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Abstract

The paper derives the solution to a simple stochastic continuous-time

dynamic control problem in which a consumer determines consumption and

saving while moving between employment and unemployment according to

a Markov process. The results differ from the permanent income hypothesis

and some of Hall’s 1978 results based on autoregressive income shocks.
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1. Introduction

This paper describes the solution to a stochastic dynamic control problem in which

the only source of randomness is transitions between two states of a Markov

chain process. A consumer moves between employment and unemployment in

continuous time, earning different incomes (each constant over time) in the two

states. At each point in time the consumer decides the level of consumption

and the level of accumulation or decumulation of an asset paying a constant

interest rate. The solution provides an alternative to computational methodologies

and is relevant to bankruptcy, liquidity constraints and precautionary saving.

The solution takes the form of the differential equations for consumption while

employed and unemployed. This problem will be called the Markov Consumption

Problem (hereafter MCP).

A major objective in consumption literature is to explain how saving behavior

responds to income uncertainty (see surveys by Attanasio, 1999; Deaton, 1992;

Carroll, 2001; and Hayashi, 1997). Schechtman (1976) and Schechtman and Es-

cudero (1977) establish that individuals facing income uncertainty in an infinite

horizon optimal consumption problem will accumulate assets that smooth out

consumption (see also Miller, 1974). Huggett (1993) and Aiyagari (1994, Section
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III) relate precautionary saving to uninsurable risks. Kimball (1990) establishes

conditions of the utility function that generate precautionary saving. Gourinchas

and Parker (2002) decompose saving empirically into precautionary and life cycle

components.

The MCP differs from theoretical models in the above papers by having in-

come shocks that are not autoregressive. An individual who becomes unemployed

can expect to remain unemployed for some period of time before experiencing a

transition to employment. Being unemployed at one point in time reduces the

likelihood of being employed at any future point in time, although the effect di-

minishes over time (Karlin and Taylor, 1975, p. 154). Then having a low income

at the current point in time (because of unemployment) increases the likelihood

of having a low income in the future. An unemployed individual will have a

lower expected growth rate of future income than if the individual were employed,

everything else the same.

Since the MCP generates a different simultaneous optimization problem for

employment and unemployment, it generates a two-state solution to the dynamic

control problem. (The two-state nature of the solution can be seen from the two

consumption functions in Figure 3.1, one for each state.) In contrast, the analysis

of consumption and saving has been dominated by the use of discrete time single

state solutions. In these single state solutions, the consumption behavior of the

individual depends only on a single scalar state variable such as assets or perma-

nent income. Uncertainty can be introduced into the consumption saving problem

without departing from the single state apparatus. If the income shocks are inde-
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pendently and identically distributed, then the shocks only move the individual to

a different point on the same consumption versus assets (or consumption versus

permanent income) relation. In contrast, in the MCP, the movement between em-

ployment and unemployment causes a shift from one consumption asset relation

to another.

A discussion of results for discrete time processes in Caballero (1990) and Hall

(1978) will highlight the differences between the MCP and the conventional lit-

erature. In Caballero’s paper, a consumer faces uninsured uncertain income in

discrete time and can borrow and save at a fixed interest rate. Income follows an

autoregressive moving average (ARMA) process. Caballero shows in Proposition

1 (p. 117) that the effect of an income shock or innovation affects consumption

through a change in permanent income, i.e., the income shock is annuitized and

is equivalent to a change in wealth. Although the income shocks are not indepen-

dently and identically distributed, Caballero obtains a single state solution that

is consistent with the permanent income hypothesis. Income shocks simply move

the consumer to a different point on the same relation between consumption and

permanent income (or consumption and a measure of wealth) and do not shift the

consumer to a new relation. In contrast, the Markov process in the MCP is not

autoregressive and shocks (movements between employment and unemployment)

would move the consumer to a different consumption-wealth relation. Specifically,

the consumer’s shock can only be negative when employed and positive when un-

employed, unlike the income processes considered in Caballero’s Tables 1 and 2

(pp. 121, 122).
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In the dynamic programming solution to the problem of optimal consumption

in discrete periods, Hall (1978) concludes that the expected value of the marginal

utility of consumption in the next period will be a constant multiple of the current

marginal utility of consumption. An analogous result holds for continuous time

models. However, some of Hall’s corollaries to this result do not hold, even in

a discrete time model, when the income shocks arise from Markov movements

between employment and unemployment. In corollary 2, using Hall’s notation,

marginal utility satisfies a regression relation

u′(ct+1) = γu′(ct) + εt+1 (1.1)

where E(εt+1) = 0. In a Markov process, the distribution of εt+1 depends on which

state the individual is in, so that the distribution of εt+1 depends on ct if assets are

known. The expected value of the error term would be positive if the individual is

unemployed and negative if employed. Hall’s corollaries 3, 4 and 5 would also fail

to hold for a Markov process if they require E(εt+1) = 0. Hall’s reasoning leads to

the conclusion that the relation

ct = λct−1 + εt (1.2)

approximates the stochastic behavior of consumption given the life cycle-permanent

income hypothesis, i.e. consumption itself follows a random walk. However, in a

Markov process, the expected value of εt at time t − 1 in this relation will vary
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depending on the state and consumption level at time t − 1. If the individual is

unemployed, it can only be positive, and if the individual is employed, it can only

be negative. The departure in this paper from Hall’s results arises as a conse-

quence of the necessary conditions for optimal consumption in the MPC taking

the form of a differential equation for each state rather than a single equation

relating consumption over time, as in Ljungqvist and Sargent’s Euler equation

1.3.3 (2004, page 4).

Deaton (1991), citing Tauchen (1986), has developed computational methods

in discrete time to examine the consequences of income shocks that would lead to

multi-state systems (see also Deaton, 1992; Aiyagari, 1994, Section IV; Ljungqvist

and Sargent, 2004, chapter 4; and Judd, 1998, chapter 12). Deaton represents a

normally distributed serially correlated income generation process as movements

among income intervals with transition rates from intervals in one period to inter-

vals in the next period corresponding to the serial correlation. This discretization

of the normal distribution, with transition rates among intervals, is a version of

the MCP discussed here. Deaton concludes that serial correlation reduces the

scope for income smoothing for liquidity constrained consumers.

Conventional dynamic programming models of consumption behavior over dis-

crete periods do not permit the use of functional analysis that can be applied to

relevant features of the consumption problem. In the MCP, bankruptcy (appro-

priately defined for a two state system) can serve as the initial condition for the

location of the solutions to the differential equations. However, bankruptcy occurs

at a singularity where derivatives cannot be determined by ordinary means. This
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paper develops methods for analyzing consumer behavior near bankruptcy. An-

other singularity, occurring at a break-even point, can be studied using methods

of functional analysis applied in this paper. These methods are unavailable in

the period analysis used for conventional consumption models. The application of

functional analysis in the MCP, by providing the consumption function for the two

states, generates alternative explanations for phenomena in consumption theory,

including liquidity constraints, precautionary saving, and concavity.

Following Merton’s analysis of portfolio selection (1971), optimal consumption

and saving have also been modeled in continuous time. Merton assumes a geomet-

ric Brownian mechanism for income shocks (see also Koo, 1998), which generates

a single state solution. Briys (1986) and Gollier (1994), in models of insurance

versus precautionary saving, assume Poisson wealth shocks that move the individ-

ual to a different point on a single state relation between consumption and wealth.

Toche (2005) considers precautionary saving in continuous time when the individ-

ual may move permanently into unemployment according to a Poisson process.

Sheshinski (1989) had earlier considered a model in which income can move into

an absorbing state as a result of a stochastic process, for example because of dis-

ability, and considered consequences for changes in consumption. Kimball and

Mankiw (1989) consider an individual with stochastic income following a Markov

process in continuous time. Their formulation of the optimal consumption and

saving problem would lead to a multi-state solution but they simplify the problem

by dropping out the interaction terms among state value functions in the Bellman

equation (1989, equation 2, p. 866).

7



As in Aiyagari and Hayashi, liquidity constraints and borrowing constraints

can be defined and differentiated as follows. Assume that the individual cannot

default on debt (and therefore cannot engage in a Ponzi scheme) and cannot

consume negative amounts. The non-negative consumption requirement imposes

a borrowing constraint on the individual since the individual could not borrow

so much that interest on the debt exceeds income. For example, if the lowest

income is 0.5, and the interest rate on debt is .05, then the borrowing constraint

on debt would be 0.5/.05 = 10, i.e., the individual’s assets must be greater than

or equal to -10. A liquidity constraint arises when the individual cannot borrow

beyond a limit even though the individual would always be able to pay interest

on that debt. For example, if the lowest income is 0.5 and the individual cannot

borrow any assets, then the liquidity constraint would be that the individual’s

assets must be greater than or equal to zero. Since the liquidity constraint at 0

exceeds the borrowing constraint, the liquidity constraint prevents the individual

from engaging in some consumption and saving decisions that would be allowable

with just the borrowing constraint, i.e., the liquidity constraint is more restrictive.

Liquidity constraints have been proposed as an explanation for why some

households vary consumption in response to income fluctuations more than would

be expected on the basis of the permanent income hypothesis (see discussions by

Deaton, 1992, Chapter 6; Carroll, 2001; Hayashi, 1997, Part I; Zeldes, 1989). A

household facing a binding liquidity constraint would be unable to smooth income

by borrowing when income is low. Consumption would then fluctuate in response

to fluctuations in income. In the cases considered by Deaton (with and without
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autoregressive income shocks), the individual consumes all cash on hand at suf-

ficiently low asset levels, so that consumption would afterwards track income. It

has also been argued that liquidity constraints generate a precautionary motive

for saving since individuals would accumulate assets to avoid episodes of binding

liquidity constraints that reduced their ability to smooth income. This paper will

consider the consequences of liquidity constraints in the context of the MCP.

The next section poses the MCP formally, derives the Hamiltonian and ad-

joint equations, and solves for the differential equations describing the optimal

consumption paths. Section 3 describes solutions to the differential equations de-

rived numerically and analyzes the break-even point that occurs in the favorable

state if the discount rate is greater than the interest rate. Section 4 concludes

with a discussion of consequences of liquidity constraints in the MCP.

2. Differential Equations

Consider an individual moving between two states of a continuous time Markov

process. Let p1 be the transition rate from state 1 to state 2, and let p2 be the

transition rate from state 2 to state 1. Suppose the individual earns income at

the rate yi when in state i. Without loss of generality, assume y1 > y2. State 1

can be regarded as employment and state 2 as unemployment. Let A[t] be the

individual’s assets at time t. Suppose the individual earns income from assets

at the rate rA[t], where r is positive and constant over time. Let Ci[A[t]] be

the consumption rate chosen if the individual is currently in state i with assets
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A[t]. Since time only enters through discounting, the MCP is autonomous, and

consumption levels will depend only on the state and the state variable, assets.

If there is no ambiguity, the consumption levels will be written C1 and C2. Then

the consumer’s rate of asset accumulation in state i would be:

(
dA

dt

)
i

= rA[t] + yi − Ci[A[t]]

Suppose the consumer’s instantaneous, time-separable utility at time t has con-

stant relative risk aversion and takes the form

U [C] = (C)γ /γ, γ < 1, γ �= 0

The case where U [C] = Log[C] corresponds to γ = 0 and can be treated using

the same methodology. Suppose future utility is discounted at the rate b. Let

Vi[A, t] be the value function for the individual in state i with assets A. If there is

no ambiguity, the value functions will be written V1 and V2. The consumer may

borrow against future income if no liquidity constraint is binding (so that A could

be negative) but may not default on borrowed funds.

Applying a dynamic programming argument (Sethi and Thompson, 2000, pp.
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27-30), it can be shown that1

0 = MaxC1

⎧⎪⎨
⎪⎩

U [C1]e
−bt + p1(V2[A[t], t]− V1[A[t], t])

+(rA[t] + y1 − C1)V1A + V1t

⎫⎪⎬
⎪⎭ (2.1)

0 = MaxC2

⎧⎪⎨
⎪⎩

U [C2]e
−bt + p2(V1[A[t], t]− V2[A[t], t])

+(rA[t] + y2 − C2)V2A + V2t

⎫⎪⎬
⎪⎭ (2.2)

where ViA refers to the partial derivative of Vi with respect to A and Vit refers to

the partial derivative of Vi with respect to time assuming the individual remains

in state i.

Since p1(V2[A[t], t]−V1[A[t], t])+V1t does not depend on C1 or C2, the Hamil-

tonian for the individual in state 1 at time t is formed as

H1[A,C1, λ1, t] = U [C1]e
−bt + λ1(rA[t] + y1 − C1) (2.3)

where λ1 = V1A is the adjoint variable. Analogously, the Hamiltonian for the

individual in state 2 is

H2[A,C2, λ2, t] = U [C2]e
−bt + λ2(rA[t] + y2 − C2) (2.4)

With differentiability, the first order conditions for the levels of consumption

1The procedure is to express V1[A[t], t] and V2[A[t], t] in terms of values at a small period of

time τ in the future using a Taylor series expansion and taking into account the likelihood of

transitions into the other state. Then subtracting Vi from both sides of the expression, dividing

by τ and taking the limit yields 2.1 and 2.2.
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the individual would choose in each state are

∂Hi

∂Ci

= Cγ−1
i e−bt − λi = 0, i = 1, 2 (2.5)

or

Ci =
(
λie

bt
)1/(γ−1)

, i = 1, 2 (2.6)

Derivation of the differential equations for consumption requires the derivatives

of the adjoint variables λ1 and λ2 with respect to time. These can be constructed

using the adjoint equations generated by differentiating 2.1 and 2.2 with respect

to A : 2

0 = MaxA

⎧⎪⎨
⎪⎩

U [C1]e
−bt + p1(V2[A, t]− V1[A, t])

+(rA+ y1 − C1)V1A + V1t

⎫⎪⎬
⎪⎭ (2.7)

0 = MaxA

⎧⎪⎨
⎪⎩

U [C2]e
−bt + p2(V1[A, t]− V2[A, t])

+(rA+ y2 − C2)V2A + V2t

⎫⎪⎬
⎪⎭ (2.8)

2
The basis for the adjoint equations can be presented briefly using the development of Sethi

and Thompson (2000, pp. 31-33). Suppose C∗

1
is the optimal control that maximizes the right-

hand side of (2.1) given the optimal path of assets, A∗. Then the right-hand side takes the value
of zero. Consider a perturbation of A∗, say AP . In general C∗

1
will not be optimal for AP , so the

right-hand side would be less than zero. Thus A∗ maximizes the right-hand side of (2.1) given
C∗

1
. This argument yields the adjoint equation for state 1 and an analogous argument holds for

state 2.

12



With differentiability,

0 = p1(V2A − V1A) + V1AA(rA+ y1 − C1) + rV1A + V1tA (2.9)

0 = p2(V1A − V2A) + V2AA(rA+ y2 − C2) + rV2A + V2tA (2.10)

In the above, ViA = λi. Since time only enters the problem through discounting,

the system is autonomous. The effect of time on the value function, Vit, is the same

as moving back the point in time to which utility is discounted. Thus Vit = −bVi

and

VitA = ∂Vit/∂A = ∂(−bVi)/∂A = −bλi, i = 1, 2 (2.11)

Then by solving the adjoint equation (2.9),

V1AA = λ1A =
(b− r)λ1 + p1(λ1 − λ2)

rA+ y1 − C1

(2.12)

Let (
dλ1
dt

)
i

=

(
∂λ1
∂t

+
∂λ1
∂A

dA

dt

)
i

(2.13)

be the total derivative of λ1 with respect to time when the consumer is in state

i. That is, the subscript i outside the parentheses indicates the consumer’s state

for which the derivative is calculated. These derivatives can be found from the

foregoing results. In state 1, using 2.12,

(
dλ1
dt

)
1

= −bλ1 + λ1A(rA+ y1 − C1) (2.14)
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Then from (2.9) or from (2.12),

(
dλ1
dt

)
1

= −rλ1 − p1(λ2 − λ1) (2.15)

In state 2,

(
dλ1
dt

)
2

= −bλ1 + λ1A(rA+ y2 − C2)

= −bλ1 +
(b− r)λ1 + p1(λ1 − λ2)

rA+ y1 − C1

(rA + y2 − C2) (2.16)

Analogous procedures yield V2AA and (dλ2/dt)j, j = 1, 2.

Differentiating consumption in each state with respect to time in each state

yields: (
dCi

dt

)
j

=
∂Ci

∂t
+

∂Ci

∂λi

(
dλi
dt

)
j

, i = 1, 2, j = 1, 2 (2.17)

Substituting (dλi/dt)j derived above and λi = Cγ−1
i e−bt from 2.5 yields differential

equations in time for consumption in each state in terms of consumption in each

state and assets.

Since the MCP is an autonomous system, consumption in each state depends

only on assets and not on time. Differential equations in terms of consumption

levels and assets can be derived as:

dCi

dA
=

(dCi/dt)1
(dA/dt)1

=
(dCi/dt)2
(dA/dt)2

(2.18)

That is, the differential equations for consumption with respect to assets are
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the same whether calculated from time derivatives in state 1 or state 2. These

calculations yield the following result.

Theorem 2.1. In the MCP, optimal consumption levels satisfy

dC1

dA
=

C1

1− γ

r − b− p1

(
1−

(
C1

C2

)1−γ
)

rA+ y1 − C1

(2.19)

dC2

dA
=

C2

1− γ

r − b− p1

(
1−

(
C2

C1

)1−γ
)

rA+ y2 − C2

(2.20)

3. Description of Solutions

Description of the solutions to the differential equations in Theorem 2.1 will be

facilitated by reference to examples generated by numerical solution. For compar-

ison with results from the literature on precautionary saving, assume that b > r

and that there is a liquidity constraint at A = 0 (i.e., assets must be greater than

or equal to zero). It is unnecessary to impose a transversality condition (equivalent

to a bankruptcy constraint) on the solution since a binding liquidity constraint is

more restrictive. Differential equations such as the pair in the theorem above de-

scribe a family of curves rather than a single specific solution. A specific solution

can be found by requiring that the consumption curves satisfy particular initial

conditions given by C1 and C2 at some asset level. Given the initial conditions, it

is then usually possible to solve the differential equations for consumption levels

at other asset levels. Since C2 would equal y2 at the liquidity constrained asset
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level A = 0, it would appear to be convenient to specify the initial conditions at

that asset level. However, the differential equation for dC2/dA in 2.20 cannot be

used to find consumption at different asset levels because the denominator in 2.20

is then zero and the derivative is infinite at A = 0.

Instead, the following procedure can be applied. The initial conditions for the

differential equations determine the asset level at which consumption just equals

income in the employed state. Let As be the break-even asset level at which this

occurs, so that C1 = rAs + y1. Instead of finding the break-even asset level for

a given set of initial conditions, it is possible to specify the initial conditions in

terms of the break-even asset level As. Since the slope of the derivative dC1/dA

will be positive and finite at As, the numerator in 2.19 will be zero at the same

time the denominator is zero, i.e. the differential equation will have a singularity

at As.(Singularities are treated in Courant,1936, p. 551, and Knopp, 1945, Section

IV.) Setting the numerator of 2.19 equal to zero and solving yields the following

result.

Proposition 3.1. If the differential equation for dC1/dA has a singularity at As,

then

C2 = C1

(
p1

p1 + b− r

)1/(1−γ)

(3.1)

Applying L’Hospital’s rule by differentiating the numerator and denominator

of 2.19 with respect to A yields an expression that can be solved for dC1/dA. Then

using 3.1 and the derivatives for consumption with respect to assets yields values

of C1 and C2 just below and just above As. These initial conditions can be used
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Figure 3.1: Consumption with Liquidity Constraint

to solve the differential equations for C1 and C2 below and above the singularity

point. By varying As, it is possible to determine a solution such that the limit of

C2 as At approaches zero is y2, satisfying the liquidity constraint. The solution

is shown in Figure 3.1, with the singularity for the differential equation for C1

occurring at As = .439. The solution assumes p1 = .2447, p2 = 3.828, y1 = 1,

y2 = .5, γ = .5, r = .027 and b = .03.

In state 2 (unemployment), the individual always dissaves because consump-
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tion exceeds income. As assets decline during unemployment, consumption re-

mains substantially above income but then declines sharply as assets approach

the liquidity constrained level. Since the slope of the consumption curve is infinite

at the liquidity constraint, the individual’s assets would decline to the liquidity

constrained level A = 0 in a finite amount of time. This corresponds to Deaton’s

discrete time result (1991) where the individual consumes all cash on hand in the

current period for low asset levels.

In state 1, employment, the individual dissaves at asset levels above As but

saves when A < As. At asset levels below As, the asset level alternatively increases

and decreases as the individual moves between employment and unemployment.

The break-even asset level As determines where the individual switches from sav-

ing to dissaving and corresponds to Carroll’s buffer stock target level of wealth

(1997).

Figure 3.2 compares consumption in state 2 with and without a liquidity con-

straint. In the absence of a liquidity constraint, individual borrowing is limited

by the requirement that consumption should always be nonnegative and that the

individual cannot default on debt. Then the budget constrained lower limit on

debt is −y2/r, at which consumption during unemployment would reach zero. The

individual never reaches asset level −y2/r since dissaving slows as the individual

approaches bankruptcy. Define Amin = −y2/r as the budget constrained asset

level. Without a liquidity constraint, consumption in state 2 (unemployment) is

greater at each asset level, although the two consumption levels approach each

other as assets increase. Similarly, consumption in state 1 is higher without a
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liquidity constraint. The break-even point in state 1 occurs at a much lower asset

level, As = −17.7 for the case shown in Figure 3.2. Despite appearances, the

derivative of consumption with respect to assets in state 2 is not infinite at Amin,

as indicated in the following result.

Proposition 3.2. In the absence of a liquidity constraint, at the budget con-

strained minimum asset level Amin = −y2/r,

dC2

dA
=

b+ p2 − rγ

1− γ
(3.2)

Proof. Since C2 approaches zero at Amin = −y2/r, both the numerator and de-

nominator of dC2/dA are zero and the differential equation has a singularity at

that asset level. Applying L’Hospital’s rule and solving yields 3.2.

The reason for the different behavior of C2 at Amin = −y2/r compared to the

solution with a liquidity constraint is that the Inada condition holds at Amin, i.e.,

the marginal utility of consumption Cγ−1 becomes infinite at that asset level but

not at A = 0. As a consequence of the finite slope of C2 at Amin, assets would

never decline to that level and consumption would remain positive for any positive

amount of time in state 2.

It is possible to solve for the levels of the value functions with and without

liquidity constraints. The effect of liquidity constraints is to reduce the levels of

the value functions, as one would expect from any restriction placed on optimal

behavior. In the absence of a liquidity constraint, the optimal behavior for the
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Figure 3.2: Consumption in Unemployment with and without Liquidity Con-
straint
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unemployed individual is to go into deeper and deeper debt and rely on an eventual

transition to employment to reduce the debt level.

Three different marginal propensities to consume out of income can be identi-

fied in the MCP:

MPC1[At] = (1/r)
dC1[At]

dAt

(3.3)

MPC2[At] = (1/r)
dC2[At]

dAt

(3.4)

MPC3[At] =
C1[At]− C2[At]

y1 − y2
(3.5)

In 3.3 and 3.4, the change in income occurs because of a change in assets, and

the marginal propensity to consume is derived from the derivative of consumption

with respect to assets in 2.19 and 2.20 for states 1 and 2, respectively. Note that

2.19 and 2.20 provide the marginal propensities to consume at the same asset level

but not at the same income level. A comparison at the same income level can

be obtained by using MPC1[At] and MPC2[At + (y1 − y2)/r]. In 3.5, the change

in income arises from a transition from one state to another, and the marginal

propensity to consume is calculated as the change in consumption divided by the

change in income.

Since the curve for C2[At] is not simply the curve C1[At] shifted to the left

by (y1 − y2)/r, the two marginal propensities to consume in 3.3 and 3.4 calcu-

lated for the same income level will in general be unequal. The asset changes

that generate 3.3 and 3.4 affect income indefinitely into the future and correspond
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roughly to long run marginal propensities to consume. They start out high, much

greater than one, at asset levels close to minimum levels (0 or −y2/r, depending

on whether there is a liquidity constraint), and decline towards the risk-free level

at very high asset levels, b/r. In the case shown in the figures, b/r > 1, so the

first two marginal propensities to consume are always greater than one. The third

marginal propensity to consume is generated by a change in income from a tran-

sition between employment and unemployment, and corresponds roughly to the

marginal propensity to consume out of transitory income in the permanent in-

come hypothesis since the transition alters expected future income much less than

current income. The third marginal propensity to consume is very low relative to

the first two marginal propensities to consume, and is much less than one. Ad-

ditional marginal propensities to consume could be generated from unanticipated

parameter changes, e.g. y1, y2, or r.

These consumption responses correspond roughly but not exactly to the re-

sponses in Deaton’s analysis (1991). In Deaton’s analysis, in the range of assets

where all cash on hand is spent, the marginal propensity to consume out of in-

come in response to a change in assets is 1/r, a very large response. This case

corresponds to MPC2[At] in 3.4 with assets near the minimum level determined

by either the liquidity constraint or the budget constraint. In the liquidity con-

strained case, as shown in Figure 3.1, MPC2[At] increases indefinitely as assets

decline to zero while in the unemployed state. If instead the change is in non-asset

income, then in Deaton’s analysis the marginal propensity to consume equals 1

when the individual has assets in the interval where all cash on hand is spent.
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This corresponds to MPC3[At] in the MPC, arising from a transition between

employment and unemployment. From Figure 3.1, MPC3[At] approaches about

.8 as assets decline to the liquidity constrained level.

In the permanent income hypothesis, consumption depends on a measure of

permanent income that incorporates the expected present value of future income

streams. In the MCP, it is possible to calculate the expected present value of labor

incomes from the Markov movements between employment and unemployment.

The difference in the expected present values of future labor incomes between

employment and unemployment is

b(y1 − y2)

b+ p1 + p2
(3.6)

If the permanent income hypothesis were strictly valid for the MCP, the differ-

ence in consumption between the two states would be a constant proportion of

the difference in present values in 3.6. Then the consumption functions for the

two states in Figure 3.1 would differ by a constant vertical amount. However, the

figure shows that the difference in consumption is large near bankruptcy and then

declines to a much smaller difference as financial assets increase. The MCP is

therefore inconsistent with a formulaic version of the permanent income hypoth-

esis.

The solution with b < r can be briefly described. There will be a break-even

asset level As in state 2 instead of state 1. At asset levels above As, the individual

saves in both states instead of dissaving. Below As, the consumer dissaves in state

23



2, unemployment, and saves in state 1, as in the case where b > r.

4. Conclusions

From the foregoing results, it is possible to examine the consequences of liquidity

constraints. First, consider whether liquidity constraints generate a qualitatively

different solution to the optimal consumption problem. In Deaton’s analysis, liq-

uidity constraints lead the individual to consume all cash on hand for sufficiently

low asset levels. In the MCP, a corresponding phenomenon occurs in which un-

employed individuals reach zero assets and consume exactly their income y2 a

positive proportion of the time. This suggests that liquidity constraints in both

the MCP and computational approaches track income part of the time. However,

Hayashi notes that there will be a budget constraint in the individual’s consump-

tion problem that is equivalent to a liquidity constraint. The effect of a liquidity

constraint would then be to shift the constraint on the individual’s consumption

rather than to generate a constraint where none existed. This appears to be the

case in the MCP because, in Figure 3.1, the liquidity constraint shifts the asset

level at which consumption equals income while unemployed from −y2/r to 0.

Nevertheless, the solution without a liquidity constraint differs qualitatively

from the solution with a liquidity constraint. Without a liquidity constraint, at

A = −y2/r (where the individual’s income while unemployed just equals interest

on the individual’s debt and consumption would be zero), the slope of the con-

sumption function C2[A] is positive and finite from Proposition 2. This contrasts
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with the infinite slope at A = 0 in the liquidity constraint case. Then the indi-

vidual never reaches Amin = −y2/r in a finite amount of time. The proportion

of time that an unemployed worker spends entirely their income would be zero.

Also, since individuals never reach the break-even point while employed in a fi-

nite amount of time, virtually no individual consumes entirely their income in the

absence of a liquidity constraint.

A point that arises from being able to view the consumption functions in

Figures 3.1 and 3.2 is that significant features of consumption occur at low as-

set levels near either bankruptcy or the liquidity constraint. The conventional

economic literature on consumption has mostly used discrete period analysis (in

order to provide empirically relevant conclusions). This paper, by using continu-

ous time, has been able to apply methods of analysis to the singularities occurring

at bankruptcy or break-even points, thereby providing limiting results at those

points.

The methodology developed in this paper provides deterministic consumption

functions for each state because the stochastic process generating uncertainty

consists entirely of movements between the two states. The consumption functions

in Figures 3.1 and 3.2 show directly changes in consumption behavior between

employment and unemployment, with and without liquidity constraints, and in the

limit as assets approachminimum levels. This paper has described consequences of

liquidity constraints. Other consumption phenomena that can be studied include

bankruptcy in the absence of a liquidity constraint and the determination of the

break-even level of assets (where consumption equals income in one of the states).
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The methodology can be extended to describe uncertainty generated by other

Markov process transitions, such as movements in the interest rate between two

levels.
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