
 
CENTRAL BANK OF CYPRUS 

EUROSYSTEM 
 

WORKING PAPER SERIES 
 
 
 
 

Forecasting Issues: Ideas of Decomposition 
and Combination 

 
 

Marina Theodosiou 
 
 
 
 
 
 
 
 
 
 
 
 

June 2010 
 
 
 
 
 
 
 

Working Paper 2010-4



 

 

 

 

 

 

 

 

 

 

 

Central  Bank  of Cyprus Working  Papers  present work  in  progress  by  central  bank  staff  and 

outside  contributors.    They  are  intended  to  stimulate  discussion  and  critical  comment.    The 

opinions  expressed  in  the  papers  do  not  necessarily  reflect  the  views  of  the  Central  Bank  of 

Cyprus or the Eurosystem.  

 

 

 

 

Address 
80 Kennedy Avenue  
CY-1076 Nicosia, Cyprus  
 
Postal Address  
P. O. Box 25529 
CY-1395 Nicosia, Cyprus  
 
E-mail 
publications@centralbank.gov.cy 
 
Website  
http://www.centralbank.gov.cy 
 
Fax 
+357 22 378153 
 
 
Papers in the Working Paper Series may be downloaded from:  
http://www.centralbank.gov.cy/nqcontent.cfm?a_id=5755 
 
 

© Central Bank of Cyprus, 2010. Reproduction is permitted provided that the source is acknowledged.

http://www.centralbank.gov.cy/nqcontent.cfm?a_id=5755


 

Forecasting Issues: Ideas of Decomposition and 
Combination 

 
Marina Theodosiou* 

 
June 2010 

 
Abstract 

Combination techniques and decomposition procedures have been applied to time 
series forecasting to enhance prediction accuracy and to facilitate the analysis of data 
respectively. However, the restrictive complexity of some combination techniques and 
the difficulties associated with the application of the decomposition results to the 
extrapolation of data, mainly due to the large variability involved in economic and 
financial time series, have limited their application and compromised their 
development.  This paper is a re-examination of the benefits and limitations of 
decomposition and combination techniques in the area of forecasting, and a contribution 
to the field with a new forecasting methodology. The new methodology is based on the 
disaggregation of time series components through the STL decomposition procedure, 
the extrapolation of linear combinations of the disaggregated sub-series, and the 
reaggregation of the extrapolations to obtain estimation for the global series. With the 
application of the methodology to the data from the NN3 and M1 Competition series, 
the results suggest that it can outperform other competing statistical techniques. The 
power of the method lies in its ability to perform consistently well, irrespective of the 
characteristics, underlying structure and level of noise of the data. 
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1. Introduction

“Better predictions remain the foundation of all science...” (Makridakis & Hibon,

2000)

Forecast accuracy has been a critical issue in areas of financial, economic and scientific modeling,

which enthused the proliferation of a vast literature on the development and empirical application

of forecasting models (Hyndman & De Gooijer (2006)). Nevertheless, these models are just “inten-

tional abstractions of a much more complicated reality”1 and rely on historical data to draw upon

conclusions about the future. Consequently, they are always prone to estimation error due to model

misspecification. Combination techniques and decomposition procedures have been developed to

address this issue of misspecification by exploiting the capabilities of the various forecasting models

in capturing specific aspects of the data.

Combination techniques operate by pooling together forecasts from various models, in order to

enhance and robustify prediction accuracy. The integration of information from different models

into one forecast can reduce the estimation error in the prediction significantly (Clemen (1989),

Stock & Watson (2004), Timmermann (2006)). Nonetheless, the restrictive complexity of some

existing combination methodologies and the lack of comprehensive guidelines for their application

have been admitted flaws in the literature (Armstrong (1989), Menezes et al.(2000)).

Decomposition procedures can facilitate the analysis by disaggregation of the time series into

feature-based sub-series. As suggested in this paper, the isolation of the more important features

of the data in distinct sub-series, can enhance the forecasting performance of the models used

for their estimation. As a consequence, the estimation error obtained from the aggregation of the

extrapolated sub-series is reduced relative to the estimation error obtained for the series as a whole.

The improvement in accuracy is mainly due to the elimination of any residual variability within

the sub-series, which may affect the structure of the individual components and consequently the

performance of the forecasting model.

In this paper, such a forecasting methodology is developed which extrapolates the global se-

ries through the individual extrapolations of linear combinations of the sub-series returned from

the application of a decomposition procedure, including the residual error component. The new

1Diebold & Lopez (1996, p22)

1



methodology makes use of both decomposition procedures and combination techniques. A decom-

position procedure from the literature is employed to disaggregate the data into three dominant

components namely trend, seasonality and residual error, whilst a linear combination technique

is used to obtain an estimation for the global series. The main underlying idea of the methodol-

ogy is that, better prediction accuracies can be achieved by subdividing the forecasting problem

into smaller parts, and consequently also segregating the degree of complexity of the problem.

Those parts are then easier to extrapolate, contributing to higher prediction accuracies, than those

obtained from the direct forecast of the global series using a single model.

The new methodology is applied to the NN3 (Crone & Nikolopoulos (2007)) and M1 Com-

petition (Makridakis et al. (1982)) datasets. The results obtained are benchmarked against the

results of four forecasting methodologies namely ARIMA, Theta, Holt’s Damped Trend (hereafter

HDT) and Holt-Winter’s (hereafter HW). These methods can be readily implemented in a software

package2, and were selected on the basis of their performance in previous forecasting competitions

and empirical applications.

The paper unfolds as follows. Section two gives an overview of decomposition and combination

techniques. In section three, the various steps leading to the implementation of the new method-

ology are described in detail. Section four presents the results from the forecasting application of

the new methodology on the NN3 competition data. The power of the method in forecasting a

large range of time series with different characteristics is tested in section five, with its application

on the complete dataset of time time series from the M1 Competition. Concluding remarks are

given in section six.

2. A Synopsis on Decomposition & Combination

2.1. Combination Techniques in Forecasting

Clemen (1989) reported that “forecast accuracy can be substantially improved through the

combination of multiple individual forecasts”. The same conclusion has been reached in many

papers and surveys that followed (see for example Marcellino (2004), Timmermann (2006)). Fur-

thermore, as found in various forecasting competitions (M, M3 Competition), no single technique

can perform consistently well across all time series and across all forecasting horizons (Fildes et

2The statistical software used in this paper is the R-Language and is free to download from www.r-project.org.
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al.(1998), Makridakis & Hibon (2000)). Therefore, by combining forecasts, one may reduce the

misspecification bias in the individual models and increase prediction accuracy.

The gain in accuracy achieved through combination is due to the strengths and limitations of

the individual forecasting methods. Hendry & Clements (2002) offer a formal explanation of this

phenomenon. They suggest that forecast combining adds value when the individual forecasting

models are differentially mis-specified. This argument is supported in the work of Makridakis

(1989), Diebold & Lopez (1996) and Stock & Watson (1999, 2004). Furthermore, by combining,

the practitioner avoids the possibility of choosing the worst forecasting model for the particular

point in time and, hence, robustifies the estimations across all forecasting horizons (Armstrong et

al.(1983), De Gooijer & Hyndman (1998)). Another explanation given by Pesaran & Timmermann

(2005) and Timmermann (2006) is that individual models react differently to structural changes in

the data. As a result, “combinations of forecasts from models with different degrees of adaptability

to structural changes will outperform forecasts from individual models” (Timmermann (2006)).

In this paper, a simple linear combination technique is used on the extrapolated disaggregated

subseries to obtain an estimation of the global series.

2.2. An Overview on Decomposition

Decomposition techniques have been primarily developed by Persons (1919) to identify and

isolate salient features of a time series. They have since been used for the analysis of economic

data to produce official statistics by various governments and institutions (see Fischer (1995) for a

well-documented survey on the various methods).

Even though, decomposition methods were not primarily developed to serve as prediction tools,

the intuition behind their application in forecasting is nonetheless very appealing. Disaggregating

the various components in the data and predicting each one individually can be viewed as a process

of isolating smaller parts of the overall process which are governed by a strong and persistent ele-

ment, and therefore separating them from any ‘noise’ and inconsistent variability. These processes

are then easier to extrapolate due to their more deterministic nature. It should be therefore pos-

sible to obtain more accurate forecasts for the individual components than one is likely to obtain

for the global series. This becomes important in the case of time series with a high degree of noise.

There exists a number of papers in the literature who deal with the extrapolation of time series

through the extrapolation of the individual components, obtained from the application of averag-
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ing techniques (Damrongkulkamjorn & Churueang, (2008), Temraz et al. (1996)). This approach

to forecasting is known as the classical decomposition technique and was developed by Macauley

(1938) and later described in Makridakis Wheelwright & Hyndman (1998). However, in all ap-

plications of the classical decomposition technique, the residual component after the elimination

of any trend, cyclical and seasonal variations, is always assumed to be a random variable with

constant variance and is therefore excluded from the forecasting process.

In the current paper, a new approach to decomposition in forecasting is developed which

achieves the forecasting of a time series through the linear combination of its components, in-

cluding that of the residual error component.

3. Data Description

3.1. NN3 Competition Dataset

The dataset of 111 time series distributed for the NN3 competition3 was used for the imple-

mentation of the new methodology. The competition organizers have not disclosed the source of

the dataset, and the only information available is that this is composed of empirical business time

series. The data are monthly, with positive observations and structural characteristics which vary

widely across the time series. Many series are dominated by a strong seasonal structure, and for

some (NN59, NN102, NN103), the seasonality is exhibited with almost zero noise. There are also

series exhibiting both trending and seasonal behavior, whilst in some cases outliers can be detected

(e.g. NN108, NN110). Nevertheless, the majority of time series is characterized by a high level

of noise, and in some instances this appears to be the dominant component in the series (NN78,

NN95, NN96, NN97, NN99, NN108, NN110). The length of the various data ranges from 68 to 144

monthly observations. From these, the last 18 observations are withheld for evaluating the predic-

tive ability of the new methodology. The time series are not subjected to any data preprocessing

prior to the implementation of the new forecasting methodology.

The large variability of structural characteristics within the 111 time series underlines the need

for a single forecasting methodology that could predict all series with a relatively high level of

accuracy, and consequently, remain unaffected by structural changes and persistent trending or

3The data used for the analysis can be obtained from:

http://www.neural-forecasting-competition.com/NN3/datasets.htm
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seasonal behavior in the data. In the proceeding section, such a methodology is described, which

is based on the individual unobserved components within each observed time series and thus,

possesses the capability of attaining high levels of predictive accuracy irrespective of the structural

attributes of the underlying data.

3.2. M1 Competition Dataset

The performance of the new methodology developed is tested on the complete and reduced

datasets of the M1 Competition (Makridakis et al., 1982). The complete dataset consists of 1001

time series of economic and financial indicators (micro, macro and demographic), from which 181

are of annual frequency, 203 of quarterly frequency and 617 of monthly frequency. The reduced

dataset consists of 111 series, analyzed in Makridakis et al. (1984) and is composed of 20 annual, 23

quarterly and 68 monthly series. These datasets have been extensively documented in the literature

and have become a standard test data for the evaluation of forecasting techniques. Figure 1 depicts

some example time series from the three datasets.

4. Methodology Description

In this section, the various steps for the implementation of the new forecasting methodology

are described in detail. The subdivision of the forecasting problem into smaller parts is achieved

through a decomposition procedure which disaggregates the global series xt into three additive

components, namely trend (mt), seasonality (st) and error (et), i.e.

xt = mt + st + et (1)

4.1. The Decomposition Procedure

The Seasonal and Trend Decomposition using Loess (STL) procedure (Cleveland et al., 1990) is

used for the additive decomposition of the global time series. STL performs additive decomposition

of the data through a sequence of applications of the Loess smoother4. An important advantage

of the STL procedure and the use of the Loess smoother, is the robustness of the returned trend

and seasonal components to outliers in the data.

4A Loess smoother applies locally weighted polynomial regressions at each point in the data set, with the ex-

planatory variables being the values close to the point whose response is estimated.
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Figure 1: Time series plots for the 2nd, 74th and 77th time series of the NN3 Competition, 97th and 106th time series

of the M1 Competition reduced dataset, and 390nd, 397th and 405th time series of the M1 Competition complete

dataset.
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The procedure is carried out in an iterated cycle of detrending and then updating the seasonal

component from the resulting sub-series. At every iteration the robustness weights are formed

based on the estimated irregular component; the former are then used to down-weight outlying

observations in subsequent calculations.

The iterated cycle is composed of two recursive procedures, the inner and the outer loop. The

inner loop performs six basic steps:

1. Detrending: Let s
(k)
t and m

(k)
t be the seasonal and trend components obtained at the end of

the kth pass. At iteration k+1, the global series xt is detrended by eliminating the estimated

trend component m
(k)
t , i.e. xt−m(k)

t . At the start of the first iteration, m
(0)
t is set to be zero.

2. Seasonal Smoothing: A Loess smoother is then applied to the sub-series obtained above

(xt −m(k)
t ) to form a preliminary seasonal component, s

(k̃+1)
t .

3. Filtering of Smoothed Seasonality: A simple moving average is applied to the preliminary sea-

sonal component of the second step, s
(k̃+1)
t , followed by the application of a Loess smoother,

to identify any remaining trend, m
(k̃+1)
t .

4. Detrending of Smoothed Seasonality: The additive seasonal component is then estimated as

the difference between the preliminary seasonal component of the second step, s
(k̃+1)
t , and

the preliminary trend component of the third step, m
(k̃+1)
t , i.e. s

(k+1)
t = s

(k̃+1)
t −m(k̃+1)

t .

5. Deseasonalizing: A seasonally adjusted series is computed by subtracting the result of the

fourth step from the original data (xt − s(k+1)
t ).

6. Trend Smoothing The seasonally adjusted series is then smoothed again by Loess to give an

estimate of the trend component m
(k+1)
t .

Hence, each pass of the inner loop applies seasonal smoothing that updates the seasonal component,

followed by trend smoothing that updates the trend component.

An iteration of the outer loop consists of one iteration of the inner loop with resulting estimates

of the trend and seasonal components used to calculate the irregular component (e
(k+1)
t = xt −

m
(k+1)
t − s(k+1)

t ). Any large values in et are identified as extreme values and a weight is calculated.

This concludes the outer loop. Further iterations of the inner loop use the weights to down-weight

the effect of extreme values, identified in the previous iteration of the outer loop5. In the current

5For a more detailed description of the STL decomposition procedure, the reader is referred to Cleveland et al.,

1990.
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application, an automated method was implemented within the algorithm for the implementation

of the STL procedure, which tests for outliers in the data based on the equation.:

Xt − µt
σt

> 2 (2)

where µt and σt denote the mean and standard deviation of the time series Xt. If no outliers are

detected, the number of iterations for the outer loop is set to 0.

Thus, for every time series xt, STL6 returns, mt, st and et, as in equation (1). Figure 2 depicts

the results from the application of the STL decomposition procedure on series NN52 from the NN3

Competition dataset.

Figure 2: Results from the application of the STL decomposition procedure on time series NN52.

The success of the new methodology therefore relies on the successful interpolation of linear

combinations of the additive components.

6The STL decomposition procedure can be readily implemented in R-Language using the function stl().
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4.2. Extrapolating the Disaggregated Components

Below, a description of the analysis carried out for choosing suitable forecasting models for the

extrapolation of the individual components is given, together with the main conclusions from the

analysis.

In order to obtain some guidance as to which forecasting method is best suited for the ex-

trapolation of each individual component, four forecasting methodologies namely ARIMA (Box

& Jenkins, 1976), Theta (Assimakopoulos & Nikololopoulos, 2000), HDT (Holt, 1957) and HW

(Winters, 1960), were applied on early hold-out data and their performance was evaluated based

on prediction error and relative to the dominant component and the level of noise in the data.

As mentioned before, these forecasting methods were selected based on their performance in

forecasting competitions and other empirical applications, as well as on their ability to capture

salient features of the data. Exponential smoothing methods such as HDT and HW have been

examined extensively in the literature and were reported to perform well for a wide range of data

(Satchell & Timmermann, 1995, Hyndman et al., 2000, Chatfield et al., 2001, and Hyndman et

al., 2005). The Theta method which, as shown by Hyndman & Billah (2001) is simple exponential

smoothing with drift, was the best performing method in the M3-Competition (Makridakis &

Hibon, 2000), and was reported as the second best statistical method for the NN3 Competition after

Wildi (Crone & Nikolopoulos, 2007). Finally, ARIMA models are very popular in the literature

for their robustness to model misspecification (Chen, 1997). Here, the stepwise selection procedure

described in Hyndman & Khandakar (2008) was used for choosing the optimal ARIMA model for

each of the time series considered. In addition, the automatic algorithms described in the same

paper by the authors, were used to choose the optimal parameters for the implementation of the

other three forecasting techniques. The prediction intervals for the Theta method were computed

using the underlying state space model (Hyndman & Billah, 2001).

These forecasting methods were applied to the raw data to predict 18 observations ahead, using

only the first 36 observations (3 years) in the sample. Therefore, only the first 54 observations

from each time series are used in this analysis. The ‘best’ method for each time series, in terms

of mean absolute scaled error (MASE), was recorded and examined relative to the structural

components in the time series7. Firstly, in order to determine the strength of each components in

7The choice of the forecasting horizon and the historical window was based on an ad hoc selection. However,
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the time series, these are regressed against the original data and the coefficients of determination

from each individual regression are obtained, i.e., xt is regressed against mt, st and et and the

coefficients of determination, R2
m,R2

s and R2
e are obtained respectively. R2 provides an indication

of the ‘strength’ of each component in the series. Therefore, the higher the R2 the greater the

power of the component in predicting xt.

Hence, the following regressions were carried out:

xt = αm + βmmt + εt,m =⇒ R2
m

xt = αs + βsst + εt,s =⇒ R2
s

xt = αe + βeet + εt,e =⇒ R2
e

(3)

Secondly, the time series are classified into four groups based on the best forecasting method for

each time series. Hence, those time series for which method M , for M = 1, . . . , 4 (HW, HDT, Theta

and ARIMA respectively), was found to be the best method in terms of MASE, formed group GM .

For each of the time series in the group, the coefficients of determination of the three components

are then recorded. Therefore, each group, GM was associated with a matrix of nx3 coefficients of

determination, n being the number of time series for which method M had the smallest MASE,

i.e.,

GM =


R2

s,1 R2
m,1 R2

e,1

...
...

...

R2
s,nM

R2
m,nM

R2
e,nM

 (4)

The purpose of this classification was to determine the relationship between the performance of

each individual forecasting method on the raw data in respect to the features of the series. From

the analysis some important conclusions were drawn:

• For time series with high levels of seasonality, the best forecasting methods were ARIMA and

HW method.

• For time series with high levels of trend component, the best forecasting methods were HDT,

Theta and ARIMA.

• For time series with high levels of error component, the best forecasting method was ARIMA.

experimental results not reported here, revealed that the relative performance of the various methods did not vary

significantly when different historical windows and lead times were used.
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4.3. Extrapolating the Error Component

The most important step in the application of the new methodology lies in the estimation of the

error component. Being the residual variability after the elimination of any structural component

in the data (trend and seasonality), it is a very noisy series and therefore very difficult to predict.

To our knowledge, there exists no published work in the literature that deals with the extrapolation

of the irregular component obtained through the application of a decomposition procedure, using

statistical techniques.

Although it is customary in the literature to assume that the error component is white noise,

nevertheless in the current methodology, information can still be drawn from its subseries and

therefore discarding it completely can affect negatively estimation accuracy. Information in the

error component might be in the form of residual autocorrelation in its series, or of conditional

dependence on the other decomposed features of the original time series.

Based on this intuition, the error component is also included in the estimation of the global

series, through a combination technique, which is based on the extraction of the error component

from the extrapolated detrended and deseasonalised series, ŝet+1 and m̂et+1. These are obtained

by adding together the seasonality and error, and trend and error components respectively, i.e:

set = st + et (5)

met = mt + et (6)

The combinations of ŝet+1 and the trend component, and m̂et+1 and seasonal component both

give an estimation for the global series.

4.4. The New Forecasting Method

In this paper, the ARIMA method is used for the estimation of met, and the HW method for

the estimation of set. The seasonality component was extrapolated using the ARIMA method and

the trend component using the Theta method8. The choice of these methods is supported by the

preliminary analysis carried out in the previous section. From the analysis, it was found that the

8Other permutations assumed by the best performing method for each component, found in section 4.2, were also

investigated. A number of them returned comparable results with the one chosen.
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aforementioned methods were selected as the most accurate forecasting methods for time series

with very high levels of trend and seasonal components respectively. In addition, the ARIMA

method can deal reasonably well with a high level of residual variability in the data.

Hence, by combining the extrapolated seasonal, trend, seasonal and error and trend and error

components, one can obtain the estimation for the global series xt:

x̂t+1 = (m̂
(Th)
t+1 + ŝ

(AR)
t+1 + m̂e

(AR)
t+1 + ŝe

(HW )
t+1 )/2 (7)

The new methodology is therefore based on the linear combination of the extrapolated sub-

series. Accordingly, there is an element of originality in the methodology developed. That is, the

forecasts included in the combination are not direct forecasts of the target series, but are forecasts

of sub-series of the individual components, which approximate its behavior. Therefore, each sub-

series is governed by a different structural characteristic and hence, a different forecasting model is

used for its estimation. This aspect of distinguishability in the individual sub-series is what creates

value in the combination framework; a conclusion which is also supported in the literature (Hendry

& Clements, 2002).

5. Application

5.1. Performance Evaluation of the New Forecasting Method

The performance evaluation of the new methodology is benchmarked against the four forecast-

ing methods namely HW, HDT, Theta and ARIMA, and is carried out using the last 18 observations

in the sample.

A set of measures were adopted to evaluate the performance of the forecasting methods. These

can be categorized in scale-dependent, scaled, symmetric and relative. Table 1 gives the list of

error measures examined under the four evaluation categories.

Yt is the real observation and Ft the predicted observation at time t. Also,

εt = Yt − Ft (8)

qt =
εt

1
n−1

∑n
i=2 |Yi − Yi−1|

(9)

rt =
εt
ε∗t

(10)
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A. Scale-Dependent Measures

MAE Mean Absolute Error mean(|εt|)

MdAE Median Absolute Error median(|εt|)

MSE Mean Square Error mean(ε2t )

RMSE Root Mean Square Error
√
MSE

B. Scaled Errors

MASE Mean Absolute Scaled Error mean(|qt|)

MdASE Median Absolute Scaled Error median(|qt|)

RMSSE Root Mean Squared Scaled Error
√
mean(q2t )

C. Symmetric Errors

sMAPE Sym. Mean Abs. Perc. Error mean

(
200 |Yt−Ft|

(Yt+Ft)

)
sMdAPE Sym. Median Abs. Perc. Error median

(
200 |Yt−Ft|

(Yt+Ft)

)
D. Relative Error Measures

MRAE Mean Relative Absolute Error mean(|rt|)

MdRAE Median Relative Absolute Error median(|rt|)

GMRAE Geometric Mean Rel. Abs. Error gmean(|rt|)

Table 1: List of error measures employed for the performance evaluation of the new forecasting method

n is the number of observations in the data and ε∗t is the forecast error obtained from a benchmark

model. In this paper, the benchmark model used is the random walk model where Ft is equal to

the last observation, Yt−1.

Scale-dependent measures are based on the variability of the predictions when compared to the

real observations and are useful when comparing methods for the same data set, which is also the

purpose of this analysis. Relative errors measures compare the error in the forecasts with the error

of a benchmark model. These, have been supported in the literature as the most reliable error

measures for a large number of applications (Armstrong & Collopy, 1992, Fildes, 1992, Thompson,

1990, 1992). However, in the case of equal consecutive observations, this error measure category

returns infinite values. This was also observed in the application of Hyndman & Koehler (2006),

where they admitted this to be a “serious deficiency” of the relative error measures. In the current
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application, the relative error measures were winsorized to avoid this problem. Scaled measures

scale the error based on the in-sample MAE from the naiv̈e method and are independent of the

scale of the data. They have been recommended by Hyndman & Koehler (2006). Specifically, they

recommended MASE (Mean Absolute Scaled Error) “to become the standard measure for forecast

accuracy” due to the fact that it is always defined and finite, unlike other measures in certain

occasions. Finally, symmetric errors were the main error measures used in the NN3 competition

to evaluate performance across each forecasting horizon and across all time series.

Table 2 reports the percentage of times that one method was found to be more accurate than

another method across the four error measures examined, namely MAE, MASE, sMAPE9 and

MdRAE. The results for the other error measures were very similar and are not reported here

to save space10. Therefore, every entry, ai,j , in the table shows the percentage of times across

the 111 time series, that method i had a smaller error than method j. It is evident from the

results in table 2 that the new forecasting method outperforms the benchmark methods for all

the error measures considered. It returned a smaller error for a larger percentage of time series

than any of the other four forecasting methods considered. ARIMA was the second best method,

outperforming the other three statistical techniques in more than 60% of the time series. However,

this was outperformed by the new methodology in more than 50% of the series. HDT appears to

be the weakest method investigated.

Under the MAE, MASE and sMAPE the new methodology returned the smallest error in 41

out of 111 time series. The result was 31 out of 111 for the MdRAE. Furthermore, the level of

improvement in the predictions from the implementation of the new methodology was above 10%

in all three evaluations. There was a 10.72% average improvement in both the MAE and MASE

evaluation, for the sMAPE, this was 11.01% , and 18.14% for the MdRAE.

9The sMAPE error measure can return negative values in the denominator. In order to avoid this effect, in the

current application, the absolute value of the denominator was considered instead, i.e. mean

(
200 |Yt−Ft|

(|Yt|+|Ft|)

)
.

10The results from the implementation of other error measures are available from the author upon request.
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HW HDT Theta ARIMA New

MAE

HW - 49.55 48.65 36.94 24.32

HDT 50.45 - 50.45 36.04 35.14

Theta 51.35 49.55 - 37.84 35.14

ARIMA 63.06 63.96 62.16 - 46.85

New 75.68 64.86 64.86 53.15 -

MASE

HW - 49.55 48.65 36.94 24.32

HDT 50.45 - 50.45 36.04 35.14

Theta 51.35 49.55 - 37.84 35.14

ARIMA 63.06 63.96 62.16 - 46.85

New 75.68 64.86 64.86 53.15 -

sMAPE

HW - 45.05 45.95 35.14 23.42

HDT 54.95 - 50.45 36.04 34.23

Theta 54.05 49.55 - 38.74 35.14

ARIMA 64.86 63.96 61.26 - 46.85

New 76.58 65.77 64.86 53.15 -

MdRAE

HW - 49.55 45.05 36.94 35.14

HDT 50.45 - 44.14 33.33 38.74

Theta 54.95 55.86 - 42.34 42.34

ARIMA 63.06 66.67 57.66 - 50.45

New 64.86 61.26 57.66 49.55 -

Table 2: Percentage of times method A (row) was more accurate than method B (column), across the 111 time series,

for 18 step-ahead forecasts.
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MAE MASE sMAPE MdRAE

HW 922.26 1.30 18.76 1.46

HDT 1004.42 1.35 18.73 1.52

Theta 1009.74 1.33 18.62 1.48

ARIMA 807.52 1.18 16.19 1.30

New 797.68 1.16 15.65 1.28

Table 3: The average error obtained calculated across the 111 time series.

Table 3 presents the average error obtained across the 111 time series for the MAE, MASE,

sMAPE and MdRAE error measures, for each of the four statistical methods and the new fore-

casting methodology and table 4 shows the average ranking for each method across the four error

measures. The smallest error and ranking across the five methods examined are shown in bold. It

is clear from both tables that the new methodology results in more accurate and robust predictions,

returning the smallest error in all four error measure categories examined, and having an average

ranking of 2.41 for MAE and MASE, 2.40 for sMAPE and 2.67 for MdRAE.

MAE MASE sMAPE MdRAE

HW 3.41 3.41 3.50 3.33

HDT 3.28 3.28 3.24 3.33

Theta 3.26 3.26 3.23 3.05

ARIMA 2.64 2.64 2.63 2.62

New 2.41 2.41 2.40 2.67

Table 4: The average rank of each method obtained across the 111 time series.

Figure 3 presents a graphical depiction of the performance of the new methodology, compared

to the four statistical methods, evaluated using the MASE measure. It is evident from figure 3

that the main advantage of the new forecasting methodology lies in its ability to perform robustly

well, irrespective of the characteristics of the time series. Unlike the other statistical forecasting

methods examined, which perform relatively well for a particular set of time series (e.g HW for

16



highly seasonal time series) whilst they returns poor predictions for others, the new methodology

performs consistently well across the whole set of time series examined. This is also shown in figure

4, where the prediction lines returned by the new forecasting methodology are depicted for some

of the time series with a wide range of structural characteristics.
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5.2. Performance Evaluation on the M1 Competition Data

In order to investigate the robustness of the new methodology on a new dataset, this was

implemented on the complete and reduced datasets from the M1 Competition. Like the NN3

Competition dataset, the M1 Competition datasets are characterized by a large range of time

series with different structural characteristics. However, unlike the NN3 Competition dataset,

the trend component is the most salient features in the majority of the time series of the M1

Competition.

The analysis of the new forecasting method on the M1 Competition datasets is limited to

the quarterly and monthly time series. Annual data was excluded from the analysis as the STL

decomposition method requires a time series frequency greater than two. Series with less than

36 observations were also excluded, on the basis that 36 is the minimum number of observations

required by HW method for estimating a seasonal time series. The resulting datasets consisted of

76 and 729 time series for the complete and reduced sample, respectively.

The results from the evaluation of the new forecasting method on the M1 Competition datasets,

using the four error measures (MAE, MASE, sMAPE and MdRAE) are reported in tables 5 to 10.

The results indicate that the new methodology still performs relatively well, when compared to the

other four methods, for both the reduced and complete datasets, and appears to be consistently

superior for a larger range of time series than the other four statistical methodologies.

The best statistical forecasting methods for the M1 reduced dataset in terms of average error, for

MAE, sMAPE and MdRAE error measures, is ARIMA followed by the new methodology (table 7),

which outperforms the other four statistical techniques under the MASE error measure. However,

in terms of average ranking across the four error measures, the new methodology outperforms the

other techniques in all but the MdRAE error measures, for which HW appears to be the best (table

8). The results indicate that the new methodology is more robust than the other four statistical

techniques thus always returning good prediction accuracies relative to the other methods across

a wide range of time series.

For the M1 complete dataset, the new methodology returned the smallest average error across

the 726 time series and across all four error measures examined (table 9). The same results

were obtained for the average ranking across the four error measures, indicating that the new

methodology outperforms the four statistical techniques in terms of accuracy. Hence, the new
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Figure 4: Time series plots of the raw data (solid line) and 18 steps ahead predictions (dashed line) for the 18th,

53rd, 64th, 68th, 77th and 100th time series of the NN3 Competition.
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forecasting methodology consistently outperforms the HDT and Theta methods, and performs

comparatively well to the ARIMA and HW methods for the two datasets. These results highlight

further the superiority and robustness of the new forecasting method in predicting a large range

of time series with very different characteristics.
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HW HDT Theta ARIMA New

MAE

HW - 64.47 65.79 53.95 48.68

HDT 35.53 - 48.68 36.84 30.26

Theta 34.21 51.32 - 36.84 36.84

ARIMA 46.05 63.16 63.16 - 46.05

New 51.32 69.74 63.16 53.95 -

MASE

HW - 64.47 65.79 53.95 48.68

HDT 35.53 - 48.68 36.84 30.26

Theta 34.21 51.32 - 36.84 36.84

ARIMA 46.05 63.16 63.16 - 46.05

New 51.32 69.74 63.16 53.95 -

sMAPE

HW - 64.47 68.42 52.63 50.00

HDT 35.53 - 48.68 36.84 28.95

Theta 31.58 51.32 - 36.84 35.53

ARIMA 47.37 63.16 63.16 - 47.37

New 50.00 71.05 64.47 52.63 -

MdRAE

HW - 63.16 60.53 50.00 57.89

HDT 36.84 - 46.05 35.53 34.21

Theta 39.47 53.95 - 44.74 40.79

ARIMA 50.00 64.47 55.26 - 48.68

New 42.11 65.79 59.21 51.32 -

Table 5: M1 Reduced: Percentage of times method A (row) was more accurate than method B (column), across

the 76 time series, for 18 step-ahead forecasts.
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HW HDT Theta ARIMA New

MAE

HW - 59.53 56.93 52.67 49.52

HDT 40.47 - 45.82 39.92 34.43

Theta 43.07 54.18 - 41.43 33.61

ARIMA 47.33 60.08 58.57 - 43.76

New 50.48 65.57 66.39 56.24 -

MASE

HW - 59.53 56.93 52.67 49.52

HDT 40.47 - 45.82 39.92 34.43

Theta 43.07 54.18 - 41.43 33.61

ARIMA 47.33 60.08 58.57 - 43.76

New 50.48 65.57 66.39 56.24 -

sMAPE

HW - 59.67 57.61 52.40 50.75

HDT 40.33 - 45.54 40.19 33.61

Theta 42.39 54.46 - 41.29 33.20

ARIMA 47.60 59.81 58.71 - 44.31

New 49.25 66.39 66.80 55.69 -

MdRAE

HW - 57.06 54.46 51.17 48.29

HDT 42.94 - 44.58 43.76 33.61

Theta 45.54 55.42 - 45.68 37.45

ARIMA 48.83 56.24 54.32 - 44.03

New 51.71 66.39 62.55 55.97 -

Table 6: M1 Complete:Percentage of times method A (row) was more accurate than method B (column), across

the 729 time series, for 18 step-ahead forecasts.
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MAE MASE sMAPE MdRAE

HW 1475.94 2.87 16.53 2.57

HDT 1753.07 3.01 19.64 2.49

Theta 1569.82 2.91 18.85 2.39

ARIMA 1203.24 2.83 15.17 2.21

New 1389.20 2.61 16.51 2.24

Table 7: M1 Reduced: The average error obtained calculated across the 76 time series.

MAE MASE sMAPE MdRAE

HW 2.67 2.67 2.64 2.68

HDT 3.49 3.49 3.50 3.47

Theta 3.41 3.41 3.45 3.21

ARIMA 2.82 2.82 2.79 2.82

New 2.62 2.62 2.62 2.82

Table 8: M1 Reduced: The average rank of each method obtained across the 76 time series.

MAE MASE sMAPE MdRAE

HW 1989.14 2.94 17.67 2.45

HDT 2274.07 3.01 18.95 2.38

Theta 2156.25 2.91 18.21 2.22

ARIMA 1786.80 2.86 16.44 2.22

New 1628.34 2.64 15.93 2.00

Table 9: M1 Complete: The average error obtained calculated across the 729 time series.
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MAE MASE sMAPE MdRAE

HW 2.81 2.81 2.80 2.89

HDT 3.39 3.39 3.40 3.35

Theta 3.28 3.28 3.29 3.16

ARIMA 2.90 2.90 2.90 2.97

New 2.61 2.61 2.62 2.63

Table 10: M1 Complete: The average rank of each method obtained across the 729 time series.
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6. Conclusions

A new decomposition methodology was developed and applied to 111 time series from the NN3

competition. It constitutes an original attempt in the literature to extrapolate the target data

through the individual extrapolation of the auxiliary sub-series returned from the application of a

decomposition procedure, including the irregular component. The performance evaluation results,

obtained from the implementation of four different error measures, showed the new method out-

performing all competing statistical techniques in the literature for the NN3 Competition dataset,

and performs comparatively well with the best forecasting methods for M1 Competition datasets.

Furthermore, it performs persistently well across all time series, irrespective of their characteristics,

underlying structure and level of noise in the data. This is an important development in the area

of forecasting, since no method has ever being documented to perform consistently well for the

majority of time series in previous forecasting competitions and large empirical studies.

The employment of different methodologies for the extrapolation of each of the disaggregated

sub-series, together with the differentiability that characterizes the structure of each underlying

series were the main factors for the success of the methodology. The increase in prediction accuracy

obtained from the application of the new forecasting technique, the stability of the results across

the three datasets examined, and the simplicity of the underlying methodology are some of the

strengths underlying this novel approach to forecasting.
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