
INDIAN INSTITUTE OF MANAGEMENT

AHMEDABAD • INDIA
Research and Publications

A Lin-Kernighan heurisitic for single row facility
layout

Ravi Kothari
Diptesh Ghosh

W.P. No. 2012-01-04
January 2012

�
�

�
�

The main objective of the Working Paper series of IIMA is to help faculty members,
research staff, and doctoral students to speedily share their research findings with

professional colleagues and to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD – 380015

INDIA

W.P. No. 2012-01-04 Page No. 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6414059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IIMA • INDIA
Research and Publications

A Lin-Kernighan heurisitic for single row facility layout

Ravi Kothari
Diptesh Ghosh

Abstract

The single row facility layout problem (SRFLP) is the problem of arranging facilities with
given lengths on a line, while minimizing the weighted sum of the distances between all pairs
of facilities. The problem is known to be NP-hard. In this paper, we present a neighborhood
search heuristic called LK-INSERT which uses a Lin-Kernighan neighborhood structure built
on insertion neighborhoods. To the best of our knowledge this is the first such heuristic for the
SRFLP. Our computational experiments show that LK-INSERT is competitive and improves
the best known solutions for several large sized benchmark SRFLP instances.
Keywords: Facilities planning and design; Single Row Facility Layout, Lin-Kernighan Neigh-
borhood, Insertion Neighborhood, Local search

1 Introduction

Given a set F of facilities, where each facility has a particular length, and there is a weight corre-
sponding to each pair of facilities, the single row facility layout problem (SRFLP) is the NP-hard
problem of arranging the facilities in a line so as to minimize the weighted sum of the distances
between facility pairs, where the distance between a pair of facilities is the distance between their
centroids. The size of a SRFLP instance is the number of facilities in the instance. This problem
was first proposed in Simmons (1969) and was shown to be NP-Hard in Beghin-Picavet and Hansen
(1982). Formally stated the SRFLP is defined as follows:

Given: A set F = {1, 2, . . . , n} of n > 2 facilities, where facility j has length lj , and weights cij for
each pair (i, j) of facilities, i, j ∈ F , i 6= j.

Objective: To find a permutation Π = (π1, π2, . . . , πn) of facilities in F that minimizes the cost of
the permutation

z(Π) =
∑

1≤i<j≤n

cπiπj
dπiπj

where dπiπj = lπi/2 +
∑
i<k<j lπk

+ lπj/2 is the distance between the centroids of facilities πi
and πj when the facilities in F are ordered as per the permutation Π.

In this paper we present a competitive heuristic for the SRFLP. Our paper is organized as follows.
In Section 2 we review the literature on the SRFLP, concentrating on the solution methodologies
for the problem. We present the details of Lin-Kernighan neighborhood search for the SRFLP in
Section 3 and describe our LK-INSERT heuristic using this neighborhood in Section 4. We present
results from our computational experiments with LK-INSERT in Section 5. Finally we conclude the
paper in Section 6 with a summary of the work and future research directions.

W.P. No. 2012-01-04 Page No. 2

IIMA • INDIA
Research and Publications

2 A review of the literature on the SRFLP

The literature on the SRFLP (see Kothari and Ghosh (2011) for a comprehensive review) is rich
in numerous practical applications. The SRFLP has been used to design arrangements of rooms in
hospitals, departments in office buildings or in supermarkets (Simmons 1969), to arrange machines
in flexible manufacturing systems (Heragu and Kusiak 1988), to assign files to disk cylinders in
computer storage, and to design warehouse layouts (Picard and Queyranne 1981). Apart from these
direct applications, there are a large number of applications of the special case of the SRFLP in
which the facilities have equal lengths. These include the triangulation problem of input output
tables in economics (Laguna et al. 1999), and ranking of teams in sports (Mart́ı and Reinelt 2011).

Various exact and approximate solution approaches to the problem have been proposed since
1969. Exact methods are used to solve the SRFLP to optimality, and include branch and bound
(Simmons 1969), linear mixed integer programming (Love and Wong 1976, Heragu and Kusiak 1991,
Amaral 2006; 2008), cutting planes (Amaral 2009), dynamic programming (Picard and Queyranne
1981, Kouvelis and Chiang 1996), branch and cut (Amaral and Letchford 2011), and semidefinite
programming (Anjos et al. 2005, Anjos and Vannelli 2008, Anjos and Yen 2009, Hungerländer and
Rendl 2011). Since the SRFLP is NP-hard, exact methods are computationally prohibitive to solve
large instances. The exact methods mentioned above have been able to obtain optimal solutions to
SRFLP instances with up to 42 facilities.

For large sized instances, the literature on the SRFLP suggests the use of heuristics, non-exact
methods that obtain near-optimal solutions within reasonable time. Construction heuristics for
the SRFLP have been presented in Heragu and Kusiak (1988), Ravi Kumar et al. (1995), and
Braglia (1997). However these have been superceded by improvement heuristics. Most improvement
heuristics for the SRFLP are metaheuristics, e.g. simulated annealing (Romero and Sánchez-Flores
1990, Kouvelis and Chiang 1992, Heragu and Alfa 1992), ant colony optimization (Solimanpur et al.
2005), scatter search (Kumar et al. 2008), tabu search (Samarghandi and Eshghi 2010), particle
swarm optimization (Samarghandi et al. 2010), and genetic algorithms (Datta et al. 2011). Among
these, the tabu search implementation in Samarghandi and Eshghi (2010) and the genetic algorithm
implementation in Datta et al. (2011) yield best results for benchmark SRFLP instances of large
sizes.

Neighborhood search heuristics such as tabu search and simulated annealing use small sized
neighborhoods such as 2-opt and insertion neighborhoods. The sizes of both these neighborhoods
are O(n2), and since the calculation of the cost of a SRFLP solution requires quadratic time, the
time to search such neighborhoods is O(n4). Most neighborhood search implementations for the
SRFLP thus do not search neighborhoods exhaustively. However Kothari and Ghosh (2012) have
presented techniques which allow exhaustive search of both 2-opt and insertion neighborhoods in
O(n3) time, thus resulting in the TS-2OPT and TS-INSERT heuristics which perform better than
other neighborhood search heuristics.

In this paper, we consider a more elaborate neighborhood for the SRFLP. This neighborhood can
be described in terms of the moves that define it. Consider a basic move in conventional neighborhood
search algorithms for the SRFLP like a 2-opt move or an insertion move. Now consider a composite
move which consist of several successive basic moves starting from a given permutation. The set
of permutations that can be obtained by such composite moves make up the neighborhood of the
permutation. This type of moves have been known to be very attractive in traveling salesman
problems and is commonly known as Lin-Kernighan neighborhoods (see the Lin-Kernighan heuristic
described in Lin and Kernighan (1973) for more details). Till date there has been no study using
such Lin-Kernighan neighborhood search for the SRFLP. In this paper, we use the insertion move
as the basic move, since both Romero and Sánchez-Flores (1990) and Kothari and Ghosh (2012)
recommend the use of the insertion neighborhood over the 2-opt neighborhood for SRFLP. Moves
in the Lin-Kernighan neighborhood are expensive to compute and we make use of the speed-up

W.P. No. 2012-01-04 Page No. 3

IIMA • INDIA
Research and Publications

techniques in Kothari and Ghosh (2012) in our implementation. We present details of our search
over the Lin-Kernighan neighborhood in the next section.

3 Lin-Kernighan neighborhood search for the SRFLP

The Lin-Kernighan neighborhood structure was first used in the context of graph partitioning and
then was most widely used to solve the traveling salesman problem. The motivation behind this
neighborhood is the fact that using conventional neighborhoods (such as the 2-opt or insertion
neighborhood) local search algorithms quickly get trapped in potentially bad quality local optima. In
the Lin-Kernighan neighborhood, a move is essentially a composite move constructed as a sequence of
basic moves in a conventional neighborhood, even though such a sequence of moves take the search
through local optimal in the conventional neighborhood structure. The number of basic moves
allowed in the sequence depends on the quality of solutions that are obtained at various stages in
the sequence. Hence a Lin-Kernighan neighborhood is a variable depth neighborhood structure.
This neighborhood structure was found to be very effective for the traveling salesman problem, and
we use it in this paper in the context of the SRFLP.

Lin and Kernighan control their neighborhood search through a cumulative gain function G(.)
defined on the number of successive basic moves in the conventional neighborhood. Each basic
move results in choosing the best neighbor of the current solution in the conventional neighborhood.
Consider the k-th successive basic move in a composite move. Suppose we have a minimization
problem and that the solution at the beginning of the basic move was Π1 and the move chose the
best solution Π2 in the conventional neighborhood of Π1. The gain g(k) through such a move is
defined as g(k) = z(Π1) − z(Π2) where z(.) is the objective function. The function G(.) is defined
recursively as G(k) = G(k − 1) + g(k) with G(0) = 0. Successive moves are considered until for
a pre-specified value kmax of k. Note that G(.) is not monotonic in k. Let d be the value of k
(1 ≤ k ≤ kmax) for which G(k) is the maximum. The composite move is then the sequence of
the first d consecutive basic moves. If the value of G(k) is uniformly less than or equal to 0 for
any solution, then that solution is said to be locally optimal for the Lin-Kernighan neighborhood
structure.

The neighborhood structure described above can be easily adapted for the SRFLP. (Mart́ı and
Reinelt (2011) suggests two such neighborhoods for a special case of the SRFLP called the linear
ordering problem.) There are two conventional neighborhood structures for the SRFLP, the 2-opt
neighborhood in which a neighbor is formed by interchanging the positions of two facilities in a per-
mutation, and the insertion neighborhood in which a neighbor is formed by removing a facility from
the permutation and re-inserting it at another position in the permutation. Romero and Sánchez-
Flores (1990) and Kothari and Ghosh (2012) both suggest the use of the insertion neighborhood and
we use this neighborhood in our heuristic. However, once a facility has been re-positioned after a
basic move during the Lin-Kernighan neighborhood search, we do not consider it for repositioning
during later basic moves while searching the same Lin-Kernighan neighborhood. Sources (see, e.g.
Samarghandi and Eshghi 2010) report that an exhaustive search over a conventional neighborhood
is prohibitively expensive, however we use the technique suggested in Kothari and Ghosh (2012) to
search the insertion neighborhood exhaustively in O(n3) time. Although the technique to speed up
the insertion neighborhood search is described in Kothari and Ghosh (2012), we add the description
here for the sake of completeness. For notational convenience, in the remainder of this section we
write cπiπj

as ci,j and dπiπj
as di,j .

The idea behind speeding up the search over the insertion neighborhood is to avoid computing
the costs of neighbors directly, but to obtain them indirectly by computing the difference between
the cost of the initial solution and the neighbor and subtracting this difference from the cost of the
initial solution to obtain the cost of the neighbor. Consider the following pseudocode of an algorithm
to output the best insertion neighor of a given permutation Π for a SRFLP.

W.P. No. 2012-01-04 Page No. 4

IIMA • INDIA
Research and Publications

ALGORITHM INSERT-NBD-SEARCH

Input: A SRFLP instance of size n, a permutation Π.
Output: An insertion neighbor of Π which has the minimum cost among all of Π’s insertion

neighbors.
Code

1. begin
2. set nbr← UNDEFINED and nbrcost←∞;
3. for p from 1 to n do begin (* p-loop *)
4. for q from 1 to n but not p do begin (* q-loop *)
5. generate an insertion neighbor Πp

q of Π by removing πp from the p-th
position in Π and inserting it at the q-th position in Π;

6. set cost← cost of Πp
q ;

7. if (cost < nbrcost) then
8. set nbr← Πp

q and nbrcost← cost;
9. end; (* end q-loop *)

10. end; (* end p-loop *)
11. output nbr and nbrcost;
12. end.

Let Π = (π1, π2, . . . , πn) and let the cost z(Π) of the permutation Π be known. This cost needs
to be computed only once during the search and can be obtained in O(n2) time. Let SL be the
permutation of facilities to the left of πk in Π and SR be the permutation of facilities to the right of
πk in Π. Both SL and SR exclude πk. A k-contraction of Π is the permutation Πk = (SL, SR), i.e.,
the permutation obtained by removing facility πk from Π.

The difference ψk = z(Π)− z(Πk) is given by

ψk =
∑
πj∈SL

ckjdkj +
∑
πj∈SR

ckjdkj + lk
∑
πi∈SL

∑
πj∈SR

cij .

If k = 1, SL = ∅ and

ψ1 =
∑
πj∈SR

ckjdkj (1)

which can be computed in O(n) time.

Now assume that we know the value of the
∑
πi∈SL

∑
πj∈SR

cij in the expression for ψk. This
sum is 0 when k = 1. Consider the expression for ψk+1. For notational convenience we denote
SL ∪ {πk} as S′L and SR \ π(k+1) as S′R.

ψk+1 =
∑
πj∈S′

L

c(k+1)jd(k+1)j +
∑
πj∈S′

R

ckjd(k+1)j + l(k+1)

∑
πi∈S′

L

∑
πj∈S′

R

cij

=
∑
πj∈S′

L

c(k+1)jd(k+1)j +
∑
πj∈S′

R

ckjd(k+1)j

+ lk+1

(∑
πi∈SL

∑
πj∈SR

cij +
∑
πj∈SR

ckj −
∑
πi∈SL

ci(k+1) − ck(k+1)

)
. (2)

This can be computed in O(n) time since the value of the only term under double summation is
known from the computation of ψk. This shows that starting from ψ1, the value of ψk can be
computed in O(n) time for any value of k.

Next, we consider inserting facilities in k-contractions. Suppose we want to insert facility πk at
the q-th position in a k-contraction Πk. Let TL be the permutation of facilities in the first q − 1

W.P. No. 2012-01-04 Page No. 5

IIMA • INDIA
Research and Publications

positions of Πk and TR be the permutation of facilities from the q-th position in Πk to the end, so
that Πk = (TL, TR). Then the increase %kq in the cost of Πk when facility πk is inserted at the q-th
position in Πk is

%kq =
∑
πi∈TL

cikdik +
∑
πj∈TR

ckjdkj + lk
∑
πi∈TL

∑
πj∈TR

cij .

In particular if k > 1 and q = 1, implying TL = ∅,

%k1 =
∑
πj∈TR

ckjdkj . (3)

Also, if k = 1 and q = 2,

%12 = c1kd1k +
∑
πj∈Πk

ckjdkj + lk
∑
πj∈TR

c1j . (4)

Note that the % values in both these special cases can be computed in O(n) time.

Assume that we know the value of the
∑
πi∈TL

∑
πj∈TR

cij in the expression for %kq. If q = 1, this

sum is 0. Consider the expression for %k(q+1). Again for notational convenience we denote TL∪{πq}
as T ′L and TR \ πq as T ′R.

%k(q+1) =
∑
πi∈T ′

L

cikdik +
∑
πj∈T ′

R

ckjdkj + lk
∑
πi∈T ′

L

∑
πj∈T ′

R

cij

=
∑
πi∈T ′

L

cikdik +
∑
πj∈T ′

R

ckjdkj + lk

(∑
πi∈TL

∑
πj∈TR

cij +
∑
πj∈TR

cqj −
∑
πi∈TL

ciq

)
. (5)

This can be computed in O(n) time since the only term under double summation is known from the
computation of %kq.

Equations (1) through (5) can be used to implement the INSERT-NBD-SEARCH algorithm in
O(n3) time. In the algorithm, we initially compute z(Π) in O(n2) time and store its value. In the
first iteration of the p-loop, p = 1. In the first iteration of the q-loop corresponding to this p-loop,
q = 2. The cost of the neighbor Π1

2 is z(Π1
2) = z(Π)−ψ1 + %12 which can be computed in O(n) time

using equations (1) and (4). Next consider the (m+ 1) iteration of the q-loop during this iteration
of the p-loop (1 < m < n). The cost of the neighbor Π1

(m+1) is z(Π1
(m+1)) = z(Π) − ψ1 + %1(m+1)

which can be calculated in O(n) time using equations (1) and (5) since the values of the terms that
constitute %1m are known. So the first iteration of the p-loop requires O(n2) time. Now consider
the (r + 1)-th iteration of the p-loop (1 ≤ r < n). In the first iteration of the q-loop corresponding

to this p-loop, q = 1. The cost of the neighbor Π
(r+1)
1 is z(Π

(r+1)
1) = z(Π) − ψ(r+1) + %(r+1)1.

Since the terms involved in the calculation of ψr are known, the value of ψ(r+1) can be calculated
in O(n) time using equation (2). Also the value of %(r+1)1 can be calculated in O(n) time using

equation (3). Hence the cost of Πr+1
1 can be computed in O(n) time. Next consider the (m + 1)

iteration of the q-loop during this iteration of the p-loop (1 < m < n). The cost of the neighbor

Π
(r+1)
(m+1) is z(Π

(r+1)
(m+1)) = z(Π) − ψ(r+1) + %(r+1)(m+1) which can be calculated in O(n) time using

equations (2) and (5) since the values of the terms that constitute %(r+1)m and ψr are known. So
the q-loop corresponding to the (r + 1)-th iteration of the p-loop also requires O(n2) time. Since
there are n iterations of the p-loop in the INSERT-NBD-SEARCH algorithm, it requires O(n3) time
to search for the best insertion neighbor.

Now that we have a description of the Lin-Kernighan neighborhood for the SRFLP and the speed
up in searching insertion neighborhoods, we are in a position to describe our LK-INSERT heuristic
in the next section.

W.P. No. 2012-01-04 Page No. 6

IIMA • INDIA
Research and Publications

4 The LK-INSERT heuristic for the SRFLP

LK-INSERT is a multi-start heuristic. We generate a population of a user specified number L of
starting permutations for our heuristic. The number L is chosen to be large enough to take the
search to sufficiently large number of areas in the space of all permutations. We also prescribe that
the initial permutations be of sufficiently low cost. This is because Lin-Kernighan neighborhood
search iterations are computationally expensive, and low cost solutions are expected to reduce the
number of Lin-Kernighan moves required to a small value.

We generate the starting permutations for LK-INSERT as follows. For the first permutation
we use Theorem 1 in Samarghandi et al. (2010). In this theorem Samarghandi et al. characterize
optimal solutions for a special case of the SRFLP when all weights are identical. In such cases, the
optimal solution is obtained by sorting the facilities in non-decreasing order of their lengths, putting
the first facility in the center, and then alternating the placement of the other facilities in sorted
order to the left and to the right of the first facility. So if there are n facilities π1, π2, . . . , πn sorted
in non-decreasing order of lengths, the optimal permutation is{

(πn, π(n−2), . . . , π3, π1, π2, π4, . . . , π(n−3), π(n−1)) when n is odd; and
(π(n−1), π(n−3), . . . , π3, π1, π2, π4, . . . , π(n−2), πn) when n is even.

We use this permutation of facilities as the first starting permutation for LK-INSERT. Each of
the other L− 1 starting permutations in the population are obtained by switching the locations of
facilities at the i-th position and (n−i)-th positions in the first starting permutation with probability
0.5 for i values varying between 1 and n/2.

The choice of the value of kmax is also crucial for LK-INSERT. If it is too large, each Lin-
Kernighan iteration takes an unacceptably long time and is not practical. Also, note that a Lin-
Kernighan iteration essentially creates a large neighborhood of the initial permutation by combining
several conventional neighborhoods, and searches for good neighboring solution along one path in
this neighborhood starting from the initial permutation, ignoring good quality permutations that lie
outside the path. If the value of kmax is too large, then the chance that this search process misses
out permutations of good quality becomes high. If the value of kmax is too small, then the search
process runs the risk of getting trapped in local optima of the conventional neighborhood. So the
value of kmax for LK-INSERT must be a small number but not too small.

LK-INSERT starts by generating the population of starting permutations, and then for each
permutation in the population it performs a local search using the Lin-Kernighan neighborhood to
obtain locally optimal permutations. It finally outputs the best locally optimal permutation that it
encountered during the search. The pseudocode for this heuristic is given below.

ALGORITHM LK-INSERT

Input: A SRFLP instance of size n, parameters L and kmax.
Output: The best neighbor of Π which has the minimum cost among all of Π’s neighbors encoun-

tered by the algorithm.
Code

1. begin
2. set nbr← UNDEFINED, bestnbr← UNDEFINED, and nbrcost←∞;
3. obtain a permutation Π using Theorem 1 in Samarghandi and Eshghi (2010) and

store it in the population;
4. use Π to generate the remaining L− 1 permutations in the population;
5. for i from 1 to L do begin
6. select the i-th permutation Πi from the population;
7. G(0)← 0, bestG← 0, d← 0, and exclude ← {};

W.P. No. 2012-01-04 Page No. 7

IIMA • INDIA
Research and Publications

8. for j from 1 to kmax do begin
9. find the best insertion neighbor Πnbr of Πi which does not involve repositioning

of facilities in exclude;
10. add the facility whose position has changed to yield the best insertion neighbor

to exclude;
11. G(j)← G(j − 1) + cost(Π)− cost(Πnbr)
12. if (G(j) > bestG) then
13. set bestG← G(j), d← j, and bestnbr← Πnbr;
14. end;
15. if (bestG > 0) then
16. set Πi ← bestnbr and go to Step 7;
17. if (nbrcost > cost(Πi)) then
18. set nbr← Πi and nbrcost = cost(Πi);
19. end;
20. output nbr and nbrcost;
21. end;

We implemented this heuristic and performed computational experiments with our implementa-
tion. We provide the details of our experience in the next section.

5 Computational experience

We coded the LK-INSERT heuristic in C, compiled it with a gcc-4.6 compiler, and experimented
with it on a machine with Intel Core 2 Duo processor (E4500 2.2 GHz × 2) running Ubuntu 11.10.
In our implementation we restrict the depth of search for the maximum value of the G(.) function
to bn/15c and use b2n/3c starts for a problem of size n, since from our preliminary experiments we
found that these choices yield best results.

We ran our heuristic on 40 benchmark instances. The first 20 of these instances are due to
Anjos and have been frequently experimented with in the literature, e.g. in Anjos and Yen (2009),
Samarghandi and Eshghi (2010), Hungerländer and Rendl (2011), Datta et al. (2011). The other
20 are sko instances based on benchmark instances for the quadratic assignment problem. In the
published literature, these instances have been experimented with in Anjos and Yen (2009) and
Hungerländer and Rendl (2011). Apart from the published literature Kothari and Ghosh (2012)
presents two tabu search implementations TS-2OPT and TS-INSERT which perform well on these
problems. We benchmark the performance of our LK-INSERT heuristic against these algorithms.
Since the generation of initial solutions is randomized in LK-INSERT, we run the heuristic five times
for each instance, and report the cost of the best permutation we obtain.

Table 1 presents the comparison of LK-INSERT with other algorithms for the SRFLP on the
20 Anjos instances. The first column records the name of the instance, and the second column its
size. The third column reports the cost of the best solution to the problem instance found in the
literature. Each entry in the column has a superscript which is a combination of the letters ‘s’, ‘d’
and ‘h’. The presence of the letter ‘s’ indicates that a permutation with the cost reported has been
obtained in Samarghandi et al. (2010), while the letters ‘d’ and ‘h’ indicate that a permutation with
that cost has been obtained in Datta et al. (2011) and Hungerländer and Rendl (2011) respectively.
Results from Anjos and Yen (2009) are not presented in the table since they have all been superceded
in the literature. The fourth column reports the cost of the best solution obtained in Kothari and
Ghosh (2012) for the instance. Here there is a superscript which is a combination of ‘2’ and ‘i’. The
presence of ‘2’ in the superscript indicates that a permutation with that cost has been obtained by
the TS-2OPT algorithm in Kothari and Ghosh (2012), and the presence of an ‘i’ indicates that a
permutation with that cost has been obtained by the TS-INSERT algorithm. The last column reports
the cost of the best permutation obtained by the LK-INSERT heuristic described in this paper. The
results show that output from the LK-INSERT heuristic matches the best known permutations for

W.P. No. 2012-01-04 Page No. 8

IIMA • INDIA
Research and Publications

Table 1: Costs of the best permutations obtained for the Anjos instances

Instance Size Published K&G(2012) LK-INSERT

Anjos-60-01 60 1477834.0 sdh 1477834.0 2i 1477834.0

Anjos-60-02 60 841776.0 h 841776.0 i 841776.0

Anjos-60-03 60 648337.5 sdh 648337.5 2i 648337.5

Anjos-60-04 60 398406.0 h 398406.0 2i 398406.0

Anjos-60-05 60 318805.0 sdh 318805.0 2i 318805.0

Anjos-70-01 70 1528560.0 sdh 1528537.0 i 1528537.0

Anjos-70-02 70 1441028.0 sdh 1441028.0 2i 1441028.0

Anjos-70-03 70 1518993.5 sdh 1518993.5 2i 1518993.5

Anjos-70-04 70 968796.0 d 968796.0 2i 968796.0

Anjos-70-05 70 4218002.5 h 4218002.5 2i 4218002.5

Anjos-75-01 75 2393456.5 d 2393456.5 i 2393456.5

Anjos-75-02 75 4321190.0 sd 4321190.0 2i 4321190.0

Anjos-75-03 75 1248537.0 d 1248423.0 2i 1248423.0

Anjos-75-04 75 3941845.5 h 3941816.5 2i 3941816.5

Anjos-75-05 75 1791408.0 sd 1791408.0 2i 1791408.0

Anjos-80-01 80 2069097.5 sd 2069097.5 2i 2069097.5

Anjos-80-02 80 1921177.0 sd 1921136.0 2i 1921136.0

Anjos-80-03 80 3251368.0 d 3251368.0 i 3251368.0

Anjos-80-04 80 3746515.0 sd 3746515.0 2i 3746515.0

Anjos-80-05 80 1588901.0 d 1588885.0 i 1588885.0

each of the 20 Anjos instances. This includes the five instances in which the results in Kothari and
Ghosh (2012) are better than the best permutations known in the published literature.

Table 2 presents the comparison of the quality of solutions output by the LK-INSERT heuristic
for the sko instances with those available in the literature. In the published literature results are
available in Anjos and Yen (2009) and Hungerländer and Rendl (2011). However, Kothari and Ghosh
(2012) also report the costs of the best permutations obtained by the TS-2OPT and TS-INSERT
algorithms on these instances. In the table, the first two columns report the names of the instances
and their sizes. The third column reports the costs of the best layouts obtained in Hungerländer and
Rendl (2011). Here too, the results from Anjos and Yen (2009) do not appear in the table since they
have been superceded in Hungerländer and Rendl (2011). The fourth column reports the costs of
the best permutations obtained by the TS-2OPT and TS-INSERT algorithms in Kothari and Ghosh
(2012). As in Table 1, each entry in this column has a superscript which is a combination of ‘2’ and
‘i’ indicating which of TS-2OPT and TS-INSERT obtained the permutation reported in this column.
The last column reports the cost of the permutation obtained by the LK-INSERT heuristic. We see
here that the LK-INSERT heuristic was able to improve on all the layouts obtained for all the sko

instances except sko-64-02, in which the layout reported in Hungerländer and Rendl (2011) is still the
best one obtained. In 11 of the 20 instances (i.e., 55% of the sko instances), the LS-INSERT heuristic
generated better permutations than those available in the literature. The costs of these permutations
are shown in boldface in Table 2 and the corresponding permutations are reported in the Appendix
to this paper. In two other instances it matched the better of the permutations output by TS-2OPT
and TS-INSERT. In the remaining 6 instances, LK-INSERT output permutations whose costs were
higher than the better of the permutations output by TS-2OPT and TS-INSERT.

From these results, we conclude that the LK-INSERT heuristic is competitive for solving large
sized SRFLP instances.

W.P. No. 2012-01-04 Page No. 9

IIMA • INDIA
Research and Publications

Table 2: Costs of the best permutations obtained for the sko instances

Instance Size H&L(2011) K&G(2012) LK-INSERT

sko-64-01 64 97194.0 96915.0 i 96933.0
sko-64-02 64 634332.5 634563.5 i 634338.5
sko-64-03 64 414384.5 414327.5 i 414323.5
sko-64-04 64 298155.0 297332.0 i 297205.0
sko-64-05 64 502063.5 501922.5 2i 501922.5

sko-72-01 72 139231.0 139179.0 i 139150.0
sko-72-02 72 715611.0 712011.0 i 712005.0
sko-72-03 72 1061762.5 1054110.5 2i 1054110.5
sko-72-04 72 924019.5 920086.5 i 919635.5
sko-72-05 72 430288.5 428248.5 2 428879.5

sko-81-01 81 207063.0 205145.0 2 205166.0
sko-81-02 81 526157.5 521399.5 i 521391.5
sko-81-03 81 979281.0 970912.0 i 970862.0
sko-81-04 81 2035569.0 2032143.0 i 2031979.0
sko-81-05 81 1311166.0 1302833.0 2 1303805.0

sko-100-01 100 380562.0 378626.0 i 378614.0
sko-100-02 100 2084924.5 2076023.5 2 2076048.5
sko-100-03 100 16216076.5 16149000.0 i 16148818.0
sko-100-04 100 3263493.0 3233362.0 2 3232740.0
sko-100-05 100 1040929.5 1033338.5 2 1033345.5

6 Summary and future research directions

In this paper we deal with a NP-Hard problem called the single row facility layout problem (SRFLP).
This is a combinatorial optimization problem in which the objective function is of a quadratic form.
Exact algorithms to solve this problem have only been able to report optimal solutions for relatively
small sized instances with up to 42 facilities. For larger sized problems, the focus of research is on
metaheuristics.

In this paper, we present a variable depth neighborhood search based heuristic called LK-INSERT
to solve this problem. The neighborhood searched bears resemblence to the Lin-Kernighan neigh-
borhood for the traveling salesman problem. While the Lin-Kernighan neighborhood uses the k-opt
neighborhood as a basic neighborhood in the case of the traveling salesman problem, in this paper,
we use the insertion neighborhood as the basic neighborhood. We prefer the insertion neighborhood,
because prior experience (see Romero and Sánchez-Flores 1990, Kothari and Ghosh 2012) has shown
that it is a better neighborhood to search than the 2-opt neighborhood for the SRFLP. We are not
aware of any previous metaheuristics for the SRFLP using Lin-Kernighan neighborhoods.

We compare the performance of LK-INSERT with that of other algorithms known in the literature
on 40 benchmark instances, and see that LK-INSERT improves on the best known solutions to 11
of the 40 instances. Thus we conclude that Lin-Kernighan based heuristics like the LK-INSERT
heuristic presented in this paper are competitive for large sized SRFLP instances.

The work presented in this paper can be extended in several ways. We suggest two such directions
in this section. We have implemented our heuristic using the insertion neighborhood. It is possible
that with carefully chosen parameters, a 2-opt neighborhood based Lin-Kernighan heuristic can
generate good quality solutions. Further, the heuristic presented in this paper is a local search
heuristic which terminates on reaching a local optimum. The heuristic can be extended to create
tabu search implementations which can search the solution space more effectively.

W.P. No. 2012-01-04 Page No. 10

IIMA • INDIA
Research and Publications

Acknowledgements

The authors thank A.M.S. Amaral and P. Hungerländer for sharing the benchmark instances used
in this paper.

References

Amaral, A. and Letchford, A. N. (2011). A polyhedral approach to the single row facility layout
problem. Available at http://eprints.lancs.ac.uk/id/eprint/49043.

Amaral, A. R. S. (2006). On the exact solution of a facility layout problem. European Journal of
Operational Research, 173(2):508–518.

Amaral, A. R. S. (2008). An Exact Approach to the One-Dimensional Facility Layout Problem.
Operations Research, 56(4):1026–1033.

Amaral, A. R. S. (2009). A new lower bound for the single row facility layout problem. Discrete
Applied Mathematics, 157(1):183–190.

Anjos, M., Kennings, a., and Vannelli, a. (2005). A semidefinite optimization approach for the
single-row layout problem with unequal dimensions. Discrete Optimization, 2(2):113–122.

Anjos, M. F. and Vannelli, A. (2008). Computing Globally Optimal Solutions for Single-Row Layout
Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Comput-
ing, 20(4):611–617.

Anjos, M. F. and Yen, G. (2009). Provably near-optimal solutions for very large single-row facility
layout problems. Optimization Methods and Software, 24(4-5):805–817.

Beghin-Picavet, M. and Hansen, P. (1982). Deux problèmes daffectation non linéaires. RAIRO,
Recherche Opérationnelle, 16(3):263–276.

Braglia, M. (1997). Heuristics for single-row layout problems in flexible manufacturing systems.
Production Planning & Control, 8(6):558–567.

Datta, D., Amaral, A. R., and Figueira, J. R. (2011). Single row facility layout problem using a
permutation-based genetic algorithm. European Journal of Operational Research, 213(2):388–394.

Heragu, S. S. and Alfa, A. S. (1992). Experimental analysis of simulated annealing based algorithms
for the layout problem. European Journal of Operational Research, 57(2):190–202.

Heragu, S. S. and Kusiak, A. (1988). Machine Layout Problem in Flexible Manufacturing Systems.
Operations Research, 36(2):258–268.

Heragu, S. S. and Kusiak, A. (1991). Efficient models for the facility layout problem. European
Journal Of Operational Research, 53:1–13.

Hungerländer, P. and Rendl, F. (2011). A computational study for the single-row facility layout
problem. Available at www.optimization-online.org/DB_FILE/2011/05/3029.pdf.

Kothari, R. and Ghosh, D. (2011). The single row facility layout problem: State of the
art (w.p. no. 2011-12-02). Ahmedabad, India: IIM Ahmedabad, Production & Quantitative
Methods. Available at http://www.iimahd.ernet.in/assets/snippets/workingpaperpdf/

7736113342011-12-02.pdf.

Kothari, R. and Ghosh, D. (2012). Tabu search for the single row facility layout problem using
exhaustive 2-opt and insertion neighborhoods (w.p. no. 2012-01-??). Ahmedabad, India: IIM
Ahmedabad, Production & Quantitative Methods. Available at http://www.iimahd.ernet.in/

assets/snippets/workingpaperpdf/7736113342011-12-02.pdf.

W.P. No. 2012-01-04 Page No. 11

http://eprints.lancs.ac.uk/id/eprint/49043
www.optimization-online.org/DB_FILE/2011/05/3029.pdf
http://www.iimahd.ernet.in/assets/snippets/workingpaperpdf/7736113342011-12-02.pdf
http://www.iimahd.ernet.in/assets/snippets/workingpaperpdf/7736113342011-12-02.pdf
http://www.iimahd.ernet.in/assets/snippets/workingpaperpdf/7736113342011-12-02.pdf
http://www.iimahd.ernet.in/assets/snippets/workingpaperpdf/7736113342011-12-02.pdf

IIMA • INDIA
Research and Publications

Kouvelis, P. and Chiang, W.-C. (1992). A simulated annealing procedure for single row layout prob-
lems in flexible manufacturing systems. International Journal of Production Research, 30(4):717–
732.

Kouvelis, P. and Chiang, W.-C. (1996). Optimal and Heuristic Procedures for Row Layout Problems
in Automated Manufacturing Systems. Journal of the Operational Research Society, 47(6):803–
816.

Kumar, S., Asokan, P., Kumanan, S., and Varma, B. (2008). Scatter search algorithm for single row
layout problem in fms. Advances in Production Engineering & Management, 3(4):193–204.

Laguna, M., Mart́ı, R., and Campos, V. (1999). Intensification and diversification with elite tabu
search solutions for the linear ordering problem. Computers & OR, 26(12):1217–1230.

Lin, S. and Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the Traveling-Salesman
Problem. Operations Research, 21(2):498–516.

Love, R. F. and Wong, J. Y. (1976). On solving a one-dimensional space allocation problem with
integer programming. INFOR, 14(2):139–144.

Mart́ı, R. and Reinelt, G. (2011). The Linear Ordering Problem. Springer-Verlag Berlin Heidelberg.

Picard, J.-C. and Queyranne, M. (1981). On the one-dimensional space allocation problem. Opera-
tions Research, 29(2):371–391.

Ravi Kumar, K., Hadejinicola, G. C., and Lin, T.-L. (1995). A heuristic procedure for the single-row
facility layout problem. European Journal of Operational Research, 87(1):65–73.

Romero, D. and Sánchez-Flores, A. (1990). Methods for the one-dimensional space allocation prob-
lem. Computers & Operations Research, 17(5):465–473.

Samarghandi, H. and Eshghi, K. (2010). An efficient tabu algorithm for the single row facility layout
problem. European Journal of Operational Research, 205(1):98–105.

Samarghandi, H., Taabayan, P., and Jahantigh, F. F. (2010). A particle swarm optimization for the
single row facility layout problem. Computers & Industrial Engineering, 58(4):529–534.

Simmons, D. M. (1969). One-Dimensional Space Allocation: An Ordering Algorithm. Operations
Research, 17(5):812–826.

Solimanpur, M., Vrat, P., and Shanker, R. (2005). An ant algorithm for the single row layout
problem in flexible manufacturing systems. Computers & Operations Research, 32(3):583–598.

W.P. No. 2012-01-04 Page No. 12

IIMA • INDIA
Research and Publications

Appendix

We provide details of the permutations for the sko instances in which we have improved the best
permutation known in the literature. Note that the facilities are numbered from 0 through n − 1
where n is the problem size.

Instance Size Cost Permutation

sko-64-03 64 414323.5 14 11 8 60 55 40 41 48 12 28 3 51 21 22 15 45 35 50 63 54 20 26 30 2 43
13 57 56 23 52 9 24 62 42 17 46 29 34 16 37 33 44 0 38 4 59 25 27 39 10
53 1 7 32 36 18 31 47 19 6 49 58 61 5

sko-64-04 64 297205.0 14 58 56 52 10 53 31 40 29 7 18 9 32 55 24 16 1 37 49 25 33 36 0 6 44
38 46 43 57 23 34 20 48 3 63 61 4 15 28 54 22 11 12 21 8 27 47 13 39 60
51 17 5 19 45 50 2 62 26 42 35 41 59 30

sko-72-01 72 139150.0 33 2 23 53 44 10 4 24 68 71 61 3 42 65 19 57 18 14 40 47 39 41 67
50 35 56 54 43 70 5 8 15 38 31 62 36 12 49 32 48 45 58 37 6 0 28
60 22 51 64 46 25 27 21 13 1 20 66 16 29 26 69 9 55 7 34 17 59 63 30 52 11

sko-72-02 72 712005.0 11 17 55 13 22 58 12 31 36 62 42 2 52 64 46 51 69 9 27 34 21 59
45 37 1 26 29 6 48 20 30 49 7 50 41 47 28 24 32 38 66 23 54 43 25
56 67 35 60 14 68 71 15 5 53 65 3 18 0 16 70 39 8 19 63 61 10 44 40 57 4 33

sko-72-04 72 919635.5 7 16 58 31 1 20 25 51 46 0 27 26 6 29 9 12 69 70 32 34 13 21 48 22
45 59 37 28 30 54 56 43 39 41 50 47 53 15 66 67 8 38 18 4 17 52
5 24 68 33 57 36 62 61 42 65 3 14 60 64 35 40 19 10 49 44 71 23 63 55 2 11

sko-81-02 81 521391.5 21 54 37 48 24 34 80 13 51 47 55 5 14 60 20 2 68 16 32 65 73 69 40 49
22 66 35 29 64 41 3 10 8 33 25 30 18 43 1 44 11 31 79 28 78 4 57 0 77
50 45 12 67 36 72 58 39 70 74 52 42 23 17 19 38 9 26 62 6 61 53 71 46
15 75 56 63 59 76 27 7

sko-81-03 81 970862.0 29 34 38 73 78 28 54 10 27 71 47 5 4 8 30 14 13 1 60 24 2 69 37 32 11
18 79 80 25 35 65 40 64 49 16 22 41 66 3 55 45 31 70 7 0 72 74 21 44 68
57 51 48 6 42 77 23 61 26 20 56 67 63 17 12 50 36 19 62 58 59 75 39 33
9 53 43 15 52 76 46

sko-81-04 81 2031979.0 65 73 7 24 25 64 68 22 50 2 13 19 1 15 49 67 44 26 8 18 43 11 69 56 10
16 47 45 59 63 75 33 32 14 71 36 55 17 77 38 41 31 0 3 48 34 35 66 54
53 61 51 39 9 74 46 62 57 29 20 60 12 72 23 76 30 52 5 27 80 37 42 58 6
40 4 28 21 78 70 79

sko-100-01 100 378614.0 2 34 43 28 16 20 6 75 52 44 11 35 49 40 47 60 22 48 1 69 81 91 37 71 80
63 89 65 46 50 45 25 99 68 19 39 42 29 84 72 66 98 93 95 3 7 23 92 67 97
55 88 41 58 18 13 8 83 62 30 76 27 56 31 61 85 51 74 33 53 5 14 21 15
79 9 26 54 12 59 24 10 94 4 87 57 73 86 0 38 78 82 32 70 36 90 96 17 77 64

sko-100-03 100 16148818.0 2 57 27 7 32 59 75 44 48 52 91 39 60 99 46 40 69 68 42 89 65 67 86 85 71
18 37 28 47 93 66 51 9 50 14 55 97 58 41 49 21 25 6 45 22 63 16 31 87
80 33 19 56 76 5 83 78 24 17 0 73 54 92 94 3 35 11 95 98 29 84 72 1 64
61 8 13 15 10 74 82 12 26 62 30 90 81 70 36 4 20 53 79 23 88 38 34 96 77 43

sko-100-04 100 3232740.0 48 41 38 78 70 24 31 4 96 17 92 93 51 67 7 97 82 8 15 87 21 32 42 20 26
74 79 23 59 66 85 27 30 73 18 88 53 14 0 55 95 64 3 90 84 54 12 10 77
62 56 61 36 76 58 80 60 49 91 47 89 99 37 45 25 81 68 52 34 71 65 69 35
50 9 39 19 29 46 72 13 40 86 28 11 16 43 22 63 33 94 1 98 75 57 44 83 5 2 6

W.P. No. 2012-01-04 Page No. 13

	Introduction
	A review of the literature on the SRFLP
	Lin-Kernighan neighborhood search for the SRFLP
	The LK-INSERT heuristic for the SRFLP
	Computational experience
	Summary and future research directions

