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Square Indefinite LQ-Problem:
Existence of a Unique Solution'
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Abstract. In this paper, we consider discrete-time systems. We study
conditions under which there 1s a unigque control that mimimizes a general
quadratic cost functional. The system considered is described by a linear
time-invariant recurrence equation in which the number of imputs equals
the number of states. The cost functional differs from the usual one
considered in optimal control theory, in the sense that we do not assume
that the weight matrices considered arc semiposttive delinite. For both
a finite planning horizon and an infinite horizon, necessary and suflicient
solvability conditions arc given. FFurthermore, necessary and sullicient
conditions are derived for the existence of a solution for an arbitrary
finite planning horizon.
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1. Introduction

In this paper, we consider the minimization of the performance function
N =\

J(N):= 5 {vk)Qvik)+u"(k)Ru(k)) + v (N)Q,y(N), (1)

A
k=1

s.t. the linear finite-dimensional time-invariant difference equation
y(k+1)=Ay(k)+ Bu(k)+ Cx(k), c=12,.... (2)

where the matrices Q, Q,, R are symmetric, but not necessarily semipositive
definite.
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P . o g . : g
‘Associate Professor, Econometric Department, Tilburg University, tTilburg, Netherlands.

(7]



In case the weight matrices are semipositive definite, the solution of this
problem 1s well known; see, e.g., Refs. 1-6. Moreover, most of these refer-
ences also treat the case of an infinite planning horizon. This last case is of
special importance, because it can be shown that, under some smoothness
conditions, the resulting solution to the optimal control problem stabilizes
the system. However, in case the definiteness assumption 1s dropped, it is
clear that in general problem (1)-(2) will not have a solution. So, the ques-
tion arises under which conditions on the weight matrices there exists a
solution.

Applications which typically fit into this generalized framework come
from varational problems, game-theoretic problems, problems in /{, -con-
trol and filtering theory. In varnational situations, the goal 1s to increase the
gains (measured by a quadratic function of the state of the system, expressed

by v'Qy, with not necessarily O>0) by using as little as possible control
efforts (measured by uTRu); see, e.g., Ref. 7.

A well-known game-theoretic application which fits into this framework
1s the two-person linear-quadratic zero-sum dynamic game (see, e.g., Ref.
8, p. 247, Theorem 4), described by the state equation

)’(k + 1) ZA}'(k) -+ Bﬂﬂ(k) + Bg”z(k)

and the objective functional

N —1

LG, i)=Y {y (k)OQy(k) +uj (k)u,(k) —u; (k)uy(k)}

k=1
+y " (N)Q,y(N).

with both Q and Q, semipositive definite, which player 1 wishes to minimize

and player 2 attempts to maximize. This game admits a unique open-loop
saddle-point solution if problem (1)-(2) has a solution with

B:=B,, Q:=-0, Q,=-0,, R=I, C:=0.

The infinite planning horizon problem naturally occurs in finding a solution

for H, -control problems. Consider the following H .. -control problem. Find
a compensator

-'-f(k) = V (k) + F; -l'(k),
such that the closed-loop system
y(k+1)=Ay(k)+ Bu(k) + Cx(k), z(k) =y (k),

1s internally stable and its /;-induced operator norm from the disturbance x
to the state y 1s less than one. As shown by Ref. 9, this problem has a



solution if, among other conditions, the equation
=]
< O 0D _— ~ ~
K= AT{K— K(BC) {[0 _I]+(BC)TK(BC')} (BC’)TK}A +1
has a semipositive-definite solution K. By introducing

0:=1, Q;=I R= [0 O], B:=(B0)
| 0 -1
in the (ARE) in Section 2, we see that the solvability conditions that we
present are also necessary conditions for solvability of this H . -control prob-
lem. Finally, we note that the (ARE) also naturally occurs in the study of
minimal stationary Gaussian reciprocal processes; see Ref. 10, Section 4.

In this paper, we give necessary and sufficient solvability conditions for
problem (1)-(2) for both a finite planning horizon and infinite planning
horizon under the assumption that matrix B in Eq. (2) is invertible. More-
“over, for simplicity reasons, we drop the exogenous variable x(k) in Eq. (2).
It will become clear from our analysis that this variable does not play any
role in deriving the solvability conditions. Consequently, under the condi-
tions that we will derive, algorithms obtained in the literature which
incorporate this exogenous variable (see, e.g., Refs 1, 6) are also optimal
for the indefinite case.

The paper is organized as follows. We first deal with the infinite planning
horizon case. Using results from (Ref. 11, in Section 2, necessary and
sufficient conditions are derived for the existence of a unique stabilizing
solution for the problem. Furthermore, a numerical algorithm to approxi-
mate this solution and an algebraic algorithm to calculate the exact solution
are provided. Next, in Section 3, we recall the solvability conditions for a
fixed finite planning horizon and relate these conditions to the conditions
obtained for the infinite planning horizon. Using the results from Sections
2 and 3, we derive in Section 4 necessary and sufficient conditions to conclude
that the problem has a unique solution for every finite planning horizon.
The paper ends with some concluding remarks. Parts of Section 4 of this
paper were al<o reported in Ref. 12.

2. Infinite Planning Horizon Case

The basic problem treated in this section is Problem P1 below.

Problem P1. Find necessary and sufficient conditions under which the
optimal control problem

inf lim J(N), s.t.y(k+1)=Ay(k)+ Bu(k), y(0)=y,

uf0, - ) N—
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with J given by (1) and matrix B invertible, has a unique solution for every

¥, under the additional constraint limy_ ., y(N)=0. In the sequel, we will
abbreviate this infimum, if it exists, by J*.

For continuous-time systems, generalizations of this problem have been

studied by many people; see, e.g., Refs. 13-14 and, more recently, Refs.
15-16. For discrete-time systems, the theory concerning this problem, where

positivity of the weight matrices Q, Q,, R is not assumed a priori, is much
less developed. Jonckheere et al. (Refs. 17-18) study this problem for stable,
controllable systems and give a solution in terms of a frequency-domain
condition for positive semidefiniteness of a bounded self-adjoint Hilbert
space operator, together with the frequency-domain characterization of its
spectrum. Lancaster et al. show in Ref. 19, Theorems 2.4 and 2.5, that under
the additional assumption that the matrix A4 is invertible, the problem has
a solution iff the rational matrix function

v(z):=R+B'(z7'—A")'Q(z—A)"'B

Is positive semidefinite on the unit circle. In more recent times, Ref. 20
showed that, under the assumptions that A is invertible, v 1s positive definite
at some point of the unit circle, and the system is controllable, the algebraic
Riccati equation corresponding to this problem has an appropriate solution.
This result was used by Ran et al. (Ref. 21) to solve the above-mentioned
problem, where the additional constraint (that the state variable must con-
verge to zero) is replaced by the more general requirement that the state
variable must converge to an a priori given subspace. .

[n all these references, we see that assumptions are made w.r.t. the
matrix A. Note that the invertibility assumption on the matrix 4 can be
partly avoided, by using a prefeedback u(k) = Ky (k), which places the eigen-
values of the closed-loop matrix in the annulus {z]0<|z| < | }. However, the
solvability conditions depend in that case explicitly on the matrix K used,
which 1s something that we like to avoid here: see Ref. 19. Noteworthy 1n
this context is also the pencil approach taken by Pappas et al. in Ref. 22 to
solve the singular case. As we will see later on in this section, we do not
make more assumptions than the invertibility assumption on the matrix B.
So, 1n a certain sense, our results are complementary to existing results on
this topic.

In the proof of our main result, we use two results which are both
worth mentioning separately. Our first result is from Engwerda et al. (Ref.
I'l, Theorems 2.1 and 3.4). We will see later on in Section 4 that this lemma
also plays a crucial role in deriving results there.
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Lemma 2.1. Suppose that the matrix Q is positive definite. Then, the
matrix equation X+ A4 X '4A=(Q has a positive-definite solution X (i.e.,
X>0) 1f and only if:

(i) w(A):=Q0+AA+A17'A7>0, for all A on the unit circle:
(1)  w(A) is nonsingular.

Moreover, if the equation has a positive-definite solution, there exists also
a largest solution X and a smallest solution Xs. Here, X, is the unique
solution for which X + A4 is invertible for all |A| <1, and X5 is the unique
solution for which X+ AA4" is invertible for all |A]| > 1.

Our second result states the key property that the optimal cost function
J*(J) is a quadratic form in j. The proof that we give is a more direct
equivalent of the proof given by Molinari in Ref. 14, Lemma 3 for the
continuous-time problem.

Lemma 2.2. Let (A, B) be reachable, i.e., rank[BAB- - - A" 'B]=n.
Then, if J*( ) exists (i.e., is finite for all §), it is a quadratic form: i.e.,
J*(7) =75 'Ky for some symmetric matrix K.

Proof. According to Molinari (Ref. 23, Lemmas 3-5), it suffices to
show that J*( j) satisfies the two following conditions:

(1) |J*()| <cp'y, for some constant c:
(i) JY(F+2)+I¥F—2)=2(J* () +J*()), ie., J*(-) satisfies the
parallelogram identity.

The second condition follows analogously to the proof of Molinari (Ref.
14, Lemma 3).

To prove the first condition, we show that
FIO <IN <FTO. T,
for some symmetric matrices Q, and Q,, respectively. The inequality
J*() <y Q.7

1s the easiest one (see Ref. 14 again). For, using the control sequence
(u[0, n—11, 0,0, ...) with

u'[0,n—1]1:==S"(SS")'A"7,

where S is the reachability matrix [BAB- - - A" 'B], it is clear that we get
a control sequence which majorizes J *( ) in the advertised way, and more-
over has the property that

y(n+k)=0, for all ke N.
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Now. we consider the other inequality. To prove this inequality, following,
e.g., Molinari (Ref. 14, proof of Lemma 2.1), we first note that, from the

above paragraph, it is obvious that J*(0)<0. On the other hand, it is clear
that, if the infimum J *(0) exists, it cannot be negative. For, if some control

sequence u [0, - ] yields J*(0) <0, then using a control sequence obtained
by multiplying this control sequence «*[0, - ] by an arbitrary positive scalar
k>1 would yield a lower cost than J*(0). So, J*(0)=0 whenever the

infimum exists. Consequently, using the fact that the problem is time invari-
ant, we obtain the following inequality:

N —1
0= inf lim ¥ {»7(k)Qy(k)+u'(k)Ru(k)}

uf—n,-) N-—oov -
s.t. v(—n)=0 :

+y " (N)Q,y(N)

N — |
< inf lim Y {y"(k)Qy(k)+u'(k)Ry(k)}

ul—n;*") N— o —
s.t. v(0)=¢ and v(—n)=0 i "

+y"(N)Q /¥ (N)

I { ST Q (k) + uT(k) Ru(k)

u[—n, 0) -
s.t.r(0)=yand v(—n)=0 * e

+ inf hm J(N)}.

uf0, + ) N —
s.t.v(0)=r

Now. due again to our reachability assumption, we have that, with
u' [—1, —-n]i-—'ST(SST)_'}_’,
we get a control sequence majorizing
—1
inf ¥ {»7(k)Qy(k)+u'(k)Ru(k)]
k=—n
by —7'Q,y for some symmetric matrix Q,. S0, we obtain the estimate

DE—9" 0, Y+ inf  hm J(N),
W r.l:.[ﬂli'(.ﬂ}) = FN_‘T

which yields the stated result.

The main theorem of this section now reads as follows.

Theorem 2.1. Problem (P1) has a unique solution 1iff:

(1) q/(z):=BTQB+(I+z*BTATB'T)R(I+zB_'AB) is regular;
(ii) w(z)>0, for |z|=1.
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Proof. (=) Since the problem has a solution, we know from Lemma
2.2 that

J*(7) =7 Ky,
for some symmetric matrix K. So, we have

y'Ky= inf lim J(N)
ulf0,-) N-—-x
s.t. v(U)=»y

= inf lim {y "(0)Oy (0)+u’(0) Ru(0)
uf0,-) N-ox
s.t. v (0)=T

N —|

+ Y {y"(k)Qy(k)+u"(k)Ru(k)}
o=}

+ ) T(N)Q,f}'(N)}

= Inf {)!T(O)Q)'(O)+uT(0)Ru(0)

u(0)
s.t. v(0)=x

- inf ltm

i)} N — oo
s.t.v(l)=Av+ Bu(0)

N -1
{ Y {y"(k)Qy(k)+u'(k)Ru(k)}

k=
+y " (N)Q v (N )H .

Now. due to the time-invariance property of the problem, we can rewrite
this last expression as follows:

inf { p "o+ u" (0)Ru(0) + (A5 + Bu(0))"K(Ay+ Bu(0))}.

14(0)

It is well known that this last problem has a unique solution «*(0) for an
arbitrary y iff R+ B’ KB is positive definite; moreover, this solution is given

by
u*(0)=—(R+B'KB) 'B'KAjy.
Substitution of this optimal control into the last expression gives

7TKi=5T0i+7 A" {K—KB(R+B"KB) 'B'K} Ay.
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Since y 1s arbitrary, we conclude that K satisfies the algebraic Riccali
equation,

(ARE) K=A"{K—KB(R+B"KB)"'B"K}A+Q.

Furthermore we recall the property that R+ B KB is positive definite in this

equation. Some elementary rewriting yields (see Ref. 24) that this (ARE)
can be rewritten as

X+A'X'4=0,
where

A:=RB'AB,

QO:=B"A"B"RB™'AB+ R+ B'QB.

Therefore, Lemma 2.1 yields condition (i) together with the condition
wv(z)>0, for |z| = 1. So, what is left to be shown i1s that y(z) has no roots

on the unit circle. To prove this, we first note that application of the above-
mentioned optimal control sequence yields the closed-loop system

)’(k+ ])=(I_B(R+ BTKB)*|BTK)A}‘U()1 }J(O):j’i_

Since, by assumption, y(k)—0 for every y, we conclude that the spectrum
of

(I-B(R+B'KB) 'B'K)A
li.e., c((I—B(R+B"KB) 'B"K)A)]

1s contained in the open unit disk.

Now,

o((I-—B(R+B'KB)"'B"K)A)
=o((/-B(R+B"KB) '(B"KB+ R— R)B ") A)
=o(B(R+B"KB)"'RB™'A)
=o((R+B"'KB)"'RB™'AB).

Consequently, we have that
R+ BTKB+zRB 'ABis invertible for |z| < 1.

Noting finally that
w(z)=(R+B"KB+(1/z)B"A"B""R)

x (R+B"KB)"'(R+ B"KB+zRB™'AB),
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we see that y(z) has no roots on the unit circle, 1.e.,
v(z)>0, for|z| =1.

(<=) Both conditions imply (see Lemma 2.1) that (ARE) has a largest
solution K satisfying

R+ B'K . B>0,
which has the additional property that

R+ B"K, B+zRB 'ABis invertible for |z| <.
Moreover, since

w(z)=(R+B"K B+ (1/z)B"A"B”"R)

x (R+B"K.B+zRB™'AB)>0,  for|z| =1,

we conclude that

o((R+B"K.B)"'RB~'AB)
is contained in the open unit disc. So, with

F=—(R+B'K.B)"'B"K.A,

we have that all eigenvalues of the matrix 4 + BF are located in the open
unit disc.
To prove now that Problem Pl has a unique solution, one can use

standard arguments, like, e.g., completion of the square; see, e.g., Engwerda
(Ref. 24, Theorem 14).

Remark 2.1. In fact, we showed above that, under the stated condition,
the optimal control solving Problem PI is given by

u(k)=—(R+ B"K,B)" 'B"K Ax(k),

where K, is the largest solution of (ARE).

From Remark 2.1, it is clear that the largest solution K of (ARE)
plays a crucial role in calculating the optimal control. Moreover, we will see
in Section 4 that the smallest solution Ks of (ARE) plays a crucial role in
the problems to be solved there. Therefore, the question arises how these
solutions can be determined.

We provide here two algorithms to calculate them. One algorithm gives
a recurrence relation which approximates the exact solution. The other algo-
rithm describes how the exact solution can be calculated by using a factoriza-
tion approach. Detailed proofs of both algorithms can be deduced from
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existing results elsewhere in the literature: see Engwerda et al. (Ref. 11,
Section 4) and Rozanov (Ref. 25. Theorem 10.1).

Algorithm Al. Consider the recurrence equation
K(0)=Q+A"B""RB'A.
K(n+1)=A"{K(n)— K(n)B(R + B'K(n)B)"'B"K(n)YA+ Q.
[f (ARE) has a solution, then K(n) converges, monolonically decreasing to
Ky .
Algorithm A2.  Consider the following algorithm to calculate the small-
est solution of (ARE).
Step 1. See (i) to (iv) below.

(1) If A;,:=RB™'AB is invertible, then go to Step 2 of this algorithm.
(1)  Else, apply a unitary transformation 7 such that

A, 0
A1|=TT .-...“ :'T
A 0

and the algorithm stops.
(1v) Else,

Y< 0
XS:=TT[ g
0 I/

with Ys>0 determined by repeating the algorithm in (i), with 4,,
replaced by

(1~ A 540" Auli—A L A2
Step 2. Consider the recurrence equation

FIO r=dyd .

Y(n+1):=A,,(I- Y(n)) '47..

Then, Y(n) converges, monotonically increasing to Xs. If (ARE) has a
solution, then

Ks=B"T(Xs—R)B™".



JOTA: VOL. 90, NO. 3, SEPTEMBER 1996 637

Algorithm A3. Consider w(z). Factorize y(z) as (Qo+ Qi2)(Qq +
0¥(1/2)) using the following procedure:

(i) Make a L(z)D(z)L™(1/z) factorization of y(z).

(il) Use the factorization in (i) to factorize y(z) as 0.(2)07(1/2),
where Q,(z):=n(z)L(z)D(z) is analytic in the open unit disc;
here, n(z) = product of all denominators of L(z) and D,(z) 1s such
that D(z)/n(z)n*(1/2)=D,(z)DY(1/=2).

(iii) Cancel the zeros of Q,(z) which are inside the open unit disc by
factorizing y(z) as 0,(z)05(1/z), where Q,(z)=0:\(z) UA(2) 15
analytic in the open unit disc; here, UeC""" is a unitary
matrix and A(z) is an appropriate rational matrix satisfying
A(D)A*(1/2)=1.

Then,

K.=B "(QuQs —R)B™".

The smallest solution Ks can be obtained by following the same pro-
cedure. Step (iii) has to be replaced by the next step:

(iti') Cancel all zeros of Q,(z) which are outside the closed unit
disc. This vyields a factorization of w(z) 1nto

(Qo+ 012)(QF + QT (1/2)). Then,
Ks=B (0,08 —R)B .

3. Finite Planning Horizon Case

As an introduction to the following section, we consider here the follow-
ing problem.

Problem P2. Find necessary and sufficient conditions under which the
optimal control problem

inf  J(N), s.L. y(k+1)=Ay(k)+ Bu(k), »(Q)=y,

u[O.N— 1]

and matrix B invertible, has a unique solution for every y.

From, e.g., Engwerda (Ref. 26, Theorem 4), the following result is easily
obtained [see also Rappaport et al. (Ref. 27)].
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Theorem 3.1. Problem P2 has a unique solution iff
R+ B"K(k)B>0, fork=1,..., N.
Here. K(k) 1s given by the backward recurrence equation:
(RRE) K(k—1)=A"{K(k)—K(k)B(R+ B"K(k)B)"'B"K(k)}A+ Q,
K(N)=0y.

The disadvantage of this solution is that, in particular for a large plan-
ning horizon, the verification of these conditions 1s a cumbersome job. So,
the question arises whether it 1s possible to present arguments from which
we can directly conclude whether the solution for a given planning horizon
exists. The next example shows that the condition that the infinite planning
horizon problem has a solution (either stabilizing the closed-loop system or
not) 1s not sufhicient to conclude that this problem 1s solvable.

Example 3.1. Consider the scalar Problem P2 with a planning horizon
N=1, A=4, B=2, Q=0,=—1, R=1.

According to Theorem 3.1, this problem has a solution iff R+ B'QB is
positive definite. Obviously, this condition is not satisfied here. On the other
hand, 1t 1s easily verified that Y(z) is regular and positive on the unit circle.
So, the infinite planning horizon problem has a solution, whereas the finite
planning horizon problem has no solution. So, the solution to this problem
1s far from trivial.

Note that, again due to the time-invariance property of the problem,
we have that, whenever a problem with a planning horizon N has a solution,
all problems with a smaller planning horizon will also be solvable. This
implies that, whenever we are able to find conditions which guarantee that
a problem with a large planning horizon has a solution, these conditions
are also sufficient to conclude that any problem with a smaller planning
horizon has a solution.

This motivates the problem that we study in the next section, that is, to
find necessary and sufficient conditions such that Problem P2 has a solution
for an arbitrarily long planning horizon.

4. Arbitrarily Long Finite Planning Horizon Case

As motivated in the previous section, we consider here the following
problem.
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Problem P3. Find necessary and sufficient conditions such that,
VNeN,

inf  J(N), s.L. y(k+1)=Ay(k)+ Bu(k), y(0)=7,

u[O.N—1]

and matrix B invertible, has a unique solution for every y.

Using the time-invariance property of the problem, the problem can be
reformulated algebraically as Problem P4 below.

Problem P4. Find necessary and suffidient conditions such that
R+ B"K(k)B>0, for all keN,
where K(k) satisfies the following recurrence equation:
(RRE)" K(k+1)=A4"{K(k)—K(k)B(R+B"K(k)B)"'B"K(k)!A+Q,
KW0)=0,.

In order to simplify the analysis, we reformulate the problem once
again. For this purpose, we need two preliminary results.

Lemma 4.1. Two necessary conditions for Problem P3 to have a solu-
tion are:

(i) R+B'Q,B>0;
(i) R+B'OB+B"A"B""RB'AB>0.

Proof. The first condition follows immediately by considering the case
k=0 1in the problem statement.

The second condition follows by considering R+ B'K(1)B. From the
recurrence equation, we have that

R+B'K(1)B=R+B"OB+B"A"Q, AB
—B'A"Q,B(R+B"Q;B)"'B"Q,AB
= R+B'QOB+B"A"Q, AB
—B"A'"B""(—R+R+B"Q,B)
x(R+B'Q,B) " (B'"Q,B+R—R)B 'AB
=R+B'OB+B"A’B""RB'AB
—B"A"B"'R(R+B"Q,B) 'RB'AB.
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Since by assumption both R+ B"Q, Band R+ B"K(1)B are positive definite,
the result follows now directly. ]

Proposition 4.1. Using this result, we have that Problem P3 has a
solution 1ff:

i) R+B'Q,B>0;
(i) M:=R+B"QB+B"A"B""RB™'AB>0;
(1) X(k)>0,forall keN, where X (k) satisfies the recurrence equation

Xk+1)=I-F'X (k)F,
X0)=M""*(R+B"Q,B)M™"",
F=M""'"*RB~'ABM ~'/*.

Proof. The first two conditions are obvious from Lemma 4.1.

To show the third one, we note that, by substitution of (RRE)’, we
have '

R+B'X(k+1)B=R+B"QB+B"A"
x {K(k)— K(k)B(R+ B"K(k)B)"'B"K(k)}AB
=R+B'OB+B"A"
x {K(ky—B~"(—R+ R+ B"K(k)B)
x (R+ B"K(k)B)™'
(R+B"K(k)B—R)B™')AB
=M—-B"A"B""R(R+B"K(k)B)"'RB™'AB.
Using the fact that M >0, it is clear now that
X (ky=M""*(R+B"K(k)yB)M ~""?

satisfies the third condition.

The “if 7 part of the theorem follows similarly by showing via induction
that

Kk):=BT (M'?X(k)M'?*-R)B™"
satisfies (RRE)'.

Since we are considering an arbitrary planning horizon, it is not surpris-
ing that, in solving this problem, the algebraic equation corresponding to
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this problem,
X+F X 'F=1I, (3)

plays a crucial role. Note that this equation is of the type that we studied
in Lemma 2.1.

To prove the main result of this section, we need the following lemma.

Lemma 4.2. Let Z(k), keN, satisfy the recurrence equation:

Zk+1)=I-F'Z " (k)F, Zi0=Z.
Assume that Z>0and Z (k) >0, for all ke N. Then, the following results
hold:
(i) Z(k)>FFT, YkeN;
(i) Z(k)> pI, for some B>0, VkeN.

Proof.

(i) This follows immediately from the identities
Z'k)+ZKFZ "(k+1)FTZ 7 (k)
=Z"k)-Z KF(FTZ"(k)F-1)"'"F"Z7 (k)
=[Z(k)—FF"]".

The last identity follows from the matrix inversion lemma; see, e.g., Kailath
(Ref. 28, pp. 656).

(ii) In case F is invertible, this result follows immediately from (i). If
F is not invertible, the claim can be proved by using Algorithm A2, with
A, :=F, to reduce the problem to a recurrence equation with a nonsingular
matrix 4,,. From the algorithm and the fact noted above that, for a nonsin-
gular matrix F, the claim holds, the result follows then directly. W

Theorem 4.1. Problem P3 has a unique solution iff

(i)  w(z):=B"OB+(I+z*B"A"B"")R(I+:zB"'AB) is regular;
(i)  w(z)=>0, for |z|=1;
(i) Q; >Ks, where Ks is the smallest solution of (ARE).
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The proof of this theorem can be found in Appendix A (Section 6).

Note that condition (i11) in this theorem can always be analytically
verified, since we can calculate the exact solution Ks of (ARE) using Algo-
rithm A3. We believe, however, that it is more elegant to replace this condi-
tion by one or more solvability conditions, which are expressed in direct
terms of the system parameters.

For SISO systems (i.e., all system parameters are scalars), this problem
was solved by Engwerda in Ref. 7 by elaborating condition (111) analytically,
which is possible since we can calculate the explicit analytical solutions of

(ARE). It was shown that, in case O, =, the necessary and sufficient
conditions for existence of a unique solution are:

Case |A| <1: y(z) satisfies conditions (i) and (1i) of Theorem 4.1;

Case |A|=1: R+ B"0B>0, B"QB>0,4R+ B"QB>0;

Case |A| > 1: y(z) satisfies conditions (i) and (ii) of Theorem 4.1 and
B"Q0B>0.

The generalization for MIMO systems 1s, however, unclear.

Finally note that, whenever R<0, condition (ii1) in Theorem 4.1 1s
trivially satisfied in case Q,> Q. Indeed, since

R+B"KsB=—B"A"B""R(R+B"KsB) 'RB™'AB
+B"A"B""RB"'AB+ R+ B" 0B,
we have that
R<0 and R+B'KsB>0
imply that
R+ B"KsB<R+B'QB.
Together with the fact that, whenever
R>0, 0>0, R+B'QB>0,

the problem is solvable, we conclude that condition (111) in Theorem 4.1
becomes effective iff either the weight matrix R is really indefinite, the matrix
R is semipositive, and Q i1s indefinite on Q2 Q.

5. Conclusions

In this paper, we presented necessary and sufficient conditions under
which three different indefinite LQ-problems have a unique solution.
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The first problem was to find a unique control infimizing a quadratic
cost functional over an infinite planning horizon under the additional restric-
lion that the control should also stabilize the system. The presented results
correspond completely with existing results in this area. The solvability con-
ditions were presented in the frequency domain. It was shown that the
problem has a solution iff some frequency function, which depends only on
the system parameters, is both regular and positive definite on the unit circle.
We showed that, under these conditions, the optimal control 1s given by a
state feedback control in which the largest solution of the algebraic Riccati
equation plays a crucial role. Two algorithms were presented to calculate
this solution, one which approximates this largest solution and one to calcu-
late this solution exactly.

The second problem was in fact a preamble for the third problem. Here,
we characterized conditions under which the infimization of a quadratic cost
functional over a finite planning horizon yields a unique control. Further-
more, we showed in an example that, whenever the infinite planning horizon
problem has a solution, this does not yet imply that the finite planning
horizon problem also has a solution.

Since in particular for a large planning horizon, the verification of the
solvability conditions is a cumbersome job, we considered in the third prob-
lem conditions under which the finite planning horizon problem has a unique
solution for an arbitrary planning horizon. After some reformulation, we
saw that the solvability conditions for this problem are closely related to
those of our first problem.

Again, the solvability of the algebraic Riccati equation plays a crucial
role. However, contrary to the solution of our first problem, 1t 1s not a
condition on the largest solution, but one on the smallest solution of the
Riccati equation which determines whether or not the problem is solvable.
We concluded the section on this problem by considering a number of
special cases in which this condition on the smallest solution either is trivially
satisfied or i1s reformulated in terms of just the system parameters.

All results presented in this paper were derived under the assumption
that matrix B is invertible. Obviously, this is a rather stringent condition,
which is usually not satisfied, and therefore should be relaxed. It will be
clear from the analysis that this is not a trivial job. However, we believe
that both the presented analysis and the obtained solvability conditions may
be helpful in solving the general problem.

As already pointed out at the end of Section 4, another open problem
is to reformulate the solvability conditions for the third problem in more
direct terms of the system parameters. This would probably give us more
insight into the basics of the problem and might lead to conditions which
are easier to verify.
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6. Appendix A: Proof of Theorem 4.1

In this appendix, we use the notation of Proposition 4.1.
(=) Consider the recurrence equation

P(k+1)=I—-F"P~'(k)F,  P(0)=al, (4)

where a>1 is such that X(0)<al/. We now show by induction that
X(k)<P(k).

For k=0, the inequality holds by construction. Next, assume that
X(k)<P(k).
Note that this implies that P(k) >0 and, more in particular, that
X '(k)— P '(k)>0.

The rest of the induction argument follows now immediately using the
definition of X(k+ 1) and P(k+ 1), respectively.

Note that the above inequality in particular implies [see Lemma 4.2(ii)]
that

P(k)> pl, for some >0, VkeN.

We next show that P(k) is a monotonically decreasing sequence. From both
these observations, we can then conclude that P(k) converges (o a positive-

definite limit. Since P(k) satisfies the recurrence equation (4), we obtain that
its limit satisfies the equation

P=I-F'P'F

Conditions (1) and (ii) follow then directly from Lemma 2.1.
The monotonicity of P(k) is proved again by induction. Since

P(1)-PO)=(1—a)I—(1/a)F'F,

the initialization part is obvious. The induction argument follows using the
definition of P(k), i.e.,

Plk+1)=Pk)y=1-F'P " (k)F-(I-F"P~"(k—1)F)
=F"(P"'(k—=1)-P "(k))F<0.
Condition (1i1) of the theorem is equivalent to the assertion that

X(O)Z".XSa
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where X 1s the smallest solution of Eq. (3). To prove this result, we use the
algorithm presented in Algorithm A2 with

A” = F.
We show that, with this choice of A4,
Y(k) <X(0), VkeN.

Since Y(k) converges, monotonically increasing to Xs we automatically
obtain X(0) > Xs. First, we note from Algorithm A2 that the basic problem
reduces to a case in which the matrix 4,, is invertible. So, without loss of

generality, we may assume that the matrix F is invertible.
So, assume that Y(k) is given by the recurrence equation

Y(k+1)=F({—- Y(k))'F", Y(0)=FF".
We now show that the assertion
Y(k+1)<X(0)
is equivalent to the claim that
Y(0)<X(k+1).
To prove this, we first show that, for a fixed N and 0 <i<N,

Y(IN—i)<X(i), iff Y(N=i—1)<X(i+]).

From the definition of Y(N—1i), we have that
Y(N—i)<X(i), iff F(I— Y(N—i—1))"'"F'<X(i).
Since F is invertible, obviously the last inequality holds 1ff
(I-Y(N=i— 1) "'<F'X(\)F ',
or equivalently,
FTX "(O)F<I-Y(N—i—1).
Rewriting this last expression yields the advertised statement that
Y(IN—i—)<I-F'X ') F=X(i+1).
That the statement
Y(k+1)<X(0)
1s equivalent to the statement

Y(0)<X(k+1)
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follows now easily using this relation inductively. This part of the proof of
the theorem is completed by finally noting that the assertion

Y(0)<X(k+1)

holds according to Lemma 4.2(1).
(<=) We show by induction that

X(k)—Xs>0.
Since Xs>0 (see Lemma 2.1), we then immediately have that
X(k)=>Xs.

That X(0) > X5 follows directly from condition (ii1). So, let us assume now
that X(k)>Xs. Then, X(k+1)—Xs equals I—F' X "(k)F-(I-F"Xs'F),
which can be rewritten as F'[Xs' —X ~'(k)]F. Obviously, this last expression
Is semipositive definite. L
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Globally and Superlinearly Convergent Trust-Region
Algorithm for Convex SC'-Minimization Problems
and Its Application to Stochastic Programs'

H. JianGg' anp L. Q1

Communicated by P. Tseng

Abstract. A function mapping from 2" to # is called an SC'-function
if it is differentiable and its derivative is semismooth. A convex SC'-
minimization problem is a convex minimization problem with an SC'-
objective function and linear constraints. Applications of such minimiza-
tion problems include stochastic quadratic programming and minimax
problems. In this paper, we present a globally and superlinearly conver-
gent trust-region algorithm for solving such a problem. Numerical
examples are given on the application of this algorithm to stochastic
quadratic programs.

Key Words. Trust-region algorithms, global convergence, superlinear
convergence, stochastic quadratic programs.

1. Iniroduction

In this paper, we consider the following linearly constrained convex
minimization problem:

min f(x), s.t. xe X, (1)

where /2 #"— % is a convex differentiable function and X' = {x: Ax<b}. For
convenience of notation, we use both g and V/ to denote the derivative of
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