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Tabu search for the single row facility layout problem
using exhaustive 2-opt and insertion neighborhoods

Ravi Kothari
Diptesh Ghosh

Abstract

The single row facility layout problem (SRFLP) is the problem of arranging facilities with
given lengths on a line, while minimizing the weighted sum of the distances between all pairs
of facilities. The problem is NP-hard. In this paper, we present two tabu search implemen-
tations, one involving an exhaustive search of the 2-opt neighborhood and the other involving
an exhaustive search of the insertion neighborhood. We also present techniques to significantly
speed up the search of the two neighborhoods. Our computational experiments show that the
speed up techniques are effective, and our tabu search implementations are competitive. Our
tabu search implementations improved several previously known best solutions for large sized
benchmark SRFLP instances.
Keywords: Facilities planning and design; Single Row Facility Layout, Tabu Search

1 Introduction

The single row facility layout problem (SRFLP) is the NP-hard problem of arranging a given set of
facilities on a line so as to minimize the weighted sum of the distances between all pairs of facilities.
The weights for each of the pairs of facilities as well as the lengths of each of the facilities are given,
and the distance between a pair of facilites is defined as the distance between the centroids of the
facilities. The number of facilities in a particular instance is called the size of the instance. This
problem was first proposed in Simmons (1969) and was shown to be NP-Hard in Beghin-Picavet and
Hansen (1982). Formally stated the SRFLP is defined as follows:

Given: A set F = {1, 2, . . . , n} of n > 2 facilities, the length lj of each facility j ∈ F , and weights
cij for each pair (i, j) of facilities, i, j ∈ F , i 6= j.

Objective: To find a permutation Π = (π1, π2, . . . , πn) of facilities in F that minimizes the cost of
the permutation

z(Π) =
∑

1≤i<j≤n

cπiπj
dπiπj

where dπiπj = lπi/2 +
∑
i<k<j lπk

+ lπj/2 is the distance between the centroids of facilities πi
and πj when the facilities in F are ordered as per the permutation Π.

Note that in contrast with several common combinatorial optimization problems, the complexity of
determining the cost of a solution is O(n2) in a SRFLP instance of size n.

The SRFLP has been used to model numerous practical situations. It has been a model for
arrangement of rooms in hospitals, departments in office buildings or in supermarkets (Simmons
1969), arrangement of machines in flexible manufacturing systems (Heragu and Kusiak 1988), as-
signment of files to disk cylinders in computer storage, and design of warehouse layouts (Picard and
Queyranne 1981). Apart from these direct applications, there are a large number of applications of
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the special case of the SRFLP in which the facilities have equal lengths. These include the trian-
gulation problem of input output tables in economics (Laguna et al. 1999), and ranking of teams in
sports (Mart́ı and Reinelt 2011).

Several exact methods have been applied to solve the SRFLP to optimality in the literature.
These methods include branch and bound (Simmons 1969), mathematical programming (Love and
Wong 1976, Heragu and Kusiak 1991, Amaral 2006; 2008), cutting planes (Amaral 2009), dynamic
programming (Picard and Queyranne 1981, Kouvelis and Chiang 1996), branch and cut (Amaral and
Letchford 2011), and semidefinite programming (Anjos et al. 2005, Anjos and Vannelli 2008, Anjos
and Yen 2009, Hungerländer and Rendl 2011). These methods have been able to obtain optimal
solutions to SRFLP instances with up to 42 facilities.

Researchers have focused on heuristics for solving larger sized SRFLP instances. These heuristics
are of two types; construction and improvement. Construction heuristics for the SRFLP have been
presented in Heragu and Kusiak (1988), Ravi Kumar et al. (1995), and Braglia (1997). However
these have later been superceded by improvement heuristics. Most improvement heuristics for the
SRFLP are metaheuristics, e.g. simulated annealing (Romero and Sánchez-Flores 1990, Kouvelis
and Chiang 1992, Heragu and Alfa 1992), ant colony optimization (Solimanpur et al. 2005), scatter
search (Kumar et al. 2008), tabu search (Samarghandi and Eshghi 2010), particle swarm optimization
(Samarghandi et al. 2010), and genetic algorithms (Datta et al. 2011). Among these, the tabu search
implementation in Samarghandi and Eshghi (2010) and the genetic algorithm implementation in
Datta et al. (2011) yield best results for benchmark SRFLP instances of large sizes.

In this paper, we present two tabu search implemementations for the SRFLP. Like Samarghandi
and Eshghi, our implementations are parallel multi-start tabu search implementations, which are
different from the way tabu search is generally implemented to solve combinatorial optimization
problems. Our implementations differ significantly from the one presented in Samarghandi and
Eshghi (2010), both in implementation details of tabu search and the methods of searching neigh-
borhoods. Samarghandi and Eshghi remark in their paper that examining the complete 2-opt
neighborhood of a permutation “can be very time consuming or even impossible” (see p.101 in
Samarghandi and Eshghi 2010). They therefore sample the 2-opt neighborhood of permutations to
obtain the 2-opt neighbors. In our tabu search implementations we use techniques to speed up the
neighborhood search significantly which allows us to search the neighborhoods exhaustively. Also
since Samarghandi and Eshghi use the 2-opt neighborhood in their implementation and Romero and
Sánchez-Flores recommend the use of insertion neighborhoods in their experiments with simulated
annealing, in this paper, one of our tabu search implementations searches the 2-opt neighborhood,
and the other searches the insertion neighborhood.

Our paper is organized as follows. In Section 2 we present techniques to speed up searching
the 2-opt and insertion neighborhoods of a solution to a SRFLP instance. We then describe our
tabu search implementations using these speed up techniques in Section 3 and present results of our
computational experiments in Section 4. We conclude the paper in Section 5 with a summary of the
work.

2 Speeding up neighborhood search

The 2-opt and insertion neighborhood structures have been used in local search based approaches to
solve the SRFLP. In the 2-opt neighborhood, a neighbor of a permutation is obtained by swapping the
positions of exactly two of the facilities. In an insertion neighborhood, a neighbor of a permutation
is obtained by removing a facility from its position in the permutation and re-inserting it at another
position in the permutation. Clearly, for a SRFLP instance of size n, there are O(n2) neighbors of
each permutation in both neighborhoods, and since computing the cost of a permutation requires
O(n2) time, a näıve implementation of either of the neighborhoods requires O(n4) time to search
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the neighborhood exhaustively for the best neighbor. This makes exhaustive neighborhood search
for large SRFLP instances a very slow process. In this section, we reduce this search time to O(n3)
for both the neighborhood structures.

2.1 2-opt neighborhoods

The pseudocode for a program to search the 2-opt neighborhood of a given permutation is given
below.

ALGORITHM 2-OPT-NBD-SEARCH

Input: A SRFLP instance of size n, a permutation Π.
Output: A 2-opt neighbor of Π which has the minimum cost among all of Π’s 2-opt

neighbors.

Code

1. begin
2. set nbr← UNDEFINED; nbrcost←∞;
3. for p from 1 to n− 1 do begin (* p-loop *)
4. for q from p+ 1 to n do begin (* q-loop *)
5. generate 2-opt neighbor Π′ of Π by interchanging the facilities in

positions p and q in Π;
6. set cost← cost of Π′;
7. if (cost < nbrcost) then begin
8. set nbr← Π′;
9. set nbrcost← cost;

10. end;
11. end; (* end of q-loop *)
12. end; (* end of p-loop *)
13. output nbr and nbrcost;
14. end.

Note that in the first iteration of the q-loop for any iteration of the p-loop, the facilities that
need to be interchanged are adjacent. Also note that in successive iterations of the q-loop inside
any p-loop, the position p remains fixed, and the position q shifts one place to the right at a time.
We will use these observations to present book-keeping techniques that reduce the complexity of
searching for the best 2-opt neighbor of a permutation Π to O(n3) time.

Consider a permutation Π = (π1, π2, . . . , πn) of facilities, in which πi denotes the facility at the
i-th position in Π. Consider two positions p and q between 1 and n with p < q. Let S1 be the
permutation of facilities to the left of πp in Π, S2 be the permutation of facilities between πp and πq
(both excluded) in Π, and S3 be the permutation of facilities to the right of πq in Π. For notational
convenience we use cpq and dpq to represent cπpπq

and dπpπq
throughout the paper. We also use the

notation i ∈ Sj to mean πi ∈ Sj . Then the cost z(Π) of the permutation Π can be written as

z(Π) =
∑
i∈S1

∑
j∈S1

cijdij +
∑
i∈S1

cipdip +
∑
i∈S1

∑
j∈S2

cijdij +
∑
i∈S1

ciqdiq +
∑
i∈S1

∑
j∈S3

cijdij

+
∑
j∈S2

cpjdpj + cpqdpq +
∑
j∈S3

cpjdpj +
∑
i∈S2

∑
j∈S2

cijdij
∑
i∈S2

ciqdiq

+
∑
i∈S2

∑
j∈S3

cijdij +
∑
j∈S3

cqjdqj +
∑
i∈S3

∑
j∈S3

cijdij , (1)

where dij denotes the distance between the centroids of facilities πi and πj in Π.

If facilities at locations p and q are interchanged, leading to a 2-opt neighbor Π′ of Π, then the
positions of all facilities in S1 and S3 remain unchanged, while the positions of all facilities in S2
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uniformly shift by a distance |lp− lq|. Then denoting the sum of the lengths of all facilities between
πi and πj in Π as bij the difference ∆pq in costs of Π and Π′ can be written as

∆pq = z(Π)− z(Π′)

=
∑
i∈S1

∑
j∈S2

cij(lp − lq) +
∑
i∈S1

ciq(L2 + lp) +
∑
j∈S2

cpj(bpj − bqj) +
∑
j∈S3

cpj(L2 + lq)

+
∑
j∈S2

ciq(biq − bip) +
∑
i∈S2

∑
j∈S3

cij(lq − lp)−
∑
i∈S1

cip(L2 + lq)−
∑
j∈S3

cqj(L2 + lp). (2)

Since cij = cji and bij = bji for every pair i and j of facilities, the expression above can be rewritten
as

∆pq = L2

{∑
i∈S1

(ciq − cip) +
∑
i∈S3

(cip − ciq)

}
+ lp

{∑
i∈S1

ciq −
∑
i∈S3

ciq

}

+ lq

{ ∑
j∈S3

cpj −
∑
j∈S1

cpj

}
+ (lq − lp)

{∑
i∈S2

( ∑
j∈S3

cij −
∑
j∈S1

cij

)}
+
∑
j∈S2

(bpj − bqj)(cpj − cqj), (3)

where L2 =
∑
πj∈S2

lj .

Note that if p and q are adjacent, S2 = ∅ and the difference ∆pq is given by

∆pq = lp

{∑
i∈S1

ciq −
∑
i∈S3

ciq

}
+ lq

{ ∑
j∈S3

cpj −
∑
j∈S1

cpj

}
, (4)

which can be computed in O(n) time.

Next, let πr be the facility immediately to the right of πq in Π. We now show that ∆pr can be
computed in O(n) time. If facilities πp and πr are to be interchanged to yield a 2-opt neighbor Π′′

of Π, then the permutation of facilities S′′1 to the left of πp is identical to S1, the permutation S′′2 of
facilities between πp and πr is S2 with facility πq appended, and the permutation of facilities S′′3 to
the right of πr is the permutation S3 with facility πr removed from the extreme left. The sum L′′2 of
lengths of facilities in S′′2 is given by L2 + lq. The expression for ∆pr = z(Π)− z(Π′′) (with a form
similar to equation (2)) can be rearranged to yield

∆pr = lr

{ ∑
j∈S3

cpj − cpr −
∑
j∈S1

cpj

}
+ (lr − lp)

∑
i∈S2

( ∑
j∈S3

cij −
∑
j∈S1

cij

)

+ L′′2

{∑
i∈S1

cir −
∑
i∈S′′

3

cir +
∑
i∈S3

cip − crp −
∑
i∈S1

cip

}

+ lp

{∑
i∈S1

cir −
∑
i∈S′′

3

cir

}
+ (lr − lp)

{ ∑
j∈S3

cqj −
∑
j∈S1

cqj −
∑
i∈S′′

2

cir

}

+
∑
j∈S′′

2

(bpj − brj)(cpj − crj). (5)

Note that since the values of
∑
j∈S1

cpj ,
∑
j∈S3

cpj , and
∑
i∈S2

(∑
j∈S3

cij −
∑
j∈S1

cij
)

are known

from the computation of the value of ∆pq, the values of lr
{∑

j∈S3
cpj − cpr −

∑
j∈S1

cpj
}

+ (lr −
lp)
∑
i∈S2

(∑
j∈S3

cij −
∑
j∈S1

cij
)

can be computed in constant time and the remaining part of the
right hand side of equation (5) can be computed in O(n) time. Hence we can compute the value of
∆pr in O(n) time.
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Let Π′ be a 2-opt neighbor of Π obtained by interchanging the positions of facilities πp and πq
in Π. Since z(Π′) = z(Π) − ∆pq, we use the expressions for ∆pq to compute the cost of the 2-opt
neighbor Π′. Note that since right hand side of equation (4) can be computed in O(n) time, the
cost of the first 2-opt neighbor generated in any q-loop in 2-OPT-NBD-SEARCH can be computed
in linear time. Again since the right hand side of equation (5) can be computed in O(n) time, the
costs of each of the neighbors, after the first one, generated within a q-loop can be computed in
linear time. Hence the q-loop in 2-OPT-NBD-SEARCH (steps 4 through 11) requires O(n2) time,
and so 2-OPT-NBD-SEARCH runs in O(n3) time when the above presented techniques are used.
Hence searching the 2-opt neighborhood of a permutation to obtain the best 2-opt neighbor requires
O(n3) time.

2.2 Insertion neighborhoods

The pseudocode for a program to search the insertion neighborhood of a given permutation is given
below.

ALGORITHM INSERT-NBD-SEARCH

Input: A SRFLP instance of size n, a permutation Π.
Output: An insertion neighbor of Π which has the minimum cost among all of Π’s

insertion neighbors.

Code

1. begin
2. set nbr← UNDEFINED; nbrcost←∞;
3. for p from 1 to n do begin (* p-loop *)
4. for q from 1 to n but not p do begin (* q-loop *)
5. generate an insertion neighbor Πp

q of Π by removing πp from the p-th
position in Π and inserting it at the q-th position in Π;

6. set cost← cost of Πp
q ;

7. if (cost < nbrcost) then begin
8. set nbr← Πp

q ;
9. set nbrcost← cost;

10. end;
11. end; (* end q-loop *)
12. end; (* end p-loop *)
13. output nbr and nbrcost;
14. end.

As in the case of 2-opt neighborhood search we will use book-keeping techniques to reduce the
complexity of searching for the best insertion neighbor of a permutation to O(n3) time.

Consider a permutation Π = (π1, π2, . . . , πn). We define a p-contraction of Π as a permutation
Πp = (π1, π2, . . . , πp−1, πp+1, . . . , πn) of facilities in F \ {πp}. If πp is inserted at the q-th position
in Π, we have an insertion neighbor Πp

q of Π.

Let SL be the permutation of facilities to the left of πp in Π and SR be the permutation of
facilities to the right of πp in Π. Both SL and SR exclude πp. If z(Π) and z(Πp) are the costs of
permutations Π and Πp respectively then the value ψp = z(Π)− z(Πp) is

ψp =
∑
j∈SL

cpjdpj +
∑
j∈SR

cpjdpj + lp
∑
i∈SL

∑
j∈SR

cij .

In particular if p = 1, ψ1 =
∑
j∈SR

cpjdpj .

Let p < q, thus Πp = (π1, π2, . . . , πp−1, πp+1, . . . , πq, πq+1, . . . , πn), and suppose that we insert
the facility πp at the q-th position of Πp to obtain a permutation Πp

q . The new permutation Πp
q is

W.P. No. 2012-01-03 Page No. 6



IIMA • INDIA
Research and Publications

(π1, π2, . . . , πp−1, πp+1, . . . , πq, πp, πq+1, . . . , πn). Let TL be the permutation of facilities to the left
of πp in Πp

q , and TR be the permutation of facilities to the right of πp in the permutation Πp
q .

The increase %pq in cost when πp is inserted in the q-th position of Πp is given by

%pq =
∑
i∈TL

cipdip +
∑
j∈TR

cpjdpj + lp
∑
i∈TL

∑
j∈TR

cij .

If q = 1, then TL = ∅, and %p1 =
∑
j∈TR

cpjdpj .

So if an insertion neighbor Πp
q of a permutation Π is obtained by removing the facility πp from

Π and inserting it at the q-th position in the contracted permutation formed by the removal of the
facility πp, the reduction in cost ∆pq = z(Π)− z(Πp

q) is

∆pq = ψp − %pq
=
∑
j∈SL

cpjdpj +
∑
j∈SR

cpjdpj + lp
∑
i∈SL

∑
j∈SR

cij −∑
i∈TL

cipdip −
∑
j∈TR

cpjdpj − lp
∑
i∈TL

∑
j∈TR

cij . (6)

Of special interest are the cases when p = 1, q = 2 and when p = 2, q = 1. If p = 1 and q = 2, the
equation (6) reduces to

∆12 =
∑
j∈SR

c1jd1j −
∑
i∈TL

ci1di1 −
∑
j∈TR

c1jd1j − l1
∑
i∈TL

∑
j∈TR

cij ,

Since TL is a singleton in this case, the above expression can be simplified to

∆12 =
∑
j∈SR

c1jd1j − c21d21 −
∑
j∈TR

c1jd1j − l1
∑
j∈TR

c1j , (7)

which can be computed in O(n) time. Now, if p = 2 and q = 1 equation (6) reduces to

∆21 =
∑
j∈SL

cpjdpj +
∑
j∈SR

cpjdpj + l2
∑
i∈SL

∑
j∈SR

cij −
∑
j∈TR

cpjdpj .

Since SL is a singleton in this case, the above expression can be simplified to

∆21 = c21d21 +
∑
j∈SR

cpjdpj + l2
∑
j∈SR

c1j −
∑
j∈TR

cpjdpj . (8)

which can be computed in O(n) time.

Next, let πq+1 be the facility immediately to the right of facility πq in the permutation Π. We
now show that if the components of ∆pq are known then ∆p(q+1) can be computed in O(n) time.

If the facility πp is removed from the p-th position in the permutation Π and inserted at the
(q+ 1)-th position in Π to obtain an insertion neighbor Πp

q+1 of π, then the permutation of facilities
S′L to the left of πp in Π is identical to SL, the permutation of facilities S′R to the right of πp in
Π is identical to SR, the permutation T ′L of facilities to the left of πp in Πp

q+1 is TL appended with
the facility π(q+1) and, the permutation T ′R of facilities to the right of πp in Πp

q+1 is TR with facility
π(q+1) removed from the extreme left. The expression for ∆pq+1 = z(Π) − z(Πp

q+1) (with a form
similar to equation(6)) can be written as

∆p(q+1) = ψp − %pq+1

=
∑
j∈S′

L

cpjdpj +
∑
j∈S′

R

cpjdpj + lp
∑
i∈S′

L

∑
j∈S′

R

cij −
∑
i∈T ′

L

cipdip −
∑
j∈T ′

R

cpjdpj − lp
∑
i∈T ′

L

∑
j∈T ′

R

cij
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which can be further simplified to

∆p(q+1) =
∑
j∈SL

cpjdpj +
∑
j∈SR

cpjdpj + lp
∑
i∈SL

∑
j∈SR

cij −
∑
i∈TL

cipdip −
∑
j∈TR

cpjdpj − lp
∑
i∈TL

∑
j∈TR

cij

− lp
∑
j∈TR

c(q+1)j + lp
∑
i∈TL

ci(q+1) − c(q+1)pd(q+1)p + cp(q+1)dp(q+1) (9)

Now, given the values of various components that yield the value of ∆pq, the value of
∑
j∈SL

cpjdpj+∑
j∈SR

cpjdpj+ lp
∑
i∈SL

∑
j∈SR

cij−
∑
i∈TL

cipdip−
∑
j∈TR

cpjdpj− lp
∑
i∈TL

∑
j∈TR

cij can be com-
puted in constant time and the remaining expressions in right hand side of equation (9) can be
computed in O(n) time. Thus we can compute the value of ∆p(q+1) in O(n) time.

If p > q, the expression for ∆pq remains the same as in equation (6). While calculating the value
of ∆p(q+1) we observe that the permutation of facilities S′L to the left of πp in Π is identical to SL,
the permutation of facilities S′R to the right of πp in Π is identical to SR, the permutation T ′L of
facilities to the left of πp in Πp

q+1 is TL appended with the facility πq and, the permutation T ′R of
facilities to the right of πp in Πp

q+1 is TR with facility πq removed from the extreme left. Thus the
component expressions of ∆pq can be used in a similar way as explained earlier to compute ∆p(q+1)

in O(n) time.

Now, let πp+1 be the facility immediately to the right of facility πp in the permutation Π and
we want to compute the value of ∆(p+1)q. Let there be at least one facility between the facilities πp
and πq in Π. (If there is no such facility, then the expression of ∆(p+1)q is meaningless.) We show
that if the components of ∆pq are known then ∆(p+1)q can be computed in O(n) time.

If the facility π(p+1) is removed from the (p+ 1)-th position in the permutation Π and inserted

at the q-th position in Π(p+1) to obtain an insertion neighbor Π
(p+1)
q of π, then the permutation

of facilities S′L to the left of π(p+1) in Π is SL appended with the facility πp, the permutation
of facilities S′R to the right of π(p+1) in Π is SR with facility π(p+1) removed from the extreme

left, the permutation T ′L of facilities to the left of π(p+1) in Π
(p+1)
q is the permutation TL with

the facility π(p+1) replaced by the facility πp at the same position in the permutation and, the

permutation T ′R of facilities to the right of π(p+1) in Π
(p+1)
q is identical to TR. The expression for

∆(p+1)q = z(Π)− z(Πp
q+1) (with a form similar to equation(6)) can be written as

∆(p+1)q = ψp+1 − %p+1
q

=
∑
j∈S′

L

c(p+1)jd(p+1)j +
∑
j∈S′

R

c(p+1)jd(p+1)j + l(p+1)

∑
i∈S′

L

∑
j∈S′

R

cij

−
∑
i∈T ′

L

ci(p+1)di(p+1) −
∑
j∈T ′

R

c(p+1)jd(p+1)j − l(p+1)

∑
i∈T ′

L

∑
j∈T ′

R

cij

which can be further simplified to

∆(p+1)q =
∑
j∈S′

L

c(p+1)jd(p+1)j +
∑
j∈S′

R

c(p+1)jd(p+1)j −
∑
i∈T ′

L

ci(p+1)di(p+1) −
∑
j∈T ′

R

c(p+1)jd(p+1)j

+ l(p+1)

{ ∑
j∈SR

cpj −
∑
i∈SL

ci(p+1) − cp(p+1)

}
− l(p+1)

{ ∑
j∈TR

cpj −
∑
j∈TR

c(p+1)j

}
+ l(p+1)

∑
i∈SL

∑
j∈SR

cij − l(p+1)

∑
i∈TL

∑
j∈TR

cij (10)

Since the components of ∆pq are known, the value of
∑
i∈SL

∑
j∈SR

cij and
∑
i∈TL

∑
j∈TR

cij
can be computed in constant time and the remaining expressions on the right hand side of equation
(10) can be computed in O(n) time. Hence we can compute the value of ∆(p+1)q in O(n) time.
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If p > q and the component expressions of ∆pq are known then in calculating the value of ∆(p+1)q

it should be noted that the permutation of facilities S′L to the left of π(p+1) in Π is SL appended with
the facility πp, the permutation of facilities S′R to the right of π(p+1) in Π is SR with facility π(p+1)

removed from the extreme left, the permutation T ′R of facilities to the right of π(p+1) in Π
(p+1)
q is

the permutation TR with the facility π(p+1) replaced by the facility πp at the same position in the

permutation and, the permutation T ′L of facilities to the left of π(p+1) in Π
(p+1)
q is identical to TL.

Using these observations and the techinques presented earlier the value of ∆(p+1)q can be computed
in O(n) time.

Let Πp
q be an insertion neighbor of Π obtained by removing πp from the p-th position in Π and

inserting at the q-th position in Πp. Since z(Πp
q) = z(Π) −∆pq, we use the expressions for ∆pq to

compute the cost of the insertion neighbor Πp
q . Note that the values of ∆12 and ∆21 can be computed

in O(n) time using equations (7) and (8), and then by repeated applications of equations (9) and (10),
all the values of ∆pq can be computed inO(n) time for any value of p and q. Hence computing the cost
of any insertion neighbor of Π requires O(n) time, so that the search of the insertion neighborhood
of Π for the best insertion neighbor requires O(n3) time using our techniques presented above.

In order to test the performance of the neighborhood search processes described above, we imple-
mented each of 2-OPT-NBD-SEARCH and INSERT-NBD-SEARCH once using the näıve approach
and once using the techniques presented in this section. Table 1 shows the time required by the
implementations to perform neighborhood searches on problem instances with sizes varying from
60 to 160. The first column in the table describes the neighborhood structures that were used in
these experiments. The second column specifies the sizes of the problems considered. The third
and fourth columns report the times required by näıve implementations and implementations using
our speed up techniques to search the neighborhoods of 100 permutations of different problem sizes.
The last column reports the speed ups achieved by using our techniques. The speed up is calculated
as the ratio of the difference in time required by the näıve implementation and the implementation
using our speed up techniques to the time required by the näıve implementation and is expressed as
a percentage. The table clearly demonstrates the effectiveness of the speed-up techniques presented

Table 1: CPU times (in seconds) required to perform 100 neighborhood searches

Neighborhood Size Näıve Enhanced Speed up

2-Opt 60 2.8 0.2 92.9%
110 28.2 1.1 95.9%
160 129.6 3.5 97.3%

Insertion 60 5.7 0.6 89.5%
110 56.6 3.6 93.6%
160 259.7 11.2 95.7%

in this section. It also shows that the speed ups become more effective as problem sizes increase. In
the next section, we embed the neighborhood search techniques developed in this section with tabu
search algorithm.

3 Exhaustive neighborhood search based tabu search

A tabu search implementation to solve SRFLP instances has been described in Samarghandi and
Eshghi (2010). The implementation is impressive in that it achieves low cost permutations within
very short execution times. The broad structure of our tabu search implementations is similar to
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the implementation in Samarghandi and Eshghi (2010). Our implementations however differ from
Samarghandi and Eshghi’s implementation in the details.

Samarghandi and Eshghi’s tabu search implementation (called S&E from now onwards) is itself
different from conventional tabu search implementations for solving combinatorial problems and
adopts a population approach. It requires four parameters, the cardinality L of an adaptive memory
list, the number α which limits the number of futile attempts in the neighborhood search of a
particular permutation in a tabu search iteration, the tabu tenure θ, and the maximum number of
iterations k that the algorithm executes.

S&E starts by generating L permutations and storing them in an adaptive memory (AM) list
sorted in non-decreasing order of their costs, and creating an empty tabu list. It then performs k
tabu search iterations. Each S&E iteration starts by picking a solution at random from the AM
list. The probability of choosing a particular solution in the list depends on its position in the list,
with a solution higher in the list having a larger probability of it being chosen. The algorithm then
examines randomly generated 2-opt neighbors of the permutation till there are α futile attempts in
probing the neighborhood. A neighbor is marked tabu if the pair of facilities exchanged to create
that neighbor are present in the tabu list, and is marked non-tabu otherwise. S&E then chooses the
best non-tabu neighbor of the permutation, except when the best tabu neighbor is better than any
solution that the algorithm has encountered thus far, or is the only solution that has a cost lower
than that of the permutation chosen, in which case the best tabu neighbor is chosen, and added
to the AM list. The pair of neighbors whose positions were interchanged to obtain the neighbor
chosen by the algorithm are added to the tabu list, to remain there for the next θ iterations of the
algorithm. The AM list is then updated by removing the worst solution from the list and re-sorting
the AM list. This completes one iteration of the tabu search procedure.

Once S&E performs k iterations, it chooses the best solution in the AM list and subjects it
to a final intensification process. This intensification process is a restricted 2-opt local search on
the chosen permutation in which the facilities to be interchanged must be adjacent. The best
permutation obtained at the end of this intensification process is output by the algorithm. S&E
thus has four components; adaptive memory (AM) list creation, tabu search iteration, AM list and
tabu list update, and final intensification. We next describe the details of the differences between
S&E and our implementations in each of these four components.

AM list creation: S&E generates the AM list as follows. It uses Theorem 1 in Samarghandi and
Eshghi (2010) to generate the first permutation in the list. The (j + 1)-th permutation in the list
is created using the first permutation by interchanging the positions of the two facilities located j
positions to the left and the right of the middle-most facility in the first permutation.

For our implementations we experimented with two additional methods, METHOD I and METHOD
II, of generating the original permutations in the AM list. In METHOD I, we generate the first
permutation in the list using Theorem 1 in Samarghandi and Eshghi (2010). The other permutations
are generated as follows. We copy the first permutation as a template for the permutation. Then
for each i between 1 and n/2, with probability of 0.5 we interchange the facility located at the i-th
position with the facility located in the (n− i)-th position. In METHOD II, we again generate the
first permutation in the list using Theorem 1 in Samarghandi and Eshghi (2010). The other permu-
tations are generated as follows. We copy the first permutation as a template for the permutation.
We then generate two random integers r1 between 1 and n/2 and r2 between 1 and n/2− r1. Then
for each i between r1 and r1 + r2, we interchange the facility located at the i-th position with the
facility located in the (n− i)-th position.

Our initial experiments showed that the best solutions were obtained more often if we used
METHOD II. So we use METHOD II in our implementations to create the AM list.
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Tabu search iteration: Samarghandi and Eshghi point out in their paper that searching the
entire neighborhood of a permutation is time consuming and may not even be feasible, and hence
S&E restricts itself to searching a partial neighborhood of a permutation to obtain a good neighbor.

In our implementations, in every iteration of tabu search, we choose one of the permutations in the
AM list and search its neighborhood. The choice of permutation from the AM list is done in exactly
the same way as in S&E. Consider a permutation in the AM list, which is the i-th worst solution in
the list. The probability of selecting this permutation for neighborhood search is 2i/(|L| × |L+ 1|).
We search the entire neighborhood of the chosen permutation in our implementations, since the
speed up techniques described in Section 2 allows us to do so within reasonable time. We accept the
best non-tabu neighbor of the permutation in its entire neighborhood, unless we encounter a tabu
neighbor which is the best permutation encountered by the algorithm up to that stage. In that case
we accept the tabu neighbor as the best neighboring permutation. This process of accepting tabu
neighbors is called aspiration. Additionally, while S&E uses the 2-opt neighborhood, we create two
implementations, one using the 2-opt neighborhood and the other using the insertion neighborhood
in our tabu search algorithm.

AM list and tabu list update: At the end of a neighborhood search in S&E, the permutation
obtained at the end of the search is added to the AM list and the highest cost permutation is removed
from it. The pair of facilities which were interchanged to create the permutation are added to the
tabu list.

In S&E the choice of neighbors to examine is random. Hence, starting from the same permutation
Π, two neighborhood searches can yield two different permutations Π1 and Π2. Both Π1 and Π2

may be of high quality, and hence it makes sense to retain Π in the AM list after generating one
of these neighbors. Our implementations handle this process differently. We search neighborhoods
exhaustively, and hence if Π is used for neighborhood search, it will always return the same neighbor
(say Πbn), barring tabu restrictions. So it does not make sense to store both Π and Πbn in the AM
list. Hence in our implementation, if we choose Π for neighborhood search we replace it with its
best neighbor found by the exhaustive neighborhood search process.

As a result of our AM list update strategy, our implementations differ fundamentally from S&E.
They essentially become multi-start tabu search algorithms, where the number of iterations a partic-
ular start is allowed depends on the costs of the solutions it generates in the history of the algorithm.
In our implementations, the tabu searches starting from the different initial solutions are indepen-
dent, and so it does not make sense to maintain a single tabu list for all permutations in the AM
list. We therefore maintain separate tabu lists and iteration counters for each of the members of the
AM list. If a particular permutation is chosen from the AM list for neighborhood search in our im-
plementations, the tabu list for that member of the AM list is updated. The tabu list then restricts
the pair of facilities interchanged for the next θ iterations which start from the same permutation
or its descendants in the list.

Final intensification: Samarghandi and Eshghi use a restricted 2-opt neighborhood for their
algorithm. In our implementations we use a complete neighborhood search for the intensification
step.

We end this section with a template for our tabu search implementations.
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ALGORITHM TABUSEARCH-TEMPLATE

Input: A SRFLP instance of size n, the cardinality of the adaptive memory (AM) list i.e., L, the
Tabu tenure θ and total number of tabu search iterations i.e., MAXITER.

Output: The best neighbor of Π which has the minimum cost among all of Π’s neighbors encoun-
tered by the algorithm.

Code

1. begin
2. set nbr← UNDEFINED; nbrcost←∞;
3. sort the facilities in non-decreasing order of their lengths to obtain

a permutation Π using Theorem 1 in Samarghandi and Eshghi (2010);
4. use Π and our solution generation method METHOD II to obtain L

permutations and save them in the AM list;
5. sort the AM list in a non-decreasing order based on the costs of

the permutations generated in Step 4;
6. for iter from 1 to MAXITER do begin
7. probabilistically select a permutation Π1 from the AM list;
8. obtain the best tabu and non-tabu neighbor of Π1 by using an

exhaustive neighborhood search procedure;
9. select the best neighbor Πnbr

1 keeping a check on the aspiration
criterion and update the Tabu list using Tabu Tenure θ;

10. replace Π1 in the AM list by Πnbr
1 ;

11. sort the AM list in a non-decreasing order based on the costs;
12. end;
13. perform a neighborhood search on the best permutation in the AM list

to obtain the best neighbor Π∗; (* Final intensification *)
14. set nbrcost← cost of Π∗;
15. set nbr← Π∗;
16. output nbr and nbrcost;
17. end.

We create two implementations from TABUSEARCH-TEMPLATE. We call the first implemen-
tation TS-2OPT. In this implementation, the neighborhood searched used in Step 8 is the 2-opt
neighborhood. The tabu list for this implementation stores the pair of facilities that were inter-
changed to generate the neighbor returned by the neighborhood search process. We call the sec-
ond implementation TS-INSERT. In this implementation, the neighborhood searched in Step 8 of
TABUSEARCH-TEMPLATE is the insertion neighborhood. The tabu list for this implementation
stores the facility that was re-positioned to generate the neighbor returned by the neighborhood
search process.

In the next section we describe our computational experience with these implementations.

4 Computational experience

We implemented the TS-2OPT and TS-INSERT algorithms in C and compiled them using the gcc4

compiler. We run our experiments on a personal computer with Intel i-5 2500 3.30 GHz processor
with 4GB RAM running Ubuntu Linux version 11.10. Following the implementation of Samarghandi
and Eshghi (2010) for problems of size n, we set the size of the AM list to L = b2n/3c, the length
of tabu tenure θ = bn/3c, and the maximum number of tabu search iterations k = 50n.

We use large sized SRFLP instances available in the literature to benchmark the performance
of our implementations against other implementations available in the literature. The sizes of these
SRFLP instances vary from 60 to 100. The instances on which we run our implementation include
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(a) Anjos instances of sizes 60, 70, 75, and 80; and (b) QAP based sko instances of sizes 64, 72,
81, and 100. There are five problem instances for each problem size. Since both TS-2OPT and
TS-INSERT rely on random numbers to pick permutations from the AM list, for each instance
considered we run the implementations 100 times and report the best results from these runs.

Table 2 compares the performance of our implementations on these problem instances against
the results reported in the literature. The first and second columns in the table show the name of the
instance and its size. The third, fourth and fifth columns report the costs of the best permutations for
these instances obtained by Samarghandi and Eshghi (2010), Datta et al. (2011) and Hungerländer
and Rendl (2011) respectively. The last two columns report the costs of the best permutations for
these problems obtained by our two implementations. Anjos and Yen (2009) also reported results
from experiments with these instances; however we do not report their results in the table since these
have been subsequently superceded in the other studies. Notice that among the implementations
reported in the literature, the genetic algorithm in Datta et al. (2011) consistently either matches or
betters the best permutations obtained by tabu search implementation in Samarghandi and Eshghi
(2010). The SDP relaxation technique used in Hungerländer and Rendl (2011) occasionally betters
the best permutations in Datta et al. (2011), but sometimes outputs permutations that are worse
than both Samarghandi and Eshghi (2010) and Datta et al. (2011).

Table 2: Costs of best permutations for Anjos instances of sizes 60–80

Instance Size S&E DA&F H&R TS-2OPT TS-INSERT

Anjos-60-01 60 1477834.0 1477834.0 1477834.0 1477834.0 1477834.0
Anjos-60-02 60 841792.0 841792.0 841776.0 841790.0 841776.0
Anjos-60-03 60 648337.5 648337.5 648337.5 648337.5 648337.5
Anjos-60-04 60 398511.0 398468.0 398406.0 398406.0 398406.0
Anjos-60-05 60 318805.0 318805.0 318805.0 318805.0 318805.0

Anjos-70-01 70 1529197.0 1528621.0 1528560.0 1528604.0 1528537.0
Anjos-70-02 70 1441028.0 1441028.0 1441028.0 1441028.0 1441028.0
Anjos-70-03 70 1518993.5 1518993.5 1518993.5 1518993.5 1518993.5
Anjos-70-04 70 969130.0 968796.0 969150.0 968796.0 968796.0
Anjos-70-05 70 4218230.0 4218017.5 4218002.5 4218002.5 4218002.5

Anjos-75-01 75 2393483.5 2393456.5 2393600.5 2393483.5 2393456.5
Anjos-75-02 75 4321190.0 4321190.0 4322492.0 4321190.0 4321190.0
Anjos-75-03 75 1248551.0 1248537.0 1249251.0 1248423.0 1248423.0
Anjos-75-04 75 3942013.0 3941981.5 3941845.5 3941816.5 3941816.5
Anjos-75-05 75 1791408.0 1791408.0 1791469.0 1791408.0 1791408.0

Anjos-80-01 80 2069097.5 2069097.5 2070391.5 2069097.5 2069097.5
Anjos-80-02 80 1921177.0 1921177.0 1921202.0 1921136.0 1921136.0
Anjos-80-03 80 3251413.0 3251368.0 3251413.0 3251413.0 3251368.0
Anjos-80-04 80 3746515.0 3746515.0 3747829.0 3746515.0 3746515.0
Anjos-80-05 80 1589061.0 1588901.0 1590847.0 1588901.0 1588885.0

The TS-2OPT tabu search implementation matches the best permutations generated by the tabu
search implementation in Samarghandi and Eshghi (2010) in 11 of the 20 instances, and generates
better, i.e., lower cost permutations in the other 9 instances. Compared to the best known permuta-
tions in the literature, it generates better permutations for 3 of the 20 instances (marked in boldface
in column 6 of Table 2), reproduces the best permutation in 13, and produces worse permutations
in 4 of the instances. On average, this implementation required 8.6 CPU seconds per run.

The TS-INSERT tabu search implementation matches the best permutations generated by the
implementation of Samarghandi and Eshghi (2010) in 8 of the 20 instances and in the other 12
instances provides better permutations. It betters the best permutations known in the literature
in 5 of the 20 instances (marked in boldface in column 7 in Table 2). Of these five, it outputs
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permutations better than those output by TS-2OPT in two of the instances. In the remaining
15 instances, its output matches the best known permutations in the literature. On average, this
implementation required 18.8 CPU seconds per run.

The results presented in Table 2 indicate that TS-2OPT and TS-INSERT implementations output
better permutations than the implementation in Samarghandi and Eshghi (2010) at least for these
problems. Since both of them better the best permutations known in the literature for several of
the benchmark instances, they are competitive algorithms. Further, since TS-INSERT generates at
least as good a permutation as any other algorithm known in the literature for all the instances,
and generates better permutations than previously known for 5 out of the 20 instances, it is to be
preferred to TS-2OPT for generating good permutations for SRFLP instances.

We next check the consistency of the results that TS-2OPT and TS-INSERT output during
multiple runs on the same Anjos instance. For each implementation and for each instance, we keep
track of the costs of the best, i.e., lowest cost and the worst, i.e., highest cost permutations that it
outputs at the end of a run over the 100 runs, the first run in which the implementation outputs the
best permutation over the 100 runs, and the number of runs in which the implementation outputs
this permutation. These four values are reported in Table 3 under the labels “Best”, “Worst”,
“First” and “Times” respectively. The results in the table allow us to compare the TS-2OPT and

Table 3: Consistency of TS-2OPT and TS-INSERT on Anjos instances of sizes 60–80

TS-2OPT TS-INSERT
Instance Best First Times Worst Best First Times Worst
Anjos-60-01 1477834.0 2 68 1479234.0 1477834.0 1 99 1477840.0
Anjos-60-02 841790.0 13 4 841872.0 841776.0 1 48 841918.0
Anjos-60-03 648337.5 15 3 650699.5 648337.5 3 41 650484.5
Anjos-60-04 398406.0 16 2 399630.0 398406.0 1 19 401769.0
Anjos-60-05 318805.0 11 15 321891.0 318805.0 5 24 321214.0

Anjos-70-01 1528604.0 5 7 1531777.0 1528537.0 3 15 1528618.0
Anjos-70-02 1440128.0 2 31 1444804.0 1441028.0 1 65 1441515.0
Anjos-70-03 1518993.0 1 11 1525273.5 1518993.5 1 85 1519583.5
Anjos-70-04 968796.0 26 7 971409.0 968796.0 3 28 970062.0
Anjos-70-05 4218002.0 3 4 4220374.0 4218002.5 1 83 4218451.5

Anjos-75-01 2393456.5 43 1 2398581.5 2393456.5 6 34 2395644.5
Anjos-75-02 4321190.0 3 8 4323463.0 4321190.0 1 60 4322615.0
Anjos-75-03 1248607.0 57 1 1251596.0 1248423.0 1 30 1251900.0
Anjos-75-04 3941816.5 19 11 3947472.5 3941816.5 5 39 3950037.5
Anjos-75-05 1791408.0 55 1 1797945.0 1791408.0 1 55 1798053.0

Anjos-80-01 2069145.5 63 2 2072983.5 2069097.5 15 7 2071131.5
Anjos-80-02 1921136.0 70 2 1926642.0 1921136.0 1 99 1921196.0
Anjos-80-03 3251368.0 42 2 3264547.0 3251368.0 11 7 3269153.0
Anjos-80-04 3746515.0 25 4 3750294.0 3746515.0 1 79 3747798.0
Anjos-80-05 1588885.0 11 3 1589215.0 1588885.0 2 76 1589026.0

TS-INSERT implementations in more detail.

In 14 of the 20 instances, the difference between the costs of the best and worst permutations
is higher for the TS-2OPT implementation than the TS-INSERT implementation. In the other
6 instances the differences are identical. This shows that there is a higher chance of obtaining a
higher cost permutation in a particular run of TS-2OPT than in TS-INSERT. Also, TS-INSERT
always encounters the best permutation over all 100 runs much earlier (except in Anjos-70-03) and
more frequently than TS-2OPT. These observations, along with the observations on the costs of
permutations that TS-2OPT and TS-INSERT output at the end of 100 runs makes TS-INSERT
the favored implementation for solving large sized SRFLP instances. This is interesting, since the
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2-opt neighborhood has consistently been preferred over the insertion neighborhood in recent local
search based implementations to solve the SRFLP. Our experience from computational experiments
is that the insertion neighborhood is a better neighborhood to explore for the SRFLP, at least for
the Anjos instances.

Finally, we present the results from TS-2OPT and TS-INSERT on the sko instances. These
instances have not been used in the literature on solving SRFLP using local search. Computational
experiments on these instances using SDP based relaxations have been reported in Anjos and Yen
(2009) Hungerländer and Rendl (2011). Although the primary aim of SDP based relaxations is to
obtain good lower bounds, and not good feasible solutions, the results of Hungerländer and Rendl
(2011) presented in Table 2 show that the layouts they obtain are quite competitive for medium
sized SRFLP instances. Here too, we do not report results from Anjos and Yen (2009) since they
have been superceded in Hungerländer and Rendl (2011).

Table 4: Computational results for QAP based sko instances of sizes 64–100

Problem Size H&R TS-2OPT TS-INSERT

sko-64-01 64 97194.0 96915.0 96969.0
sko-64-02 64 634332.5 634563.5 634595.5
sko-64-03 64 414384.5 414327.5 414338.5
sko-64-04 64 298155.0 297332.0 297399.0
sko-64-05 64 502063.5 501922.5 501922.5

sko-72-01 72 139231.0 139195.0 139179.0
sko-72-02 72 715611.0 712011.0 712217.0
sko-72-03 72 1061762.5 1054110.5 1054110.5
sko-72-04 72 924019.5 920086.5 921268.5
sko-72-05 72 430288.5 428617.5 428248.5

sko-81-01 81 207063.0 205161.0 205145.0
sko-81-02 81 526157.5 521399.5 521402.5
sko-81-03 81 979281.0 971169.0 970912.0
sko-81-04 81 2035569.0 2032361.0 2032143.0
sko-81-05 81 1311166.0 1304266.0 1302833.0

sko-100-01 100 380562.0 378626.0 378634.0
sko-100-02 100 2084924.5 2076231.5 2076023.5
sko-100-03 100 16216076.5 16159760.0 16149000.0
sko-100-04 100 3263493.0 3238812.0 3233362.0
sko-100-05 100 1040929.5 1033338.5 1033421.5

The results in Table 4 show that TS-2OPT and TS-INSERT generate better results than the
method used in Hungerländer and Rendl (2011). The costs of permutations output by both the
implementations are lower than the costs of permutations reported in Hungerländer and Rendl
(2011) in 19 of the 20 instances. The best solutions obtained for these 19 instances are marked
in boldface in Table 4, However these results are interesting in that they do not demonstrate the
clear superiority of the TS-INSERT implementation over the TS-2OPT implementation. For the
smaller instances of sizes 64 and 72, the TS-2OPT generally outputs better permutations than TS-
INSERT. However, as problem sizes increase, TS-INSERT starts to output better permutations in
more instances than TS-2OPT.

The tests for consistency of the output of TS-2OPT and TS-INSERT for sko instances is identical
to that for the Anjos instances. The results of these tests are shown in Table 5. From this table we
see that in contrast to the Anjos instances, TS-2OPT encounters the permutation that it outputs
faster than TS-INSERT for 8 of the 20 instances. In 4 of these instances, it also outputs a better
permutation. However, 3 of these 4 instances are of relatively smaller sizes. Another interesting point
to note is that the frequencies with which the two implementations encounter the permutations they
output at the end of 100 runs are much smaller for these instances than for the Anjos instances,
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Table 5: Consistency of TS-2OPT and TS-INSERT on sko instances of sizes 64–100

TS-2OPT TS-INSERT
Instance Best First Times Worst Best First Times Worst
sko-64-01 96915.0 2 4 98243.0 96969.0 13 4 97833.0
sko-64-02 634563.5 11 1 641434.5 634595.5 42 1 635739.5
sko-64-03 414327.5 29 2 417157.0 414338.5 5 8 416555.5
sko-64-04 297332.0 74 1 299164.0 297399.0 29 1 299921.0
sko-64-05 501922.5 28 2 507073.5 501922.5 10 6 503509.5

sko-72-01 139195.0 29 1 139916.0 139179.0 45 1 139740.0
sko-72-02 712011.0 28 1 715911.0 712217.0 4 25 714987.0
sko-72-03 1054110.5 15 1 1057721.5 1054110.5 36 4 1057234.5
sko-72-04 920086.5 53 2 923771.5 921268.5 22 3 927308.5
sko-72-05 428617.5 35 1 431201.5 428248.5 46 1 430103.5

sko-81-01 205161.0 97 1 206974.0 205145.0 35 1 206486.0
sko-81-02 521399.5 44 2 525414.5 521402.5 52 4 524994.5
sko-81-03 971169.0 37 1 974278.0 970912.0 28 2 973443.0
sko-81-04 2032361.0 12 1 2037886.0 2032143.0 9 3 2034954.0
sko-81-05 1304266.0 39 1 1310419.0 1302833.0 17 2 1311433.0

sko-100-01 378626.0 62 1 380456.0 378634.0 32 1 380179.0
sko-100-02 2076231.5 57 1 2086077.5 2076023.5 7 1 2080712.5
sko-100-03 16159760.0 74 1 16253166.0 16149000.0 15 3 16251524.0
sko-100-04 3238812.0 20 1 3249066.0 3233362.0 84 1 3251315.0
sko-100-05 1033338.5 26 1 1036083.5 1033421.5 27 3 1035178.5

which leads us to believe that these instances are harder for TS-2OPT and TS-INSERT than the
Anjos instances. For sko instances therefore, we conclude that TS-2OPT is a better implementation
than TS-INSERT for smaller sized instances, while TS-INSERT is superior for larger sized instances.

5 Summary and discussion

The single row facility layout problem (SRFLP) is a NP-hard problem and current exact algorithms
have not been able to solve instances of this problem with more than 42 facilities. Hence for large
sized SRFLP instances, research has focused on metaheuristics which can produce near optimal
solutions in reasonable time. In this paper we develop two tabu search implementations for the
SRFLP which are loosely based on the implementation in Samarghandi and Eshghi (2010). Our
implementations search the 2-opt and insertion neighborhoods of permutations depicting solutions
to a SRFLP instance. They search the neighborhoods exhaustively in contrast to existing algorithms
which only sample permutations from the neighborhood in large instances.

In order to keep computational times for our implementations within acceptable limits, in Sec-
tion 2 we present techniques to speed up the search over the 2-opt and insertion neighborhoods
by between 10 and 20 times. We then use these techniques in Section 3 to create tabu search
implementations that are superior to existing tabu search implementations.

In Section 4 we present computational results of our implementations for 40 benchmark SRFLP
instances studied in the literature. Our implementations generate permutations that are better than
the best known in the literature for 24 of the 40 benchmark instances for this problem. In this section
we also make the surprising observation that the insertion neighborhood which has been overlooked
in recent tabu search implementations in favor of the 2-opt neighborhood is a better neighborhood
to search for large SRFLP instances.
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Appendix

We provide details of the permutations for the instances in which we have improved the best per-
mutation known in the literature. Note that the facilities are numbered from 0 through n− 1 where
n is the problem size.

Instance Size Cost Permutation

Anjos-70-01 70 1528537.0 52 46 64 1 39 27 61 21 14 7 31 8 62 30 68 50 67 0 3 15 63 60
40 37 55 66 69 43 9 25 13 18 32 41 48 4 29 35 22 54 59 12 17 20
23 26 53 10 11 57 5 58 51 6 19 65 2 33 44 45 24 42 47 16 28 56 38 34 36 49

Anjos-75-03 75 1248423.0 46 68 41 9 18 32 14 16 42 50 40 45 28 22 67 25 59 3 38 73 63 60 55 19
35 11 26 12 47 70 10 64 56 4 66 44 20 27 34 23 8 74 57 72 39 6 31 5
48 51 58 33 2 15 61 30 29 43 36 1 37 65 69 17 71 7 24 54 52 62 13 0 53 49 21

Anjos-75-04 75 3941816.0 35 59 4 13 14 49 6 74 9 41 61 36 7 69 29 46 21 56 19 40 28 39 32 38 45
11 2 63 34 64 15 51 27 52 43 72 33 17 23 44 12 31 0 66 1 18 54 47 55
62 65 25 22 57 58 53 42 70 3 30 10 73 60 50 5 24 26 67 68 37 71 48 8 16 20

Anjos-80-02 80 1921136.0 21 56 17 23 9 16 54 4 57 13 45 14 55 31 73 46 11 53 40 28 15 32 76 0 71
26 27 22 24 34 20 5 66 2 52 19 3 37 38 35 8 39 33 7 64 1 49 43 61 41 74
12 25 67 18 58 75 72 29 69 6 78 36 70 30 51 63 77 59 79 50 68 62 48 42
47 44 60 65 10
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Instance Size Cost Permutation

Anjos-80-05 80 1588885.0 24 16 47 40 57 59 68 77 12 48 41 71 11 28 15 50 13 63 25 27 23 14 55 4
56 49 45 22 62 39 44 19 79 3 17 76 38 31 2 58 64 54 65 70 34 52 42 5 43
53 74 78 33 29 61 35 32 75 8 18 30 7 69 0 21 10 73 36 9 67 66 20 72 60
26 37 51 46 6 1

sko-64-01 64 96915.0 14 35 11 26 60 40 33 2 45 31 53 10 27 42 29 59 39 47 4 38 17 5 46 50 37
54 19 61 28 13 51 22 23 21 15 6 58 20 3 48 12 63 44 32 55 0 43 16 34 36
49 57 25 7 18 1 62 24 41 52 9 8 56 30

sko-64-03 64 414327.0 14 11 60 8 55 40 41 48 12 28 3 51 21 22 15 45 35 50 63 54 20 26 30 2 43
13 57 56 23 52 9 24 62 42 17 46 34 16 37 33 29 44 0 38 4 59 25 27 39 10
53 1 7 32 36 18 31 47 19 6 49 58 61 5

sko-64-04 64 297332.0 30 59 35 41 42 26 62 19 45 50 2 5 51 60 17 39 13 47 27 8 21 12 3 11 23
61 22 15 48 20 28 54 4 34 57 63 43 46 38 44 6 0 36 33 25 49 37 1 16 24
55 32 9 18 7 29 40 31 53 10 52 56 58 14

sko-64-05 64 501922.5 61 58 14 24 52 49 25 16 18 1 43 0 36 56 6 7 31 37 33 32 38 10 53 40 44
34 20 55 29 23 47 59 27 39 22 2 26 3 30 46 50 42 4 5 15 41 54 57 12 63
9 13 51 11 60 45 19 48 62 28 21 17 8 35

sko-72-01 72 139179.0 11 52 30 63 59 17 34 55 26 69 9 7 29 16 66 20 13 21 64 46 25 27 1
51 22 28 0 31 6 60 15 38 58 48 37 45 12 32 49 62 36 8 5 70 43 54
56 35 50 67 41 39 47 40 14 18 57 19 65 42 3 61 71 68 24 4 10 44 53 23 33 2

sko-72-02 72 712011.0 11 17 55 13 22 58 12 31 36 62 42 2 52 64 46 51 69 9 27 34 21 59
45 37 1 26 29 6 48 20 30 49 7 28 50 41 47 24 32 38 66 23 54 43 25
56 67 68 35 14 60 71 15 53 5 65 3 18 0 16 70 39 8 19 63 61 10 44 40 57 4 33

sko-72-03 72 1054110.5 30 13 55 59 17 38 16 66 8 27 25 29 9 69 58 60 61 20 7 49 45 12 62
64 21 63 22 47 32 53 26 15 34 46 52 5 42 36 11 24 68 51 41 23 67
18 65 31 10 44 39 56 43 28 35 3 0 33 70 19 54 40 50 37 48 1 2 4 14 71 6 57

sko-72-04 72 920086.5 11 2 55 63 23 71 44 49 35 40 19 10 3 42 70 33 62 14 60 61 36 65
57 68 24 5 18 8 50 67 4 41 39 47 53 56 43 54 15 66 38 28 52 17 30
37 59 45 22 48 34 21 32 13 64 69 12 9 29 6 26 27 20 1 51 46 25 0 31 58 16 7

sko-72-05 72 428248.5 50 28 33 39 70 8 43 22 0 6 32 37 54 15 40 57 58 45 64 5 18 14 19
13 48 65 67 60 35 3 56 4 44 68 24 12 23 10 42 25 41 51 31 46 61
62 21 49 36 20 11 1 34 71 16 30 66 63 59 38 47 29 27 9 69 53 26 17 55 2 52 7

sko-81-01 81 205145.0 7 46 59 75 15 52 53 33 39 63 45 27 9 28 71 70 76 79 11 78 74 62 36 50
23 58 42 72 17 19 57 26 4 0 61 12 67 31 56 6 51 44 77 43 1 10 41 38 69
34 25 21 54 35 30 48 37 18 14 13 80 20 40 5 3 16 22 68 32 64 66 55 47 8
49 24 29 60 2 73 65

sko-81-02 81 521399.5 7 27 76 59 63 56 75 15 46 71 53 61 6 62 26 9 38 19 17 23 42 52 74 70 39
58 72 36 67 12 45 50 77 0 57 4 78 28 79 31 11 44 1 43 18 30 25 33 8 10
3 41 64 29 35 66 22 49 40 69 73 65 16 68 32 2 20 60 14 5 55 47 51 13 80
34 24 48 37 54 21

sko-81-03 81 970912.5 29 34 38 73 78 28 54 10 27 71 47 5 4 8 30 14 13 1 60 24 2 69 37 32 11
18 79 80 25 35 65 40 64 49 16 22 41 66 3 55 45 31 70 68 51 44 0 7 74 57
72 21 48 6 42 77 23 61 26 20 56 67 63 17 12 50 36 19 62 58 59 75 39 33
9 53 43 15 52 76 46
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sko-81-04 81 2032143.0 79 70 78 21 28 4 40 6 58 42 15 37 67 56 75 76 23 52 12 62 46 30 72 63
74 57 61 26 51 44 0 54 35 34 17 9 53 41 77 55 36 66 3 59 48 31 33 39 71
38 45 32 47 69 14 16 18 10 8 43 11 27 5 20 60 29 1 49 19 80 13 2 50 22
68 64 25 24 7 73 65

sko-81-05 81 1302833.0 39 33 63 21 3 78 53 28 37 46 74 64 29 79 34 25 41 59 42 18 17 11 62 36
75 22 32 72 68 76 58 50 23 66 57 19 24 9 70 48 52 13 40 27 80 31 10 45
0 49 16 20 43 15 12 30 56 69 77 38 61 6 44 1 26 67 60 71 54 2 4 8 7 14 5
35 51 47 55 73 65

sko-100-01 100 378626.0 2 43 34 20 16 28 6 75 52 44 35 11 49 40 47 60 22 48 1 69 81 91 37 98 19
13 45 80 63 71 50 89 25 46 99 68 65 39 42 93 84 66 29 95 3 7 67 97 51 85
18 55 88 72 58 41 86 61 21 8 83 15 92 30 87 31 76 33 74 27 14 5 62 56
53 73 54 23 79 26 4 12 10 59 24 94 9 57 0 96 90 78 38 32 82 70 36 17 77 64

sko-100-02 100 2076023.5 32 28 16 98 2 52 11 60 76 40 35 75 47 49 93 37 71 6 25 39 67 7 80 42 13
58 99 69 68 19 45 34 66 44 91 48 50 1 20 51 97 46 65 89 43 85 18 0 81 22
3 55 54 30 27 14 88 15 79 5 56 36 73 86 33 21 78 83 74 12 82 70 62 53
61 95 29 84 8 63 59 94 10 31 24 87 72 17 92 9 64 41 23 38 4 26 57 96 90 77

sko-100-03 100 161490000.0 2 57 27 7 32 59 75 44 48 52 91 39 60 99 46 40 69 68 42 1 89 65 67 86 85
18 71 37 35 47 28 50 14 49 58 63 6 22 45 16 51 66 97 25 93 41 21 80 33
76 31 87 19 5 56 78 83 17 0 24 73 54 3 9 94 55 92 11 95 98 84 29 72 64
61 8 13 15 10 74 82 12 26 62 30 90 81 70 36 4 20 53 79 23 88 38 34 96 77 43

sko-100-04 100 3233362.0 6 2 5 83 44 57 75 98 1 16 11 22 28 43 94 63 33 86 40 13 72 46 29 19 39 9
50 35 69 27 65 71 52 34 68 81 25 45 89 99 37 47 91 60 49 80 76 58 90 56
36 61 84 62 77 54 12 10 3 64 95 14 55 88 0 53 30 73 18 85 66 59 23 79
74 26 20 42 32 21 87 15 8 82 97 7 67 51 93 92 17 96 4 31 24 70 78 38 41 48

sko-100-05 100 1033338.5 2 43 34 20 16 28 6 75 52 44 35 11 49 40 47 60 22 48 1 69 81 91 37 98 19
13 45 80 63 71 50 89 25 46 99 68 65 39 42 93 84 66 29 95 3 7 67 97 51 85
18 55 88 72 58 41 86 61 21 8 83 15 92 30 87 31 76 33 74 27 14 5 62 56
53 73 54 23 79 26 4 12 10 59 24 94 9 57 0 96 90 78 38 32 82 70 36 17 77 64
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