collusion, we specify the variable q as follows. Let q = p−c
pm−c

,where

pm is the monopoly price, and p is the price level agreed by the firms. Then we can conclude

that q ∈ [0, 1] and instantaneous extra profits from price-fixing for this particular firm will be

determined according to the following formula:

π = q(
(1− c)

(pm − c)
− q)(pm − c)2.

Let (pm− c)2 = A. With linear demand p = 1−Q we observe that pm = 1+c
2

, so that 1−c
pm−c

= 2

and, consequently, it holds that A = (1−c)2

4
= πm (monopoly profit in this particular market).

The instantaneous producer surplus, consumer surplus and net loss in consumer surplus are

represented in Figure 3.

[Place Figure 3 about here]

15Of cause, in these settings the incentives of the firms to betray the cartel cannot be taken into account and the
possibility to influence the internal stability of the cartel is not feasible. But this is the topic for another paper.
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So, instantaneous Producer surplus will be determined as PS(q) = π(q) = πmq(2−q). Net loss

of consumer surplus will be the area of the right triangle, i.e. net loss of CS = 1
2
πmq2. Consumer

surplus will be determined by the area of triangle ABC: CS(q) = 1
2
πm(2− q)2.

Note that we can represent consumer and producer surpluses as a continuous differentiable

functions of the degree of price-fixing, i.e. PS ′(q) > 0, Net Loss of CS ′(q) > 0, and CS ′(q) < 0,

while PS ′′(q) < 0, Net Loss of CS ′′(q) > 0, and CS ′′(q) > 0 for all q ∈ [0, 1].
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