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Abstract 

The Lifeboat Problem 

Kai A. Konrad and Dan Kovenock* 

We study an all-pay contest with multiple identical prizes (“lifeboat seats”). Prizes are 

partitioned into subsets of prizes (“lifeboats”). Players play a two-stage game. First, each 

player chooses an element of the partition (“a lifeboat”). Then each player competes for a 

prize in the subset chosen (“a seat”). We characterize and compare the subgame perfect 

equilibria in which all players employ pure strategies or all players play identical mixed 

strategies in the first stage. We find that the partitioning of prizes allows for coordination 

failure among players when they play nondegenerate mixed strategies and this can 

shelter rents and reduce rent dissipation compared to some of the less efficient pure 

strategy equilibria. 

Keywords: All-pay contest, multiple prizes, rent dissipation, lifeboat 

JEL classification: D72, D74
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1 Introduction

When a ship sinks, passengers must hurry to find a lifeboat and, if the boat is crowded,

there might be some competition over seats.1 Still, even though there were more

passengers than lifeboat seats on the Titanic, there were both lifeboats launched at

less than full capacity and boats for which there was intense competition for seats.

Indeed, ships sometimes sink much faster than the Titanic,2 making the problem of

the allocation of lifeboat seats an even more difficult, and sometimes less peaceful

task.

The battle over seats in different lifeboats can be seen as a metaphor for a whole

class of situations in which the players in a group partition themselves into smaller

subgroups, and the members of each subgroup compete for one of several prizes that

are awarded to some of the members of the respective subgroup. Competition may

be intense in a subgroup if there are more contestants than prizes in this group,

and competition is absent if prizes are abundant. Using the lifeboat metaphor, we

call this game of endogenous self-partitioning followed by competition the lifeboat

problem. We show in a symmetric version of this game that multiple subgame perfect

equilibria exist and an equilibrium partitioning of players may be realized through

both symmetric mixed strategies and asymmetric pure strategies. When there are

more players than prizes in the aggregate, these endogenous choices can shelter rents

that would be dissipated in a single large contest. The equilibrium payoff in a subgame

perfect equilibrium with symmetric mixed strategies played in the first stage (as

regards each player’s choice of the set of prizes) can yield higher or lower rents than

those arising in some of the equilibria employing pure strategies.

1The shortage of lifeboat seats has been frequently discussed in the most famous ship catastrophe,

the sinking of the Titanic. In their empirical analysis Frey, Savage and Torgler (2009) analyze the

determinants of who among the 2207 passengers of the Titanic survived. The sinking of the Titanic

took several hours, and the process of evacuating the ship is reported as having been mostly civilized

and fairly coordinated. See, for instance, the Report of the British Wreck Commissioner’s Inquiry

(1912) which can be both found at http://www.titanicinquiry.org/.
2Frey et al.(2009) note the case of the HMS Birkenhead which sank in 25 minutes in 1852. The

American tranport ship The Antilles was struck by a torpedo in 1917 and sank in five minutes. 167

of the 237 persons on board were rescued. The cruiseferry MS Estonia sank in 1994 in a fifty-five

minute period. Of the 938 passengers, it is estimated that up to 310 reached the outer deck and 160

managed to climb into liferafts or lifeboats. 138 passengers were rescued.
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The lifeboat problem appears in a number of situations in which humans or

other organisms must self-partition in a decentralized manner to engage in dissipative

contests for prizes or other games in which competition dissipates rents among the

competitors.

One important example is educational or professional choice in a world with

specialization and complementary skills where scarcity premia accrue to players who

choose a specialization which then turns out to be in excess demand. The empirical

literature on education shows that both the enrollment rate in higher education3 and

the choices of particular fields exhibit considerable fluctuations over time,4 rather than

following a smooth pattern. The literature that addresses this problem has focused

on the dynamics resulting from individuals who form their expectations on the basis

of current labor market conditions or try to form rational expectations. One of the

first approaches is Freeman (1975a,b). He suggested that students may follow a strat-

egy that bases their decisions on observed wages, and concluded that this may cause

patterns that look like cobb-web cycles. Siow (1984) and Orazem and Mattila (1991)

also consider a dynamic approach, employing a rational expectations assumption.

Borghans, de Grip and Heijke (1996) document the considerable mismatch between

education choices and the labor market and attribute this to students’ expecations

that rest on current labor market conditions. This literature documents a consider-

able amount of mismatching and variation over time and suggests that mismatching is

a loss. It does not focus on the problem of strategic interaction and the coordination

problem these simultaneous and independent choices involve. The "lifeboat problem"

that is analysed in this paper does not consider the dynamics of the matching prob-

lem of education and labor markets, but sheds light on the interdependence of the

individuals’ simultaneous decision problems and its potential for coordination failure

(i.e., mixed strategy equilibria). It suggests that this coordination failure of student

cohorts need not only have a detrimental effect, but may also shield some of their

rents which would otherwise dissipate in the competition.

Examples exhibiting similar patterns appear in many other contexts. Pro-

fessional tennis players need to choose among a set of simultaneous or overlapping

tournaments, not knowing the choices of competitors with whom they would like to

3For a short survey of some of this evidence see Neugart and Tuinstra (2003).
4See, for instance, Eckstein, Weiss and Fleising (1988, p. 397) for electrical engeneering.
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avoid competing. Contests among animals provide further examples. Single animals

need to make a choice of nesting areas, where animals choose individually among

distinct territories and overpopulation of a territory leads to a war of attrition.5 Fi-

nally, the problem is related to enty games among firms if firms can choose between

different business areas or product types, and if a choice of the same product type or

business area generates fierce competition.6

For simplicity, we assume that players are identical from an ex ante standpoint,

wish to obtain at most one prize, and that the contests are perfectly dissipative under

homogeneity, as arises in a multiple prize all-pay auction or a multiple-unit pay-as-

bid winner-pay auction with complete information. In these types of contests, if the

number of identical prizes in a contest is greater than or equal to the number of

competitors who compete for the prizes, everyone receives a prize with zero expendi-

ture, but if the number of competitors is strictly greater than the number of prizes,

dissipation is complete and the competitors receive no benefit in expectation. This

notion of competition captures the idea that within a given environment in which the

agents are competing, if competition is sufficiently "cut-throat" agents on the long

side of the market gain nothing in expectation while those on the short side of the

market collectively obtain all potential gains from trade.7 In this context, the "fail-

5A critical aspect of these examples is that self-partition takes place across a set of contests

and prizes that are fixed. That is, the matching problem faced is one-sided and not two-sided.

Sometimes this is natural due to time-to-build on one side of the market. Lifeboats must be loaded

on the ship before it sails. Specialized education programs or professions typically take many years

to evolve. Wildlife habitats may take considerably longer to be developed. In other environments

it may be more unclear whether one side of the market has a quasi-fixed nature. For instance, the

choice of market platforms by buyers and sellers may involve two-sided self-partition. However if,

for example, the sellers’ side of the market involves large players who themselves establish platforms

with which to interact with many small buyers, this may be viewed as a one-sided buyer problem

with precommitted sellers.
6Models of entry games with a simple decision whether to enter a single market or stay out

include Levin and Smith (1994), Elberfeld and Wolfstetter (1999), Vettas (2000), Cabral (2004)

and Lu (2010). As pointed out by one reviewer, the "lifeboat" problem departs from much of this

literature with endogenous entry, because in a "lifeboat" problem there are multiple parallel contests

and no entry costs.
7This property arises not only in the Nash equilibria of many types of non-cooperative bidding

games with identical players and complete information, but also in the core of certain cooperative

coalitional games.
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ure" to not fill all groups evenly turns out to be a huge benefit if there is an excess

supply of players in the aggregate. In a grand contest with all players competing

for all prizes, the payoffs are zero if there are more players than prizes. If the set

of all prizes is partitioned into several sets of prizes, players who select into groups

where there are at least as many prizes as players reap rents. Such rent generating

partitioning arises both in pure strategy equilibria at the stage at which each player

chooses a set of prizes, in which players coordinate in a self-enforcing fashion to not

"spoil the pot" for a subset of rent earners, and in mixed strategy equilibria, in which

"coordination failure" due to randomization in their choices yields stochastic rents

that are symmetric in expectation across players.

Our analysis is related to a number of contest studies in the literature. A

prominent paper in this line of research is the study of contest architecture by

Moldovanu and Sela (2006). They study all-pay auctions with incomplete information

and find that a grand contest for one big prize elicits more aggregate effort in expec-

tation than either the same contest with the prize divided into many smaller prizes

or a partition of the contest into multiple parallel contests in which both the set of

players and the prize are equally divided. Moldovanu and Sela (2006) do not examine

the self-partitioning of players into contests. Fu and Lu (2009) compare a situation

in which all players compete with all other players ("the grand contest") with games

in which the players are partitioned into subgroups. However, the formation of the

subgroups is not part of the game. Piccione and Rubinstein (2007) consider a general

equilibrium model of "equilibrium in the jungle" in which allocation is determined

by a strength relation between pairs of players that is a complete ordering of the

players. A special case of this model may be interpreted as the peaceful allocation

of  prizes among  players (with   ), but with heterogeneity of prizes and se-

quential allocation based on strength. Perhaps closest to our paper is Amegashie and

Wu (2004), which examines a problem in which  players of strictly ranked abilities

each choose between two contests with  and  prizes respectively, where there are

at least two more players than prizes. Each of the  prizes in one contest are ranked

identically and more highly by the players than each of the  identically ranked prizes

in the second contest. Like in our framework, Amegashie examines a two stage game

in which players simultaneously choose between contests and then play an all-pay

auction with complete information within each contest. Amegashie provides a partial
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characterization of the set of subgame perfect equilibria with pure local strategies at

the first stage of the game. He does not examine equilibria with mixed local strategies

at the first stage. Moreover, he does not examine the question of how endogenous

choice between different sets of prizes through pure or mixed strategies shelters rents,

and how this outcome depends on the structure of the partition of the total number

of prizes.

2 Group choice and the intra-group all-pay contest

We consider the following two-stage game. The set of (ex-ante symmetric) players is

 ≡ {1 2  }. In stage 1 each player chooses one element  of the set ≡ {1  }.
As one of the interpretations of the game is that the players are passengers on the

Titanic who choose to go to one of the lifeboats, we can describe this choice as each

player  chooses one lifeboat. Players’ choices lead to a quasi-partition of players into

 subsets 1  , with  ≥ 0 the number of players who have chosen the same life
boat , for all  ∈ .8 This completes stage 1. At stage 2 the players in each of the

subsets  compete with each other in an all-pay auction with complete information

and without noise. The rules of the game in this all-pay auction are as follows. Each

 ∈  consists of  identical prizes which are valued equally by all players  ∈ , and

this value is normalized to 1. Each player  ∈  can win at most one prize. If the

player wins no prize, this amounts to a prize value of zero. We may think of  seats

in a life boat, where all players who receive a seat survive with certainty, whereas the

players without a seat fare worse. The allocation of the  prizes among the  players

follows the rules of an all-pay contest as in Barut and Kovenock (1998) among 

symmetric players for    identical prizes of size 1.
9 Each contestant chooses an

8A quasi-partition of the set  is a collection of sets {1 } such that  ∩ = ∅ if  6= 

and ∪=1 =  (see, for instance, Dunn and Hardegree 2001, p. 189). Note that a quasi-partition

differs from a partition in that the sets  need not be nonempty, that is, some lifeboats may go

unused. In the continuation we will sometimes refer to (1 ) as a partition, even though the

collection formally constitutes a quasi-partition.
9Clark and Riis(1998) examine the case of  players competing to win one of  prizes each of

which players view as identical but for which players’ values strictly differ. Clark and Riis note

that when players value prizes identically multiple equilibria may arise. Barut and Kovenock (1998)

examine the case where for any given prize, the players’ values are identical, but this value may
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effort , and has a cost of effort (), where (·) is continuous and strictly increasing
on [0∞) with (0) = 0 and ()  1 for all   ̄, for some 0  ̄ ∞.10

The subgame equilibrium payoffs of players in the group  can be extracted

from Barut and Kovenock (1998), using their Theorem 2, setting the highest  prizes

equal to one and all lower prizes equal to zero in their Theorem 2. Their result is

stated as

Lemma 1 (Barut and Kovenock 1998): The payoff of a player  in group 

is equal to zero if    and equal to 1 if  ≤ .

The payoff for  ≤  is immediately intuitive. For instance, if players  = 1  

approach seats 1  , respectively, they face no competition, and this outcome is

perfectly peaceful. If   , full dissipation occurs. This is less obvious but shown

in Barut and Kovenock (1998).11 Roughly, the result follows from the fact that the

existence of more players than prizes implies that some player must earn an expected

payoff of zero (at the lower bound of the union of the supports of the equilibrium

strategies and, hence, in equilibrium) and such a player is willing to compete away

any gains that other players might obtain by bidding strictly below one. This result

is an important starting point for the analysis of the two stage game, as it gives us

the unique equilibrium payoffs for all possible subgames in stage 2. We first consider

subgame perfect equilibria in which players are able to coordinate in stage 1 when

making their choices about which  ∈  they choose.

vary across the  prizes depending on the rank-order of the prize. In this environment, Barut and

Kovenock characterize the complete set of Nash equilibria and show that equilibrium payoffs are

unique although the set of equilibria could be quite large. The subgame employed in this paper is a

special case of the Barut-Kovenock game where all  prizes are identical and valued identically by

all players.
10Note that Barut and Kovenock (1998) assume linear costs of effort. However, reinterpreting ()

as the "bid" generates the same results. The analysis could be extended to allow for nonlinearity

and heterogeneity as in Siegel (2009). However, this heterogeneity is tangential to our main research

question.
11The all-pay auction without noise is sometimes seen as an extreme case. However, recent work

by Alcalde and Dahm (2010) suggests that there is a whole class of contest success functions with

(sufficiently little) noise that have equilibria that are payoff equivalent with those of the all-pay

auction without noise.
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3 Pure strategy choice of the prize set

We first consider and characterize the subgame perfect equilibria in which all players

make a deterministic choice of  ∈ . In such an equilibrium each player receives an

expected payoff of either zero or one, depending on whether the boat chosen by the

player attracts more players than it has seats, or not. We first state the results12

Proposition 1 (i) If  ≥ , then all pure strategy equilibria yield a payoff equal to

1 to each player. (ii) If   , then, for given  and , the pure strategy equilibria

with the highest total welfare have  =  for  − 1 boats and  =  − ( − 1) for
one boat. (iii) If a pure strategy equilibrium with the highest total welfare is chosen

for a given  ≡   , then the welfare is higher if there are more boats with fewer

seats. (iv) A pure strategy equilibrium exists in which all players have a zero payoff

if and only if  ≥ ( + 1).

Proof. (i) For  ≥  quasi-partitions of players among the  boats with  ≤  for

all  = 1   exist. Let (1  ) be such a quasi-partition. In stage 2 each player

receives a payoff of 1 given this quasi-partition. Suppose all but player  make their

choices in stage 1 according to this quasi-partition deterministically, and let  ∈ 

in the candidate equilibrium quasi-partition. If  chooses boat , ’s payoff is equal to

1. If  chooses a different boat 0, then ’s payoff is at most equal to 1. Moreover, we

need to rule out inefficient pure strategy equilibria. Suppose there is a pure strategy

equilibrium with a lower payoff. Then this implies that the quasi-partition in this

equilibrium has a set  with    and a set  with   . In this case the

deterministic choice of a player  in the set  yields a lower payoff to  than if the

player chooses  ∈ . Hence, the quasi-partition with and is not an equilibrium

outcome with deterministic choices of boats.

(ii) For any quasi-partition (1  ), let ̂ be the set of boats  for which

 ≤  and ̂\ the set of boats for which   . Then the total welfare is equal toP
∈̂ , as all players at boats with    receive zero payoff and all other players

receive a payoff of 1. The efficiency benchmark is a quasi-partition (1  ) with

12In addition to the pure strategy equilibria and the symmetric mixed strategy equilibrium there

is a large set of equilibria in which some players choose pure strategies and other players randomize.

There is also a large set of equilibria in which some or all players randomize over strict subsets of

the set of lifeboats.
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1 = −1 =  and  =  − ( − 1). This benchmark is also an equilibrium.
Consider a player  who joined set  for  6= . This player has a payoff equal to 1 in

the candidate equilibrium. If the player chooses any other set, his payoff drops from 1

to zero, as the number of players in this set will then exceed the number . Similarly,

consider a player  who joined set  in the candidate equilibrium and has a payoff of

0 there. If this player chooses any other  6= , the player’s payoff is still zero. Hence,

staying at the boat that is overbooked is not worse than any of the alteratives.

(iii) For given  =   , the maximum welfare in (ii) as a function of  can

be written as (− 1) = − . This is a strictly decreasing function in .

(iv) We consider a quasi-partition (1  ) of players with  ≥ +1 for all

 ∈ . The condition  ≥ (+1) is sufficient for such a quasi-partition to exist. We

show that this quasi-partition also emerges as a coordination equilibrium. Suppose

that all players choose their boat according to the quasi-partition. Consider now one

single player  who chooses boat  in the candidate equilibrium. This player receives

a payoff of zero if he chooses . If he chooses any other boat 0, the number of players

at that boat becomes 0 +1  . Hence, ’s payoff from all other choices is also zero.

Since  ≥ ( + 1) is also necessary for a quasi-partition of players with  ≥  + 1

for all  ∈  this condition is also necessary.

Intuitively, if the total number of seats is at least as great as the number of

players, there are functions that map the set of players to the set of seats that are

one-to-one (injective mappings); no player needs to compete with another player for

his seat, and each of these mappings is a subgame perfect equilibrium. Evidently, each

of these allocations is efficient. Conversely, any mapping which is not injective, i.e.,

under which two or more players have to fight over seats, cannot be an equilibrium

if  ≡  ≥ , as players who face competition for their respective seat can simply

switch to another boat that has seats that would remain empty.

If, instead,  ≡    then as long as  ≥ 2, multiple payoff nonequivalent
pure strategy equilibria exist, all having some set of players obtaining an equilibrium

payoff of zero. The aggregate payoff of a pure strategy equilibrium depends inversely

on the number of full boats to which the excess − of players over seats is allocated.

The number of players receiving a payoff of one (and hence, the aggregate payoff) is

maximized within the set of pure strategy equilibria in an equilibrium that coordinates

the strategies of players to place the excess − of players over seats into a single
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boat, keeping all other boats at exact capacity 13 The number of players receiving a

payoff of one is minimized within the set in an equilibrium that disperses each of the

excess − players to a different full boat until all boats have at least +1 players

and then arbitrarily after that. In this case excess players are allocated in such a way

as to "spoil the pot" for the most boats.

Proposition 1 also implies that, if players can coordinate on the most efficient

equilibrium in the lifeboat problem, then lifeboats should be as small as possible.14 All

but one lifeboat should be just filled, and all excess passengers should come together

at the one remaining lifeboat (and if the lifeboats were to be of heterogenous size,

all excess passengers should come together at the smallest lifeboat). The welfare loss

occurring due to the competition for seats is minimized in this case, and equal to

the benefit that would emerge from this last lifeboat in the absence of competition

for seats. Accordingly, if the total number of seats across all lifeboats is given and

the cost of provision of seats is independent of the composition on smaller or larger

boats, it is best to build the lifeboats as small as possible. One-person lifeboats (or

life vests) are optimal. Of course, coordination on the most efficient equilibrium is

a heroic assumption in this context. In particular, if players coordinate on more

symmetric equilibria, they are more likely to end up in a situation in which there are

more than  players at each boat and their total payoff is zero. This is the implication

of part () in the proposition.

It is interesting to consider the robustness of these equilibrium results for dif-

ferent contest success functions. If the rent per player is a strictly decreasing function

of the number of excess passengers - an assumption that is fulfilled for many types of

contest success functions - and if the number of passengers is  =  with  being an

13Note also that if players were given an outside option which offered a certain payoff equal to

that received when not obtaining a seat ("going down with the ship") there exist asymmetric pure

strategy equilibria which are efficient. In these equilibria any set of − players choose the outside

option with certainty and the  remaining players play pure strategies which generate an equal

allocation of players across the boats.
14Here and in what follows we use the terms "coordinate" and "coordinated equilibrium" for

the type of subgame perfect equilibrium that is in pure strategies in stage 1 and characterized

in Proposition 1 and to distinguish them from the equilibria with mixing in stage 1 that will be

introduced later. Of course, for a choice of an equilibrium with mixing also some coordination in

the selection of equilibrium is necessary.
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integer, the symmetric equilibrium in which all boats are equally crowded, as in the

equilibrium characterized in (), is induced as a unique coordination equilibrium.

We show this in the appendix.

Of course, the coordination that underlies the pure strategy equilibria in

Proposition 1 is a strong assumption. We therefore view the symmetric but un-

coordinated equilibria as more plausible outcomes and consider them next.

4 Mixed strategy choice of the prize set

We now consider subgame perfect equilibria in which players are unable to coordinate

on a pure strategy equilibrium and where they randomize independently and sym-

metrically in stage 1. The following proposition characterizes the equilibrium payoffs

as a function of   and  in this case.

Proposition 2 The payoff of each player in the symmetric equilibrium without co-

ordination is

∗(  ) =
−1X
=0

µ
− 1


¶
(1− 1


)(−1)−

µ
1



¶

 (1)

Proof. Consider the payoffs of players who arrive at a given boat. Let  be the

number of players arriving at boat  which has  seats. Recall from section 2: if

 ≤ , the players need not fight for a seat, hence, the payoff for each of these

players is equal to the value of having a seat, which we normalized to  = 1. If

  , then the equilibrium payoff of players in an all-pay auction is zero if the

number of (symmetric) players exceeds the number of (identical) prizes (Lemma 1).

Hence, players arriving at boats with sufficient supply have a payoff of 1 and players

arriving at a boat with excess demand have a payoff of zero.

Turn now to stage 1. Suppose that there is an equilibrium in which all players

2 3   randomize symmetrically and independently, i.e., each player goes to each

of the boats with the same probability. Then this probability is 1

for each player for

each boat. The probability that  of the other (− 1) players show up at boat  as
well is µ

− 1


¶
(1− 1


)(−1)−

µ
1



¶

(2)
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for  ≤  − 1, and this probability is the same for all boats. Accordingly, the

probability that no conflict takes place at boat  if player 1 goes to this boat is

(  ) =

−1X
=0

µ
− 1


¶
(1− 1


)(−1)−

µ
1



¶

 (3)

Symmetric randomization is optimal for player 1 given that all other players random-

ize symmetrically. This follows from the fact that the expected payoff from going

to any of the  boats is exactly the same. Moreover, if all  players independently

randomize across all boats , then their expected payoffs are equal to this value.

Equation (3) shows how the payoff in the symmetric mixed strategy equilib-

rium depends on  and  for a given total capacity  = . We first consider the

extremes. Let  = 1 and  = . All players will approach the one and only lifeboat.

Hence, the aggregate payoff from this is large and equal to  if and only if  ≤  = ,

but the aggregate payoff will drop to zero for all    = . Compare this with the

other extreme case with lifeboats with the smallest possible capacity of  = 1, but a

number of lifeboats equal to  = , which generates the same total seating capacity.

In this case the expected payoff to each player  from approaching a randomly chosen

boat  is equal to the probability that no other player approaches this boat, which

is equal to (1 − (1))−1, and this is each player’s equilibrium payoff in this case.

This payoff is strictly smaller than 1 even if there are many more boats than there

are players, but it is also strictly positive when   , i.e., if there is an absolute

shortage of seats.

This discussion motivates the following characterization of the optimal com-

position ( ) for a given total number of seats  and players  in the uncoordinated

symmetric equilibrium.

Proposition 3 Consider the symmetric equilibrium in Proposition 2. Let   2.

(i) If  ≥ , then  =  and  = 1 maximizes the expected payoff of all players.

If   , then  =  and  = 1 is dominated by all other combinations ( ) with

 = . (ii) If   , and  is even, then the optimum is an interior solution

( ≥ 2 and   ) if µ
− 1
− 2

¶−2


+ 2− 4
− 1 (4)

For any given   1 there is a sufficiently large  such that (4) is violated.

12



Proof. The first part of the proposition has already been established by the discussion

of the extreme cases  =  and  = . The second part of the proposition can be

established by comparing payoffs for ( = 1;  = ) and ( = 2;  = (2)). We

already derived the payoff for  = 1 as (1− (1))−1 = (1− (1))−1. To derive the
payoff for  = 2 and  = 2, note that the probability that no other player arrives

at boat  is (1 − (1))−1 = (1 − (2))−1 . Moreover, the probability that just
one other player arrives at boat  is equal to (− 1)(1− (2))−2(2). Hence, a
player’s equilibrium payoff for ( = 1;  = ) is lower than for ( = 2;  = (2)) if

(1− (1))−1  (1− (2))−1 + (− 1)(1− (2))−2(2) (5)

The condition (5) can be transformed into (4).

The first result in Proposition 3 suggests that, if there is no absolute shortage

of boat seats, efficiency can be achieved by having only one boat — as this essentially

solves the coordination problem. If there is an absolute shortage of seats the lack

of coordination has two effects. On the one hand it may cause a welfare loss due

to inefficient use of capacity: with some probability some boats have strictly fewer

passengers than seats. On the other hand, passengers in boats which do not have

more passengers than seats enjoy a positive rent. If there are more but smaller boats,

this changes the relative importance of these two effects.

The comparative static properties of this equilibrium are numerically straight-

forward. For instance, the additional payoff derived from an additional boat of given

boat-size  is ∗( +1 )− ∗(  ), and using (1) it can be written explicitly as

−1X
=0

µ
− 1


¶"
(1− 1

+ 1
)(−1)−

µ
1

+ 1

¶

− (1− 1

)(−1)−

µ
1



¶
#
 (6)

Similarly, the additional payoff derived from an additional seat in each of the boats

is ∗(   + 1)− ∗(  ), and using (1) it can be written explicitly asµ
− 1


¶
(1− 1


)(−1)−

µ
1



¶

. (7)

We can also look at the trade-off between many small boats versus few large boats

for a given overall capacity . The two extreme cases are ( ) = ( 1) and ( ) =

(2 (2)). Let the number of passengers be  times the total number of seats:  = ,

with  ≥ 2. Consider first ( ) = ( 1). The probability that a player is the only

13



player arriving at a given boat in the symmetric equilibrium is (1− (1))−1. As
 increases

lim
→∞

(1− (1))−1 = −  0. (8)

Hence, even if the number of passengers vastly exceeds the number of seats, as long as

the ratio of passengers to seats remains fixed, the probability that a single passenger

arrives at an empty seat is quite substantial. In contrast, if there are only two boats

with joint capacity of  and the number of passengers is  times as large as the total

number of seats, as  increases without bound the probability that one of the boats

is approached by less than 2 passengers is driven down to zero.15

Table 1 provides further insight into the comparative static properties of the

equilibrium payoff. It shows the equilibrium payoff to a representative player in the

symmetric mixed strategy equilibrium for different values of  and  and for  = 100.

Each cell in the table provides the payoff in the case where the number of seats per

boat is given by the corresponding row value of  and the total number of seats 

is given by the corresponding column value The number of lifeboats can be easily

derived by dividing the corresponding value of  given by the column by the value

of  appearing in the row. Blank cells correspond to parameter values for which 

or  is not an integer, so that this number cannot be obtained by utilizing equally

sized lifeboats with  seats each. As can be easily seen, for values of  greater than

 = 100, payoffs are monotonically increasing in the number of seats per boat until

a point is reached where the number of seats per boat equals the number of players.

The table also illustrates the large welfare losses that may be realized when players

choose their boat due to the "coordination failure" arising from the randomization

generated by the symmetric mixed strategy equilibrium. Even if there are double the

number of seats as players ( = 200 and  = 100), if these seats are configured in 200

one-seat boats, the welfare is only approximately 60% of that arising in with a single

boat of 200 seats (or two boats with 100 seats). If there are exactly 100 seats the

welfare with 100 single-seat boats is approximately 37% of that with a single 100-seat

15The probability that a given boat is approached by no more than 2 passengers is equal

to the cumulative distribution function of the binomial distribution with parameters  and 12,

evaluated at 2. Using normal approximation to the binomial cumulative distribution with a

continuity correction this probability may be written as Φ((1− )(

)12+()−(12)) which (since

1−   0) approaches 0 as →∞.
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boat. Moreover, even with five twenty-seat boats, this welfare rises only to about

48% of the optimal welfare.




60 80 90 96 100 120 200

1 189 288 331 355 370 437 609

2 .154 289 351 386 409 507 739

3 122 − 355 399 − 549 −
4 097 265 − 405 437 579 863

5 077 252 351 − 445 604 897

6 061 − 347 410 − 625 −
8 − 215 − 411 − 660 955

10 023 193 328 − 464 689 973

12 014 − − 409 − 715 −
20 000 109 − − 480 794 998

100 − − − − 1 − 1

Table 1: Payoffs to a representative player for  = 100

Blank spaces indicate cases where  is not perfectly

divisible by 

When the total number of seats is strictly lower than the number of players,

there is in a sense an optimal amount of coordination failure that may or may not

lead to interior configurations of seats per boat. When  is small relative to 

a player can only expect to obtain a positive payoff if the players are sufficiently

unequally spread across boats and a player is lucky enough to find himself in a boat

that receives a small number of people. In this case the coordination failure resulting

from randomization is valuable and the optimal configuration of seats is  =  and

 = 1. This is indicated in Table 1 in the case where  = 60 where the bold entry

corresponding to  = 1 shows a maximum expected payoff of 189 For  = 60

payoffs are decreasing as the number of seats per boat increases. Starting at a value

of  slightly below eighty, the welfare maximizing amount of coordination failure

decreases sufficiently to generate an interior solution. For  = 80 the payoff from

setting  = 2 and  = 40 slightly improves upon  = 1 and  = 80 and this becomes
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the optimal configuration, yielding a payoff of 289. Payoffs decrease in  beyond

 = 2 in this case. For  = 90 the optimal configuration is  = 3 and  = 30 with

payoffs increasing in  for lower values of  and decreasing in  for higher values

of  Finally, when the number of players exceeds the number of seats by a number

that is very small relative to the number of players ( = 100 = 96) too much

coordination failure leads to wasted capacity and the optimal number of seats per

boat rises to  = 8 corresponding to  = 12 In this case, despite the fairly small

shortfall in seats, welfare is 411, less than half of the optimum with one seat per

passenger ( = 100 = 100) but substantially higher than that which would arise

at either extreme when  = 96: when  = 1and  = 96 welfare is 355 and when

 = 1 and  = 96 welfare is zero.

Note that there are also other asymmetric equilibria, some involving deter-

ministic and mixed strategies. For    we illustrate this by characterizing three

more intermediate types of equilibrium. First, one interesting type of equilibrium has

a partition with − boats being just filled to their capacity , and the remaining

 ≥ 2 boats attracting all remaining − ( −) players with equal probability.16

For  = 1 this degenenerates to the efficient coordination equilibrium in part ()

of Proposition 1, and for  = , this yields the symmetric equilibrium with mixing

as in Proposition 2. As can be shown, for this set of equilibria, the average payoff

of players decreases in . However, as has been argued in the context of coordina-

tion equilibria, the existence of equilibria for    is sensitive to the choice of the

contest success function. For a contest success function that induces a payoff that

is strictly decreasing in the number of excess passengers that arrive at a given boat,

these asymmetric outcomes are not robust. Second, there can also be equilibria in

which the players who randomize do not randomize symmetrically across all boats.

For example, let there be  players and  boats with capacity , and let  and  be

even. Then there is an equilibrium in which 2 of the players randomize symmet-

rically across the boats 1 to 2, and the other half of the players randomize across

16To see that this is an equilibrium, note that all players employing a deterministic strategy have

the highest possible payoff of 1, whereas players who randomize between the  remaining boats

have a payoff equal to ∗(− (−) )  0 at any of the  remaining boats, and a payoff of

zero if they deviate and choose one of the − boats that are exactly filled.
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the second half of the boats. Their equilibrium payoffs are ∗(2 2 ).17 Third,

for  ≥ 2 there is a set of equilibria in which  players each choose deterministically

one boat in a way such that every boat has    of these players, and all other

players randomize symmetrically among the  boats. The probability that no more

than  players show up at a boat  in this case is equal to the probability that  − 

or less of the ( − ) randomizing players show up at this boat. For this group of

(− ) randomizing players, the problem is equivalent to the lifeboat problem with

this number of players and  boats with capacity − . Accordingly, the equilibrium

payoff is ∗((− )  (− )), and this is also the payoff for each of the players who

deterministically choose this boat.

As the welfare in the equilibrium with pure strategy boat-selection choices in

stage 1 generates full efficiency for  ≤ , but not for the symmetric equilibrium with

randomization, the coordinated equilibrium is superior to the fully uncoordinated

symmetric equilibrium for  ≤ . The comparison is much less clear for   , as

there is a wide variety of equilibria in both deterministic and stochastic boat-selection

choices as well as hybrid equilibria. In particular, coordinated equilibria need not

yield higher total welfare than uncoordinated equilibria, as any of the uncoordinated

equilibria we have considered has higher expected payoffs for the players than the

symmetric fully coordinated equilibrium of type (). Moreover, even a type ()

coordinated equilibrium that yields highest total welfare yields an expected payoff of

zero to a non-empty subset of players. Since these players earn a positive expected

payoff in uncoordinated equilibria, no coordination equilibrium Pareto dominates any

of the uncoordinated equilibria if there are more passengers than seats.

5 Conclusions

Players often have to choose which contest to enter, not knowing the decisions of

other players. As a result, some players may find themselves in a situation with many

players competing for few prizes, in which competition is strong, or alternatively they

may end up in an environment with few other competitors compared to the number

of prizes. In this article we highlight the role of the partitioning of prizes into different

17A proof follows the lines of proof in Proposition 2 for each of the two subgroups and from the

observation that none of the players can gain from switching to the other subset of boats.
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sets and the importance of the process by which players choose the set of prizes over

which they compete. We characterize the set of pure strategy equilibria and the

symmetric equilibrium that is typically in mixed strategies. We find that when total

capacity is too small to accommodate all users, a partition of that capacity into smaller

subsets ("boats") can increase welfare if individuals must simultaneously select a set of

prizes ("seats") over which they compete. This result holds for both types of equilibria

that we consider: both coordinated equilibria in pure strategies and the symmetric

mixed strategy equilibrium have higher welfare with the partition of prizes. This

result uncovers a general principle which may apply universally to a large number

of problems that range from education choices among different, mutually exclusive

alternatives to choices of territory among animals. Here we focus on a particular type

of interaction in case capacity falls short of demand: an all-pay contest without noise.

Other allocation mechanisms in which players discontinuously suffer if the number

of players arriving at a "boat" exceeds the number of "seats" are likely to generate

similar results.

6 Appendix

In this appendix we consider a situation with

( + ) =  for some  ∈  (9)

and characterize the set of equilibria with any contest success function in the subgame

in stage 2 for which the expected equilibrium payoff per player in the contest with 

players and  identical prizes is strictly decreasing in  for  ≥  and constant in 

for  ≤  where  and  are natural numbers. We show:

Proposition 4 For any equilibrium in pure strategies the number of passengers at

each boat  is equal to  =  + .

Proof. Consider any partition of players 1   yielding an expected payoff to each

player who has chosen boat  of (). Condition (9) implies that either 1 = 2 =

 = , or there are at least two boats  and  with    + 1 and  ≥  + 2. In

turn, this implies that the partition cannot be an equilibrium, as each player in boat

 could increase his expected payoff from () to ( +1) by defecting to boat .
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