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Abstract. Kalai and Zemel introduced a class of flow-games showing that
these games have a non-empty core and that a minimum cut corresponds to a
core allocation.

We consider flow-games with a finite number of players on a network with
infinitely many arcs: assuming that the total sum of the capacities is finite, we
show the existence of a maximum flow and we prove that this flow can be
obtained as limit of approximating flows on finite subnetworks.

Similar results on the existence of core allocations and core elements are
given also for minimum spanning network models (see Granot and Huber-
man) and semi-infinite linear production models (following the approach of
Owen).

Key words: Balancedness, semi-infinite linear models

Introduction

Much work has been done in cost and reward sharing, e.g. in network prob-
lems and linear production situations, where we minimize costs or maximize
rewards.

These problems can be cast into the framework of cooperative games (with
side payments): there are three relevant cases in which it is known that these
games are balanced (i.e. have a non-empty core).

We are referring in particular to Kalai and Zemel (1982), Granot and
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Huberman (1981 and 1984), Owen (1975) and Curiel, Derks and Tijs (1989); a
survey is offered in Tijs (1992).

Our main goal is to see whether the balancedness conditions still hold
when some of the finiteness conditions are dropped: this paper considers
problems where one of the factors in the problem is countably infinite (the
number of players is always considered to be finite).

In particular we deal with the following three questions:

Q1 What can be said about balancedness if there is an infinite number of arcs
in flow situations?

Q2 What can be said about balancedness if there is an infinite number of
points to be connected to a source at a minimum cost?

Q3 What can be said about balancedness if there is an infinite number of
possible products in linear production situations?

It turns out that all these problems give rise (under certain conditions) to bal-
anced games; it is also indicated how to find (approximate) core elements.

For Ql, due to the presence of infinitely many arcs in the network, the
problem of max-flow and min-cut is not a standard one and we give a set of
conditions allowing the non-ambiguous definition of a flow.

Concerning Q2 we solve the problem not by looking at a minimum span-
ning tree but by allowing the presence of cycles at low costs.

In Q3 we have the problem of a possible duality gap in semi-infinite pro-
gramming. We give sufficient conditions in order that such a gap does not
appear and the result is a construction of a core element & la Owen.

Also an approximation with finite programs is possible.

Basic elements

An n-person game with transferable utility (TU-game) in characteristic form is
a couple {N,v) where N = {1,...,n} is the set of players and v: p(N) — R
is the characteristic function that assigns to each subset S = N, the value v(S)
that represents the worth of the coalition S; in particular v() = 0. When the
values assigned to the coalitions represent the cost of the coalition we denote it
by ¢(S) and call it the cost game (N, ¢)>. For every game {N,v) it is possible
to define the corresponding cost game <N, ¢, where ¢(S) = —v(S).

Given a game (N,v) an imputation is a vector x € R" that satisfies the
following conditions:

x;=v({i}) VieN

Zx,— = y(N)

ieN

The core of a game (NN, v) is the subset of the imputation set that satisfy the
following conditions:

d o xi20(S) VSN
ieS
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For a cost game (N, c¢) the conditions for an imputation can be written as:

xi<c({i}) VieN

inr-c(N)

ieN
and the further conditions for the core can be represented as

d xi<c(S) VSN
ieS

Flow Games

As said in the introduction we are interested in flows on networks with an in-
finite number of nodes and arcs, considering a finite set of players who own
the arcs. To fix the setting in which we are working, we give some definitions.

Definition 1. 4 network, with privately owned arcs, is given by a 7-tuple:
H= (M7Aaf1N1p7S0,P0)

where: M is a countable set whose elements are called nodes;

A is a collection of elements of the set {(i,j) e M x M |i # j} called
arcs;

f:A-]0,+00[ is a map that assigns to each arc ae€ A its capacity
fla);

N is a finite set whose elements are called players;

p: A — N is a map describing the ownership of the arcs, i.e. p(a) is the
player that owns arc a;

So, Po € M, with «(So)_ =& and w(Py), = & are special nodes
called source and sink respectively. <&

Remark 1.

— G(M, A) is an oriented graph with a countable set of nodes and without
loops.

- o(m)_ and w(m), denote respectively the set of arcs entering and leaving
the node me M.

— In the standard situation a network has a finite number of nodes and arcs;
in this new situation we have to redefine some related concepts. <o

Given a network H, a (feasible) flow ¢ on H is a map:

p:A4—1[0,+0]
satisfying the conditions:
p(a) < f(a) Vae A (%)
Y. e@= > ¢la) YmeM\{So,Po} ()

acw(m)_ aco(m),
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Given a network H and a flow ¢ on H, the value of ¢, denoted by w(p), is:

wig)= Y ol

aew(Sy),

The value of a maximum flow on a network H is denoted by w*(H).

Hypothesis 1. We assume that the sum of the capacities over all of the arcs, or
the total capacity, is finite, i.e.:

> fl@) <+w 1

aed

Proposition 1. Given a network H, satisfying (1), w(p) < +oo for every flow ¢
on H.

Proof w(p)= > ¢el@)< 3 f(a)sagf(a)<+°0- <&

aew(So), aew(So).

Remark 2. Tt is possible to prove (by a standard approximation argument)

that > ¢(@= . ¢(a). So, as in the finite case, we could equiv-
acw(So)., aew(Po)_

alently have defined the value of the flow as the total flow entering the

sink. <

Proposition 2. Given a network H satisfying (1), let us denote by @ the set of
feasible flows ¢ on H. Then there exists a flow gy € D s.t. w(py) = w(p) for all
ped.

Proof. Note first that (1) and condition (%) in the definition of the flow guar-
antee that & may be identified with a subset of #! = #!(N), where ¢! is the
set of infinite sequences (aj,a,...) of real numbers with > |a;| < +oc.
iz1

Conditions () and (x*) guarantee that it is a closed subset of #!. Moreover
condition (1) ensures that & is compact (see exercise 3, page 338 in Dunford
and Schwartz, 1958).

Furthermore w: & — R is a Lipschitz continuous function. Hence, by
‘Weierstrass theorem there exists a maximum flow. &

Now let S = N. If we consider only arcs “owned” by S (i.e. belonging to
P~ (S)), we get a subnetwork Hg (clearly Hy = H).

We define a side-payment game {N, vy assigning to each coalition S = N
the maximum value of the flow on the subnetwork Hy, i.e. vy (S) = w*(Hy).
‘We shall prove the following theorem.

Theorem 1. Given a network H satisfying (1), the game {N,vg) has a non-
empty core.

Proof. We consider for every ¢ > 0 the subnetwork H, constructed in the fol-
lowing way.

Order A in a decreasing way w.r.t. capacity (ties are broken ““ad libitum™).
Take ¢ > 0 and consider the network consisting of the minimum number of
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arcs, according with the order introduced above, s.t. their total capacity is
greater than ) f(a) — e. This network has a finite number of arcs. Delete

acAd
the nodes (different from source and sink) of this network that are isolated.
This will give us the finite network H,.

By Kalai and Zemel (1982) the game {N,vg,) has non-empty core. Fur-
thermore, there is a minimum cut with capacity w*(H,) that gives us an
allocation (xi,...,xZ) belonging to Core (vy,), where x{ is the sum of the
capacities of the arcs owned by player i in the minimum cut.

We have:

x>0 Ve>0

n

fo =w"(H,) < w*(H)

i=1

So {(x,...,x8)|e > 0} lies in a compact set and we can find a subsequence
(xf*,...,x%) converging to some (X1,...,%,) € R™.

We shall prove that (%y,...,%,) € Core(vy).

Note that ) x{ = w*(H,) and w*(H,) < w*(H) < w*(H,) + ¢, that is:

i=1

w*(H) — & <w"(H.) <w"(H) (2)
n
Taking the limit for ¢ — 0, we get: > X; = w*(H).
i=1
Because a relation analogous to (2) holds also for the subnetworks Hs (and

H,s), and ) xf > w*(H,,s), we get in the same way: » %; = w*(Hsy).

So, (%1,"5%, %,) e Core(vg). res o

In general, we cannot guarantee that the whole sequence provided by our
method of proof converges to an allocation in Core(vy). The example of

Fig. 1 shows that it can be necessary to consider a subsequence (x*, ..., x5)
of allocations:
1+ € 1+ € 1 1+ € 1
3¢/4 3e2
SO} 3¢/16
— -
a b c

Fig. 1.

In Fig. 1-a is the network H, where player 1 is the owner of the arcs from
Sp to v1, and player 2 is the owner of the arcs from v; to Py.

The minimum cut of the subnetwork in Fig. 1-b contains the arc (vi, Py)
and the corresponding allocation is (0, 1).

The minimum cut of the subnetwork in Fig. 1-c contains the arc (Sp, v;)
and the corresponding allocation is (1 + ¢,0).
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In the subsequent subnetworks the minimum cut contains alternatively the
arcs between (v, Py) or between (Sy,v1) and the corresponding allocations
assign a null payoff to player 1 or 2 alternatively.

So, the sequence that we get in our proof does not converge.

Remark 3. Without Hypothesis 1, for our infinite network we cannot guaran-
tee a behaviour similar to the finite case, as it is shown in the following
examples.

— The conclusion of Proposition 1 does not hold, as is shown in the example
of Fig. 2:

Fig. 2.

The optimal solution is an unitary flow on each arc, so we have:

W)= 3 pl@) = p(So,0) = +c0
i=1

aew(S).,

The value of the flow as previously defined may not correspond to the in-
tuitive idea of a flow from S; to Py. Consider a unitary flow on each arc in
the example of Fig. 3:
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In thiscase Y. ¢(a)= Y. ¢(a)=2, while we would expect a uni-
acw(So), aew(Po)_
tary flow on the path Sy — v; — Py. <o

Connection problems and games

Now we devote our attention to the problem of spanning graphs in a weighted
undirected graph with an infinite number of vertices and edges.

Definition 2. 4 weighted undirected graph is described by a triple:
U=(X,E,q)

where: X is a countable set whose elements are called vertices;
E is a collection of subsets of X with two different elements; the elements

of E are called edges;
g: E — [0,+00[ is @ map that assigns to each edge e € E its weight or
cost g(e). <

Remark 4.

— We consider graphs without loops.
— In the standard situation a graph has a finite number of vertices and edges
and the costs may also be non positive. <&

Given a weighted undirected graph U we identify a special vertex Sy and
consider a finite set of players that own the remaining vertices; we are inter-
ested in finding a subset of edges (i.e. a spanning graph) such that all of the
vertices in X are connected, while the total cost of the edges in the subset is
minimal.

Definition 3. 4 minimum cost spanning graph (m.c.s.g.) problem, with privately

owned vertices, is given by a 6-tuple:

K= (XyEagaNaq’SO)

where: X, E, g are as in definition 2;
N is a finite set whose elements are called players;
q: X — N is a map describing the ownership of the vertices, i.e. q(v) is
the player that owns vertex v;
So € X is a special vertex called source. o

As in the previous section we make a finiteness assumption.

Hypothesis 2 We assume that the graph U is connected and that the sum of
the costs over all of the edges is finite, i.e.:

> 9(e) <+oo o

ecE
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Remark 5. Contrary to Granot and Huberman (1981) we do not assume that
the graph U is complete; clearly, adding “missing” edges with sufficiently high

costs (e.g. 2N > g(e)) , we could obtain a complete graph, without altering
eeE

the problem that we are considering, except that Hypothesis 2 could be no
longer valid. %

Given W < X\{Sy} we shall consider Uy, i.e. the set of all connected sub-
graphs (X', E’), where X' = WU {So} and E’ is a subset of E containing
edges with vertices belonging to X”.

We define ¢*(W) = inf{k(E")|(X’, E") € Uw}, where k(E') is the cost of

the spanning graph (X', E’), i.e. Z g(e).
ek

The meaning of ¢ (W) should be clear: it is the ““‘minimum” cost for con-
necting all of the vertices in W with the source Sj.

It is possible that there exists no subgraph connecting all the vertices of
X' because we do not assume that U is complete; in this case ¢*(W) will be
infinite.

We shall now introduce the games (N, c) and <{N,¢) as in Granot and
Huberman (1981).

leen a non empty subset S S N, we define ¢(S) =inf{c*(W)|W =2

(S)} and ¢(S) = c¢*(g~!(S)), where g{“1 (S) is the set of vertices owned by
the players in S.

Remark 6.

— Since we did not assume that the graph U is complete clearly ¢(S) can be
infinite for some S # N, because the vertices of g~ () may generate a non
connected subgraph. On the contrary, ¢(S) will be always a real number
because the players in the game (N, ¢) can use every vertex and every edge
of the given graph.

— With the same arguments as in Granot and Huberman (1981) it is pos-
sible to prove that the game (N,¢) is monotonic (we call it m.m.c.s.g.
game). S

Granot and Huberman (1981) proved that an imputation x in the core of the
minimum cost spanning tree game is given by the rule of Bird (1976):

X = k(Ei‘ )

where an edge e € E;- if it is the edge entering in a vertex owned by i in the
unoriented path originating from the source in the spanning tree.

{N,¢) can be considered as a kind of generalized cooperative game with
side payments (since ¢(S) can be equal to +00), to which the usual definition
of the core can be immediately extended: it turns out, furthermore, that as in
Granot and Huberman (1981) the core of (N, ¢) is contained in the core of
{N,c). So, it will be sufficient to prove that core of <N, ¢ is non-empty.

Given ¢ > 0, we shall use in the proof the same argument of Theorem 1.
We order the edges in a decreasing way w.r.t. costs and, according to this
order, we delete “expensive” edges until we are left with a set of edges E;

st. D gle)<e

ecE;
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Due to the connectedness assumption on the graph U(X, E), the graph U,
with edges set E, cannot have an infinite number of connected components
(because the number of edges left out is finite). Consider these connected
components Yi,..., Y, of he graph U and contract each subset Y; into a
vertex y;; so, any edge that had one vertex of Y; as an endpoint (and the other
endpoint outside Y;) will now have this vertex y; as endpoint; the ownership
of y; will be defined as the set of all the owners of some vertex in Y;. Notice

k;
that in this way we have contracted a set of vertices | ie. |J Y; | that may
i=1
be spanned at a cost less than ¢ (the connected components are generated by a
set of edges whose total cost is less than &).
In this way we obtain a graph K, and the associated m.m.c.s.g. game
{N, c*> which will have only a finite number of vertices and edges.
However, K, will present new features with respect to the model considered
in Granot and Huberman (1981):

1) vertices may have more than one owner;
2) there may be multiple edges;
3) a player may own more than one vertex.

It is easy, however, to extend the result of Granot and Huberman (1981) to
this class of finite graphs, as is shown here on.

1) The case of multiple owners of a vertex is easily treated just splitting the

vertex into as many vertices as the number of owners, connecting them
_ with edges of null cost, and duplicating the edges that had this vertex as an
endpoint (the idea is shown in the example of Fig. 4).

2) If there are multiple edges connecting the same pair of vertices we retain
just one of the edges of minimum cost and delete all of the remaining ones.
In such a way, the original finite graph is transformed into another one
that is equivalent to it from the point of view of connection at minimum
cost.

3) When a player owns more than one vertex, it is easy to check that the
proof of Theorem 3 in Granot and Huberman (1981) can be adapted to
this context. Taking into account the way in which we have defined (X, ¢,
instead of looking at a coalition S > R s.t. ¢(R) = ¢(S) as done in Granot
and Huberman (1981), we have to consider a set of vertices W s.t. ¢(R) =
c*(W).

{12}

{k}

Fig. 4.
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For what concerns the original problem, it is easy now to prove the fol-
lowing theorem.

Theorem 2. Given a m.c.s.g. problem with a countable number of vertices, sat-
isfying Hypothesis 2, the game (N, c) has non-empty core.

Proof. We prove first that the m.m.c.s.g. game <N, ¢) has non-empty core.
Given ¢ > 0, we prove that ¢(S) < ¢%(S) + ¢ for each coalition S.
Actually, consider the m.m.c.s.g. in the finite graph K;(S), i.e. the con-

nected subgraph of K, containing the vertices owned by the players of S,

whose cost may be denoted by c*(S).

Then, adding to K,(S) all of the edges of the connected components Y;
(whose total cost is less than €), we get a connected subgraph whose cost is less
than ¢¥(S) + ¢ (by definition it is the infimum of all of the costs allowing the
connection to Sy of all of the vertices owned by the players of S).

Conversely we have to prove that ¢*(S) < ¢(S).

Consider a set of edges connecting all of the vertices owned by the players
of S to the source in the given graph; put down to zero the cost of the edges
in the shrunk connected components. The resulting graph connects all the
vertices in the finite graph K;(S). So, ¢*(S) < ¢(S).

So, we have proved that for every coalition S:

lim ¢*(S) = ¢(S)

Due to the upper semicontinuity of the core multifunction and to the fact that
the core of the game {N, ¢} is non-empty for any ¢ > 0, we get that also the
game <N, ¢)> has a non-empty core.

That the game <N, ¢> has non-empty core follows immediately by the re-
mark of Granot and Huberman (1981) that ¢(N) = ¢(N) and ¢(S) = ¢(S) for
any coalition S. O

Under our hypothesis of finite total cost of the edges, the case in which the
given graph is complete turns out to be a trivial one; in fact the infimum of the
cost of the spanning graphs is zero. Namely, let be given ¢ > 0. We assign an
order to the vertices of the graph, then we can connect the source with a vertex
at cost less than &/2, choosing the first vertex w.r.t. this order; next we can add
an edge with cost less than ¢/4 connecting the first remaining vertex and so on.
In such a way we get a spanning graph whose cost is less than e.

Linear production games

In this section we consider a situation in which we have a finite number of
resources that can be used in infinitely many production processes, each one
resulting in one product, with a finite number of players each owning a bundle
of resources. Note that we consider that different processes result in different
products, even if the products are equivalent.

Let us define first the finite production problem.

Definition 4. 4 production problem is a 5-tuple:
P=(m,n A4,b,c)
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where: m is the number of available resources;
n is the number of possible products;
A € M, , is the technology matrix;
b e R™ is the resource vector;
¢ € R" is the price vector.
A, b, ¢ have non negative entries. &

Remark 7. Aj is the quantity of resource i needed to produce one unit of
product j; b; 1s the available quantity of resource i; ¢; is the market price of
product j. <

We are interested in finding a production plan z using the available resources,
with the given technology, in order to maximize the total revenue, i.e. a solu-
tion of the linear problem:

max{c7z|Az < b,z > 0}

In the related dual problem we look for a shadow-price of each resource, i.e. a
solution of the linear problem:

min{b7y|4Ty > ¢,y = 0}

According to the duality theorem the maximum total revenue equals the
minimum total shadow-value.

As in the previous section we associate to the production problem a co-
operative game with side payments with a finite set N of players, assuming
that each player i owns a vector of resources b°.

Definition 5. 4 linear production game <N, v) is defined as follows:
v(S) = max{cTz|4z <b5,z>0} VSN

where b is the vector of the resources owned by S <i.e. bS=3% bi) ; in par-
ticular b = b. ieS o

Owen (1975) shows that an imputation x, given by:
x;= (b)) y* VieN

where y* is a solution of the dual problem for the grand coalition N, is in the
core.

By the duality theorem the primal and dual problem have both no optimal
solution or have both an optimal solution and in this case the optimal values
are the same; this is necessary in order to guarantee that Owen’s method gives
us an efficient allocation.

In the semi-infinite case we have a countable set of products and a finite
number of resources, i.e. we consider now P = (m, N, 4,b,¢). As in the finite
case above, we can define the game (N, v).

When we deal with semi-infinite linear programming a duality gap may
arise, i.e. the primal and dual problem have both optimal solution but their
optimal values may be different.
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Example ( Tijs, 1979 ). Given:
1111 -
4= 1 1 i bT:(l’O); CT=(172’2>27-")
0141 ..

(P) sup{cTz|dz < b,z > 0,z e RV}

(D) inf{bTy|4Ty > ¢,y =0,y € R?*}

The feasible solutions of the two problems are respectively:
{zeR¥|0<z1 < 1;z;=0,i > 2}

{ye R}y 22,5, 20}

The optimal solutions of the two problems are respectively:
z* =(1,0,0,0,...); cTz*=1

Y =(2,0; b7y =2

We have different optimal values ¢7z* and 57 y* so we have a duality gap.
Other examples of duality gaps are presented in Tijs (1979). e

If a duality gap arises we do not get anymore a core element using the previ-
ous method: namely v(N) is equal to the optimal value of the primal problem,
and this is different from the optimal value of the dual problem.

We need further conditions in order to avoid a duality gap. To this aim we
state the following theorem.

Theorem 3. Given a semi-infinite production problem P, assume that:

a) sup{g} =y < +oo
b) SIJJp{A,-j} >a>0 Vj
i

Then the associated game {N,v)> has a non-empty core.

Proof. By a) and b) the dual feasible region is non-empty since y7 =
%(1, 1,1,...) is a feasible dual solution and the primal problem has finite total

revenue.
Consider then the additional assumption:

b;>0 Vi

By this assumption there is no duality gap (Tijs, 1979) and an optimal dual
solution exists: so it is possible to apply Owen’s method in order to obtain a
core allocation.

If assumption b; > 0 doesn’t hold for every i, i.e. one or more resources are
available at level zero, we may eliminate these resources and all the products
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need a non-zero quantity of them (it is impossible to produce such prod-
, getting a reduced problem that satisfies the hypotheses; to obtain a
ion of the given problem and an allocation in Core(v) we may give value
to the primal variables corresponding to the eliminated products and to
ual variables corresponding to the eliminated resources. &

he reduced problem is not a standard one. From a computational point
iew, consider a problem with finite number of products Py; let
3,XBy, ¥p) be an optimal solution of Py, where I is the set of indices of
- variables, By is the basis, xp, is the vector of basic variables and y, is the
isponding dual solution.

dd a dual constraint j, i.e. a primal variable, such that:

'AjTyo +¢=sup{-A{ y+al—e

solve the new problem P;.

‘ontinuing in this way, we obtain a sequence of dual solutions {y;} with
ssequence {y, } that converges to the optimal solution y* of the dual.
sequently there exists a corresponding subsequence {xz, } converging to
yptimal solution x* of the primal.
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