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In this paper we derive some fundamental properties of locally dependent arrays of order m(n),
where m(n) is allowed to tend to infinity with the sample size n. More specifically we consider a
central limit theorem, an exponential inequality for the local fluctuations of the empirical process,
and weak convergence of the empirical process. Locally dependent arrays are of independent
interest, but they may also serve as useful approximations to other stochastic processes. Some
applications are indicated.
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1. Introduction and Motivation

On the one hand mixing concepts are elegant and powerful tools for suitable
description of the dependence structure of large classes of time series. On the other
hand, however, mixing may be hard to intuitively understand and to deal with,
as it may not even apply to otherwise well behaved processes like certain linear
processes (Andrews [1]). A useful alternative to the analysis of time series via
mixing is provided by approximation with a simpler process. The approximating
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processes that will be considered here are so-called locally dependent processes or,
rather, locally dependent arrays, to be defined in Section 2. Such processes are also
of interest in their own right.

Versions of locally dependent processes have been regularly studied in the lit-
erature: see, e.g., Hoeffding [11], Billingsley [5], Berk [4], Zetterqvist [20]. The
name has been coined by Barbour [2]; see also Reinert [17]. Independently these
processes were studied in Chanda and Ruymgaart [8, 9], Nieuwenhuis and Ruym-
gaart [13], and Nieuwenhuis [12], where they were introduced under less appealing
names and where the emphasis was on approximation of linear processes. Using an
exponential fluctuation inequality for the approximating process, these authors ob-
tained for instance rates of convergence for density and autocovariance estimators.
This fluctuation inequality was not sharp enough to yield tightness of the empirical
process of the approximating array. In Section 4 we will sharpen the inequality
and employ it in Section 5 to prove weak convergence of the empirical process of a
class of locally dependent arrays. Portnoy [16] exploited approximation by means
of locally dependent processes studying regression quantiles in non-stationary time
series.

In this paper we will focus on locally dependent arrays as a topic of independent
interest. Since the definition allows for rather strong local dependence a simple yet
_ representative example of a locally dependent array that will serve as an illustration
throughout this paper is given by

1 & :
(1-1) Xni= ﬁ ZEH'IC-I; i=1,2...,n, m= m(n),
k=1

where €1, €3, ... is an infinite sequence of i.i.d. variables with mean 0 and variance 1.
We will consider the triangular array X, 1,...,Xnn, and let m = m(n) depend on
n in such a way that

(1.2) m—oo  and %—»0 as n — oo,

Both these conditions make sense from an approximation perspective. The most
important property of the array (1.1) is that its elements are (m — 1)-dependent.
It should be noted, however, that the order of the dependence m grows indefinitely
with n.

Although we don’t want to dwell on the aspect of approximation, we should
mention that linear processes and, more generally, processes with Volterra expan-
sions, provide a natural motivation for locally dependent arrays. For instance, if
we have a sample from a linear process

o0

(1.3) Xi= > apgick,  i=1,...,m,

k=-o00

where the ¢; are i.i.d. mean 0 and variance 1, say, an approximation is given by the
random variables

m
(1.4) Xni= Z QLEik, i=1,...,n, m=m(n).

k==m
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In a large sample setting this approximation will be only useful if m — oo, as
n — oo. On the other hand, in order to take advantage of the 2m-dependence of
the X, ; we will need m/n — 0 as n — oo.

In Section 6 we will return to this example because it presents an interesting
illustration of the theory which holds some surprises. We restrict ourselves to aj
decaying as a power of k. It then turns out that the approximation cannot be
good for processes that are long range dependent (Beran [3]). This means, for
instance, that we cannot infer asymptotic normality of the sample average of the
original process from the sample average of the approximating process. Since it
is known from the literature that the former asymptotic normality may very well
fail to hold, there is no contradiction with our asymptotic normality result for the
latter (Sections 3 and 6).

Qur main result is weak convergence of the empirical process of locally dependent
arrays (Section 5). For the weak convergence of the finite dimensional distributions
(fidi’s) of the empirical process asymptotic normality of row averages is of funda-
mental importance. This problem is considered in Section 3 where a theorem in
Berk [4] is generalized. It should be stressed that we deliberately want to avoid any
of the nsual mixing conditions so that our results are intended to be complemen-
tary to those in Bosq [6], Peligrad [14], and Bradley [7] as far as sums of random
variables are concerned and to those in Shao and Yu [18] regarding the empirical
process. For the tightness we will derive a fluctuation inequality, already mentioned
above, in Section 4.

2. Locally Dependent Arrays
A triangular array {Xn;,i = 1,...,n,n € N} is called locally dependent of
order m if the variables in the n-th row

(2.1) Xaty-1 Xnn are (m — 1)-dependent,
for some integer 1 < m < n. As part of the definition we will also require that
(2.2) m = m(n) with % —0 as n— oo

We are especially interested in the case where m — oo as n — oo (cf. (1.2)), but if
the arrays are not used for approximation this condition will not be needed. Local
dependence of order m = 1 reduces to independence.

Example 2.1. The array in (1.1) is locally dependent of order m. The array is
stationary in the strict sense. In order to quantify the degree of dependence let us
calculate the correlation function. For convenience we will restrict ourselves to the
unrestricted array i € N. Because Var X,, ; = 1 the correlation function equals the
covariance function

(2.3) Ya(B) = EXp i Xnisn, h=0,1,...

Clearly v,(0) = 1, and for 1 < h < m — 1 we have

1 e h
(24) Yn(h) = o ;;&:,Hh =1- -
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Summarizing, we have

(2.5) 7n(h)={; h/m, :_0,...,m 1,
) =mm+1,...

3. A Central Limit Theorem

In this section asymptotic normality of row sums will be proved. At this level of
generality even in the central limit theorem for independent summands the existence
of the second moment is not sufficient. Here we opt for the Lyapunov condition
because it is much more convenient to work with in practice than other conditions.
This entails in particular that the row variables are supposed to have a moment
of order slightly larger than 2. It will be briefly pointed out that in the case of
strictly stationary rows, existence of a second moment suffices, provided that a
rather awkward Lindeberg-type condition is also fulfilled. Before listing sets of
sufficient conditions, let us first consider the special array (1.1) to get an insight
into a possible order of magnitude of row sums.

Example 3.1. For array (1.1) we have (1< i<i+k <n)

C(31)  Var (ixn,i+j) = Var ( kl Xo) =k+ 2%@ —i)(1- %)
i= = i=
This means that
(3.2) Var (ixn,m-) < C(k Am)k,
=
and J
(3.3) Var (Zk;Xnm) > C(k A m)k,
p=

for some generic C € (0, 00).

Assumption 3.1. The locally dependent array defined in (2.1) and (2.2) satis-
fies
(3.4) E|Xni***<C, EX,;=0, i=1,...,n, n€N,
for some C, § € (0,00). Moreover, we have s2 = Var (31, Xni) > 0, and for
some K € (0, 00)

(3.5) Var (zk:Xn,,'.H) <K

j=1

k o

-5
n n
Furthermore we have

(3.6) nm!ti/s2t 0 as n— oo
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Theorem 3.1. Let Assumption 3.1 be satisfied. We then have

1 n
(3.7) ™ > Xni—aN(O,1) as n—oco.

i=1

Proof. Let us choose integers ¢ = g(n) such that ¢ > 2m, ¢/m — oo, and
g/n — 0 as n — oo. It is convenient to introduce blocks and gaps defined by

[ g+m—1 2¢4+m-—1
(3.8) Bi=) Xni, Gi= Y, Xag, Ba= D, etc
i=1 i=q+1 i=q+m

This means that we can write
n v v
(3.9) ZX,,'; =EB]' +ZG]' + R,
i=1 i=1 j=1

where v = |n/(¢ + m)] and R contains the last n — v(g + m) of the X, ;. It is

obvious that the B; are mutually independent, and that also the G; are mutually
independent.

~ We see at once from (3.5) that

(3.10) Var(ﬂ)g_f\’-g—ﬂ—vO 88 1 — co.
Sn n
Similarly it follows that
Y G; 4 . _
(3.11) Var (&—i) =Y Var (ﬁ) <] kZ-0 as nooo
8n j=1 Sn q +m n
It follows from (3.10) and (3.11) that
1 1 4
(3.12) ;(;Gj +R) —,0 as n— oo
Apparently, to prove (3.7) it suffices to prove that
1 14
(3.13) = D> B;j —aN(0,1) as n— oo,

Je=1

in view of (3.12). We will use C as a generic constant.

To prove this the Lyapunov condition will be employed. Let us first note
that obviously v(qg + m)/n — 1, so that vg/n — 1, because m/qg — 0. Since
{Var (3., Bi + Xj=, Gi + R) } /s = 1, it follows from (3.5), (3.10), and (3.11)
that

E;’:l Var BJ

(3-14) ——T— -1 as n — 00.
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Minkowski’s inequality and (3.4) imply

(3.15) Y E|B;[**¢ < Cug?tt,
j=1
It follows from (3.14) and (3.15) that

E}I=1 E|BJ‘ |2+6 < CV‘12+5
(Lj=1 Var By)1+8/2 = = 36

Since (3.10)-(3.12) hold true for each choice of ¢ as long as ¢/m — oo and ¢/n — 0,
and because by (3.6) it is possible to choose ¢’s satisfying these requirements such
that also ng!*®/s2*+6 — 0, the desired result follows. O

Remark 3.1. Let us first briefly comment on the moment condition. Even for
triangular arrays of independent variables the existence of a second moment is not
sufficient. Hence it is not surprising that when dealing with a fairly arbitrary array
of dependent random variables an extra condition is needed. Aiming at Lyapunov’s
version of the central limit theorem leads to (3.4) and (3.6). Clearly some sharpness
is lost in (3.15) by applying the Minkowski inequality. To get an insight into the
effect of this inequality let us apply it to the second moment rather than the (24 6)-
moment. This would yield an upper bound of order vq? ~ nq rather than s2 as in
* (3.14). Observe that s will be of smaller order than ng. On the other hand, in
the model of Example 3.1 we have s2 ~ mn. Although this is of smaller order than
nq because g/m — 0o, this difference does not seem to be too significant because ¢

may be chosen close to m.

q-qtts
"

nq1+6

v
<C o
n

(3.16)

<C

Remark 3.2. It should be noted that we have not thus far assumed any sta-
tionarity. This assumption, rather common in time series, is satisfied rowwise for
the arrays in (1.1) and (1.4). As far as a useful reduction of Assumption 3.1 is
concerned, we do not gain a lot by assuming that the array is rowwise strictly sta-
tionary and that the second rather than (2+ §)-moments exist; condition (3.5) will
still be needed.

In fact under these assumptions we can proceed as in the proof of Theorem 3.1
and see that it suffices to show (3.13), and that (3.14) still holds true. Due to the
stationarity for each n the By,..., B, are now i.i.d. with common c.d.f. G, say. It
follows from (3.5) that the common variance of the B; satisfies

(3.17) ol = /

-0

(o]

z2dGy(z) < K%s,’,.

According to the Lindeberg-Feller central limit theorem it suffices to show that,
for each € > 0,

1 ¢ v
(318) = > EB1(5,3c,) = 5 2% dGn(z)
=1

nj= Sn J{|z]|>esn}
vgaol 2
<K—2g2 d
"Is?,ns"a?, {|x|2€a..}z Cn()
Jtotpes,) 22 4Gn (=)
/2o 2% dGn(2)

<K as n — oo.
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Although s2 is of larger order than ¢2 as can be seen from (3.17), the last
expression on the right in (3.18) will not in general tend to zero. Hence (3.18)
must be added as a condition which is rather awkward. To avoid a condition of
this type we will almost inevitably have to return to condition (3.4). It should
be emphasized that for our main application, Theorem 5.1 below on the weak
convergence of empirical processes, any kind of moment condition is automatically
fulfilled, since the ‘building blocks’ of empirical processes are bounded, anyway.

Remark 3.3. By comparing the variance s2 with the variance in the i.i.d. case
one might call s2/n the excess of the variance. The excess may be smaller than 1
in cases of negative dependence but is of order m, i.e., of the same order as the
dependence for array (1.1); see also (3.2) and (3.3). In cases where the order of the
excess is as big as the order of the dependence we have

nm!té nml+s m\ 4/
by (2.2), so that then (3.6) is automatically fulfilled.

Example 3.2. Let us return to model (1.1) and recall that (3.2) entails that
condition (3.5) is fulfilled in this case. Since the order of the excess equals that of the
dependence we have seen in Remark 3.3 that (3.6) is also fulfilled. If the &; are i.i.d.
standard normal it follows that each X,; has a standard normal distribution, so
that (3.4) will be satisfied as well. If, more generally, we only assume that E|e;|21% <
oo, we can show by a non-uniform Berry-Esséen inequality (see, e.g., Shorack and
Wellner [19], p. 849, Theorem 3) and the fact that E[Y[* = [° P(|Y| > y/*) dy,
that E|X,,,g|2+'§' < o0, for some 0 < §' < §. Hence (3.4) is satisfied.

In the spirit of this example and Remark 3.3, the following result is a convenient,
useful specialization of Theorem 3.1..

Corollary 3.1. Let (3.4) be satisfied. Furthermore assume

2

3.20 —n0 2
(3.20) n(2m — 1) — 0" €[0,00),
then
1 n
(3.21) D Xni—aN(0,0%)  as n—oo.

vn(2m —1) i

Proof. In case ¢ > 0, it suffices to show that (3.5) and (3.6) are satisfied.
Condition (3.5), for n large enough, follows from (3.20) and the mere fact that the
Xn,i are (m—1) -dependent. Condition (3.6) is trivially fulfilled, see (3.19). In case
o? = 0 the proof follows along the same lines as that of Theorem 3.1, but instead of
showing that the Lyapunov condition holds, a direct application of the Chebyshev
inequality suffices. [
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4. A Fluctuation Inequality for the Empirical Process

Fluctuation inequalities for empirical processes are important tools in the anal-
ysis of nonparametric density, regression, and autocovariance functions. They are
also very useful for proving tightness of the process. The results in this section are
valid for arbitrary but fixed sample size. The only assumption that will be needed
is that the variables in each row have the same distribution.

Assumption 4.1. For each n € N the random variables X, 1,..., X, are
identically distributed, i.e.,

(4.1) P{X,;<z}=Fo(z), <€R, i=1,...,n

For the empirical c.d.f. we will employ the usual notation
~ 1 <&
(42) Fa(e)= = 2;1<-m.z](xn.f>, z€R,
1=

and the discrepancy between empirical and actual c.d.f. will be denoted
(4.3) A, =F,-F,.

Theorem 4.1. Let ag < bo with 0 < Fy(bo) — Fn(ao) < 5. Then we have, for
any € € (0,1),

(44) P{ W 1Ba(0) = An(0)] 2 by

. —(1—€)nA? N
< Cle)exp (2m.{F,.(bo) —Fu(a0)] ‘b(\/mt-;ﬂ (P (b3) = Fn(ao)}))’ Az0

where 0 < C(€) < 0o is a constant depending on € only, and

(4.5) P(z) =22 2{(1 +2)log(l+z) -z}, >0, and %(0)=1.

Remark 4.1. The function ¢ has the following properties: ¢ is decreasing and
continuous; ¥(z) ~ (2logz)/z as & — oo; Y(x) > 1/(1 + z/3). See pp. 440-441 in
Shorack and Wellner [19]. Note also that the condition F,(bo) — Fn(ao) < :i,— can
be weakened to Fy(bg) ~ F(ao) < ¢p < 1; see Einmahl [10], p. 10.

Proof.ALet us wriﬁe, for breivity, Iy i= (a0, bo), I := (a,b], Fu{lo} i= Fn(bo) —
Fr(ao), Fu{lo} = Fu(bo) — Fu(ao), An{lo} := An(bo) — An(ag), and similarly
for I. First note that

(46) P{ sup |An{I} > A} < P{ sup An{l} 2 A} + P{{S(t;})u (—An{I}) 2 A}.

We will only consider the first term on the right in (4.6), the second one can be
treated similarly. In fact it is easy to see that it suffices to prove the inequality
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with > X’ replaced by ‘> /\’ Set v = [n/m] and § = n/m —v € [0,1). Write

p=E2v/(v+6)and p= L\/(v+1)/(v +6). Note that it is elementary to show

that
m(l —8)p+mép < 1.

Because of the (m — 1)-dependence of the X, ;, it is not hard to see that

m{1=8) my mé m{v + 1)
An=p Y, \ B +5Z\/—T—A;’,u+1,
j=1 ji=1

where the Aj, and Aj 41 are centered empirical distribution functions based on
i.i.d. samples from F),, with sample sizes v and v + 1 respectively (cf., e.g., (2.8) in
Chanda and Ruymgaart [8]). Set

[mv ~ m(v+1
Tj = 4/ —— sup Aj,u{I} and Tj = “—(—"——) sup Aj,u+1{-[}-
noIcl, ICIo

n

Now we have by the Markov inequality and the Jensen inequality, for ¢ > 0,

m(1-6)
(@) P{swp An{l} > )] <P{p Z T+pET >}
=1 =1
m(i -~6)
<e—-tAEexp(( Z 7}+pZT)>

j=1

m(1—4§)
e~ ( z Eexp(tT;) + pZEexp(tT ))

j=
< e7(m(1 - §)pE exp(tTy) + méifE exp(t)).

We have used here the inequality

Eexp(tTy) > exp(tET}) = exp (t\ /ZXE sup Ally{1}>
no Icl

> exp (t”Tn—UEAl,V{Ig}) =

Hence the last expression in (4.7) is bounded from above by
max (E exp (t(T1 — A)), Eexp ((Ty — /\)))

So it suffices to bound the two terms in the maximum by the right side of the
inequality. We will confine ourselves to the first term; the second one can be
treated in the same way. Writing s = t\/m/n and Y = T1+/n/m we have

(48)  Eexp ({(T: — 1)) = Eexp <s\/g (Y\/_g - ,\>) = e~ MWrImEesY
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Note that Y = sup;c;,vA, 1{I}. It is shown in Einmahl [10], Chapter 2, that
P{Y > )} < sp{z+ V8Fu{lo] > A}, AER,

where Z = (\/%—(V —vF,{Io})), with V a Poisson (vF,{Iy}) random variable. So
P{e’Y > e*}) < 8P{e (Z+VEFnilo}) 5 52} and hence

o0 oo
(49) EeY = / P{eY >z}dr < 8/ P{e!(Z+VErnile]) 5 2} dg
0 0
= 8Eexp{s(Z + \/8Fn{lo})}.

So from (4.8) and (4.9) we see that we have to bound

(4.10) 8exp { - s(A\/% - \/m) }Ee"z.

Since this holds true for every s > 0, the best result for (4.7) is obtained by
minimizing (4.10) over s. Exploiting a well-known result for the moment generating
function for Poisson random variables we see that minimization yields

_WE-VBR{TL))? | (A/E - VBF{I0}
Sexp ( 2, {10} ¢( VF{Io} ))
(AWE - BF{I})? MWn

2, (To) ¢(\/n_13Fn{Io}>)’

since 9 |. For A > 2\/8%Fn1I0 } /e, this expression is bounded by

b e (-5 (rrede)

< 8exp (—

Now consider 0 < A < 24/82F,{Io}/e. Then there exists C(e) € (0, 00) such that

—n)?
(4.12) P{ sup An{l} > 2} <1< C(e)exp (m)

and (4.4) follows. O

Example 4.1. We observed already that (4.1) is immediate for model (1.1). It
should be noted that in this case for fixed ag < bg inequality (4.4) holds true for
sufficiently large n with F;,(bg) — Fn(ao) replaced with ®(bo) — ®(ag) and (1 —¢)
with (1~ €)2, due to the central limit theorem (& is the standard normal c.d.f.).
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5. Weak Convergence of the Empirical Process

For technical reasons that will become clear in the proof, we will restrict our-
selves to the situation of Corollary 3.1, in particular (3.20), in order to prove weak
convergence in a space of corlol functions, ¢f. Philipp and Stout [15]. More precisely
we need the following

Assumption 5.1. For convenience we assume that all the X, ; take values in
[0,1]. There exists a c.d.f. F such that in addition to (4.1) we have

(5.1) sup |Fn(t) = F(t)]—0 as n-—oo.
0<t<1

Furthermore there exists a function H: [0,1] x [0, 1] — [0, 1] such that

1

(5:2) n(2m — 1)

Y Y P{Xai<s,Xn;j <t} H(s,t) as n—ooo
li—jl<m

for (s,t) € [0,1] x [0,1] and m = m(n) satisfying (2.2).

Theorem 5.1. There exists a cenlered Gaussian process G wilh covariance
function

(83)  I(s,1) :=EG(s)G(t) = H(s,1) - F(s)F(¥),  (s:%) €[0,1] x [0,1],

such that

(5.4)

A —4 G as n — oo.

The convergence is in the spdce D([0,1]) endowed with the Skorokhod Jy-topology.
If F is conlinuous, G has continuous sample paths with probability one.

Proof. To establish (5.4) it suffices to prove suitable weak convergence of the
finite-dimensional distributions (fidi’s) and tightness (Billingsley [5], Theorem 15.1).

Let us start with the fidi’s and choose 0< ¢ < -+ <t < 1. We need to prove
that

(5.5) ,/2m—n_1-(A,,(t1),...,An(tk))—rd(g(tl),...,g(tk)) as n— oo

According to the Cramér—-Wold device it suffices the prove that

(5.6) T Y Mhnlte) —a Y AG(t).

For this purpose we will apply Corollary 3.1 where for the X, ; we now take

k
(5.7) )?""' = Z'\"E"-i(t")’ €n,i(ty) == 1(-00,tv](Xn,i) — Fn(ty).
v=1
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Since the )?n.i are bounded and centered, condition (3.4) is automatically ful-
filled. To verify condition (3.20), note that

(5.8) ';(—2;1—:55\,3!‘ (X,.J + et }?n,n) (2m Y E{ z Z A&, i(ty )}

=1 vzl
kE k

= 2m_1 ZZZEAUA E¢ni(to)én i (tw)

i=l j=lu=lws=1

znf_l > 2. ZZA AwBEn i (t)en, i (tw)

|z—J|<mv lw=1

k&
=33 MAu{H{tu,tw) = Ft)F(tw)}  as n— oo,

v=1lw=1

This limit is obviously nonnegative and condition (3.20) follows. So Corollary 3.1
yields the asymptotic normality with limiting variance equal to the quantity at the
end of (5.8). This also settles (5.5).

For the tightness in D([0,1]) we invoke Billingsley [5], Theorem 15.2. For con-
venience let us write

(5.9) Ga(d) : —,/ -Aa(),  teo,1]

The first condition that we need to verify is that for each > 0 there exists a
number a > 0 such that

(5.10) P{sup|Ga(t)] >a} <n forall neN.
t

This follows easily from Theorem 4.1,
Secondly we need to prove that for each € > 0 and # > 0 there exist a § € (0,1)
and an ng € N such that

(6.11) P{w'(Gn;6) > e} <n  forall n > ny,
where
(6.12) W' (Gn; 6) = inf max w;(Gn)

all finite sets  1<j<k
O0=tp<t) < <lp=1
with dit;j—t;_3>8

and
(5.13) w;(Gn) = sup {|Gn(5) = Gn(t)| : 5,1 € [tj-1,2;)}.
Now choose the t; in such a way that

(5.14) F(tj=) - F(tj-1) < 1/k.
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Application of Theorem 4.1 yields for a sufficiently large k that

(5.15) P{maxw,(g,,)>e} <Zp{w,(g,. > e}

j=1

1 —e%(2m — 1) VIm =1
S C(i)ke"p (2.2m5(2/k)¢<m>) s

for all n sufficiently large. For (5.15) we use (5.1) and (5.14) which ensure that
Fu(tj—) — Fa(tj—1) < 2/k, for n sufficiently large, and the fact that 1 satisfies
¥(z) 11, as z | 0. This proves the tightness and hence (6.4). If F is continuous
we can similarly prove (5.11) with w/(Gp;6) replaced by the ordinary modulus
of continuity. This proves, according to Billingsley [5], Theorem 15.5, the last
statement of Theorem 5.1. 0O

Remark 5.1. In order for the local fluctuation inequality (4.4) to work in the
tightness proof, the factor m in the denominator of the first part of the exponential
expression in (5.15) should be neutralized. This means that a scaling of the Ap
of order \/n/m will be needed, which in turn dictates the order of the covariances
as required in (5.2)—(5.3). For the tightness it is of crucial importance that in the
present setup we have been able to avoid the occurrence of a factor m in front of the
exponential in (4.4). Such a factor naturally arises if in (4.7) one uses a naive upper
bound of the type P{}_72, V; > 3770, n;} < 3772, P{Y¥; > ;}, as in Chanda and
Ruymgaart [9].

Example 5.1. Let us consider the array }?,,,.- = P(Xn i) with the X, ; as in
(1.1). We will show that Theorem 5.1 applies to this array. Then by the ordinary
central limit theorem (5.1) is fulfilled with Fy(t) = Fp(®71(t)), where F, is the
c.d.f. of the Xp, ;, and F(t) =t,0 <t < 1. Let A, be based on the )?n,;. It remains
to show (5.2). With a little effort it can indeed be shown that, as n — o0,

(5.16) mz S P{Xni<s,Xnj <t}

fi-jl<m

= [ [ (A ) () w(G5) o=

It is also worthwhile to note that H(s,t) — st > 0, for all (s,t), which implies that
the limiting process G in (5.4) is not degenerate or, in other words, that here indeed
the excess of the variance matches the order of the dependence.

6. Application to Linear Processes
6.1. GENERALITIES. Returning to model (1.3) let us assume that the
coefficients satisfy

1 1
6—"“-—02 5>

(61) Cl 1+|k|6, 51

1+|lc|

for some numbers 0 < Cy < Cy < co. We will not be concerned with exponential
decay that can be dealt with in a similar manner. Note that Y a? < 00, so that
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the series on the right in (1.3) converges almost surely. Henceforth Cj,C2, and C
will be used as positive generic constants.

To determine for which § the linear process is long range dependent we will
specify the covariance function. This follows from vy,(h) = EXpn; - Xnitn (see
(1.4)) which will be also needed to see which of the assumptions are verified by the
array X, ;. We have y,(h) =0 for [h[ > 2m +1 and, for 1 < h £ 2m,

e 1
(62) 0<mh) < C,,;X_:m L+ *P)(T + [k + A)

Y
< C<{h™ —y
s { > trwEt Z 1+|Ici5(1+|lc+h|)}

k={-h/2] [h/3'|+1

1t follows that for % <b<l
1
6.3 0<nh<0h12"/ S — }
(63 i o{w e [0
< C{h1—26+h1—26/ y=20 dy} < Chl=%.
1/3

For 6 > 1 we have

© 1
(6.4) 0< (k) < c{h*"/o o dz + hl‘”} < Ch™8,

For the precise order we also need a lower bound:

1
(65) m(h)=C Y
ot CF (LT o+ A)
; [h/3] 1 1
>CLh™ .
-{ 2 TrpEt > (1+|k|6)(1+|k+h|6)}

k=[-h/2] k=[h/3]+1

For % < 6 < 1 this yields

h/3
(6.) Tn(h) > Ch~*
0

1 de > Cht—?,
1428 =
and for § > 1

h/3
(6.7) Tn(h) > Ch~¢ / z=%dr > Ch~t.
1/6

Summarizing, we have obtained that

{ C h1-2 < ‘)’n(h) < Czhl_%, -é— <é<1

6.8
(84) CLh=? < yn(h) < Coh~?, 6>1,
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for |h| < 2m, m € N. This entails that, as h — oo,

_ R L«
(6.9) y(h) = EX;Xiyn 1is of order { B, ; o1
Since obviously
) ) 1
6.10 y(h) =00 for =<é<1,
2
h=-—o00

the linear process is long range dependent (Beran [3]) for § in that range. For § > 1
this is no longer the case.

6.2. APPROXIMATION. At sampling stage n we are given the sample X, =
(X1,...,Xn) that we want to approximate with Xpn n = (Xn,1,..., Xnn). A good
approximation would be one for which

(6.11) Jpax [Xi—Xnil=0,(n"¢) as n—oo

for some & > 0. This would entail that ||[X, — Xy n|| = 0p(n?~¢), where || - || is the
Euclidean distance in R". Let us try to achieve this for m of order n?, for some
0 < p < 1, so that (2.2) is fulfilled. Since Var (X; — X, ;) = O[> (1 +2%)~2dz) =
O(m!'~%) it follows from Chebyshev’s inequality that (6.11) is satisfied for 2e+ 1+
p(1—26) < 0. Hence both (2.2) and (6.11) are satisfied for (26+1)/(26—1) < p < 1,
but this is only possible if § > 1+4-£. Consequently in this way we only obtain useful
approximations for certain linear processes that are not long range dependent.

6.3. ESTIMATION OF THE AUTOREGRESSION FUNCTION. The question of
estimating an autoregression function like

(6-12) E(¢(Xiga) | Xi = 21,.. ., Xiga—1 = z4),

for some measurable function v is a nonparametric curve estimation problem. Es-
timation might be performed via approximation by the locally dependent array of
the Xy, i, and by estimating the autoregression function of the array for a suitable
choice of m(n). Estimators may be derived from the compound empirical process,
and fluctuation inequalities like (4.4) are very useful to obtain rates of a.s. conver-
gence of such estimators (see Chanda and Ruymgaart [9]). Rates, however, will not
be optimal, because the fluctuation inequality is based on a kind of “worst case”
analysis of the situation, where precise dependence among the m components of
the empirical process is not taken into account because this is mathematically very

hard.
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