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Abstract 

This paper provides a thorough analysis of oligopolistic markets with positive de-
mand-side network externalities and perfect compatibility. The minimal structure 
imposed on the model primitives is such that industry output increases in a firm’s 
rivals’ total output as well as in the expected network size. This leads to a general-
ized equilibrium existence treatment that includes guarantees for a nontrivial equi-
librium, and some insight into possible multiplicity of equilibria. 

We formalize the concept of industry viability and show that is it always en-
hanced by having more firms in the market and/or by technological improvements. 
We also characterize the effects of market structure on industry performance, with 
an emphasis on departures from standard markets. The approach relies on lattice-
theoretic methods, which allow for a unified treatment of various general results in 
the literature on network goods. Several illustrative examples with closed-form 
solutions are also provided. 

 
JEL codes: C72, D43, L13, L14. 
Key words and phrases: Network effects, demand-side externalities, monotone 

comparative statics, Cournot oligopoly, supermodularity. 
 
 

 
 



1 Introduction

It has often been observed that the nature of competition is qualitatively di¤erent in network

industries. The presence of interdependencies in consumers�purchasing decisions induces demand-

side economies of scale that highly a¤ect market behavior and performance. When such e¤ects

prevail, be they of the snob or bandwagon type, purchase decisions are strongly in�uenced by buyers�

expectations, leading to behavior not encompassed by traditional demand theory (Veblen, 1899, and

Leibenstein, 1950). From an industrial organization perspective, these distinctive features raise new

questions and impose some methodological challenges. In their pioneering work on markets with

network e¤ects, Katz and Shapiro (1985) proposed the concept of ful�lled expectations Cournot

equilibrium, which was widely adopted in the early literature. This has led to a number of results

that distinguish network markets from ordinary ones.1

The purpose of the present paper is to provide a thorough theoretical investigation of markets

with homogeneous goods and network externalities, which uni�es and extends the existing studies

and tackles a number of new issues of interest that were either not previously addressed or only

partially studied. We consider oligopolistic competition amongst �rms in a market characterized by

positive (direct) network e¤ects when the products of the �rms are perfectly compatible with each

other, so that the relevant network is industry-wide. While the current literature is more concerned

with the case of �rm-speci�c networks, three arguments justify our choice. First, several important

industries �t the perfect compatibility framework, in particular those in the telecommunications

sector, such as fax machines and phones, but also many classical industries such as fashion and

entertainment.2 Second, there are still several outstanding issues, which, although addressed in

the growing literature on network externalities, have not been fully articulated from a modeling

perspective, and thus remain less than fully understood from a theoretical standpoint. Third, a

good understanding of the single network case can shed quite some light on the incentives for

compatibility faced by �rms in the case of �rm-speci�c networks.3

1See Economides and Himmelberg (1995), Economides (1996), Shy (2001) and Kwon (2007), among others. In

contrast, the earlier literature in management science relied on explicitly dynamic models that eschewed the use of

expectations (e.g. Oren and Smith, 1981 and Dhebar and Oren, 1985). More recent work using a dynamic paradigm

includes Bensaid and Lesne (1996), Gabszewicz and Garcia (2007) and Doraszelski et. al. (2009), among others.
2 In some industries, each customer may have in mind his own social network only, not the overall network, when

making a purchase decision, but we follow the literature in industrial organization in ignoring this distinction.
3We stress that the only claim here is that the single-network case is worthy of further study. The multi-network
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In its unifying scope, with an emphasis on minimal and economically meaningful assumptions

on the market primitives, the paper provides a general existence result for non-trivial equilibria (i.e.

those with positive production), and an extensive inquiry into the e¤ects of market structure (or

exogenous entry) on market performance. In terms of novel questions, the paper o¤ers a general

treatment of the critical issue of industry start-up, including key results on the role of the number

of �rms in the market and of technological improvements. It also provides some insight into the

notion that the presence of expectations can substantially broaden the scope of possible outcomes

relative to standard Cournot oligopoly. Throughout, the paper takes a comparative perspective in

that new �ndings are contrasted with their standard Cournot counterparts, in an attempt to shed

light on the distinctive features of (single)-network industries.

The underlying approach is to impart minimal monotonicity structure to the oligopoly model

at hand, which achieves the twin goals of ensuring the existence of a ful�lled expectations Cournot

equilibrium while at the same time allowing clear-cut predictions on the comparative statics of

market performance with respect to the number of �rms. The critical structure is imposed on the

model in the form of two economically meaningful complementarity conditions on the primitives

that guarantee the key properties that, along a given �rm�s best response, industry output increases

in rivals�total output as well as in the expected network size. The overall analysis relies on lattice-

theoretic methods.4 A key bene�t of the approach is to allow for more transparent economic

intuition behind the cause-e¤ect relationships we analyze.

We next provide a more detailed overview of our �ndings, coupled with a literature review. The

problem of existence of ful�lled expectations Cournot equilibrium proceeds in two distinct steps.

To establish abstract existence via Tarski�s �xed point theorem, we adopt the arguments of Amir

and Lambson (2000) and Kwon (2007) who directly exploit the monotonicity structure discussed

above. However, as expectations about the size of the network is a key determinant of consumers�

willingness to pay in these industries, the trivial, no production, equilibrium is often part of the

equilibrium set. When this is the case, our previous proof of existence is not of much interest, as the

underlying equilibrium may a priori be the trivial one, the presence of which can be characterized

in a more direct fashion. As a consequence we complete the analysis by o¤ering a second set of

(stronger) conditions that ensure the existence of (at least) one non-trivial equilibrium, i.e. one

or imperfect compatibility cases clearly also warrant further investigation, including along the lines proposed here.
4See Topkis (1978), Vives (1990), Milgrom and Roberts (1990) and Milgrom and Shannon (1994).
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with strictly positive sales.

Although the model is static in nature, we construct an explicit "learning dynamics", mapping

consumers�expectation of the network size to the corresponding Cournot industry output to analyze

the viability of the industry. This tatonnement-type dynamics is quite natural and has tacitly been

the basis of many discussions of the viability issue in the literature. Studies of telecommunications

markets, such as Rohlfs (1974) and Economides and Himmelberg (1995), often suggest that network

industries typically have three equilibria. Under this natural dynamics, the two extreme equilibria

are stable in expectations and the middle equilibrium (usually called critical mass) is unstable. The

argument behind this structure is quite simple for pure network goods: If consumers expect that

few buyers will acquire the good, then the good will be of little value to consumers and few of them

will end up buying it. These low sales in turn further depress consumers�expectations through the

above dynamics, and the market unravels towards the trivial (or no-trade) equilibrium. However,

if expectations are higher to start with, other, non-trivial, equilibria will also be possible. This

argument is often used to explain the start-up problem in network industries, or the di¢ culties

faced by incumbent �rms in attempting to generate enough expectations to achieve critical mass.

An important aim of the present paper is to shed light on the role of market structure as a

determinant of the viability of a network industry, a novel issue that, somewhat surprisingly, has

not yet been addressed in the literature. We �nd that the presence of more �rms in the market always

enhances industry viability. The same conclusion holds for exogenous technological improvements,

a plausible explanation e.g. of the history of the fax machine industry.

Regarding market performance, the extremal equilibria (i.e. maximal and minimal) lead to an

industry output that increases in the number of �rms, n, as in standard Cournot competition. On

the other hand, as this also implies an increase in the equilibrium network size or expectations,

the output result does not imply that market price decreases in n. Thus, the so-called property

of quasi-competitiveness, which under similar assumptions holds in standard Cournot competition,

does not hold here.5 In addition, when n increases per-�rm equilibrium output increases if the

demand is not too log-concave in output and decreases otherwise.

The most drastic departure from standard oligopoly lies in the e¤ects of entry on per-�rm pro�ts.

Whenever per-�rm outputs and the market price increase (decrease) with n; per-�rm pro�ts increase

5A Cournot market is said to be quasi-competitive if the equilibrium price decreases with the number of �rms.
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(decrease) in n as well.6 The conclusion that competition may increase each �rm�s pro�t is quite

provocative and leads to several important implications, both from theoretical and policy-oriented

perspectives. The e¤ects of entry on industry performance as re�ected in social welfare, consumer

surplus and industry pro�ts also display some distinctive features compared to standard Cournot

competition. Demand-side economies of scale broaden the conditions under which social welfare

increases with more entry. In addition, if the cross-e¤ect on the inverse demand function is positive,

it is possible that consumer surplus decreases with n: Katz and Shapiro (1985) explain the intuition

behind this result: If the network externality is strong for the marginal consumer, then the increase

in the expected network caused by the change in the number of �rms will raise his/her willingness

to pay for the good by more than that of the average consumer. As a consequence, the �rms will

be able to raise price by more than the increase in the average consumer�s willingness to pay for

the product and consumer surplus will fall.

The results of this paper reinforce the perception already prevalent in the literature that standard

results on the workings of competition might or might not apply in network industries. As a

consequence, a number of policy issues may need a fresh look and some revisiting. There may be

more scope for pro-competitive cooperation or coordination by �rms in network markets. One might

observe a higher propensity for licensing, probably coupled with lower royalty rates or licensing fees;

less patenting or a relatively more permissive attitude towards patent infringement by a �rm�s rivals;

as well as more product standardization in industries where each �rm might a priori opt for its own

separate network of consumers, or for only partial compatibility of its product with rivals�products.

These likely policy consequences are similar to those one might expect to see as a result of the fact

that having more �rms alleviates the start-up problem for the industry. In short, when more

competition can be necessary to get a potential or young industry started up, or to enhance each

�rm�s pro�t in an ongoing industry, the usual trade-o¤s between consumer surplus and producer

surplus are no longer the norm, and it is not surprising that many pillars of conventional wisdom

about suitable public policy for such industries might need re-examining. Proper reaction to these

new incentives for coordinated action by market competitors might well require a signi�cant overhaul

of existing antitrust policy (Shapiro, 1996). In particular, it is highly desirable to arrive at a clear

understanding of the respective speci�c market characteristics under which a given conventional

6This result already appears in the context of a model with an inverse demand function that is linear in output

and no costs of production in Economides (1996), who in turn formalizes a remark made by Katz and Shapiro (1985).
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outcome or its opposite hold. This in turn ought to rely on extensive theoretical analysis focusing

on the special nature of network industries, and this is one of the motivations of the present work.7

Another noteworthy aspect of this paper is that we provide several explicit examples with easy

closed-form solutions to illustrate in a simple way some of the underlying conclusions. In particular,

Example 1 captures with precise closed-form solutions most of the relevant features often associated

with the telecommunications industry in the literature.8

The paper is organized as follows. Section 2 presents the model, the equilibrium concept and the

assumptions. Section 3 deals with existence of (non-trivial) equilibria. Section 4 studies industry

viability and contains many of our fully novel results. Section 5 analyzes output, price and per-

�rm pro�ts as a function of the number of �rms in the market. The last section also looks at

market performance as re�ected in social welfare, consumer surplus and aggregate pro�ts, again,

as a function of n. Section 6 contains all the proofs of this paper. Finally, an elementary and

self-contained review of the lattice-theoretic notions and results needed here forms the Appendix.

2 The analytical framework

This section presents the standard oligopoly model with network e¤ects along with the commonly

used equilibrium concept due to Katz and Shapiro (1985). In view of the more general nature of our

treatment, we �rst enumerate all the needed assumptions we shall use later and their justi�cation.

We consider a static model to analyze oligopolistic competition in industries with positive net-

work e¤ects, re�ected in consumers�willingness to pay being increasing in the number of other

agents acquiring the same good. The �rms�products are homogeneous and perfectly compatible

with each other, so there is a single network comprising the outputs of all �rms in the industry.

The market is fully described by the inverse demand function P (Z; S) and the number of

identical �rms n, each having cost function C (x), where x denotes the �rm�s output, Z is the

aggregate output in the market and S represents the expected size of the network. The cost of

producing no output is zero: Considering that each consumer buys at most one unit of the good,

7Boone (2008) provides interesting insights into the di¢ culties of deriving meaningful measures of competition in

regular industries. Some insights carry over to network industries.
8Strictly speaking, some of the examples we construct below do not satisfy all the assumptions in this paper. Since

the violations are not critical in any way and analytical examples (with nice closed-form solutions that capture the

features we want to highlight) are hard to come by, we are not concerned by this issue.
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S also stands for the expected number of people buying the good. Sometimes, it will be useful to

express the production side in terms of average cost A (x) ; de�ned as C (x) =x with A (0) = C 0(0):

For a given S; each �rm�s reaction correspondence is obtained by maximizing the pro�t function

� (x; y; S) = xP (x+ y; S)� C (x)

ex (y; S) = argmax f� (x; y; S) : 0 � x � Kg (1)

where x is the �rm�s level of output, y the output of the other (n� 1) �rms in the market and

K > 0 the production capacity of each �rm.

At equilibrium, all relevant quantities x; y; Z and � will be indexed by the underlying number

of �rms n, e.g., we shall denote Zn the equilibrium industry output corresponding to n �rms in the

market, and xin the equilibrium output of �rm i. When clear from the context, we will avoid the

subindex i in the latter variable.

Each �rm chooses its output level to maximize its pro�ts under the assumptions that (i) con-

sumers�expectations about the size of the network, S; is given; and (ii) the output level of the other

�rms, y, is �xed. Alternatively, we may think of the �rm as choosing total output Z = x+ y, given

the other �rm�s cumulative output, y; and the expected size of the network, S, in which case, withe� (Z; y; S) = (Z � y)P (Z; S)� C (Z � y)
eZ (y; S) = argmax fe� (Z; y; S) : y � Z � y +Kg : (2)

Consistency requires eZ (y; S) = ex (y; S) + y:
An equilibrium in this game is a vector (x1n; x2n; :::; xnn) that satis�es the following conditions

1. xin 2 argmax
n
xP

�
x+

P
j 6=i xjn; S

�
� C (x) : 0 � x � K

o
; and

2. S =
P
i xin.

Since the seminal paper by Katz and Shapiro (1985), this notion of equilibrium, known as

"Ful�lled Expectations Cournot Equilibrium (FECE)," has been used for oligopolies with network

e¤ects. It requires that both consumers and �rms correctly predict the market outcome, so that

their beliefs are con�rmed in equilibrium. While strategic in their choice of outputs in the usual

Cournot sense, �rms are "network-size taking" in their perceived inability to directly in�uence

customers�expectations of market size. One plausible justi�cation for this is that �rms are unable
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to credibly commit to output levels that customers could observe and reliably use in formulating

expectations about network size (Katz and Shapiro, 1985).9 Naturally, the plausibility of the FECE

concept increases with the number of �rms present in the market.10

Viewing S as an inverse demand shift variable, condition 1 just describes the equilibrium in

standard Cournot competition with exogenous S. Let zn (S) denote the corresponding industry

output equilibrium correspondence. Adding condition 2, an aggregate output Zn 2 zn (S) consti-

tutes a FECE industry output if it satis�es Zn = S as well. As a consequence, if we graph zn (S)

as a function of S, the FECE industry outputs are all the points where this correspondence crosses

the 45� line. This idea will play a key role in both the existence proof and the viability analysis.

Another, fully game-theoretic, interpretation of this equilibrium notion is in the context of a

two-stage game, wherein a market maker (or a regulator) announces an expected network size S

in the �rst stage, and �rms compete in Cournot fashion facing inverse demand P (Z; S) in the

second stage. If the market maker�s objective function is to minimize jS � zn (S)j, then to any

subgame-perfect equilibrium of this game corresponds a FECE of the Cournot market with network

externalities, and vice-versa.

Whenever well-de�ned, we denote the maximal and minimal points of a set by an upper and

a lower bar, respectively. Thus, for instance, Zn and Zn are the highest and lowest industry

equilibrium outputs when there are n �rms in the market.

Denote by W (Z; S) ,
R Z
0 P (t; S) dt� ZA (Z=n) the Marshallian social welfare when aggregate

output is Z; all �rms produce the same quantity and the expected size of the network is S. Similarly,

consumer surplus is CS (Z; S) ,
R Z
0 P (t; S) dt� ZP (Z; S).

We now list the assumptions used in this paper, starting with a set of standard ones, followed

by more substantive conditions.

The standard assumptions are

(A1) P (:; :) is twice continuously di¤erentiable, P1 (Z; S) < 0 and P2 (Z; S) > 0.

(A2) C (:) is twice continuously di¤erentiable and increasing.

9Were such commitment credible for �rms, standard Cournot equilibrium with inverse demand P (Z;Z) would be

a more appropriate concept. A direct comparison between these two concepts appears in Katz and Shapiro (1985).
10A well-known parallel is the fact that the price-taking assumption of perfect competition is more plausible in

markets with many producers, and thus more di¤use competition.
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(A3) xi � K; for all �rm i.

These are all commonly used assumptions, including P2 (Z; S) > 0, which re�ects positive net-

work e¤ects, or the property that consumers�willingness to pay increases in the expected number

of people who will buy the good. Assumption A3 imposes capacity constraints on the production

process of each �rm, a convenient condition to force compact output sets in a setting where �rms

may otherwise wish to produce unbounded output levels. Our results do not rely in any way on K

taking on any particular set of values, as in Amir and Lambson (2000).

The second set of assumptions are placed on two functions that play a key role in the overall

analysis. Let �1 (Z; y) denote the cross-partial derivative of e� (Z; y; S) with respect to Z and y, and
�2 (Z; S) the cross-partial derivative of logP (Z; S) with respect to Z and S, scaled by [P (Z; S)]

2 ;

�1 (Z; y) = �P1 (Z; S) + C 00 (Z � y) and

�2 (Z; S) = P (Z; S)P12 (Z; S)� P1 (Z; S)P2 (Z; S) :

The domains of �1 and �2 are '1 � f(Z; y) : y � 0; Z � yg and '2 � f(Z; S) : Z � y; S � 0g

respectively, both of which are lattices (in the product order).

The second set of assumptions is

(A4) �1 (Z; y) = �P1 (Z; S) + C 00 (Z � y) > 0 on '1.

(A5) �2 (Z; S) = P (Z; S)P12 (Z; S)� P1 (Z; S)P2 (Z; S) > 0 on '2.

Assumption A4 allows for limited scale economies in production, and has been justi�ed in detail

by Amir and Lambson (2000). In terms of the model structure, Assumptions A4 and A5 guarantee

that the pro�t function e� (Z; y; S) has strictly increasing di¤erences on '1 and the strict single-
crossing property in (Z;S), respectively, so that eZ (y; S) increases in y and S, respectively.

The key novel assumption here is A5, which has the precise economic interpretation that the

elasticity of demand increases in the expected network size S:11 In his pioneering study of the

elementary microeconomic foundations of interdependent demands, Leibenstein (1950) suggested

that demand is more elastic in network markets because individual reactions to price changes are

followed by additional reactions, in the same direction, to each other�s change in consumption. A5

11The price elasticity of demand is �
�
@P (Z;S)

@Z
Z

P (Z;S)

��1
= �

�
Z @ logP (Z;S)

@Z

��1
; which is increasing in S if and

only if logP (Z; S) has increasing di¤erences in (Z; S) (Topkis, 1998, p. 66).
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essentially captures the cumulative e¤ect of these mutually reinforcing e¤ects on aggregate demand.

Another plausible interpretation of A5 is that it provides a formalization of the concept of demand-

side scale economies that is often postulated as a characteristic of network e¤ects, though not in a

precise manner. A5 also embodies a key respect in which the present paper departs from the static

literature, much of which deals with the case of additive network e¤ects (Katz and Shapiro, 1985,

Economides and Himmelberg, 1995, and Economides, 1996, among others).12

3 Existence of equilibrium

In this section we provide a general equilibrium existence result, exploiting the minimal monotonic

structure of the model re�ected in A4-A5. As the trivial (zero-output) equilibrium is often part

of the equilibrium set, we derive a second result that o¤ers additional conditions to guarantee the

existence of a non-trivial equilibrium, i.e. one with strictly positive industry output.

We begin with the central monotonicity result, which is a direct consequence of A4 and A5.

Lemma 1 Assume A1-A5 are satis�ed. Then, every selection of the best-response correspondenceeZ (y; S) is increasing in both y and S.
This lemma leads to an abstract existence result for symmetric equilibrium, along with the fact

that the same assumptions preclude the possibility of asymmetric equilibria.

Theorem 2 Assume A1-A5 are satis�ed. Then, for each n 2 N , the Cournot oligopoly with

network e¤ects has (at least) one symmetric equilibrium and no asymmetric equilibria.

The monotonicity structure behind this existence result will turn out to also drive most of the

key results of this paper, most of which have a comparative statics �avor. Comparing A1-A5 with

the set of assumptions in standard Cournot competition, the only new requirement is that the price

elasticity of demand increases with the network size, A5, taking P2 (Z; S) > 0 as a natural property

of network markets. Analogs of all other assumptions are also needed for proving existence in the

standard Cournot model, as re�ected in [Amir and Lambson (2000), Theorem 2.1] reproduced next.

12An exception to this classi�cation is Resende and Laussel (2008), which deals in a novel way with multiplicative

network e¤ects in a dynamic setting.
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Lemma 3 Assume A1-A4 are satis�ed. Then, for each n 2 N , (i) the standard Cournot oligopoly

(with exogenous S) has a symmetric equilibrium and no asymmetric equilibria; (ii) if A5 also holds,

the extremal selections of zn (S), zn (S) and zn (S), increase in S; and (iii) if in addition A5 holds

and P (Z; S) is log-concave in Z, zn (:) is a single-valued and continuous function.

In Section 2 we noted that a �xed point of zn (S) constitutes a FECE industry output. As a

consequence, statements (i) and (ii) in the last lemma could be used to show equilibrium existence

through Tarski�s Theorem. Although less direct than the approach behind Theorem 2, this idea

plays a key role in the proof of existence of a non-trivial equilibrium.

It is well-known that in network markets the trivial (zero-production) outcome is often an

equilibrium. This phenomenon intensi�es when the network good has little stand-alone value,

i.e. P (Z; 0) is small. Given any such good, if end users believe no one else will acquire it, the

good will have no value, and the trivial outcome will necessarily be part of the equilibrium set.

Telecommunications industries, such as fax, phone and e-mail, typically exhibit this characteristic.

In such markets, Theorem 2 is not of much interest since the underlying equilibrium may a

priori be the trivial one. To complete the analysis, we give a simple characterization of the trivial

equilibrium and then add extra assumptions to ensure the existence of a non-trivial equilibrium.

Lemma 4 The trivial outcome is an equilibrium if and only if xP (x; 0) � C (x) for all x 2 [0;K] :

This lemma simply says that the trivial outcome is part of the equilibrium set if and only if

when the common expectation (amongst �rms and consumers) about the size of the network is zero,

and a �rm believes the other �rms will produce no output, the best it can do under the required

condition is to produce zero as well. The proof follows directly from the de�nition of FECE.

To provide additional su¢ cient conditions to ensure the existence of a non-trivial equilibrium

(with strictly positive industry output), we need to make use of a �ctitious objective function that is

known to achieve its maximum at a Cournot equilibrium industry output level, for given S. De�ne

�(Z; S) , n� 1
n

�Z Z

0
P (t; S) dt� nC (Z=n)

�
+
1

n
[ZP (Z; S)� nC (Z=n)] : (3)

For given S; the function (3) �(Z; S) is a weighted combination of welfare and industry pro�ts,

with respective weights 1n and
n�1
n , as given in Bergstrom and Varian (1985) for standard Cournot.

Theorem 5 Assume A1-A5 are satis�ed. Then, there exists a non-trivial equilibrium if at least

one of the following conditions is also satis�ed
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(i) zero is not an equilibrium output (i.e. the condition of Lemma 4 does not hold);

(ii) zero is an equilibrium output, P (0; 0) = C 0(0), n > [�P1 (0; 0) + C 00 (0)] = [P1 (0; 0) + P2 (0; 0)]

and P1 (0; 0) + P2 (0; 0) > 0; or

(iii) zero is an equilibrium output, C 00 (:) � 0 and �(Z 0; S) � �(Z; S) for some S 2 (0; nK], some

Z 0 � S and all Z � S:

Theorem 2 ensures equilibrium existence. Hence, if 0 is not part of the equilibrium set, there

must be an equilibrium with a strictly positive industry output, and Theorem 5(i) follows. This

applies only to network goods with su¢ ciently high stand-alone value (cf. Lemma 4).

The extra requirements in (ii) guarantee that, although zn (0) = 0, zn (S) starts above the 45�

line near 0: The existence of a non-trivial equilibrium follows by Lemma 3 (ii). Formally, this derives

from applying Tarski�s Theorem to zn (S) for S 2 [�; nK], for some � > 0 small enough. As expected,

the stronger the network e¤ect around the origin is, as captured by P2 (0; 0) ; the less stringent the

existence condition for the non-trivial equilibrium gets, i.e. the lower the threshold value of n is.

Condition (iii) ensures that, although zn (0) = 0, zn (S) is above the 45� line at some S 2 (0; nK],

so a non-trivial equilibrium exists by Tarski�s Theorem applied to zn (:) mapping [S; nK] to itself.

The interpretation of the inequality �(Z 0; S) � �(Z; S) derives from the meaning of �(Z 0; S) as a

welfare-pro�t combination (see also Bergstrom and Varian, 1985).

The proof of Theorem 5 uses the following intermediate result, which also plays a key role in

the viability analysis (Section 4).

Lemma 6 Assume A1-A5 are satis�ed. If 0 2 zn (0), then zn (0) = 0; i.e. zn (0) is single-valued.

If in addition P (0; 0) = C 0(0), the slope of zn (:) is also single-valued and right-continuous at 0, and

z0n (0) =
nP2(0; 0)

� (n+ 1)P1(0; 0) + C 00 (0)
: (4)

If the trivial equilibrium is not interior, i.e. P (0; 0) < C 0(0), then z0n (0) = 0:

Thus, though zn (:) is a correspondence, when 0 is part of the equilibrium set, it is single-valued

at the origin. If in addition the trivial equilibrium is interior, the slope of this function is given by

(4) and depends on n. This observation plays a key role in the analysis of industry viability.

The possibility of multiple equilibria in markets with network e¤ects is more of a norm than an

exception. Multiple equilibria are due to the positive feedback that derives from expectations: If
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consumers believe the good will not succeed, it will usually fail. On the contrary, if they expect it

to succeed, it usually will.

Amir and Lambson (2000) show that log-concavity of P (Z; S) in Z is su¢ cient for uniqueness

in standard Cournot competition (along with A4). The added bene�t of this condition here would

thus be to ensure that zn (:) is single-valued and continuous, as shown in Lemma 3. When network

e¤ects prevail, much stronger conditions are required to ensure uniqueness. Since our methodology

allows us to deal with multiple equilibria, we leave this issue aside.

4 Industry viability

This section provides an extensive treatment of industry viability, via (i) a formalization of

expectations dynamics and the associated stability analysis of FECE, and (ii) two key results on

the e¤ects of exogenously changing market structure and technological improvements on industry

viability. As such, it contains much analysis with little formal counterpart in the extant literature.

Many studies suggest that the left panel of Figure 1 re�ects the structure of speci�c telecom-

munications industries. The underlying game there displays three possible equilibria, the trivial

equilibrium, a middle unstable equilibrium, usually called critical mass, and a high stable equilib-

rium.13 The intuition behind this con�guration is quite simple: If all the consumers expect that no

one will acquire the good, then the good has no value and no one will end up buying it, resulting in

the trivial equilibrium for the industry. However, if expectations are higher to start with, another,

non-trivial, equilibria will prevail.

Whenever the trivial equilibrium is locally stable in expectations (as in Figure 1), the market

will never emerge as a result of an expected network size that is too low to start with. In view

of the equilibrium concept adopted here, the incumbent �rms are simply unable to in�uence these

expectations to get them past the critical mass. Under such conditions, even if the industry does get

going, Cournot equilibrium on the basis of small expectations cannot lead �rms to produce enough

output to generate prospects beyond the critical mass, and the industry will unravel through a

natural process towards the trivial equilibrium. This argument is commonly invoked to capture the

13There are several de�nitions of the notion of critical mass in the literature, some in dynamic settings and others in

static settings. In the present paper, we wish to adapt the most common de�nition, which is as the smallest non-zero

(Cournot-) unstable FECE, to our framework taking into account the multi-valuedness of zn(S):

13



Figure 1: Viability and Basin of Attraction of the Trivial Equilibrium

start-up problem that frequently a¤ects these markets, and is often referred to as the "chicken and

egg" paradox. Oren and Smith (1981) o¤er an early discussion of this phenomenon in electronic

communications markets.

The tacit dynamic process underlying this analysis can be formalized through the following

expectations/network size recursion, starting from any initial S0 � 0,

Sk = bzn (Sk�1) ; k � 1 (5)

where bzn will denote either the maximal or minimal selection of zn(:) throughout (except where
otherwise indicated).

This process thus begins with a historically given initial expectation S0, then postulates that

�rms react by engaging in Cournot competition with demand P (Z; S0), leading to an industry

output bzn (S0). The latter will in turn determine consumers expectation S1 = bzn (S0), and the
process repeats inde�nitely. This yields a sequential adjustment course in which consumers and

�rms behave myopically with respect to the size of the network. Taking a single-valued selection of

zn(:) amounts to selecting one particular Cournot equilibrium for each given S.

For each extremal selection of zn(:), we can formally de�ne the corresponding critical mass as

the smallest initial expectation bS0 such that for all S0 > bS0, the orbit given by (5) converges to
a nonzero FECE. This de�nition captures the notion of critical mass irrespective of whether the

selection at hand is continuous, or continuous from one side only (i.e. right or left), or neither, at
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that speci�c point.14 We next formalize our notion of stability.

De�nition 7 The trivial equilibrium is stable if there is a right neighborhood V of 0 such that for

all S0 in V; the orbit Sk = bzn (Sk�1)! 0 as k !1:

It is intuitive that the maximal (minimal) selection is most (least) favorable for the viability

of the industry. Let Vn denote the largest set of values of S0 for which the trivial equilibrium is

stable, i.e. Vn is the basin of attraction of the trivial equilibrium. In view of Lemma 6, when zero

is a FECE aggregate output, bzn(:) is continuously di¤erentiable at 0: Assuming henceforth that
this derivative is (generically) not equal to 1, 0 is an isolated �xed-point (for a formal proof, see

e.g., Granas and Dugundji, 2003, pp. 326-327). Since in addition bzn(:) is increasing in S, Vn is
an interval.15 In the left panel of Figure 1, where zn (:) is single-valued, there is only one interval

equal to (0; CM1); in the right panel of that �gure the highest and lowest selections of bzn induce
Vn = (0; CM2) and Vn = (0; CM3], respectively.16

Each industry can be classi�ed into one of three possible categories in terms of viability.17

De�nition 8 An industry is said to be (i) uniformly viable if every orbit in (5) converges to some

non-zero equilibrium starting from any S0 > 0; (ii) conditionally viable if the convergence in (i)

takes place only from su¢ ciently high S0; and (iii) nonviable if every orbit in (5) converges to 0

from any S0 � 0.

The next observation provides su¢ cient conditions for each possible viability outcome by linking

it to our previous result on the existence of a non-trivial equilibrium (being similar to that of

Theorem 5, the proof is omitted).

Corollary 9 Assume A1-A5 are satis�ed. An industry is (i) uniformly viable if and only if either

condition (i) or (ii) of Theorem 5 holds; (ii) conditionally viable if condition (iii) of Theorem 5

holds; and (iii) nonviable if the conditions of Lemma 4 holds and this equilibrium is unique.

14Related issues are addressed in some detail in Echenique (2002).
15Since zn is u.h.c., zn = min zn is l.s.c. and left-continuous, and zn = max zn is u.s.c. and right-continuous. Hence,

Vn is open at its upper bound for zn while it may or may not be when we consider zn.
16The fact that (0; CM2) is open and (0; CM3] is right-closed follows from both Figure 1 and Footnote 15.
17This de�nition extends in the obvious way to any increasing selection of zn(S), i.e. not only the extremal ones.

Thus, for any increasing selection bzn (S), the critical mass is 0 if the industry is uniformly viable, 1 if it is nonviable,

and satis�es bS0 > 0 and limS"bS0 bzn (S) � bS0 � limS#bS0 bzn (S) if the industry is conditionally viable.
15



To provide a basis for comparing two di¤erent situations that might prevail for the same industry,

we need to formalize a partial order for increasing viability.

De�nition 10 The viability of an industry increases if either (i) the industry goes from nonviable

to conditionally viable, or from the latter to uniformly viable; or (ii) the industry is conditionally

viable and Vn contracts.

Clearly, viability depends on the equilibrium selection under which the industry operates. It

is worth noting that, in contrast to standard Cournot industries, �rms here would not necessarily

prefer the lowest equilibrium selection out of zn(:) since that selection may lead to a lower viability

for the industry (and thus to zero pro�ts from more initial values of S0) than the largest selection.

Likewise, consumers would always prefer the largest selection of zn(:) in standard Cournot markets,

but not necesarily here.

The next result, a key �nding of this paper, shows that additional �rms in the market and/or

a technological improvement always enhance the viability of a network industry.18 We capture

exogenous technological change by a decrease in � for the cost function �C(:).19 Examples 1 and 2

below illustrate these important e¤ects.

Theorem 11 Assume A1-A5 are satis�ed. Then,

(i) more �rms in the market and/or technological improvements always increase the viability of

the industry (i.e. bzn (:) shift up as n increases and/or � decreases); and
(ii) if the trivial outcome is an equilibrium (i.e. the condition of Lemma 4 holds) and P1 (0; 0) +

P2 (0; 0) � 0, an industry cannot be uniformly viable for any n.20

Theorem 11 captures the key role of market structure in industry viability: having more �rms

around implies a lower critical mass would be needed to launch a given industry. The underlying

intuition is intimately connected to the FECE concept. Consider the natural question: In case S0

happens to be below the critical mass, what prevents the existing �rms from attempting to act as

18Economides and Himmelberg (1995) show that, under some conditions, market structure has no e¤ect on the

critical mass. Our results do not coincide because we de�ne critical mass in a di¤erent way.
19The result would extend to more general (non-uniform) shifts in the cost function, provided both the industry

cost and the marginal cost functions shift downwards. The proof is essentially the same.
20This statement holds even if we consider the highest selection of zn(:).
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if there were more of them by producing a higher output level in an e¤ort to in�uence consumers�

expectations of the network size upwards? In a context where the appropriate solution concept

is FECE, �rms presumably cannot commit to their desired output levels in a credible way, and,

likewise, attempting to in�ate their number by committing to a higher output would also not be

credible, and would thus not constitute behavior compatible with the FECE concept.

In industries with multiple �rms having their own versions of the same general good, this result

might explain why �rms often settle for full compatibility between their products, instead of in-

compatibility. Their objective is to generate a single industry network that would be viable, when

separate networks with one �rm each would not be. This implies that some form of cooperation

amongst direct rivals could be needed for their products to succeed. One example is the case of

Sony and Philips, who jointly created industry standards for compact disc in the mid 80�s (Shapiro,

1996). Such forms of cooperation have no counterparts in non-network markets.

The last theorem also captures the fundamental e¤ect of an exogenous technological change on

industry viability. A technological improvement also lowers the critical mass that would be needed

to start the market up. This key and intuitive result can shed some light on observed market

behavior. The fax market took decades beyond the discovery of the initial technology to get started

(Shapiro and Varian, 1998). Now and then, an attempt at launching a new product with network

e¤ects is seen to fail. One plausible diagnosis according to the present analysis is that the product

might be too costly at the early stages of the emerging industry.21

Example 1. Consider the symmetric Cournot oligopoly with no production costs, and inverse

demand function given by

P (Z; S) = exp

�
� 2Z

exp(1� 1=S)

�
with Z; S 2 [0; nK] :

The reaction function of a �rm is ex (y; S) = (1=2) exp(1� 1=S): Since each �rm has a dominant

strategy, ex (y; S) does not depend on y, and we can add the reaction functions to obtain zn (S) =
(n=2) exp(1� 1=S):

An equilibrium industry output solves zn (Z) = Z in Z. Then we have: Z1 = f0g, Z2 = f0; 1g,

Z3 = f0; 0:457; 2:882g and Z4 = f0; 0:373; 4:311g, as shown in Figure 2.
21The quality of the production technology can also be a key factor in determining start-up success, but in the

present context this can only be captured partly via the cost function.
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Figure 2: Viability and Market Structure

As can be easily seen, the trivial equilibrium is always stable. With only one �rm in the market,

this is the only equilibrium, so the industry is nonviable. With one extra �rm, a larger equilibrium

emerges and the industry becomes conditionally viable (barely, since zn (:) is tangent to the 45�

line). For a larger number of �rms, the equilibrium con�guration encompasses three equilibria; the

two extreme ones are stable and the intermediate one is unstable. The unstable equilibrium, often

called critical mass, decreases in n. This is an exact closed-form example of the three-equilibrium

constellation that is often portrayed as typical in many network industries.

Here, zn (:) shifts up as n increases. The industry goes from nonviable to conditionally viable

as n goes from 1 to 2 �rms. As n further increases, viability increases since the basin of attraction

of 0 shrinks, but uniform viability is never attained as P1(0; 0) + P2(0; 0) = 0 (cf. Theorem 11). �

In our �rst example, initial expectations must be high enough to start the market up (when

n � 2). Although the critical mass shrinks as the number of �rms increases, the start-up problem

always persists. The next example shows an extreme case where this problem disappears with a

technological improvement.
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Figure 3: Viability and Technological Improvements

Example 2. Consider an oligopoly with cost function C(x) = �cx, c > 0, and

P (Z; S) = exp

�
� Z
bS

�
with Z; S 2 [0; nK] and b > 0:

Here � captures technological improvements. The pro�t function is

� (x; y; S) =

�
exp

�
�x+ y
bS

��
x� �cx:

The reaction function of any given �rm is implicitly de�ned by�
exp

�
�ex (y; S) + y

bS

���
1� ex (y; S) + y

nbS

�
� �c = 0 (6)

when ex (y; S) is interior. When the left hand side of (6) is negative for all ex 2 [0;K] then ex (y; S) = 0,
and it takes the value K when the left hand side of (6) is positive for all ex 2 [0;K] :

The aggregate equilibrium output with exogenous S, zn (S), is implicitly de�ned by�
exp

�
�zn (S)

bS

���
1� zn (S)

nbS

�
� �c = 0 (7)

when zn (S) is interior. Otherwise, zn (S) is either 0 or nK.

Figure 3 illustrates the FECE for n = 10 and b = 2, given three possible values of �c: 1=4, 1=2

and 1. When the technology is costly, �c = 1; zn (S) is 0 for all S. Then the trivial equilibrium is

the unique FECE, and the industry is nonviable. After technological improvements, �c = 1=2 and
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�c = 1=4, every orbit in (5) converges to nK starting from any S0 > 0, so the industry becomes

uniformly viable. �

The �rst example illustrates an interesting situation where the presence of network e¤ects might

have unusual implications on �rms�attitudes towards intellectual property rights and entry deter-

rence. Indeed, �rms will not be tempted to engage in entry deterrence activities if their number

is insu¢ cient to start the market up. In such a case, those in possession of patents will have a

much higher than usual incentive to engage in licensing to their rivals on rather generous terms.

Naturally, such generosity will prevail only until the industry is started up, or until pro�ts cease to

increase with the number of competitors, as we shall see below.

The last example shows the key e¤ect of technological improvements on the viability of the

industry. Even with a large number of potential competitors, the market might not start up until

the industry manages to lower production costs su¢ ciently.

5 Exogenous entry and market performance

This section studies the e¤ects of market structure (or exogenous entry) on the equilibrium in-

dustry output, per-�rm output, market price, per-�rm pro�ts, consumer surplus and social welfare.

Amir and Lambson (2000) and Amir (2003) address similar questions for standard Cournot com-

petition, and show that scale economies can lead to counterintuitive results about the most basic

aspects of market response to increased competition. We show next that, under network e¤ects,

similar reversals are typically much easier to come by, and that they can be generated solely by

demand-side externalities instead of production scale economies. In other words, they derive from

increasing returns on the demand side of the market, rather than the supply side. We will provide

either su¢ cient conditions for these reversals when appropriate, or otherwise at least closed-form

examples illustrating these possibilities.

The analysis that follows makes all the statements on the largest equilibrium, i.e. the one with

the largest equilibrium outputs, namely, Zn and xn. When the zero outcome is an equilibrium, it is

clearly the smallest equilibrium. Since it is invariant in the number of �rms, its comparative statics

questions are trivial. When the zero outcome is not part of the equilibrium set, our conclusions also

apply to the minimal selections, Zn and xn.
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De�ne the interval of output levels In , [Zn; Zn+1]: The �rst result relates entry to equilibrium

industry output and market price.

Theorem 12 Assume conditions A1-A5 are satis�ed. Then, we have

(i) the extremal equilibrium industry outputs, Zn and Zn, increase in n; and

(ii) if P1 (Z;Z) + P2 (Z;Z) � (�) 0 on In, then P
�
Zn+1; Zn+1

�
� (�)P

�
Zn; Zn

�
:

Theorem 12 (i) is also true in standard Cournot competition, as shown by [Amir and Lambson

(2000), Theorem 2.2 (b)]. In the latter, the usual law of demand su¢ ces for the market price

to decrease after new entry. As Theorem 12 (ii) indicates, the e¤ect of entry on market price is

ambiguous when network e¤ects prevail. The reason is that when industry output increases the �rms

must set the price low enough to attract the marginal consumer, but when more buyers join the

network consumers�willingness to pay increases. Thus the overall e¤ect of entry on the market price

depends on how strong the output e¤ect is, relative to the network e¤ect. As a consequence, the

so-called property of quasi-competitiveness, which under similar assumptions holds in the standard

Cournot game, need not be satis�ed here.

For the e¤ects of entry on per-�rm outputs and pro�ts, a new function is needed (some insight

into its sign is given later)

g (Z) =
�
P (Z;Z)� C 0 (Z=n)

�
[P11 (Z;Z) + P12 (Z;Z)]� P1 (Z;Z) [P1 (Z;Z) + P2 (Z;Z)] : (8)

Theorem 13 In addition to A1-A5, assume Zn and Zn+1 are interior equilibria. Then, we have

(i) if g (Z) � 0 on In, the largest per-�rm equilibrium output increases in n, i.e. xn+1 � xn; and

(ii) if g (Z) � 0 on In, the largest per-�rm equilibrium output decreases in n, i.e. xn+1 � xn:

In short, this result means that the scope for the business-stealing e¤ect, which is nearly universal

in standard Cournot oligopoly, is quite a bit narrower in the presence of network externalities. On

the other hand, the scope for the opposite, or business-enhancing, e¤ect is much broader in the

present setting, as we see next.

Corollary 14 In addition to the assumptions of Theorem 13, assume no costs of production. Then

xn+1 � xn if, for Z 2 In,

[P (Z;Z)P12 (Z;Z)� P1 (Z;Z)P2 (Z;Z)] +
�
P (Z;Z)P11 (Z;Z)� P 21 (Z;Z)

�
� 0: (9)
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The left-hand side of (9) is the same as g (Z) when the �rms face no production costs. Its �rst

term is positive by A5, and log-convexity of P (Z; S) in Z ensures the second one is positive as

well. Therefore log-convexity is a su¢ cient, but not necessary, condition for the highest per-�rm

equilibrium output to increase after new entry whenever marginal costs are zero. Amir and Lambson

(2000), Theorem 2.3, require log-convexity to globally ensure the same result for standard Cournot

competition. Hence network e¤ects facilitate this unusual outcome.

Based on Theorems 12 and 13, the following result deals with the e¤ects of entry on per-�rm

equilibrium pro�ts. Recall that in standard Cournot oligopoly, the only part of the conventional

wisdom about the e¤ects of competition that is universally valid is that per-�rm pro�ts decline with

the number of competitors (Amir and Lambson, 2000, and Amir, 2003). We now show that in the

presence of network e¤ects, this result can be easily reversed.

Theorem 15 In addition to A1-A5, assume Zn and Zn+1 are interior equilibria. Then, we have

(i) if P1 (Z;Z) + P2 (Z;Z) � 0 and g (Z) � 0 on In, at the largest equilibrium, �n+1 � �n; and

(ii) if P1 (Z;Z) + P2 (Z;Z) � 0 and g (Z) � 0 on In, at the largest equilibrium, �n+1 � �n:

The �rst result provides su¢ cient conditions for the �rms in the market to prefer further entry

by new �rms. It generalizes a result in Economides (1996), based on a more speci�c formulation,

which in turn formalizes a remark made by Katz and Shapiro (1985).

Although surprising, the intuition for this outcome is simple. New entry increases the equilibrium

industry output, as shown in Theorem 12, and a direct e¤ect is that market price goes down by the

usual law of demand. But via the e¤ect on the size of the network, this output increase also shifts

the inverse demand function up, thus pushing for a price increase. Then, if the overall e¤ect on the

market price is positive and each �rm increases own output, the existing �rms in the market are

better-o¤ after new entry. As Economides (1996) states, if the externalities are strong, the network

e¤ect dominates the usual competitive e¤ect of entry.

A natural question arises when pro�ts increase in n. Why can�t the existing �rms attempt to

act as if there were more of them in order to each get higher pro�ts at equilibrium? Since they

would do so by producing a higher output level in an e¤ort to in�uence consumers�expectations

of the network size upward, the answer is the same as for the start-up problem: the tacit lack of

commitment power on the part of the �rms, which is at the heart of the FECE concept.

22



The next result follows as a simple corollary of our last theorem. Its extra requirement captures

(as a special case) one of the conditions often imposed in the network models: no second order

e¤ects on the inverse demand function.

Corollary 16 In addition to the conditions of Theorems 13 and 15, assume P11 (Z;Z)+P12 (Z;Z) =

0, for all Z. If P1 (Z;Z) + P2 (Z;Z) � (�) 0 on In, then, at the largest equilibrium,

(i) per-�rm equilibrium output increases (decreases) in n, i.e. xn+1 � (�)xn; and

(ii) per-�rm equilibrium pro�ts increase (decrease) in n, i.e. �n+1 � (�)�n.

The new condition here, P11 (Z;Z) + P12 (Z;Z) = 0; is satis�ed if, for example, P (Z; S) =

h (S)� kZ with h(:) an increasing function, or P (Z; S) = f (S � Z) with f (:) increasing.

The next example highlights the implications of Theorem 15.

Example 3. Consider a Cournot oligopoly with no production costs and

P (Z; S) = max fa+ bS� � Z; 0g with Z; S 2 [0; nK] ; a � 0; b > 0 and � 2 (0; 1) :

The reaction function of any given �rm is ex (y; S) = max f(a+ bS� � y) =2; 0g : (Here we assume

K is large enough.) After a simple computation, the symmetric equilibrium industry output is

implicitly de�ned by �Zn (1 + n) + na+ nbZ�n = 0:

Let a = 10; b = 5 and � = 4=5: Upon computation, per-�rm equilibrium pro�ts for di¤erent

values of n are

�1 � 14; 561 < �2 � 49; 255 < �3 � 67; 316 < �4 � 70; 676

�5 � 67; 288 > �6 � 61; 520 > �7 � 55; 301 > �8 � 49; 404 > ::: > �21 � 14; 444:

We observe that when the number of �rms is small, n = 1; 2 or 3; incumbent �rms are better

o¤ if an extra �rm enters the market. When n � 4, �rms are worse-o¤ after new entry. Consider

for instance a situation where entry costs are 14; 440. Then a single �rm in the market would

barely make a positive pro�t, and potential entrants might decide to stay out if they based their

assessment on standard oligopoly settings (due to pro�ts just covering entry costs). Yet, the market

could actually accommodate a full 21 �rms at the unique free entry equilibrium! �

The results that follow provide su¢ cient conditions that validate, for the highest equilibrium,

the conventional wisdom that social welfare and consumer surplus increase with more competition,

while industry pro�ts decrease. We start the analysis starts with social welfare.
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Theorem 17 Assume A1-A5 are satis�ed. Then, at the highest equilibrium, Wn+1 �Wn if at least

one of the following conditions holds

(i)
Z Zn

0

�
P
�
t; Zn+1

�
� P

�
t; Zn

��
dt � Zn [A (xn+1)�A (xn)]; or

(ii) xn+1 � xn:

In thinking about social and consumer welfare throughout, it is useful to keep in mind that

since P2 (Z; S) > 0 by A1, and Zn+1 � Zn by Theorem 12 (i), the inverse demand shifts out as

the number of �rms increases from n to n + 1, i.e. goes from P
�
:; Zn

�
to P

�
:; Zn+1

�
. Hence, the

area under the inverse demand changes through two e¤ects: The shift in the demand curve and the

change in equilibrium output. It follows that the left hand side of condition (i) is always positive. So

this theorem identi�es two su¢ cient conditions for welfare to increase: either one has diseconomies

of scale (A (:) is increasing) and decreasing per-�rm output, or per-�rm output being increasing in

n. Network e¤ects play a key role in giving rise to these two conditions. First, they give rise to

the demand shift and to an increase in total output, which makes condition (i) more likely to hold.

As seen earlier, they also weaken the business-stealing e¤ect, thereby easing the conditions under

which per-�rm output increases in n.

We next study consumer surplus, for which our results di¤er markedly from their counterparts

for the standard Cournot oligopoly.

Theorem 18 Assume A1-A5 are satis�ed. Then, at the highest equilibrium, CSn+1 � CSn if

either (i) P
�
Zn+1; Zn+1

�
� P

�
Zn; Zn

�
; or (ii) P12 (Z; S) � 0.

As a consequence of the so-called property of quasi-competitiveness, which under similar condi-

tions holds in the standard Cournot game, condition (i) is always satis�ed without network e¤ects.

Example 4, at the end of the section, shows the opposite sometimes happens in network industries.

Katz and Shapiro (1985) clearly explain why this surprising result might occur here: If the mar-

ginal consumer has a strong network externality, then the increment in the expected network size

generated by the larger number of �rms in the market, will increase his/her willingness to pay for

the product above that of the average consumer. As a consequence, the �rms will be able to raise

the price by more than the increase in the average consumer�s willingness to pay for the product

and consumer surplus will fall.
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Our last theorem provides respective su¢ cient conditions for industry pro�ts to increase or

decrease with entry in a way that links the outcome with the price e¤ect.

Theorem 19 Assume A1-A5 are satis�ed. Then, at the highest equilibrium,

(i) (n+ 1)�n+1 � n�n if P
�
Zn+1; Zn+1

�
�A (xn+1) � P

�
Zn; Zn

�
�A (xn) and/or the conditions

of Theorem 15 (i) are satis�ed; and

(ii) (n+ 1)�n+1 � n�n if P
�
Zn+1; Zn+1

�
� P

�
Zn+1; Zn

�
� A (xn+1)�A

�
n+1
n xn+1

�
.

Since the highest equilibrium industry output increases in n, part (i) is the trivial observation

that, if mark-up increases in n, industry pro�ts increase. The second statement is a corollary of

Theorem 15 (i). The justi�cation of Theorem 19 (ii) is quite similar to the previous one.

The �nal result (proof omitted) is a direct implication of previous ones, dealing with the impor-

tant and widely used special case of constant returns to scale.

Corollary 20 In addition to A1-A5, assume production costs are linear, i.e. C (x) = cx with c � 0.

Then, at the highest equilibrium, as the number of �rms increases, (i) social welfare increases, and

(ii) industry pro�t increases if market price increases.

Example 4 illustrates how exogenous entry can a¤ect consumer surplus and industry pro�ts.

Example 4. Consider a Cournot oligopoly with no production costs and

P (Z; S) = maxfa� Z=S3; 0g with Z; S 2 [0; nK] and a;K > 1:

The reaction function of any given �rm is

x (y; S) =

8<: max
��
aS3 � y

�
=2; 0

	
if
�
aS3 � y

�
=2 < K

K if
�
aS3 � y

�
=2 � K

:

Thus, we have three possible FECE aggregate outputs: Zn =
n
0;
p
(n+ 1) =(na); nK

o
:

From a simple computation, consumer surplus is zero at the smallest equilibrium and, CSn =

1= (2nK) assuming a � 1= (nK)2 ; at the highest one. Hence consumer surplus decreases in n for

the highest equilibrium. This result is possible as Conditions (i) and (ii) in Theorem 18 are violated,

i.e. the market price at the highest equilibrium increases in n and P12 (Z; S) = 3=S4 > 0 for all Z; S:

Aggregate pro�t at the highest equilibrium is n�n = nK
h
a� 1= (nK)2

i
, which increases in n;

as does the corresponding social welfare Wn = anK � 1= (2nK). �
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6 Conclusion

Building on basic insights from the theory of supermodular games, this paper has provided a

thorough analysis of a standard static symmetric model of oligopolistic competition with nonlinear

network e¤ects. A minimal monotonicity structure on the model leads to industry output increasing

in rivals� output and in the expected network size, thus yielding in one broad stroke existence

of symmetric equilibrium as well as some key characterization results with a comparative statics

�avor. In particular, industry viability, a known concept for which we provide novel theoretical

foundations here, is shown to be enhanced by increases in the number of competitors as well as by

technological progress. Likewise, respective su¢ cient conditions are derived for each dimension of

market performance to increase or decrease with more competition. Due to the presence of demand-

side increasing returns, the tendency for counterintuitive e¤ects, which is fully characterized, is seen

to be much stronger than in regular markets, where it is often due to scale economies. Most

notably, price and per-�rm pro�t can both increase with the number of �rms, with the latter e¤ect

having no counterpart in regular markets even under scale economies (Amir and Lambson, 2000).

Several illustrative examples with closed-form solutions are constructed, including one that captures

exactly the well-known three-equilibria con�guration that is broadly thought to capture expectations

dynamics in telecommunication industries. In terms of policy implications, by identifying precise

conditions for various possible e¤ects to hold, our results provide solid theoretical foundations for

some well-known policy prescriptions that need revisiting for network markets (Shapiro, 1998).

7 Proofs

This section provides the proofs for all the results of the paper, and also contains the statements

and proofs of some useful intermediate results not given in the body of the paper.

The proof of Lemma 1 calls for an intermediate result.

Lemma 21 Assume A1-A5 hold. Then e� (Z; y; S) has the strict single-crossing property in (Z;S) :
Proof of Lemma 21

To prove this result, �rst note that �2 (Z; S) > 0 if and only if @2 logP (Z; S) =@Z@S > 0: We

show that this condition implies that e� (Z; y; S) has the strict single-crossing property in (Z;S), i.e.
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that for any Z > Z 0 and S > S0;

e� �Z; y; S0� � e� �Z 0; y; S0� =) e� (Z; y; S) > e� �Z 0; y; S� : (10)

Since @2 logP (Z; S) =@Z@S > 0, logP (Z; S)� logP (Z 0; S) > logP (Z; S0)� logP (Z 0; S0), or

P (Z; S)

P (Z 0; S)
>
P (Z; S0)

P (Z 0; S0)
: (11)

The left hand side of (10) can be rewritten as

(Z � y)P
�
Z; S0

�
� C (Z � y) �

�
Z 0 � y

�
P
�
Z 0; S0

�
� C

�
Z 0 � y

�
: (12)

Combining (11) and (12), we get

(Z � y)P (Z; S) P (Z
0; S0)

P (Z 0; S)
� C (Z � y) >

�
Z 0 � y

�
P
�
Z 0; S0

�
� C

�
Z 0 � y

�
: (13)

Multiplying both sides of (13) by P (Z 0; S) =P (Z 0; S0) we obtain

(Z � y)P (Z; S)� P (Z 0; S)

P (Z 0; S0)
C (Z � y) >

�
Z 0 � y

�
P
�
Z 0; S

�
� P (Z 0; S)

P (Z 0; S0)
C
�
Z 0 � y

�
: (14)

By A1, P (Z 0; S) =P (Z 0; S0) > 1 and, by A2, C (Z � y) � C (Z 0 � y) : Thus, (14) implies

(Z � y)P (Z; S)� C (Z � y) >
�
Z 0 � y

�
P
�
Z 0; S

�
� C

�
Z 0 � y

�
; (15)

which is just the right hand side of (10). Hence, (10) holds. �

Proof of Lemma 1

Since @2e� (Z; y; S) =@Z@y = �1(Z; y) > 0, by A4, the maximand in (2) has strictly increasing

di¤erences in (Z; y). Furthermore, the feasible correspondence (y; S) �! [y; y +K] is ascending

in y: Then, by Topkis�s theorem [Theorem A.1, Appendix], every selection from the argmax ofe� (Z; y; S), eZ (y; S), increases in y:
By Lemma 21, e� (Z; y; S) has the strict single-crossing property in (Z;S). In addition, the

feasible correspondence (y; S) �! [y; y +K] does not depend on S. Then, by [Theorem A.2,

Appendix] due to Milgrom and Shannon (1994), every selection from the argmax of e� (Z; y; S),eZ (y; S), is also increasing in S: �
Proof of Theorem 2
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The following mapping, which can be thought of as a normalized cumulative best-response, is

the key element in dealing with symmetric equilibria for any n22

Bn : [0; (n� 1)K]� [0; nK] �! 2[0;(n�1)K]�[0;nK]

(y; S) �!
�
n� 1
n

�
x0 + y

�
; x0 + y

�
where x0 denotes a best-response output level by a �rm to a joint output y by the other (n�1) �rms,

given S. It is readily veri�ed that the (set-valued) range of Bn is as given, i.e. if x0 2 [0;K] and

y 2 [0; (n� 1)K], then ((n� 1)=n)(x0 + y) 2 [0; (n� 1)K] and x0 + y 2 [0; nK] : Also, a �xed point

of Bn is easily seen as a symmetric equilibrium, for it must satisfy both by = ((n� 1) =n) (bx0 + by) ;
or bx0 = by= (n� 1) ; and bS = bx0 + by; which says that the responding �rm produces as much as each

of the other (n� 1) �rms and the expected size of the network is ful�lled at equilibrium.

By Lemma 1 we know that every selection of eZ (y; S) increases in y and S: Hence, for any
�xed n 2 N , every selection of Bn increases in (y; S), so that by Tarski�s �xed point theorem

[Theorem A.3, Appendix], it has a �xed point. As argued before, a �xed point of Bn is a symmetric

equilibrium. This proves the �rst statement of Theorem 2.

To show that no asymmetric equilibria exists, it su¢ ces to show that the correspondence eZ (y; S)
is strictly increasing (in the sense that all its selections are strictly increasing) in y, for each S. Thus,

for all possible S, to each Z 0 2 eZ (y; S) corresponds (at most) one y such that Z 0 = x0 + y with Z 0
being a best-response to y and S. In other words, for each equilibrium output Z 0, each �rm must

be producing the same x0 = Z 0 � y, with y = (n� 1)x0.

A4 implies that @e� (Z; y; S) =@Z is strictly increasing in y, a property slightly stronger than

strictly increasing di¤erences in (Z; y): By Topkis (1998), Theorem 2.8.5 on p. 79, this property

implies that eZ (y; S) is strictly increasing in y for each S, whenever eZ (y; S) is interior.23 The

second statement in Theorem 2 follows because, as argued in the previous paragraph, this condition

guarantees no asymmetric equilibria exist. �

Proof of Lemma 3

The proof of this lemma follows directly from Amir and Lambson (2000), thus we omit it. �

Proof of Lemma 4
22See Amir and Lambson (2000) and Kwon (2007).
23This result was proved in Amir (1996) and Edlin and Shannon (1998).
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By de�nition, an industry output of 0 is a FECE if 0 2 ex (0; 0). This holds if and only if
� (0; 0; 0) � � (x; 0; 0)

0 � xP (x; 0)� C (x)

for all x 2 [0;K] : This proves our �rst statement. The second one follows because all the steps are

independent of the number of �rms in the market. �

The proof of Theorem 5 calls for several intermediate results, which will turn out to be useful for

some other proofs as well. We �rst state su¢ cient conditions under which an increasing selection

of zn (S) is di¤erentiable for almost all S, and give a speci�c functional form for its slope. We then

show that when 0 is part of the equilibrium set, then zn (0) is single-valued and right-continuous.

Lemma 22 Assume A1-A5 are satis�ed. Let bzn be an increasing selection of zn (S), such thatbzn (S) 2 (0; nK). Then bzn (S) is di¤erentiable for almost all S; and its slope is given by
@bzn (S)
@S

=
�n fP1(bzn; S)P2(bzn; S)� [P (bzn; S)� C 0 (bzn=n)]P12(bzn; S)g

(n+ 1) [P1(bzn; S)]2 � n [P (bzn; S)� C 0 (bzn=n)]P11(bzn; S)� P1(bzn; S)C 00 (bzn=n) (16)

where bzn stands for bzn (S) :
Proof of Lemma 22

If bzn (S) is interior, it must satisfy the �rst order condition
P (bzn; S) + (bzn=n)P1(bzn; S)� C 0 (bzn=n) = 0 (17)

where bzn stands for bzn (S). Multiplying both sides of (17) by n
nP (bzn; S) + znP1(bzn; S)� nC 0 (bzn=n) = 0: (18)

Since bzn (S) is increasing, it is di¤erentiable almost everywhere (w.r.t. Lebesgue measure) and
@bzn (S)
@S

=
� [nP2(bzn; S) + eznP12(bzn; S)]

(n+ 1)P1(bzn; S) + bznP11(bzn; S)� C 00 (bzn=n) : (19)

Substituting bzn (S) by its implicit value in (17), and multiplying the numerator and the denominator
by P1(zn; S), we obtain (16). �

Proof of Lemma 6
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We �rst show that if 0 2 zn (0), then 0 = zn (0), i.e., zn (0) is a singleton. By Lemma 4 we know

that 0 2 zn (0) if and only if

xP (x; 0) � C (x) for all x 2 [0;K] : (20)

Since P1 (Z; S) < 0 by A1, it follows from (20) that xP (x+ y; 0) < C (x) for all x 2 (0;K] and all

y > 0: Hence, 0 is a dominant strategy in the standard Cournot game given S = 0. This proves

that zn (0) is single-valued.

Since P (0; 0) = C 0(0), the trivial outcome is an interior equilibrium. To show (4), take any

sequence Sk # 0 such that bzn is di¤erentiable at Sk for all k (this is possible since the set of
points of di¤erentiability of an increasing function forms a dense subset of its domain). Since bzn is
increasing, it has left and right limits at every point, so limk!1 bzn(Sk) exists. Since zn(:) is u.h.c.,
limk!1 bzn(Sk) 2 zn (0) = f0g, so that by the earlier part of this proof, limk!1 bzn(Sk) = 0.

Now consider (19) with S = Sk. By Assumption A1 and the fact that limk!1 bzn(Sk) = 0, the
right-hand side of (19) is right-continuous in S at 0. Taking limits as k �! 1, (4) follows. Since

this argument is clearly independent of the particular (increasing) selection bzn and of the sequence
(Sk) chosen, @zn (S) =@SjS=0 is single-valued, continuous at 0, and given by (4).

The fact that z0n (0) = 0 if the trivial equilibrium in not interior follows directly from our previous

arguments, thus we omit this proof. �

We next show that, for all S 2 [0; nK], any argmax of a �ctitious objective function �(Z; S) is

an element of zn (S) :

Lemma 23 Assume A1-A5 are satis�ed and C (:) is convex. Given any n 2 N and S 2 [0; nK], if

Z 0 2 argmax f�(Z; S) : 0 � Z � nKg then Z 0 2 zn (S) :

Proof of Lemma 23

We show that if Z� is an argmax of �(Z; S), then Z� is the industry output of a symmetric

Cournot equilibrium with exogenous S. Let Z� = x� + y�, with x� = Z�=n and y� = (n� 1)x�,

and consider Z 0 = x0 + y�, with x0 2 [0;K] : Then x0 denotes a possible deviation of a given �rm

from its equilibrium output x�: We next show this unilateral deviation is never pro�table.
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Since Z� is a maximizer of �(Z; S) ; then �(Z�; S) � �(Z 0; S), which is equivalent to say

n� 1
n

Z x�+y�

0
P (t; S) dt+ x�P (x� + y�; S)� nC (x�) �

(n� 1)
n

Z x0+y�

0
P (t; S) dt+

(x0 + y�)

n
P
�
x0 + y�; S

�
� nC

�
x0 + y�

n

�
(21)

Then we have

x�P (x� + y�; S)� C (x�)

� n� 1
n

Z x0+y�

0
P (t; S) dt+

(x0 + y�)

n
P
�
x0 + y�; S

�
� nC

�
x0 + y�

n

�
�n� 1

n

Z x�+y�

0
P (t; S) dt+ (n� 1)C (x�)

� n� 1
n

Z x0+y�

x�+y�
P (t; S) dt+

(x0 + y�)

n
P
�
x0 + y�; S

�
� C

�
x0
�

� (n� 1) (x0 � x�)
n

P
�
x0 + y�; S

�
+
(x0 + y�)

n
P
�
x0 + y�; S

�
� C

�
x0
�

= x0P
�
x0 + y�; S

�
� C

�
x0
�
:

The �rst inequality follows from (21), after rearranging terms. The second one holds as we assumed

C (:) is convex (and y� = (n� 1)x�), and the last one by A1, P1 (Z; S) < 0: Since x0 is arbitrary,

this argument shows that x� is a symmetric Cournot equilibrium. �

Proof of Theorem 5

Part (i) holds because, if the trivial outcome (zero output) is not part of the equilibrium set,

Theorem 2 guarantees there is a FECE with strictly positive industry output.

Parts (ii) and (iii) are both based on the following argument. By Lemma 3, the maximal and

minimal selections of zn (S), zn (S) and zn (S), increase in S. Assume, for the moment, there exists

an S0 2 (0; nK] such that zn (S0) � S0: If we restrict attention to the values of S in [S0; nK],

it follows that zn (S) 2 [S0; nK] because zn (:) is increasing and zn (S0) � S0: Therefore, for all

S 2 [S0; nK], zn (S) is an increasing function that maps [S0; nK] into itself. Hence, by Tarski�s �xed

point theorem [Theorem A.3, Appendix], there is an S0 � S00 � nK such that zn (S00) = S00: Since

this condition implies zn (S00) is a strictly positive FECE, the existence of a nontrivial equilibrium

reduces to showing there is at least one S 2 (0; nK] for which zn (S) � S:

To prove Part (ii), we show z0n (0) > 1. By Lemma 6, z
0
n (0) > 1 if, given P1 (0; 0)+P2 (0; 0) > 0,

n >
�
�P1 (0; 0) + C 00 (0)

�
= [P1 (0; 0) + P2 (0; 0)] :
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Then the existence of a nontrivial FECE follows by the argument in the previous paragraph, as

Lemma 6 and the property z0n (0) > 1; imply there exists a small " > 0 for which zn (") > ": This

completes the proof of Part (ii).

The inequality in Part (iii) is equivalent to say there is some S 2 (0; nK] and some Z 0 � S for

which n [� (Z 0; S)��(Z; S)] � 0 for all Z � S: As a consequence, the largest argmax of �(Z; S)

must be larger than S. Call this argmax bZ. Our proof follows because bZ 2 zn (S), by Lemma 23,
and this ensures there is an S 2 (0; nK] for which an element of zn (S) is higher than S: �

Proof of Theorem 11

We will show Part (i) for a change in n. The proof for � is almost identical, so we omit it. [Amir

and Lambson (2000), Theorem 2.2 (b)] shows that zn (S) and zn (S) are increasing in n. Given this,

the claim follows directly from De�nition 10.

To prove Part (ii), observe that if the trivial equilibrium holds and P1 (0; 0)+P2 (0; 0) � 0, then,

by Lemma 6, z0n (0) < 1 8 n, so that 0 is a stable equilibrium 8 n. This ends our proof. �

Proof of Theorem 12

The maximal and minimal selections of Bn (as de�ned in the proof of Theorem 2) denoted,

respectively, Bn and Bn; exist by Topkis�s theorem. Furthermore, the largest equilibrium values of

yn and Zn ,
�
yn; Zn

�
, constitute the largest �xed point of Bn. Since (n� 1) =n is increasing in n,

Bn is increasing in n for all (y; S). Since Bn is also increasing in both y and S, the largest �xed

point of Bn;
�
yn; Zn

�
; is also increasing in n (see Milgrom and Roberts, 1990). A similar argument,

using the selection Bn; establishes that
�
y
n
; Zn

�
increases in n as well. This shows part (i).

Part (ii) follows directly from Part (i) since dP (Z;Z) =dz = P1 (Z;Z) + P2 (Z;Z) : �

Proof of Theorem 13

Consider the following mapping

Mn : [0; nK] �! 2[0;K]

Z �! ex = �x : P (Z;Z) + xP1 (Z;Z)� C 0 (x) = 0	 : (22)

ThenMn maps industry output into the solution of a �ctitious �rst order condition, which coincides

with that of an interior FECE when x = Z=n and Z = Zn:

32



Totally di¤erentiating this �rst order condition with respect to n; we have

fP1 (Z;Z) + P2 (Z;Z) + ex [P11 (Z;Z) + P12 (Z;Z)]g dz
dn

= 0: (23)

Substituting in (23) ex by [C 0 (Z=n)� P (Z;Z)] =P1 (Z;Z) ; and rearranging terms, we get
� 1

P1 (Z;Z)

��
P (Z;Z)� C 0 (Z=n)

�
[P11 (Z;Z) + P12 (Z;Z)]� P1 (Z;Z) [P1 (Z;Z) + P2 (Z;Z)]

	 dz
dn

= 0:

(24)

Substituting g (Z) from (8) into (24), we get

� 1

P1 (Z;Z)
g (Z)

dz

dn
= 0: (25)

By A1, P1 (Z;Z) < 0. Also, by Theorem 12 (i), the extremal equilibrium industry outputs increase

in n: Then, if g (Z) � (�) 0 over
�
Zn; Zn+1

�
, the mapping Mn increases (decreases) in n at the

largest equilibrium industry output. Theorem 13 follows because if Mn increases (decreases) in n

at the largest equilibrium industry output, then xn also increases (decreases) with this parameter.

By a similar argument it can be shown that this is also true for xn. �

Proof of Corollary 14

Inequality 9 equals function g (Z) when the �rms face no cost of production. Then the �rst

claim follows directly from Theorem 13 (i).

The �rst term in the left hand side of (9) is always positive by A5. As the log-convexity of

P (Z; S) in Z guarantees the second term is also positive, this is a su¢ cient condition for the

required inequality. �

Proof of Theorem 15

Consider the following inequalities

�n+1 = xn+1P
�
xn+1 + yn+1; Zn+1

�
� C (xn+1)

� xnP
�
xn + yn+1; Zn+1

�
� C (xn)

� xnP
�
xn+1 + yn+1; Zn+1

�
� C (xn)

� xnP
�
xn + yn; Zn

�
� C (xn)

= �n:

The �rst inequality follows by the Cournot equilibrium property. The second one is from xn+1 � xn
and A1. (The fact that xn+1 � xn here follows by Theorem 13 (i) because we assumed all its
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required conditions are satis�ed.) The third inequality follows because our assumptions imply

P
�
Zn+1; Zn+1

�
� P

�
Zn; Zn

�
: Therefore, �n+1 � �n: By a similar argument it can be shown that

this is also true for the equilibrium per-�rm pro�ts evaluated at the minimal equilibrium outputs.

This shows Part (i). We omit the proof of Part (ii) as it is almost identical to the last one. �

Proof of Corollary 16

If P11 (Z;Z)+P12 (Z;Z) = 0, then g (Z) = �P1 (Z;Z) [P1 (Z;Z) + P2 (Z;Z)] : By A1, P1 (Z;Z) <

0. Then the sign of g (Z) is equal to the sign of P1 (Z;Z) + P2 (Z;Z), and Corollary 16 (i) and (ii)

follow by Theorems 13 (i) and 15 (i), respectively. �

Proof of Theorem 17

To show Part (i) consider

Wn+1 �Wn =

Z Zn+1

0
P
�
t; Zn+1

�
dt� Zn+1A (xn+1)�

"Z Zn

0
P
�
t; Zn

�
dt� ZnA (xn)

#

�
Z Zn

0
P
�
t; Zn+1

�
dt� ZnA (xn+1)�

"Z Zn

0
P
�
t; Zn

�
dt� ZnA (xn)

#
� 0:

The �rst inequality follows because P
�
t; Zn+1

�
�A (xn+1) � 0 for all t � Zn+1, and Zn+1 � Zn by

Theorem 12 (i). The second inequality holds by the assumed conditions.

To show Part (ii) let us de�ne Vn (x; S) =
R nx
0 P (t; S) dt�nC (x) : Notice Vn (x; S) is concave in

x since n [nP1 (nx; S)� C 00 (x)] < 0 by both A1 and A4. In addition,Z Zn+1

0
P
�
t; Zn+1

�
dt =

Z nxn+1

0
P
�
t; Zn+1

�
dt+

Z Zn+1

nxn+1

P
�
t; Zn+1

�
dt

�
Z nxn+1

0
P
�
t; Zn+1

�
dt+ xn+1P

�
Zn+1; Zn+1

�
(26)
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where the inequality follows by A1. The following steps show our result

Wn+1 �Wn =

Z (n+1)xn+1

0
P
�
t; Zn+1

�
dt� (n+ 1)C (xn+1)�

�Z nxn

0
P
�
t; Zn

�
dt� nC (xn)

�
� �n+1 +

Z nxn+1

0
P
�
t; Zn+1

�
dt� nC (xn+1)�

�Z nxn

0
P
�
t; Zn

�
dt� nC (xn)

�
� �n+1 +

Z nxn+1

0
P
�
t; Zn+1

�
dt� nC (xn+1)�

�Z nxn

0
P
�
t; Zn+1

�
dt� nC (xn)

�
= �n+1 + Vn

�
xn+1; Zn+1

�
� Vn

�
xn; Zn+1

�
� �n+1 +

�
@Vn

�
xn+1; Zn+1

�
=@x

�
(xn+1 � xn)

= �n+1 + n
�
P
�
nxn+1; Zn+1

�
� C 0 (xn+1)

�
(xn+1 � xn)

� �n+1 + n
�
P
�
(n+ 1)xn+1; Zn+1

�
� C 0 (xn+1)

�
(xn+1 � xn)

� 0:

The �rst inequality follows from inequality (26), the second one by A1 and Theorem 12 (i) and

the third one by the concavity of Vn (x; S) in x: The fourth inequality holds by A1 and because we

assumed xn+1 � xn, and the last one by the Cournot property. This completes our proof. �

Proof of Theorem 18

The proof of Part (i) follows directly from Theorem 12 (i).

The following steps prove Part (ii)

CSn+1 � CSn =

Z Zn+1

0

�
P
�
t; Zn+1

�
� P

�
Zn+1; Zn+1

��
dt�

Z Zn

0

�
P
�
t; Zn

�
� P

�
Zn; Zn

��
dt

�
Z Zn

0

�
P
�
t; Zn+1

�
� P

�
Zn+1; Zn+1

��
dt�

Z Zn

0

�
P
�
t; Zn

�
� P

�
Zn; Zn

��
dt

= Zn
�
P
�
Zn; Zn

�
� P

�
Zn+1; Zn

��
�
Z Zn

0

��
P
�
Zn+1; Zn+1

�
� P

�
Zn+1; Zn

��
�
�
P
�
t; Zn+1

�
� P

�
t; Zn

��	
dt

� Zn
�
P
�
Zn; Zn

�
� P

�
Zn+1; Zn

��
� 0:

The �rst inequality follows directly from P1 (Z; S) < 0 and Theorem 12 (i). The next step is

obtained from the previous one by adding and subtracting
R Zn
0 P

�
Zn+1; Zn

�
dt; and rearranging

terms: To justify the second inequality notice that P12 (Z; S) � 0 is su¢ cient forZ Zn

0

�
P
�
t; Zn+1

�
� P

�
t; Zn

��
dt �

Z Zn

0

�
P
�
Zn+1; Zn+1

�
� P

�
Zn+1; Zn

��
dt:
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Our last step is true since P1 (Z; S) < 0.

Hence, P12 (Z; S) � 0 8 Z; S 2 [0; nK] is su¢ cient for CSn+1 � CSn � 0; or CSn+1 � CSn: �

Proof of Theorem 19

To show Part (i), for an extremal equilibrium industry output, let us consider

(n+ 1)�n+1 � n�n = Zn+1
�
P
�
Zn+1; Zn+1

�
�A (xn+1)

�
� Zn

�
P
�
Zn; Zn

�
�A (xn)

�
� Zn

�
P
�
Zn+1; Zn+1

�
�A (xn+1)

�
� Zn

�
P
�
Zn; Zn

�
�A (xn)

�
Since P

�
Zn+1; Zn+1

�
� A (xn+1), the inequality is due to Theorem 12 (i). The �rst part of Theorem

19 follows: The second statement in Part (i) follows from Theorem (15) (i). The proof of Part (ii)

is similar, so we omit it. �

APPENDIX

In an attempt to make this paper self-contained, we provide a summary of all lattice-theoretic

notions and results used here. Since this paper deals with real decision and parameter spaces, every

theorem that follows is a special case of the original one (see Topkis, 1998).

A function F : R2+ ! R is supermodular if, for x1 � x2; y1 � y2,

F (x1; y1)�F (x2; y1)� F (x1; y2)�F (x2; y2) : (27)

If F is twice continuously di¤erentiable, Topkis�s (1978) Characterization Theorem says that su-

permodularity is equivalent to
@2F

@x@y
� 0; for all x, y. Furthermore,

@2F

@x@y
> 0 implies that F is

strictly supermodular, the latter notion being de�ned by a strictly inequality in (27).

F has the single-crossing property or SCP in (x; y) if, for x1 � x2; y1 � y2,

F (x1; y2)�F (x2; y2)� 0 =) F (x1; y1)�F (x2; y1)� 0 (28)

Note that (27) implies (28), while the converse is generally not true. Additionally, (27) is a cardinal

notion while (28) is ordinal. Thus, the SCP is sometimes also referred to as ordinal supermodularity.

For x 2 R+, let A (x) = [a1 (x) ; a2 (x)] � R+, with a1 (:) and a2 (:) being real-valued functions.

We say A (:) is ascending (in x) if a1 and a2 are increasing in x: The following results on monotone

maximizers are central to our approach.

Theorem A.1. (Topkis, 1978). Assume that (i) F is upper-semi continuous (or u.s.c.) and

supermodular in (x; y) and (ii) A (:) is ascending. Then, the maximal and minimal selections of
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y� (x) � argmaxy2A(x) F (x; y) are increasing functions. Furthermore, if F is strictly supermodular,

then every selection of y� (:) is increasing.

Theorem A.2. (Milgrom and Shannon, 1994). Assume that (i) F is u.s.c. and has the SCP in

(x; y) and (ii) A (:) is ascending. Then, the conclusion of Theorem A.1. holds.

Theorem A.3. Let n � 1 and B : Xn
i=1[ai; bi] ! Xn

i=1[ai; bi] be an increasing function. Then

B has a �xed point. (This theorem is a special case of Tarski�s Fixed Point Theorem.)

Our equilibrium comparisons are based on the following result (Milgrom and Roberts, 1990).

Theorem A.4. Let Bt : Xn
i=1[ai; bi] ! Xn

i=1[ai; bi] be an increasing function, 8t, such that

Bt (x) is also increasing in t, 8x. Then the minimal and maximal �xed-points of Bt increase in t.
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