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The Effect of Transport Policies on Car Use:

Theory and Evidence from Latin American Cities

Francisco Gallego, Juan-Pablo Montero and Christian Salas∗

October 14, 2011

Abstract

In an effort to reduce air pollution and congestion, Latin American cities have

experimented with different policies to persuade drivers to give up their cars in

favor of public transport. Two notable examples are the driving restriction pro-

gram introduced in Mexico-City in November of 1989 –Hoy-No-Circula (HNC)–

and the public transport reform carried out in Santiago in February of 2007 –

Transantiago (TS). We develop a simple model of car use and ownership, and show

that policies that may appear effective in the short run can be highly detrimental in

the long run, i.e., after households have adjusted their stock of vehicles. Based on

hourly concentration records of carbon monoxide, which comes primarily from ve-

hicles exhaust, we find that household’s responses to both HNC and TS have been

remarkably similar and consistent with the above: an expected short-run response

followed by a rapid (before 11 months) increase in the stock of vehicles.

1 Introduction

Air pollution and congestion remain serious problems in many cities around the world,

particularly in emerging economies because of the steady increase in car use. Latin Amer-

ican cities have experimented with different policies in an effort to contain such trend.

∗Gallego (fgallego@uc.cl) and Montero (jmontero@uc.cl) are with the Department of Economics of the
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González, Enrique Ide, and Andrés Osorio for excellent research assistance; Camila Correa and Francisco

Muñoz for data collection; and El Mercurio for access to data. Gallego also thanks financial support
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In November of 1989, for example, authorities in Mexico City introduced a program,

Hoy-No-Circula (HNC), that restricted drivers from using their vehicles one weekday per

week. More recently, in February of 2007, authorities in the city of Santiago-Chile em-

barked in a city-wide transportation reform, Transantiago (TS), to improve and increase

the use of public transport. As shown in Table 1.1, other major efforts in Latin America

are also of the above type, either driving restrictions or reforms in public transportation.

There is quite a bit of controversy on the effectiveness of these type of policies in

persuading drivers to give up their cars in favor of public transport, and hence, in reducing

congestion and pollution (e.g., EIU, 2010). The problem with evaluating these policies is

that it is hard to construct a counterfactual against which the performance of the policy

can be contrasted upon. Transportation systems are remarkably complex and dynamic

(Small and Verhoef, 2007), which makes any evaluation even more difficult because we

are often not much interested in the immediate or short-run effect of the policy but in

its long-run effect, i.e., whether and how fast households adjust their stock of vehicles.1

This paper is a theoretical and empirical attempt at evaluating both of these effects.

We develop a theoretical model that distinguishes short from long-run impacts of

transportation policies that can take different forms. In constructing the model we par-

tially borrow from the bundling literature (e.g., McAffee et al, 1989; Armstrong and

Vickers, 2010), so as to capture in a simple way the essential elements of a household’s

decision problem which are the allocation of existing vehicle capacity, if any, to com-

peting uses (peak vs off-peak hours) and how that capacity is adjusted in response to a

policy shock. Households are both horizontally and vertically differentiated: they differ

in their preferences for transportation modes –cars vs buses– and in the amount of

travel.2 Some households will find it optimal to purchase the car-bundle (i.e., use the

car for both peak and off-peak hours), others to rely exclusively on public transporta-

tion (bus-bundle), yet others to "two-stop shop" (e.g., car for peak travel and buses for

off-peak travel).

The model illustrates how uninformative the short-run impact of a policy can be.

For example, a driving restriction policy, which the model captures with a reduction in

vehicle capacity, has an unambiguous short-run impact (i.e., before any household has

1In this paper, short-run and immediate are used interchangeably and long-run is the time it takes

(most) agents to adjust their stock of vehicles as a response to a policy shock. There can be longer-run

effects (e.g., inter and intra city migration of people and commercial activity) but we do not have the

data to quantify them; neither our empirical methodology is well suited to identify effects that are too

far away from the policy shock. Besides, these effects are likely to be minor here given the unique

characteristics of Mexico-City and Santiago and the fact that both policies, HNC and TS, were applied

city wide. Duranton and Turner (2011), however, find that these longer-run effects are important in

explaining the increase in vehicle travel after an expansion of interstate highways in the US.
2Note that cars refer to private transportation more generally (e.g., passenger cars, motorcycles, etc)

and buses to any kind of public transportation including the subway.
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adjusted its stock of vehicles), at least qualitatively: a reduction in car trips during both

peak and off-peak hours. Depending on parameter values (e.g., price of cars), the long-

run impact of the policy can go either way, however. If cars are relatively expensive, the

reduction in car trips can remain in the long-run or even extend if enough households

find it optimal to "return" their cars. Conversely, if cars are less expensive, the policy

can result in an increase in the number of vehicles in the long-run.

Similar arguments apply to a public transportation reform, which the model captures

with a change in the variable cost of using public vis-à-vis private transportation. Re-

gardless of the direction of the relative price change, its short-run effect on car use is

likely to be small and hard to detect empirically.3 The long-run effect, however, can be

shown to be substantial in either direction. The model also shows that the effect that a

policy intervention may have on car use can vary widely depending on the hours of the

day and days of the week; thereby, the importance of estimating these effects separately.

We do so not only for theoretical reasons but also for empirical ones. As we explain

below, some of our estimates are obtained from just looking at changes in vehicle use

during peak hours.

With these theoretical insights, we study the impact on car use of the two policies

mentioned above: the driving restriction in Mexico-City (HNC) and the public trans-

portation reform in Santiago (TS). We look at these policies for two reasons. These are

policies of different nature and implemented in different cities, almost 18 years apart,

which makes it interesting to contrast the way households responded to them. Secondly,

they amount to one-time drastic interventions like no other.

HNC, as implemented in 1989, affected almost all drivers in a permanent way –

and according to several sources (e.g., Eskeland and Feyzioglu, 1997), compliance with

the program was near universal. In contrast, most other driving restrictions presented

in Table 1.1 have affected only a fraction of drivers (e.g., those using older cars) and

under special circumstances (e.g., days of unusually high pollution).4 TS, on other hand,

consisted of a complete transformation of the public transportation system of an entire

city at once (Muñoz et al., 2009). Other public transportation reforms like Transmilenio

in Bogotá have been more limited in scope and introduced gradually. TS involved,

among other things, a significant and sudden reduction in the number of buses and a

radical change in the design and number of routes. Unfortunately, and for reasons well

3Litman (2004) argues that cross elasticities between public and private transportation are quite low

in the short-run (0.05). Furthermore, it is highly likely that most of the car capacity is already in use.

According to the Encuesta Origen-Destino (Origin-Destination Survey) of 2006 for the city of Santiago,

EOD-2006, most passenger cars in the city (799,811) were already in use to cover an equivalent number

of morning trips (706,518).
4The driving restrictions in Medellín and Quito also appear quite comprehensive (e.g., Cantillo and

Ortuzar, 2011), but there is limited data to study them as we do here.
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discussed in Briones (2009) and Muñoz et al. (2009), TS was plagued with design and

operation problems that brought the city’s public transport near collapse right after

implementation and that for the most part have remained even until today. According

to different statistics, the result has been a significant and permanent increase in the cost

of using public transport.5

Our empirical evaluations are mainly based on hourly observations of concentration

of carbon monoxide (CO), which are recorded by a network of several monitoring stations

–15 in Mexico-City and 7 in Santiago– distributed over the two cities (stations also

keep records of other pollutants and weather variables). CO is found to be a good

proxy for vehicle use, particularly at peak hours, compared to alternative candidates

like hourly records of traffic flows and of other pollutants. Mobile sources, and light

vehicles in particular, are by far the main emitters of CO –97% and 94%, respectively,

at the time HNC and TS were implemented.6 We compare CO levels before and after

policy implementation for different hours of the day and days of the week. In order to

control for seasonal variation and any phenomena unrelated to the policy, we employ

several control variables including (hour, day, and month) fixed effects, linear trends,

and proxies for economic activity and meteorological and atmospheric conditions. These

pollution observations are available for several years in some of the cities where pollution

is more acute, which makes its use attractive for policy evaluation. Davis (2008) and

Chen and Whalley (2011) are two good recent examples of the use of this high-frequency

data.7

Empirical results for HNC show statistically significant reductions of CO in the short

run of 11% and 6% for peak and off-peak hours, respectively. This short-run result is in

line with the perception of high compliance with the program. For the long run we find

an increase of 13% during peak hours and of 11% during of off-peak hours. Estimates

for weekends show no reduction in the short-run, as expected, and a significant increase

in the long run of 20%.8 In all three estimations, the long-run impact of the policy is

reached about the same time: 10 to 11 months after implementation. As for TS, we

can only report results for peak hours.9 We find no impact on CO in the short run

5The Economist (Feb 7th, 2008) referred to TS as "...a model of how not to reform public transport."

In the next section we provide more details on both policies.
6Further justification for the use of CO is discussed in section 4.1.
7Davis (2008) explores the effect of HNC on various pollutants and so do Chen and Whalley (2011)

in the case of an investment in public transportation in Taipei, Taiwan. They specifically focus, with

methods different than ours, on the impact of the policy right after implementation.
8Note that this 20% increase comes close to the 24% net increase at peak hours (from -11% to +13%)

and the 17% increase at off-peak hours. These net increases are all statistically significant at 1%.
9Off-peak and weekend results were highly sensitive to small changes in specification and inconsistent

with theoretical predictions. This was partly because weekend and off-peak CO levels are quite low

–much lower than the 1989 levels observed in Mexico-City.
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and a 33% increase in the long run. This long-run level is reached 9 to 10 months after

implementation.

These CO results show that households’ response to both HNC and TS have been

remarkably similar: an expected immediate or short-run impact –sizeable reduction in

car use in HNC and almost no change in the case of TS– followed by a rapid increase in

the stock of vehicles.10 These disappointing CO results11 are consistent with additional

evidence coming from other data sources including gasoline consumption, car registrations

and sales and prices of taxi licenses (medallions).12 Furthermore, the ample magnitude

of the CO effects may suggest that a large fraction of households were nevertheless able

to accommodate, at a reasonable cost, to policy shocks that did not work as intended.

With the help of the model we show otherwise, that only a few did.

We also exploit income variation within cities and CO records from individual moni-

toring stations distantly located to test whether the response to these transport policies

depends on income (ex-ante car use) in a way that is consistent with the model. Look-

ing at these more disaggregate responses not only constitutes an additional robustness

check of our empirical strategy but it can also reveal important heterogeneities (in costs

and benefits) that may prove relevant for policy evaluation.13 We find HNC to have

its largest impact in middle-income neighborhoods, where households were more likely

to buy a second car, and lowest in high-income neighborhoods where households had

already sufficient car capacity to cope with the driving restriction. Results for TS follow

the predicted pattern as well. We find the short-term impact to be negligible in all parts

of the city and the long-term impact to be decreasing with income.14

A main implication from these theoretical and empirical results is that policies that

may appear effective in the short-run can be highly detrimental in the long run; thereby,

the importance of understanding when and the extent to which households adjust their

stock of vehicles and how fast. Both policy experiences confirm that the adjustment

10Interestingly, the speed at which the stock of vehicles has adjusted in both of these experiences is

faster than that suggested by the earlier literature on consumption of durable goods (e.g., Caballero,

1990) but closer to the more recent literature (e.g., Chah et al., 1995; Gallego et al.,2001) that finds that

over 90% of the adjustment to a demand/supply shock is reached within the first year of the shock.
11We are certainly not the first ones in documenting that these programs have proven ineffective in

getting people off their cars –Eskeland and Feyzioglu (1997), Molina and Molina (2002) and Davis

(2008) have done so for HNC and so have Muñoz et al (2009) and Yáñez et al (2010) for TS– but we

are the first ones in characterizing and quantifying their long-run effects and the underlying adjustment

process.
12On this latter, our econometric results and Lagos’ (2003) model suggest that the demand for taxicab

rides in Santiago has at least doubled because of TS. Still, taxi rides consituted less than 1% of all trips

before TS (EOD-2006).
13Although we do not do it here, accounting for differential effects may be particularly relevant for

quantifying health costs associated to non-uniformly mixed pollutants, like CO, in large cities. And

these costs that can be substantial as reported elsewhere (e.g., Currie and Neidell, 2005).
14These income effects are also seen, at least qualitatively, in the traffic flow data.
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process is quite fast –adjustment that for most part is irreversible– which leaves little

room for ex-post corrections. This calls for nothing but more careful ex-ante policy design,

including the combination of instruments and a serious consideration of market-based

instruments such as road pricing and pollution taxes (e.g., Feng et al., 2005; Fullerton

and Gan, 2005) that so far has received none in the region.15

The rest of the paper is organized as follows. Section 2 describes the two transport

policies in detail. The theoretical model is presented in Section 3. Empirical results

based on CO records are in Section 4. Additional empirical exercises using alternative

data sources are in Section 5. Discussion of results including estimations of the costs

inflicted by these policies are in Section 6. Concluding remarks are in Section 7.

2 Transport policies in Mexico-City and Santiago

HNC was established on November 20 of 1989, as a response to record levels of air pol-

lution and congestion in Mexico-City (Molina and Molina, 2002). The program banned

every vehicle—except taxis, buses, ambulances, fire trucks and police cars—from driving

one weekday per week, from 5am to 10pm, based on the last digit of its license plate.

The program was implemented all at once and the low cost of detecting non-compliers,

the heavy fines, and high police control resulted in near universal compliance (Eskeland

and Feyzioglu, 1997; and Davis, 2008). The program did not experience any relevant

changes for the next two years.16

Had HNC being effective in making people substitute away from the car, one would

expect to see some of it reflected in a reduction in CO concentrations. Figure 2.1 plots

average hourly CO concentration levels for the period 1987-1991, which is the 4-year

(symmetric) window we use in our empirical estimation. The vertical line indicates the

exact moment HNC was implemented. Dots are average hourly concentration levels of

CO for all hours in our sample and the continuous line is the weekly average. A quick look

at the plot shows no clear indication of a decrease or stabilization in CO concentrations;

if anything, it shows an increase in both the weekly average and the lower bound of the

range of hourly concentrations.

15Salient market-based transport policies are the London’s congestion charge (e.g., Leape, 2006) and

the Singapore’s market for tradeable car quotas (e.g., Koh, 2004). The political economy of why Latin

America has stayed away from these or similar policies (e.g., fuel taxes aimed at correcting pollution

externalities) is beyond the scope of the paper but it is nevertheless an interesting area for more research.

Caffera (2011) touches on the issue but in the specific context of pollution control from industrial sources.
16The first relevant change following the implementation of HNC came almost two years later in

October of 1991 when the existing ban to public transportation (introduced in January of 1991) was

extended from Saturdays to weekdays from 10 am to 9 pm in an alternating manner similar to that of

cars. Later, in 1992, cars using natural or liquefied gas were exempt from HNC. For more details on

these policy changes see Ide and Lizana (2011).
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Nearly 18 years later, on February 10 of 2007, Chile’s government implemented TS,

with a similar motivation than HNC, that of persuading drivers to give up their cars, but

with a different instrument: improving the quality of public transport. The old public

transportation system was regarded as highly polluting, unsafe, and inefficient both in

terms of travel time and cost (e.g., Briones, 2009; Muñoz et al, 2009).17 TS was intended

to remedy these problems at once and for the entire city. It involved a significant and

sudden reduction in the number of buses, from roughly 7500 to 5500,18 and a radical

(and centrally-planned) change in the design and number of routes more in line with a

hub-and-spoke network where the existing subway would play the role of the hub.

While the original design of TS was expected to deliver significant reductions in

congestion and pollution from fewer cars on the street,19 its actual implementation has

been recognized by many as a major policy failure (e.g., Briones, 2009). Table 2.1

provides numbers illustrating the extent of the intervention. Commuting time increased,

on average, from 77 to about 90 minutes (both ways), mainly because of the increase in

the average travel time of public transport that went up by about 30% (from 102 to 133

minutes). In contrast, travel time of cars and taxis does not seem to have been affected

nearly as much.20 Unlike HNC, TS suffered from modifications right from the start but

that for most part took place within 12 months of implementation when the number of

buses stabilized at its current level (see also the last two columns of Table 2.1).21 Yet,

public opinion and quality indicators suggest that the level of service never returned to

pre-TS levels at least during the period of our estimation.22

This deterioration in the quality of service should have resulted in a switch towards

17Most bus routes passed through the central business district connecting terminal points on the

pheriphery, with average length of more than 60 kms (counting both directions), so most passangers

could travel almost anywhere in the city without transfers. Under TS, passangers are expected to

transfer a few times before completing their journeys (Muñoz et al., 2009).
18See Briones (2009) for more details. More importantly for our analysis, the share of public trans-

portation on CO emissions is only 3% (CONAMA, 2004), so such a reduction in the number of buses has

virtually no effect on CO concentrations. Likewise, any changes in CO emissions from industrial boilers

and power-plants would go unnoticed since their CO share is only 0.5%. We should, on the other hand,

expect TS to have a greater and negative impact on particulates (PM10) due to the presence of fewer

and cleaner buses that traditionally have been a main contributor of that pollutant –33% according to

CONAMA (2004). Using also high-frequency data, Gómez-Lobo et al. (2011) find this to be the case.
19DICTUC (2009) estimates that TS, as conceived by its architects, would have reduced CO concen-

trations by 15% by 2010.
20Bravo and Martínez (2007) document that average commuting time to work of skilled workers has

remained roughly constant (from 534 to 532 minutes) while the one of unskilled workers has increased

by 17% (from 829 to 97 minutes).
21This stabilization is also found by Yañez et al (2010) that show that for a sample of 250-300 indi-

viduals that use of buses hardly changed between May 2007 and October 2008.
22According to survey data collected by Libertad y Desarrollo (www.lyd.com), the approval rate of

Santiago’s public transport dropped immediately with the implementation of TS (February 2007) to

recover a bit a year later (March 2008) and to remain there until these days (May 2011).
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alternative modes of transportation, mainly cars, and hence, in an increase in CO emis-

sions. Figure 2.2 plots average hourly CO concentration levels for the period 2005-2009

which is the period we use in our empirical estimation.23 Again, dots are hourly aver-

ages of CO concentrations for all hours in the sample, the continuous line represents the

weekly average, and the vertical line indicates the exact moment TS went into operation.

The plot shows no indication that TS has lead to a decline in CO concentrations; at

best, it has lead to an increase in the upper bound of the range of hourly concentrations

and, consequently, a slight increase in the weekly average. Note also the large number of

records of nearly zero value, which is never the case in HNC. This not only suggests that

pollution in Mexico-City in 1989 was significantly higher than in Santiago in 2007 but,

more importantly, that we may face identification difficulties, as we discuss in Section 4,

to study the effect of TS on off-peak CO concentration levels.

3 A model of car ownership and use

Can theory explain the empirical results presented in the introduction? To answer this

question, we develop a "bundling" model that captures in a simple way two essential

elements of a household’s problem which are the allocation of existing vehicle capacity to

competing uses (peak vs off-peak hours) and how that capacity is adjusted in response

to a policy shock. The model is flexible and simple enough to accommodate to all sorts

of policy interventions. Following the presentation of the model, we calibrate it for

both cities using ex-ante (i.e., before the policy) information on car ownership and use.

The calibrated model is then used to generate predictions of how households respond to

different policies.

3.1 Notation

There is a continuum of agents (households) of mass 1 that decide between two modes of

transportation –polluting cars and public transport (e.g., buses)– to satisfy its demand

for travel during both peak and off-peak hours (we will often refer to peak demand as

high () demand and off-peak demand as low () demand). Households differ in two

ways: in their preferences for one mode of transportation over the other (horizontal

differentiation) and in the quantity of transportation (e.g., kms traveled, number of

trips) they wish to consume (vertical differentiation). Horizontal preferences are captured

with a two-dimensional Hotelling linear city. A household’s horizontal preferences are

23Another reason to concentrate on this four-year window is that by the end of 2008 the financial

international crisis started to have an impact on the Chilean economy creating price and income effects

that possibly affected the use of private transportation.
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denoted by ( ) ∈ [0 1]× [0 1], where  is the household’s distance to the car option
for peak hours and  is the distance to the car option for off-peak hours. This same

household’s distance to the bus option is (1 −  1 − ). The density of ( ) is

( ). Furthermore, the product differentiation (or transport cost) parameter is 

for the peak and  for the off-peak. A household’s vertical preferences are captured with

inelastic travel demands which are denoted by ( ) ∈ [0 1] × [0 1], where  and 

are the household’s number of trips during peak and off-peak hours, respectively.24 The

density of ( ) is denoted by ( ).

A household is assumed to have a choice of owning zero, one, or two vehicles. Unlike

public transportation (buses), private transportation comes with a capacity restriction

that depends on the stock  ∈ {0 1 2} of vehicles owned by the household. A household
that owns a single vehicle ( = 1) has   1 trips available to be shared between peak

and off-peak hours.25 In turn, we assume that a household that owns two vehicles ( = 2)

faces no capacity constraints. The unit cost of using a car during peak hours is  and

during off-peak hours is . The unit cost of taking a bus is 

 for  =  . In principle

these costs should also depend on congestion (i.e., aggregate car travel), but we do not

need to be explicit about them because we are only interested in the price difference, i.e.,

∆ ≡  −  for  =  ,26 which simplifies the analysis greatly.

A type-(   ) household enjoys a gross utility of ( ) from consuming 

and  trips, which we assume large enough that all types complete all their trips either

by bus or car. A household’s utility depends on whether vehicle capacity is binding or

not. It is not binding if either (i)  = 2 or (ii)  = 1 and  +  ≤ , in which case the

household’s (net) utility as a function of its car stock is given by

(·|) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 −  

 − 
 −  −  if car for  and 

 −  
 − 

 −  − (1− ) if car for  and bus for 

 −  
 − 

 − (1− )−  if bus for  and car for 

 −  
 − 

 − (1− )− (1− ) if bus for  and 

(1)

Note that the fourth row in (1) also corresponds to the utility of a household that owns

no vehicles.

24The model can be easily extended, at the cost of additional notation, to elastic demands, e.g.,

() = () for  =   and with  ∈ [0 1].
25Because of this capacity constraint, we think of  and  as weekly quantities. This would accomo-

date, for example, a household with a single car that on a daily basis alternates its use between peak

(commuting to work) and off-peak (shoping).
26Take, for example, a transport policy that improves public transportation and, as a result, it also

alleviates congestion. Our model captures these changes as reductions in both  and 

. However, given

the structure of the model, the household only cares about ∆. Note also, that this formulation can

accomodate that car trips may be longer than bus trips.
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On the other hand, the car capacity is (potentially) binding if  = 1 and  +   .

Since now the household needs to rely on buses to complete one or both of its travel

demands, there are two cases to consider. The first case –car specialization– is when

the household allocates the entire car capacity  to satisfy  =   and the bus to satisfy

 6= . If so, its utility is

(·|) =  − min{ }− max{0  − }− 



 −  − (1− ) (2)

If   , this household completes its demand for  trips with buses despite it was not

its preferred option. Note that under this formulation two households, say 1 and 2, that

only differ in their demand for  travel (2  1 ≥ ) are equally likely to use and buy a

single vehicle. In other words, if household 1 is indifferent between using (and buying) a

single car or taking the bus for -travel, household 2 is equally indifferent (having a larger

demand does not make the single-car option more attractive; it may eventually move the

household to buy two vehicles).

The second case –car splitting– is when the household shares the car capacity

between  and . Letting  ≤  denote the fraction of the capacity going to  and

 =  −  to , the household’s utility in this case is

(·|) =  − 
 − (

 − )− 
 − 


(

 − )−  −  (3)

where  ≤  and  ≤ . Note, however, that if ∆  ∆, the household would like to

allocate as much capacity as possible towards -travel. But an allocation such as  = 

and  = 0 would invalidate (3) almost by construction since none of  demand would be

satisfied with car trips. We solve this in a simple way; if the car capacity is to be shared,

it is done proportional to the demands, i.e.,  = ( + ) for both  =  .27

In deciding whether to own zero, one or two vehicles the household solves

max

{max(·|)− } (4)

where max(·|) is the utility from the best (short-run) transportation mix for a given

stock  ∈ {0 1 2} and  is the cost of buying a car.28 Implicit in (4) is the assumption

that households constantly adjust their stock of durables to their optimal level while in

reality liquidity constraints and/or transaction costs may create a range of inaction where

27We are informally saying that there may be decreasing marginal benefits in car use that justify an

interior (splitting) solution. This latter is more reasonable if ∆ is not too far apart from ∆ , which

is what we find in the calibrations.
28Note that if   min{ }, households with strong preferences for cars, say  = 0 or  = 0, would

buy a car even if  =  ≈ 0.
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agents do not adjust their stocks at all (e.g., Eberly, 1994).29 We will come back to this

issue below.

3.2 Short and long-run choices

We now compute a household’s optimal use and ownership choices.30 The structure of

the model allows us to conveniently sequence the analysis from vertical preferences to

horizontal preferences. We can first segment households on their likelihood of buying

one or two vehicles from looking at their demands  and ; then we can tell which of

these households will indeed buy and use the vehicle(s) from looking at their horizontal

preferences  and .

Consider first households with  +  ≤ . These households, those in group A in

Figure 3.1, will at best consider buying and using a single vehicle; the ones that do are

shown in Figure 3.2(a) (for now, ignore the dotted lines in both Figures 3.1 and 3.2 and

the ’s in Figure 3.2). As in any (multi-product) bundling problem, some consumers

will choose to consume both products ( and  travel) from the same "supplier" (car

or bus), i.e., "consume the bundle", while others will choose to consume from both

suppliers. Figure 3.2(a) consolidates in one place both household’s long- and short-run

choices. All households with  ≤ ̂() ≡ 12 + ∆2 would rather use the car

than the bus for -travel (provided they have one available). And all households with

 ≤ ̂−2 ≡ ̃(), buy a vehicle despite it will only be used for -travel, i.e., despite

  ̂() ≡ 12 +∆2. There is fraction of households with weaker preferences

for cars, i.e., ̃    ̂ for  =  , which also buy the car because of the "bundle

discount" associated to it. The car-bundle discount is exactly equal to .31

We can now use Figure 3.2(a) to illustrate the short and long run effects of a public

transport reform like TS. Suppose the policy means a slight deterioration of the quality

of public transport during peak hours, which can be captured by an increase in ∆

of some small amount , as illustrated by the dotted line in the figure. Unlike households

that buy (and use) the car-bundle, households that only use the car for -travel (the

"two-stop shoppers" of the bottom-right corner) have spare car-capacity that is ready to

be used for -travel. Hence, there is an immediate (i.e., short-run) increase in car trips

29Transaction costs may come from sales fees, sales taxes, search costs or the lemons problem afflicting

used vehicles.
30Note that if ∆ = ∆ = 0,  = 0 and ( ) ≡ 1, only 50% of trips will be made on cars.
31The (long-run) purchasing cost of consuming car for -travel only is  −∆ while for both  and

 travel is  −∆ −∆. The "bus-bundle" does not come with any discount.
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(and pollution) during peak hours from households in group A equal to

∆
() ≡

ZZ



1(

 )( ) =

Z
0

−Z
0


1(·)(·)  0

where 
1 (see the figure) is given by


1(

 ) =

Z ̃()

0

(̂() ) (5)

If the policy shock  is permanent, there is an extra increase in car trips from additional

car purchases, so the long-run effect of the policy upon group A during peak hours is

equal to

∆
() ≡

RR


(
1 + 

2 + 
3)(·)

where 
2(

 ) is given by an expression similar to (5) and 
3 by


3(

 ) =

Z ̂()

̃()


¡
̃() + [̂()− ] 

¢


But because the policy also moves some households from the bus-bundle to the car-

bundle, there is a long run effect during off-peak hours as well (despite the price of public

transport has not changed there), which is equal to

∆ 
() ≡

RR



3(·)

Consider now households with  +   . There are four cases to study: groups B,

C, D and E in Figure 3.1. Like those in group A, households in group B buy at most

one vehicle,  ∈ {0 1}, because  and  are, either individually or together, not large

enough to justify the purchase (and use) of two vehicles. It does not pay to buy two

vehicles for multiple use if (·| = 2) ≤ (·| = 1), or more precisely, if

2 −∆ −∆ ≥  −∆ −∆ (6)

where  = ( + ) for  =  . Note that if ∆ ≈ ∆ = ∆, then (6) reduces

to  +  ≤  + ∆: It only pays to buy a second (multi-purpose) car if the saving

∆( +  − ) more than offset the cost . The equivalent of (6) for a (single-purpose)

vehicle is  ≤  + ∆ (see Figure 3.1). The fraction of households in group B that

effectively end up buying and using the car is shown in Figure 3.2(b). Note that the

12



car-bundle discount continues to be  despite the capacity constraint.

More interestingly, we can now use Figure 3.2(b) to illustrate the short- and long-run

effect of a second type of policy intervention: a driving restriction like HNC. Suppose

the policy reduces car capacity  by a small amount . There are three short-run effects.

The first is the  drop in car trips from households that use (and continue using) the

car at full capacity, i.e., those that consume the car-bundle. The second short-run effect,

which is captured by the horizontal dotted line in the upper-left corner in the figure, is

the reduction of car trips during off-peak hours from households that no longer consume

the car-bundle. This drop amounts to
RR


(∆2)

1(·). Similarly, the
third short-run effect, which is captured by the vertical dotted line in the lower-right

corner, is the reduction of car trips during peak from households that no longer consume

the car-bundle and is equal to
RR


(∆2)

1(·).
The driving restriction can also have an additional and "positive" effect on car travel

in the long-run upon this group. For some households owning a car is no longer that

attractive (although using it is, provided the car is available). In fact, if the resale price

of a car is still , a fraction of households in B would sell their cars, and hence, reduce

their car trips, in both peak and off-peak, by
RR


(∆2)(

2 + 
3)(·)

and
RR


(∆2)(

2+
3)(·), respectively.32 However, if these households

face a transaction cost equal to

 ≥ 
∆


 (7)

none of these additional long-run benefits will accrue since no household will return a car

at a resale price of (1− ).

That the driving restriction reduces car travel (in the short-run and potentially in

the long-run) extends to all other households in group B except to those close to the

border +  = − ∆. As captured by the (downward) sloping dotted line in Figure

3.1, these households now belong to group C, so some of them will find it attractive

to increase the size of their car-bundle and buy a second car; not only by-passing the

driving restriction altogether but what is worse, increasing car travel during both peak

and off-peak hours.33 Figure 3.2(c) distinguishes precisely those households in group C

that buy two vehicles from those that buy one and from those that buy none (to simplify

the exposition the figure focus on the case in which   ≥ , say, subgroup C1).34 In

this case the bundle discount is not longer  but ∆( − ) + ∆( − ). This is

because households that want the car only for -travel do not buy two vehicles but just

32Note that 3 and 3 are related by ∆
3

 = ∆3
.

33Note that the same inward shift of the border  +  =  + ∆ would happen with a policy

intervention that increases both ∆ and ∆ by .
34There are three more subgroups: C2, where    ; C3, where    and  ≥ ; and C4, where

 ≥  and   .
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one.

The dotted line in Figure 3.2(c) depicts the effect of the driving restriction on group

C1. The short-run effect is simply the drop by the amount  of car trips from the two-stop

shoppers. The long-run effect can be divided in two parts. The first corresponds to the

two-stop shoppers that would like to sell their cars if the resale price were to remain at

; if so, this would reduce car trips by
RR

1
(∆2)

2(·) during peak and byRR
1

(∆2)
2(·) during off-peak. And the second part corresponds to two-

stop shoppers that buy a second car; not only by-passing the driving restriction for their 

trips but now also using the car for all of their  trips. This increase in car trips amounts

to
RR

1
(∆2)

1(·) during peak and
RR

1
(∆2)

1(·) during
off-peak. This is by far the most adverse effect of a driving restriction.

As shown by the horizontal and vertical dotted lines in Figure 3.1, this adverse effect

extends to households in group C that now belong to group D; a group in which house-

holds own either two vehicles, one or none. As shown in Figure 3.2(d), the difference with

group C is that some households in group D may buy two cars just for -travel (again, the

figure focus on the case in which  ≥ + ∆ and  ≤    + ∆, say, subgroup

D1).35 The effect of the driving restriction policy on the two-stop shoppers that have

one car is the same as on the equivalent two-stop shoppers in C1. Finally, there is the

group of households, group E, that because of their large demands own either two vehi-

cles or none. As shown in Figure 3.2(e), these households never face capacity restrictions

(shortly we will come back to the dotted lines in the figure).36

3.3 Numerical exercises: Calibration and simulations

We first calibrate the model to parameter values that reflect the ex-ante (i.e., before

the policy) situation of each city in terms of car ownership and use. The car-ownership

information includes the fraction of households that either own no cars ( = 0), one car

( = 1), or two (or more) cars ( = 2). The car-use information, on the other hand,

includes the share of car trips at peak hours (
), the share at off-peak (

), and

the ratio of car trips at peak over car trips at off-peak (

). The ex-ante information

is summarized in the first half of Table 3.1.37 In all numerical exercises, we assume that

35There are three more subgroups: D2, where  ≥  + ∆ and   ; D3, where  ≥  + ∆

and  ≤    + ∆; and D4, where  ≥  + ∆ and   .
36Note that the bundle discount for these households is 2 since they would buy two cars even if they

are to be used only for -travel.
37The ex-ante information for HNC was obtained as follows: car-ownership from INEGI (1989a),


 from Molina and Molina (2002, p. 227), and 


 from the EOD-2007 for Mexico-City. In

the absence of more information, and based on what we know from EOD-2007 for Mexico-City and

EOD-2006 for Santiago, we also assumed for HNC that 
 = 

. All the ex-ante information

for TS was obtained from the EOD-2006 for Santiago.
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households’ preferences are drawn from uniform distributions, i.e., ( ) = ( ) ≡
1. The bottom half of Table 3.1 presents the calibration parameters obtained for each

city.38 The differences we observe are for the most part expected; for example, the higher

use of cars in Santiago is consistent with a higher  and lower .

As a first simulation exercise with the calibrated model, we try to replicate the em-

pirical results found for HNC by decreasing car capacity  by 20%. As shown in the first

row of Panel A of Table 3.2, this HNC-like policy leads to declines in car use not only in

the short run (∆
=
 ) but also in the long run (∆

=
 ). These numerical figures are

quite consistent with our short-run CO estimates (reductions of 11 and 6% for peak and

off-peak hours, respectively) but are far from our long-run estimates (increases of 13 and

11%, respectively). The long-run inconsistency can be partly explained by two assump-

tions in exercise A1 that are unlikely to hold in practice. First, in A1 all households have

the option to return their cars at the original price  (according to the change in the

stock of vehicles shown in the last column there is indeed a large number of households

that would like to do so). If instead we assume that transaction/lemon costs are such

that no household returns its car(s), i.e., eq. (7) holds, exercise A2 shows that in the

long run the policy leads to a net increase in the stock of vehicles (28%) although still

accompanied by a minor decline in car use (−12%).
The second assumption in A1 is that the additional stock is equally polluting (and

fuel-efficient) as the existing one, which we know from Eskeland and Feyzioglu (1997) is

not true for HNC because of the import of older cars from adjacent regions. Thus, if we

also let the additional stock be three times as polluting (and less fuel-efficient) as the

existing one,39 the results in ex. A3 illustrate that our empirical estimates are consistent

with the theory once we incorporate these more realistic assumptions. More generally,

even tough we find that the long-run effects of the policy on car use and on the stock of

cars imply that the short-run effect is for the most part undone, these exercises suggest

that the long-run increase in CO during weekdays that we observe for the case of HNC is

much less due to increases in car use and congestion (actually they hardly changed with

respect to the pre-HNC levels) than to the entry of older and more polluting cars.

We move now onto the policy experience in Santiago, TS. Recall that the model cap-

tures a TS-like policy with changes in ∆ and/or ∆. The first exercise in Panel B

of Table 3.2 (exercise B1) considers a TS-like policy that inflicts a uniform deterioration

of 24% in the relative quality of the public transport, i.e., ∆ and ∆ go up by that

38We used the same initial values in both calibrations: ∆ = ∆ =  =  =  = 2 = 1.
39Based on Betaon et al (1992), who find that each additional year increases CO emissions by approxi-

mately 16%, a factor of 3 would suggest that the additional stock is 7.3 years older than the fleet average,

which is perfectly reasonable since 8% of the gasoline fleet in 1989 is at least 20 years old (Molina and

Molina, 2002).
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amount. Both short and long-run effects (∆
=
 and ∆

=
 , respectively) are entirely

consistent with our CO estimates for peak hours (no impact and 33% increase, respec-

tively). Since our empirical analysis of CO records failed to identify effects at off-peak

hours, for reasons we explain below, the reader may wonder what kind of TS-like policy

could simultaneously generate sizeable effects at peak and virtually none at off peak.

Exercise B2 considers such possibility; the relative quality of public transport must de-

teriorate by 75% at peak and improve by 61% at off-peak.40 But such a pronounced

asymmetric change in quality is unlikely since the main elements of TS (i.e., fewer buses

and new routes) are common to peak and off-peak service. One could argue neverthe-

less that off-peak service was less affected or at best not affected (i.e., ∆ ≈ 0), partly
because of the more frequent subway service at off-peak prompted by TS. In any case,

these results confirm that failing to identify effects at off peak is nothing but an empirical

problem.

Exercise B1 also shows a big increase in the stock vehicles of 22%, which is way above

our empirical finding of around 5% (see section 5). The next two exercises consider

changes in∆ and∆ that can produce stock variations more in line with this empirical

finding. In B3 we let both ∆ and ∆ raise by 6% while in B4 we let ∆ raise by

15% and ∆ remain unchanged. But now, car use (or CO) during peak hours is way

below our empirical estimate of 33% in either case. There are two factors, however, that

neither B3 nor B4 account for. Unlike in HNC, the increase in car use could have very

well generated additional congestion, more so if at peak hours streets already presented

some degree of saturation at the time the policy was implemented.41 While the effect

of additional congestion on car use is already captured by our model with smaller than

otherwise increases in ∆ and ∆, the effect on CO is not. The second factor, also

present in HNC, is the possible arrival of older and more polluting cars. Exercise B5

extends B4 to incorporate both of these corrections. First, we let the stock of additional

vehicles be 1.24 times as polluting as the existing stock (this captures that a third of

the additional stock corresponds to used cars, some of which quite old),42 and second

(and consistent with the changes in traffic flows we report in section 5), we let the extra

congestion reduce the average speed at peak hours by 10%, which, according to Robertson

40Note that exercise B2 assumes the presence of transaction costs; otherwise, it is impossible to

generate zero impact at off-peak if we let households return their cars at the original price as a response

to the improvement of public transport at off-peak.
41This seems to be the case according to the relatively low average speeds (20 km/h) reported in SDG

(2005). The latter also predicts that the average speed, including peak and off-peak hours, should fall

by approximately 10% between 2005 and 2010.
42More precisely, we are assuming that a third of the additional stock corresponds to used cars that are

8 years older than the fleet average and two thirds to new cars that are 10 years newer than this average.

According to ANAC (Chile’s National Automobile Association), the stock in 2007 was on average 10.4

years old and a 22% of it was at least 20 years old.
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et al. (1999), should increase CO emissions by a factor of 1.15. With these corrections,

the long-run change in CO concentrations at peak hours is again above 30%.

One of the main insights from these numerical exercises is how little informative the

short-run or immediate impact of a policy, whether is HNC or TS, can be. Exercise B6

illustrates this further for TS. A policy that improves the quality of the public transport

by 22% has virtually no impact in the short run, just like in B1, but leads to a 15%

reduction in car use (and CO) in the long run –consisted with what DICTUC (2009)

projected for the "original design" of TS. The limited short-run response can be further

illustrated with the aid of Figure 3.2(e), where the dotted line captures a policy shock

that reduces ∆. The short-run response include only those households in the upper left

corner that no longer use the car at peak hours. Instead, the long-run response include

the latter households plus the ones that abandon the two-car bundle.

We finish the section with some empirically testable predictions for HNC and TS.

Exercise A4 in Table 3.2 considers the effect of the same HNC-like policy of A1-A3 but

on a higher-income neighborhood that exhibits higher ex-ante use of the car. We model

this assuming that  = 025 (where  can be interpreted more generally as the price of

cars relative to household income), which leads to an ex-ante car use of 70% during peak

(
) and 74% during off peak (

). The effect of the policy is unsurprisingly

small (and negligible compared the city average we find in exercise A3) because these

households have already sufficient car capacity to cope with the driving restriction. In

turn, exercise A5 looks at the other extreme, that of the effect of the same policy on a

lower-income neighborhood with  = 13 and that exhibits an ex-ante car use of only 4%.

The effects of the policy are again intuitive since these are households that at most have

one car, so the driving restriction hits them hard in the short-run and only a few of them

can afford a second car in the long-run.

The last two rows of Panel B present the predictions for the effects of TS on households

with different income levels. Exercise B7 extends B5 to a high-income neighborhood with

 = 01 and that displays an ex-ante car use of 72% during peak and 81% during off peak.

The short run effect is still quite small –somehow positive during peak hours because

of the excess capacity– but the long-run effect is considerably smaller than the city

average, i.e., the one in B5. This is simply because households in this neighborhood

rarely use public transportation. Exercise B8, on the other hand, extends B5 to a lower-

income neighborhood with  = 15 and that has an ex-ante car use of 8%. Again, the

short-run effect is negligible but the long-run effect is substantial, almost 50% above the

city average. With these predictions in mind we now turn into the empirical analysis.
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4 Policy effects on carbon monoxide (CO)

This section contains our central empirical results. We proceed in three steps. First,

we justify the use of CO concentrations as a proxy for car use. Then, we present our

empirical strategy and use the average of CO records from all monitoring stations to

obtain policy effects at the city level. And third, we use CO records from individual

monitoring stations to obtain policy effects at various neighborhoods that differ in terms

of household income and car-use intensity.

4.1 Why CO?

It may help asking first what would be the "ideal" data set to study car use in real time.

It would have to include information on private and public transportation use by day

of the week and hour of the day, on car ownership including quality and associated use,

and on household characteristics (e.g., income, size, distance to subway station, etc.).

Unfortunately, such information does not exist, so we are forced to look for proxies.

A first potential candidate is hourly records of vehicle traffic from traffic-control sta-

tions scattered around the cities. There exist a number of problems with this "proxy". To

start, we do not have this information for Mexico-City (at the time of HNC, at least).43

Second, we only have data for a partial count of the total vehicle traffic in Santiago as

stations are highly concentrated in the Northeastern part of the city. Third, traffic counts

do not distinguish between private and public transportation flows. Fourth, and more

importantly, the use of these local information present a number of problems from a the-

oretical and empirical point of view. There may be general equilibrium and displacement

effects in which, for instance, temporary local interventions or increases in congestion

at a particular location (street) produce incentives for car drivers to look for alternative

streets (e.g., a station in a clogged street would report virtually no traffic flow) and, as

the counting stations cover only a small fraction of the streets it is impossible to record

all these "detour" flows. Therefore, these traffic records can greatly underestimate car

use. It is not yet obvious to us and to the literature how to aggregate this partial traffic

data in a way that can correct for these problems.44 We still use this information as

it provides some complementary (although qualitative) evidence on the effects of TS on

households of varying income levels.

43In the case of Santiago, this traffic data is collected and processed by the Unidad Operativa de

Control de Transito (UOCT) for a total of 46 stations. The only attempt we found in the literature

using this kind of data for policy evaluation is de Grange and Troncoso (2011) who look at the effect of

(partial and sporadic) driving restrictions in Santiago.
44See Daganzo (2007) for a discussion on the limitations of using a "microscopic" approach (i.e., using

data at the station level) to learn about transportation patterns at the city level.
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The second (and our preferred) proxy for car use is CO records. Given the complexity

of transport dynamics in large cities like Mexico-City and Santiago,45 the use of hourly

CO concentration records appears encouraging for several reasons. First, as previously

discussed, according to emissions inventories, mobile sources, and light vehicles in par-

ticular, are by far the main emitters of CO –97% and 94%, respectively, at the time

HNC and TS were implemented.46 Hence, we should expect any change in city traffic

be picked up by changes in CO concentrations. Second, CO is the only pollutant that

can be regarded as non-reactive on a time scale of one day (Schmitz, 2005), which is

what we use in our empirical estimations. Thus, under stable meteorological conditions,

rapid increases in vehicle use (i.e., and in CO emissions) should be immediately reflected

in changes in CO concentrations both at the city and at the station level.47 Third, CO

measures, unlike hourly records of vehicle traffic, are better at capturing effects at the

scale of the city (or a neighborhood) rather than at a particular location (i.e, street).

Fourth, the use of CO emissions also allows us to identify potential increases in pollu-

tion due to either more congestion or the use of more-polluting cars. As already seen in

the numerical simulations, it may well be the case that modest increases in the stock of

vehicles and/or traffic can lead to a much larger increase in CO if the additional stock is

dirtier than the existing one.

The use of CO data for policy evaluation is not free of hurdles, however. As explained

by Jorquera (2002) for the case of Santiago, there is never a perfect mapping between CO

emissions and CO concentrations even after controlling for all the available meteorological

variables collected by the monitoring stations such as temperature, humidity, wind speed,

and wind direction. This imperfect correlation can be readily seen in Figure 4.1 that plots

concentration and emission patterns reported by Schmitz (2005) for a weekly day in the

month of January 2002 in Santiago. This imperfect correlation would not be much of

a problem if we believe the policy to have a uniform effect on emissions across the day.

But that is rarely the case, as both the theory and empirical estimations show. One way

to get around this problem is to concentrate on observations at peak-hours (8:00—10:00

45At the time of implementation of HNC and TS, the population of Mexico-City and Santiago were

about eight and six million, respectively.
46The CO figures for Mexico-City are from the 1998 emissions inventory (CAM, 2001) and for Santiago

from the 2004 inventory (CONAMA, 2004). Light vehicles, which include passanger cars and commercial

vehicles other than buses and trucks, are responsible for 72 and 88% of CO emissions in Mexico-City and

Santiago, respectively. The same inventories report that mobile sources are responsible for, respectively,

81 and 87% of NO emissions, and 36 and 56% of PM10 emissions.
47It is worth explaining here that we also disregard nitrogen oxide (NO) as a proxy for car use –

despite vehicles also contribute largely to it– because, unlike with CO, we failed to see in the data a

clear mapping between car use and NO concentration at peak hours. It was not unsual to find in the

data of either city NO peaks forming 3 to 4 hours later than traffic peaks. This does not come as a

surprise since NO is a highly reactive pollutant (Jorquera, 2002).
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am for HNC and 7:00-9:00 am for TS) and control for the background pollution that

exists before the peak forms. This is because the concentration build-up at peak is quite

rapid and during a relatively short period of time of very stable atmospheric conditions

(which translates into low dispersion).48 The increase in concentration at peak should

then closely reflect traffic activity at that time both at the city and individual station

levels.49 We adopt these considerations in the empirical estimations that follow.

4.2 Empirical strategy

Our main datasets are time series collection of pollution and weather variables recorded

by monitoring stations in each city. In the case of Mexico-City, the network of moni-

toring stations is operated by the Department of Environment and Natural Resources

(www.semarnat.gob.mx). At the time of HNC, this network reported hourly measures

of several pollutants, namely, (ground-level) ozone, nitrogen dioxide (NO2), nitrogen ox-

ide (NO), sulfur dioxide (SO2), and CO, and for some of the stations, it also reported

hourly measures of temperature, real humidity, wind speed and wind direction. The

average failure rate of the network –fraction of time stations do not report pollution

information– is about 31% and roughly constant over time (before and after HNC) and

across different days of the week and hours of the day.50

In the case of Santiago, the network of stations is operated by the National En-

vironmental Commission (www.conama.cl). Each station collects hourly measures of

(ground-level) ozone, NO2, NO, SO2, CO and particulates smaller than 10 and 2.5 mi-

crometers (PM10 and PM2.5, respectively) as well as hourly measures of temperature,

real humidity, precipitation, atmospheric pressure, wind speed, and wind direction. Fail-

ure rates are much smaller than in Mexico-City (average failure rate is 94% at all times

and days) but there are different patterns before and after TS. While the overall failure

rate decreased from 66% to 49% at peak hours, it increased from 43 to 69% at off peak

hours. In addition, the unit of measurement in which CO was recorded in each station

changed over time: while before TS the concentration level was measured in multiples of

48We thank Rainer Schmitz (Geophisycs Department, University of Chile) for long conversations on

these issues and for convincing us to concentrate our efforts on TS estimations at peak hours.
49In contrast, these same arguments imply that using CO records at off-peak hours from individual

stations, as opposed to an average measure, is problematic because, as time passes and winds de-

velop, concentration records at one particular station become "contaminated" by emissions from distant

locations.
50In the case of Mexico-City there is not much variation across stations in their average pollution

levels. Therefore, when we compute the average across stations we do not find significant differences if

—instead of computing the values just for all the available stations—we restrict the average to a balanced

sample of stations with data available in most periods. As we discuss below this is not the case for

Santiago.

20



0.1145 mg/m3 (with a minimum of 0.1145 mg/m3), after TS it was a continuous variable

with a minimum of 0.0001. This measurement change can affect estimations especially at

off-peak (weekday) hours and weekends when concentration levels are particularly low.

We discuss the implications of this data problem for our empirical estimations below.51

Our dependent variable are hourly CO records that depending on the estimation

can be either concentration records of an individual station or city-averages which are

obtained as the unweighted average of CO records from 15 of the network stations in

the case of Mexico-City and 7 in the case of Santiago. We limit the number of stations,

as Davis (2008) does, to the ones that were operating during the entire period of our

analysis, which is a four-year window symmetrically spaced around the time of policy

implementation. Summary statistics of the variables used in the CO estimations are in

Tables A.1 and A.2.

One of the challenges for our estimation strategy is related to the inclusion of con-

trol variables that can partial out the effect of other phenomena that may affect CO

concentrations; in particular, pre-existing trends in pollution and car use. We include

both linear trends52 and different variables that might capture economic determinants on

the decision of owning and using a car such as real exchange rates and gasoline prices.53

Another proxy for economic activity we consider, and that are readily available from the

same monitoring stations, are the hourly records of sulfur dioxide (SO2), a pollutant that

is highly tight to industrial activity and energy generation.54

A second challenge for our estimation procedure is that even, as we discussed above,

after controlling for all the available weather variables, CO concentrations do not per-

fectly match CO emissions. They do it in a manner that is particular to the geography

and climate of each city. It is true that SO2 records may also work as a control for me-

teorological phenomena common to all pollutants and that are not entirely captured by

the weather records (the variation in weekly-averages we observe in Figures 2.1 and 2.2 is

51The percentage of the variance explained by variation of pollution across stations is higher in Santiago

than in Mexico-City and this implies that compositional changes at the station level are more important

in Santiago, especially at off-peak hours.
52We experimented with the inclusion of higher-order trends such as quadratic and cubic polynomials

that in general yielded similar results. The problem of using higher order trends is that of over-fitting

in that we may fit the complete evolution of the dependent variable with a sufficiently high-order poly-

nominal. A discussion of this problem in a RDD context can be found in Dell (2011).
53We also experimented with other variables related to unemployment and industial activity but they

were typically not significant or with the unexpected sign. Our sense is these additional economic

variables become redundant once we include linear trends and the other monthly variables.
54In the case of Mexico-City, 79% of the SO2 emissions came from industrial activity and energy

generation and 16% from transportation (mainly trucks), with 2% from light vehicles and taxis (CAM,

2001). In the case of Santiago, 74% of the SO2 emissions came from industrial activity and energy

generation and 19% from transportation, with 2% from light vehicles (CONAMA, 2004). We entered

the SO2 recods in the regressions in different forms (i.e, daily, weekly and monthly averages) with similar

results.
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probably a good indication of these more global meteorological phenomena). Hence, to

correct for this imperfect matching we restrict our CO dependent variable to peak hours

(8—10 am for HNC and 7—9 am for TS) and simultaneously control for the background

level of CO before the peaks form. The latter is computed as the average concentration

from CO records at night which is when CO has stabilized (from 2—6 am for HNC and

from 1—5 am for TS). In the case of Mexico-City, we also extend this approach to estimate

policy effects at off-peak hours (12 am — 3 pm) and Sundays (8—11 am). Since pollution

levels at peak can "contaminate" records at of off-peak, we also include pollution levels

at peak as background control in off-peak estimations.55

We employ two estimation approaches: (i) a flexible polynomial fit that includes a

treatment dummy for the whole ex-post policy period and a series of monthly dummies

that capture the adjustment phase following implementation and (ii) a more structural

fit that includes a linear trend for the adjustment phase (which length is endogenously

determined as part of the estimation process) and a dummy for the period that follows

the adjustment phase. The estimating equations under the two approaches are given by

 = +  +  +
X

 + +  +  (8)

 = +  + [+ (−  )] +  (1−) + +  +  (9)

where  is (the log of) CO at period (i.e., hour) ,  is background pollution (pollution

at night for peak and weekend estimates and pollution at night and at peak for off-peak

estimates),  includes fixed effects (hour of the day, day of the week, month of the year),

weather variables and economic covariates,  is the dummy that takes the value of 1

after the policy,  are the monthly dummies for several months after implementation, 

is the time at which the policy gets implemented,  is an indicator function that takes

the value of 1 during the adjustment phase (its length is determined through a manual

search that stops when the estimated coefficients come sufficiently close to satisfying

+ ( −  ) = , where  marks the end of the adjustment phase), and  is the error

term.

The effect of the policy under the first approach, i.e., eq. (8), is  + 1 on impact

(i.e., first month) and  in the long-run. On the other hand, the effect of the policy

under the more structural approach, i.e., eq. (9), is  on impact (i.e., first day) and 

in the long-run; and the (constant) speed of transit from  to  is . Approach (i) is

more flexible but it is likely to introduce too much noise in the estimation as it may

capture idiosyncratic shocks (which are very relevant in our pollution dataset). That is

55An additional estimation issue relates to the standard errors of the estimates. We follow Davis

(2008) and use clustered standard errors to capture serial correlation in CO. In particular, we allow for

arbitrary correlation within 5-week clusters.
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why we prefer approach (ii) that, following the theory, explicitly imposes a smooth and

monotonic adjustment process.56

4.3 Results at the city level

We proceed first with estimations at the city level using average concentrations of CO

records from the network stations operating in each city. As suggested by our theoretical

model, the impact of the policy may differ depending on the hour of the day and day of

the week. In Santiago, however, we restrict attention to estimations at peak hours.

4.3.1 Mexico City

Column (1) in Panel A of Table 4.1 presents the results of estimating equation (8) for

peak hours (8—10 am) for HNC. We find that HNC decreased CO concentration at peak

hours by about 7% within the first month of implementation. While the dummy for a

differential effect for month 1 is statistically significant, the total effect is just marginally

significant with a p-value of 015. As for the long-run, when monthly dummies are zero

valued and beyond, we find that HNC has increased CO by about 13%, which is again just

marginally significant with a p-value of 014. Since the dummies for the first months after

implementation are statistically different from 0, we can reject that the effect of HNC

during those first months is the same as that over the following months (i.e., long-run).

Interestingly, the monthly dummies tend to present a clear pattern of convergence towards

0 which is reached around nine months of implementation. Note that the existence of

such an adaptation process is consistent with the result in Eskeland and Feyzioglu (1997)

that gasoline consumption increased with respect to the counterfactual in all the periods

after HNC except for the first quarter.

As we discussed above, these pollution records can be subject to quite some noise when

used in a high frequency format. This would explain the relatively volatile behavior of

the monthly dummies which may appear inefficient from an econometric point of view.

Thus, in column (1) of Panel B we present the results of adding some structure to the

estimation according to equation (9). The effect of the program on impact is now bigger

56A regression discontinuity design (RDD) approach appears problematic in the context of our high-

frecuency and volatile data. Any idiosyncratic shock that happens at the time of the discountinuity

would be confounded with the effect of the policy on impact, whether time is kept at the hour, day

or weekly level. Nevertheless, we provide RDD estimates using the optimal bandwidth estimator of

Imbens and Kalyanaraman (2009) applied to monthly, weekly and daily data and after controlling for

all the above economic and weather variables. Results from daily and weekly data vary widely indeed

and without a clear pattern. A more detailed econometric discussion on these issues deserves further

research.
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and statistically different from 0: a reduction of 11% in the day after implementation.57

It is not surprising that effect is less than 20% as it captures substitution possibilities,

especially from families owning more than one car. In turn, the estimated effects imply

an adaptation period of 115 months. The estimated effect after this adjustment phase

imply an increase of 13% in CO levels, even though the effect is only marginally sig-

nificant (p-value of 0119). As we discussed in the numerical simulations, the 24% net

difference between long and short-run effects (i.e., after minus immediate impact), which

is statistically significant at 1%, can only be explained if agents responded buying not

only more cars but also high-emitting ones.

The remaining coefficients in column (1) have all the expected signs, namely, the

significant inertia of CO with respect to background pollution, the positive correlation

between CO and SO2, and the negative impact of the real exchange rate. We also find

a small negative trend affecting CO concentrations. For brevity, we do not report here

the estimates of all weather variables and the hour, day and month fixed effects. We

can add however that imposing structure to the estimates seem to be supported by the

data, as the standard errors of the different coefficients tend to decrease in comparison

to specification (8).

We also present, in column (2), a falsification exercise in which we run SO2 on the

same right hand side variables of column (1) –and we now use the night level of SO2

as a background control. We want to check whether there are phenomena other than

HNC that may be affecting overall pollution in Mexico-City. If this is the case we should

find that HNC has similar —at least qualitatively— impacts on SO2 during the different

periods following the introduction of HNC. However, results in column (2) in Panel B

–in which for comparability we impose the same structure we use for CO– indicate

that HNC has a positive effect on impact (which we cannot explain other than it helps

illustrate the volatility of this pollution data), a non-significant adjustment process, and

no effect in the long-run. These results, while not bullet-proof, are at least reassuring

that our estimates for the effect of HNC on CO at peak hours are not capturing omitted

variables.

We move now to our results for off-peak hours during weekdays in HNC. Following

our "peak estimation" logic that a rapid build-up of concentration is likely due to traffic

activity, the window we choose for off-peak estimation (12 am — 3 pm) takes advantage

57As a comparison, the estimated effect of HNC on impact at peak hours using the Imbens and

Kalyanaraman’s (2009) RDD approach for montly observations is−57% (with a standard error of 0012).
As we discussed above, however, RDD estimates in the context of a forcing variable that presents a lot

of idiosyncratic volatility must be taken with extreme care. For instance, the Imbens-Kalyanaraman

RDD estimator of the HNC effect on impact at peak hours raises to −25% (with a standard error of

0017) when using weekly observations and to −64% (with a standard error of 017) when using daily

observations.
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of an afternoon hump we identify in the CO concentration profile for Mexico-City (unlike

for Santiago, see Figure 4.1). Column (3) in Panel A of Table 4.1 contains the results

of estimating equation (8). Coefficient values are much in line with those in column (1)

and with the model that predicts analogous patterns for both peak and off-peak hours

(including the speed of the adjustment process).

Off-peak estimation involves an additional concern, however, that of a potential inertia

in CO levels from peak to off-peak hours (recall that a CO emission can remain several

hours in the atmosphere or even days under low dispersion conditions). If this is so, our

off-peak findings may be mimicking those of peak hours without HNC having a causal

impact on off-peak concentrations. We handle this in column (4) by controlling for the

pollution level at peak hours of the same day. As expected, the effects of HNC decrease in

absolute value and the control for peak hours is statistically and economically significant.

These results extend to the bottom half of column (4), Panel B, where we allow for the

same background control but under the structure of equation (9). Note that the 17%

net difference between long and short-run effects, which is again statistically significant

at 1%, is smaller than that for peak hours which helps explain the somewhat faster

adjustment process we obtain at off-peak. Finally, column (5) contains results from the

same falsification exercise we did for peak hours. As before, HNC does not seem to have

an effect on SO2 concentrations at off-peak that is comparable to what we found for CO.

The last two columns of Table 4.1 presents results for Sundays. Again, the window

we choose for the estimation (8 am — 11 am) takes advantage of a morning hump we

identify in the CO concentration profile for Mexico-City (and again we failed to identify

a comparable hump in Santiago). Looking at Sunday effects is interesting for two reasons:

(i) HNC should have no immediate impact since the driving restriction did not operate

on weekends and (ii) the increase in the stock of cars to by-pass the weekday restriction

should be necessarily reflected in an increase in car use during Sundays. In other words,

Sunday results provide both an additional falsification exercise for short run effects,

since we should not observe any, and a robustness check for long-run effects, since we

have more cars on the street. The results in column (6) are entirely consistent with these

observations whether those in Panel A or in Panel B. Among the results in Panel B, it

is worth noting how precisely estimated the long-run effect is and how comparable the

length of the adaptation process is to those in columns (1) and (4).

We also run a SO2 falsification exercise for Sundays. The results in column (7) suggest,

if anything, the presence of some phenomenon, contemporaneous to HNC, contributing to

reduce SO2 pollution over Sundays. We do not have a good explanation for it; only that

it is unrelated to HNC since the adaptation process in column (7) goes the opposite way

(and nothing like it is observed during weekdays). In any case, these results illustrates

the importance of controlling for SO2 in our CO estimations and the advantages of a
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more structural estimation approach that can better handle the inherent volatility of

pollution data.

In all, our results show, after a period of adaptation of 10 to 11 months, that HNC

has long-lasting impacts on CO and, therefore, on car use. It is interesting that the

difference between long- and short-run impacts for peak hours and Sundays is very similar

suggesting that the increase in the use of more-polluting cars induced by HNC on periods

in which the policy was most binding (peak hours) translates into a similar impact in

periods in which it was not (Sundays). Our results also demonstrate that for evaluating

policies such as HNC it is important to allow for time varying estimates and to consider

heterogeneous effects at different times of the day and of the week.58

4.3.2 Santiago

Unlike in Mexico-City, data limitations in Santiago allow us to present credible estimates

for peak hours only.59 Table 4.3 presents CO estimates for two slightly different data

sets. Those in column (1) are from a data set in which some of the CO records have been

corrected by imputing a value of 0.1145 anytime the observed record at an individual

station was below this level. Results in column (2) are based on the original records

without any correction for low values. Results in Panel A for these two columns indicate

that TS has had virtually no effect on impact (with point of estimates of −0002 and
003, respectively) and a positive and large effect of 032 and 031, respectively, in the

long run. As expected, the correction for low values does not seem to have much of an

impact (low values of CO concentration are less relevant in peak estimations except for

constructing the background pollution level).

The monthly dummies do present a pattern of increasing effects as time passes, but

58If we just include a dummy for the post-HNC –equivalent to dropping all the monthly dummies

when estimating specification (8)–, we find the following: zero effects at peak and off-peak hours (with

insignificant point estimates equal to −0075 and 0046, respectively) and a positive effect on Sundays
(equal to 0088). If instead, we do not divide the sample in peak, off-peak, and Sundays and just run a

regression with all the observations from 7 am to 10 pm for the seven days of the week, we find again a

zero effect of HNC (with a point estimate of −0019 and standard error of 005).
59As discussed before, this is mostly related to (i) the differential pattern of data measurement we

observe in Santiago before and after TS and (ii) the high between-station variation in pollution levels

across stations (especially at off peak hours when concentrations are very low). We have tried different

ways of correcting for missing data and measurement differences and using a panel of stations instead of

averages. Our estimates indicate that the effect of TS for a 4 hours window of off-peak hours (12 am — 4

pm) was close to 0 (the point estimate for the long-run effect is 002 with standard error of 009 and with

volatile estimates for the adaptation period). However, these estimates are not robust to changes in the

window of estimation (e.g., we get positive impacts for an hour, say 1—2 pm, and negative estimates for

the following hour). They are also not robust to some suggestive evidence coming from traffic flow data

showing a smaller but still positive effect of TS at off-peak hours (we come back to these traffic results

in section 5.3). More generally speaking, this lack of robustness remarks the caution researchers must

have when using pollution data.
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the pattern is more volatile than the one we find for HNC. This suggests that imposing

structure to the estimation procedure should give us more meaningful estimates. Panel

B contains the results of estimating equation (9). The estimated coefficients imply that

the effect on impact of TS was slightly positive (with insignificant point estimates of

005 and 006) and that the long-run estimate is positive, with point estimates of 031

and 034 (and p-values below 001 in both cases). Interestingly, the adaptation period,

9 to 10 months, takes basically the same time that in HNC (10 to 11 months). This

suggests that our CO estimates are capturing reasonably well the speed of adjustment of

households in middle-income big cities as they face unexpected shocks.60

All the other determinants of CO in Panel B present the expected signs: Background

pollution presents a big, positive, and significant effect (with a coefficient bigger but of

the same order of magnitude as in HNC, which is not surprising because peaks are less

pronounced in Santiago; see Figure 4.1), gasoline prices and the real exchange rate have

a negative impact, and SO2 and CO levels are positively correlated. Finally, column (3)

in Table 4.2. presents the results of the same SO2 falsification exercise we introduced in

HNC.61 The apparent "effect" of TS on this pollutant follows a pattern that is completely

unrelated to the pattern we found for CO (if anything, it confirms the need for imposing

some structure to the estimation). This evidence is reassuring that our CO estimates are

not capturing the effect of some omitted variable related to overall pollution in Santiago.62

4.4 Variation in policy effects within cities

It is natural to expect transport policies to affect households with different private/public

transportation demands in different ways. Here we exploit income variation within cities

and CO records from individual monitoring stations distantly located to test whether

the response to HNC and TS depends on income (or ex-ante car use63) in a way that

is consistent with the predictions of the model presented in Section 3.3. Looking at

these more disaggregate responses not only constitutes an additional robustness check

60That the adaptation pattern happens to be similar with both policy experiences cannot be attributed

to some monthly patterns in weather conditions or pollution as TS was implemented in the summer and

HNC in the fall.
61As a reference, DICTUC (2009) presents simulations in which the expected effect of TS on SO2 is a

decrease of just 04% with respect to 2005 levels.
62We report here the results of some additional exercises for TS. If we just include a dummy for the

post-TS period we find a positive effect of 017 (with a standard error of 006). On the other hand,

the estimated effect of Transantiago on impact at peak hours using the Imbens-Kalyanaraman RDD

estimator is −002% (with a standard error of 003) when using montly observations. As in HNC, the

same estimator raises sharply to −55% (with a standard error of 010) when using weekly observations

and to −27% (with a standard error of 045) when using daily observations.
63The simple correlation between (the log of) household income and (the log of) the number of cars

per household at the county level is 085 for Mexico City in 1989 and and 094 for Santiago in 2006.
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of our empirical strategy but it can also reveal important heterogeneities (in costs and

benefits) that may prove relevant for policy evaluation. We restrict our estimations to

peak hours, as concentration levels at off-peak hours at any individual station are most

likely picking up traffic activity from far distant places. For brevity, we only present

estimates of equation (9).

Table 4.4 provides a summary with the results of the effects of HNC on CO for 10

monitoring stations in Mexico City.64 We have ordered the stations according to both

location (i.e., sector) and the (relative) income level reported in INEGI (1989b) for the

representative household living in the neighborhood (delegación) where the station is

located (average income for the entire population has been normalized to 1). We believe

that accounting for both income and location gives a better idea of a household wealth.

Households living in Plateros and Pedregal, in the Southwest area, exhibit the largest

income levels, four times higher than those in the Northeast. The next four columns of

the table present estimates of the HNC effects in the short and long run, the difference

between the two effects, and the length of the adaptation process. These results are

entirely consistent with the predictions of the model in that they indicate that HNC has

its largest impact (measured by the LR-SR difference) in middle-income neighborhoods,

where households were more likely to buy a second car to by-pass the driving restriction,

and lowest in high- and low-income neighborhoods.65

Similarly, Table 4.5 provides a summary with results of the effects of TS on CO for

7 stations in Santiago. We have also ordered the stations according to the location and

the income level reported in CASEN (2006) for the representative household living in the

neighborhood (municipalidad) where the station is located (average income for the entire

population has again been normalized to 1). Given that TS affected the supply of public

transport throughout the city, we also include in the table the ratio of bus traffic flows to

total flows at peak hours which was computed from a sample of traffic stations located

close to the corresponding pollution monitoring station. We think of this ratio as a good

proxy of the relative importance of buses over other forms of transportation ex ante (i.e.,

before TS). Data suggest, as expected, a strong negative correlation between this proxy

and household income (the simple correlation is −090), which immediately suggests that
a household’s dependence on public transport varies greatly across the city: from as low

64In some of our estimations, the SO2 control was borrowed from SO2 records of the closest monitoring

station.
65It is worth mentioning that in the case of Mexico-City a non-trivial part of the CO emissions are not

produced by passenger and commercial vehicles (the ones affected by the policy) but by other vehicles

that are part of the public transportation system (e.g., combis). This is evident from the data: while

CO levels at peak hours do not vary much from station to station (or county to county), car ownership

and income levels do and in a significant way. This may explain why there is a zero effect on impact in

the Xalostoc station.
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as 2% in the rich Las Condes to 13% in the poor Cerro Navia. Closely related, the

next column in the table presents a proxy of the change introduced by TS in bus service

(i.e., frequency) in the vicinity of each pollution station. It is noticeable that despite the

ex-ante differences in bus coverage, frequencies in all neighborhoods fell more or less in

the same proportion. Then, variations in the intensity of the TS treatment mostly come

from ex-ante differences on how much households depend on public transport.

The last three columns of Table 4.5 present estimates of the TS effects in the short

and long run, and the length of the adaptation process. Again, these results are entirely

consistent with the predictions of the model. The immediate impact of TS is not different

from 0 in all the stations. As for the long-run estimates, there is a strong positive

correlation between the size of the coefficient and the ex ante degree of dependence on

public transport (and also a negative correlation with household income).66 Effects are

big and precisely estimated in all stations (in three of them above 40%), including rich

Las Condes.67 It is also interesting to notice that the length of the adaptation period is

for most part decreasing in income, which is consistent with poorer households having a

relatively larger expense and less access to credit.

Estimates at the station level for both HNC and TS not only proved to be remarkably

consistent with the theoretical predictions but also served to validate the empirical results

we obtained for the complete city.

5 Policy effects on other variables

The policy effects on CO we report in the previous section should also be reflected in

effects on other variables related to car use and to the substitution between private and

public transportation. In this section in particular, we look at the effects on gasoline

sales, number of registered cars (stock of vehicles), sales of new cars, and traffic flows.

Such an analysis will serve to validate and complement some our CO results –especially

because we can take advantage of control groups (regional trends) we did not have in

the CO estimations– and to provide support to the numerical exercises of Section 3.

Unfortunately, we restrict the empirical analysis of this entire section to TS (for lack of

comparable data for HNC where we could apply the same empirical approach) but we

still discuss and contrast similar empirical results that are available for HNC. Summary

66The only station that somehow deviates from the gradient is El Bosque. One potential explanation

is the big expansion of the subway network to neighborhoods nearby that was concurrent with the

implementation of TS.
67The fact that we find a positive and statistically significant effect even in Las Condes is probably

because it is the workplace of many agents living in distant neighborhoods that saw their transportation

costs increase after TS.

29



statistics of variables used in empirical exercises that follow are in Table A.3.

5.1 Gasoline sales

Using publicly available information from Chile’s Superintendencia de Electricidad y

Combustibles (SEC), we construct a panel of monthly gasoline sales at the region level

and run a differences-in-differences regression of the form

 =  ×  +  +  +  +  (10)

where  is the log of the volume of gasoline sales per capita (seasonally adjusted at the

regional level using −12 ) in region  = 1  13 during month ,  is a dummy

that takes the value of 1 for months after TS,  is a dummy that takes the value of 1

for city/region of Santiago,  is a vector of controls that vary by region and time, and 

and  are vectors of region and time fixed effects, respectively. The parameter  in (10)

captures the differential effect on gasoline sales that we observe in Santiago because of

TS, conditional on the other variables included in the regression. The time fixed effects

are supposed to capture movements in all the variables that affect symmetrically all the

regions and the effects of all the variables that do not vary by region (e.g., general financial

conditions or even car prices). We also include as control variables the growth rate of

per-capita regional GDP and interactions of the average difference between gasoline and

diesel prices interacting with the regional dummies. Thus, the time evolution of all the

other regions in Chile serves as a control group for the evolution of Santiago.68

We estimate the model for two samples: for the complete period for which we have

data (Jan 2002 - Dec 2008) and for the same period we use in the CO estimations, that is,

Feb 2005 - Dec 2008. We cluster the standard errors at the region level. Table 5.1 presents

the results. Relative to other regions, there is a differential positive increase in gasoline

sales per capita in Santiago after TS went into operation: 5.8% for the complete sample

and 4.8% for the restricted sample. Both () coefficients are statistically significant at

the 1% level.

To get a sense of whether these gasoline estimates are consistent with our CO es-

timates, we run regressions of monthly average CO concentrations at peak hours on

gasoline sales and find that a 1% increase in monthly gasoline sales lead to a 4% increase

in CO concentrations at peak hours.69 Hence, a 5% increase in gasoline sales is consistent

68The evolution of gasoline sales per capita in Santiago and other Chilean regions is similar before TS

was implemented. In most regions there was a secular decrease in gasoline sales before 2007.
69Regressions are only for Santiago as we do not have data on pollution for other cities. Results

available upon request.
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with a 20% increase of CO at peak hours, which is somewhat lower but nevertheless close

to our CO estimates.

With respect to estimates of changes in gasoline sales because of HNC, we are not

aware of a comparable regional data set of gasoline sales in Mexico that one could use to

implement a similar estimation strategy. Eskeland and Feyzioglu (1997) and Davis (2008),

however, look at the effect of HNC on gasoline sales using data just for Mexico-City.70

They find no evidence that HNC reduced gasoline sales; on the contrary, Eskeland and

Feyzioglu (1997) find a year-average increase of about 7%. These findings are consistent

with our CO results and numerical exercises (A2 and A3) that require a moderate increase

in gasoline sales in the long-run to support more circulation during weekends and a similar

but less fuel-efficient circulation during weekdays.

5.2 Car registrations and sales

Common sense (and the model) indicates that the only way to support the long-run

increases in CO that we find for both HNC and TS is with more cars on the street

(beyond any changes in use of the existing fleet). We study here evidence on this for TS

by looking at the evolution of three variables: number of registered cars, sales of new

cars, and trades of used cars. We are interested not only in estimating the effect of TS

on the total number of registered cars (stock) but also in having some idea about the

composition of the change. Was it mostly related to sales of new cars or trades of used

cars coming either from regions outside Santiago or from (the stock of) car dealers in

Santiago?

We work with two datasets. First, data on registered light vehicles obtained from

Instituto Nacional de Estadísticas is at the annual and regional level and, following the

window of the CO estimations, goes from 2005 to 2009. Data on sales and trades,

obtained from the Servicio de Registro Civil de Chile, is at the monthly and regional

level and cover about the same period: a 49 month window centered at February 2007.

For our estimation we employ again a differences in differences model along the lines of

(10). As done for gasoline sales, monthly observations of sales and trades were seasonally

adjusted at the regional level using  − 12 . Unfortunately we do not have

control variables –in particular, car prices– that vary at the regional level; though

time dummies probably capture the evolution of these terms.71 Again the time evolution

of regions other than Santiago serves as control for the TS treatment. We focus on a

70If we estimate our model only using data for Santiago (and controlling for a the relative price of

gasoline to diesel and a linear trend), we find a 77% increase of gasoline after TS was implemented (with

a standard error of 0015).
71Anecdotal evidence suggests there are no big differences in car prices across regions.
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four-year window centered at the time TS went into operation.

Results for changes in the number of registered cars are in Table 5.3. Column (1)

contains results of a regression that includes time and region fixed effects and column (2)

contains results when we add regional trends. Results imply that TS lead to a significant

increase in the stock of cars in Santiago between 119% (column 1) and 38% (column

2). One could think of results in column (2) as a lower-bound of the true effect; with

four years of data it is likely that the TS effect may be at least partially captured by

the Santiago-specific trend. On the other hand, results in column (1) are probably an

upper-bound of the true effect as they do not control for trends that may increase the

stock of cars faster in Santiago than in other regions. In all, our conclusion is that the

estimated increase in the stock of cars is in the range of estimates consistent with the

results of our numerical exercises (see exercises B4 and B5 in Table 3.2) –in fact, we

cannot reject in the model of column (1) an increase in the stock equal to a 54% with a

p-value of 018.

Results for changes in trades of used cars and sales of new cars are in Table 5.4.

Columns (1) and (4) present average effects when time effects are common to all regions.

We find positive effects on both the trade and sale margins. In the trade margin, our

estimate implies an increase of about 10% with respect to the (monthly) average trading

volume of used vehicles in Santiago in the two years before TS. In turn, the estimate in

column (4) implies a sizeable 30% increase in the (monthly) average sales volume of new

cars with respect to the previous two years in Santiago.

These results remain, at least qualitatively, under other specifications. In columns

(2) and (5) we allow for differentiated time trends by region. Estimates now decrease

in magnitude (to 44% and 212%) and in the case of trades, the TS coefficient is not

longer statistically significant. In addition, in columns (3) and (6) we allow for a gradual

adaptation to the policy. In the case of used cars (column 3), we find big and statisti-

cally significant effects for the first months of implementation, suggesting a quite rapid

reallocation of the existing used-car capacity. Unfortunately, we do not have information

that could help us disentangle how much of this increase in used-car trading is coming

from outside Santiago and how much within Santiago (anecdotal evidence suggest that

many car dealers in Santiago run out of their stocks of used cars, including some very

old ones). The case of new cars (column 6), on the other hand, shows an interesting

pattern in that the month coefficients suggest that agents moved forward their purchase

decisions to the first month after TS. Unfortunately, neither we have data on the types

of cars agents bought to comment further on this pattern.

In all, our results confirm that TS had significant effects on the markets for used

and new cars. Our coefficients imply that about 23 of the increase in the stock of cars

corresponds to new cars and the remaining 13 to used cars (but concentrated within
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the first year of implementation). Furthermore, the fact that these effects realized rather

quickly is entirely consistent with our CO results that show an adaptation period of 10

months or so.

Similar analysis have been carried out for HNC. Using only data for Mexico-City but

controlling for flexible trends, Davis (2008) finds a much bigger effect in the number of

registered cars (about 20%) but somewhat smaller in the sales of new cars (of about 16%).

Eskeland and Feyzioglu (1997) also present evidence supporting the increase of registered

cars in Mexico-City. They explain that the increase is mainly driven by imports of used

cars from regions outside Mexico-City and much less by the sale of new vehicles. The

latter finding, which is also in Davis (2008), is entirely consistent with our numerical

exercise A3 that shows that the long-run increase in CO can only be explained by the

arrival of dirtier vehicles; although of fewer (3%) than the 20% figure in Davis (2008).72

5.3 Traffic flows

Despite the problems identified above, in this section we look at the evolution of traffic

flows for a restricted sample of 26 of the 46 traffic stations operated by Santiago’s Unidad

Operativa de Control de Transito (UOCT; www.uoct.cl).73 Our aim here with this in-

formation is more qualitative than anything. We would like first to confirm whether TS

hit harder in relatively poor areas, and second, to identify whether effects at peak differ

from those at off-peak. We proceed first by aggregating the information coming from

individual stations into two groups: high-income stations (i.e., with flows registered in

stations located in high-income areas) and low/middle-income stations (ie., with flows

registered in stations located in low- and middle-income areas).74

The effect of TS on traffic flows is estimated with the following equation

 = +  + +  + 

where  is (the log of) total flows during period (i.e., hour) ,  is the TS indicator,

 is a vector that includes fixed effects (hour of the day, day of the week, month),

weather variables, economic covariates, dummies for holidays, dummies for days in which

72Note, however, that 3% falls in Davis’ (2008) ninety-fifth percentile confidence interval (which is

quite wide as the effects are not that precisely estimated).
73We limit our analysis to data from the 26 stations that neither suffered from (i) significant shocks

that were collinear to the implementation of TS (e.g., one month before TS, a new entry to a main

highway near La Dehesa station was open to traffic) nor (ii) unusual traffic flows likely due to the

construction or repairing of streets nearby.
74We called this group low/middle income areas because, as we discussed in Section 4.1, low-income

areas are under-represented in the traffic flow stations. Note also that the aggregation avoid the problems

of using specific stations as discussed in section 4.1 and by Daganzo (2007).
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(transitory) driving restrictions were in place, and a set of dummies that control for the

opening of several urban highways and extensions of the subway network.75

We run regressions for a four-year window centered around the time TS was introduced

and differentiating for peak (7 — 9 am) and off-peak hours (10 am — 4pm). Unfortunately,

station records cannot possibly distinguish between private and public transportation

flows.76 Then, in order to compute changes in private vehicles net of changes in public

transportation we do the following. We estimate the percentage decrease in the actual

number of buses passing through each traffic station by hour using (i) the number of buses

passing through each station before TS, (ii) the actual change in the number of routes

passing through each station, and (iii) the estimated decrease in the total number of buses

for the whole city. Data for (i) and (ii) comes from Transantiago (www.transantiago.cl).

Using data in Briones (2009) and in Muñoz et al. (2009), we compute that the number of

buses actually circulating in the city in the first year of TS was, on average, about 27%

lower than the pre-TS level. Briones (2009) also argues that due to incentive problems,

the effective use of each bus dropped significantly relative to pre-TS levels. Thus, we

assume a (probably conservative) reduction in the number of buses actually circulating

on the street of 30%. As a robustness check, we also compute changes in bus flows

assuming an even more conservative scenario with a reduction of 20%.

Next, to estimate the hourly changes in the number of buses in each station (and

therefore in each of the two group of stations) we distribute the change in the total

number of buses in proportion to the change in the number of routes that cross over each

station. This calculation implies that the drop in total flows due to the reduction in bus

flows caused by TS is about 3% in peak hours and 21% in off-peak hours.

Table 5.2 presents our estimates for the two group of stations and the two reduction

scenarios. While the impact of TS on private traffic in stations located in high-income

areas is very close to 0, the impact in low/middle-income areas is clearly bigger. For

peak hours the increase in private traffic is 14% (and statistically significant) and for

off-peak hours is 10% (but only marginally significant with a p-value of 019). This

evidence is consistent with our CO results that the effect of TS is bigger in lower income

areas. Regarding differentiated effects between peak and off-peak hours, the imprecision

of our estimates –coming from the limitations of traffic data– do not allow us to be too

conclusive. That the effects are bigger at peak hours in low/middle-income areas may

suggest that the relative price of public transportation did increase in both but more in

peak than in off-peak. The smaller impact found at off-peak may also explain why we

fail to identify CO effects at off-peak hours.

75As with the CO regressions, we cluster standard errors in five-week periods.
76For this same reason we do not attempt an estimation of the adaptation process since the exact

progression in the number of buses after TS is unknown to us.
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6 Discussion of results and welfare costs

It is evident from our empirical results that neither of the two policies passes a cost-

benefit test. They not only failed to accomplished their main purpose –persuade drivers

to give up their cars in favor of public transport– but worse, they induced drivers to

buy additional cars (and in many cases more polluting ones). Given that a full-fledge

cost-benefit analysis is beyond the scope of the paper, the welfare discussion that follows

concentrates on the transport costs that these policies have imposed on households by

making them face new sets of transportation options.

6.1 Estimation of transport costs

One of the main objectives of the paper has been to understand the way agents adjust to

transport policies. This includes computing how the costs (or benefits) inflicted by these

policies on agents evolve over time. Costs are expected to be higher in the short-run

when agents have little margin of adjustment and lower in the long-run as the margin of

adjustment widens. Based on the large difference between the short- and long-run CO

impacts we find for both HNC and TS (24 and 33% at peak hours, respectively), one may

argue that despite the fact that these policies did not work as intended, a large fraction

of households were nevertheless able to accommodate to them. And if so, the long-run

costs associated to these ineffective policies are perhaps not that large.

An estimate of these transport costs can be obtained with the help of the model in

Section 3. Given the functional forms adopted in eqs. (1)—(4), welfare costs are obtained

directly as the difference between ex-ante and ex-post household’s utilities (i.e., agents’

willingness to pay to avoid the policies). But before we can compute these costs we must

agree on the most likely effects attributable to these policies as described, for example, by

some of the exercises in Table 3.1. Based on our CO estimates, the additional evidence

discussed in Section 5, as well as results (not shown) from additional runs of the model,

we believe that the numbers in exercise A3/B5 capture reasonably well the impacts of

HNC/TS.

Consequently, Table 6.1 presents transport costs imposed by HNC and TS based,

respectively, on exercises A3 and B5. Cost figures have been normalized by the annual

value of the ex-ante existing stock of cars in the corresponding economy, that is, Σ
0
 ,

where 0 is household ’s ex-ante vehicle stock. The first row of the table indicates that in

the short run HNC made households in Mexico-City bear losses equivalent, on aggregate,

to a 3.6% of the (annual) value of the current stock. The short-run figure in the case

of TS is even higher, 9.0%. We cannot immediately read from these numbers that TS

was 2.5 times costlier for households than HNC because stock values, relative to total
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surplus, are not the same. One possible correction is to normalize losses in TS by the

stock value in Mexico-City. The second row of the table shows that with this correction

TS becomes 4 times costlier in the short run than HNC. An alternative correction, which

leads to an identical conclusion, is to normalize the ex-ante total surplus in each economy

to the same number (by simply adjusting the gross utility ). Either way, it seems that

TS has imposed much larger losses than HNC (in the next section we provide additional

empirical support for this).

The next two rows in Table 6.1 show that this cost difference extends to the long

run. More importantly, it shows that the long-run losses are surprisingly close to the

short-run ones. One possible explanation is that only a few households accommodated

to the shocks after all. This seems to be the case in both policies. In fact, the model

indicates that only 4.3% of the households that own a car before HNC decided to buy a

second one and that only 2.8% of all households in Santiago decided to buy a car (or an

extra one) because of TS. But this is not the full story. Even if a policy prompts a much

larger response in terms of additional cars on the street, the long-run losses are still likely

to be slightly smaller than the short-run losses. As we increase the policy shock, not only

we increase the number of households adjusting to the shock but also the costs borne by

those that do not adjust.77 Overall, these numbers indicate that the long-run flexibility

does not provide much of a cost alleviation. Consequently, any cost-benefit analysis may

well abstract from long-run adjustment considerations.

Given the heterogeneous CO responses we report in Section 4.4, it is unlikely that the

transport costs in Table 6.1 are distributed evenly among households of varying incomes.

We again use the model to shed some light on this. Table 6.2 reports welfare costs

for three groups of households: high-income (as portrayed by exercises A4 and B7 in

Table 3.2), middle-income or city-average (numbers are in Table 6.1), and low-income

(as portrayed by exercises A5 and B8). Not surprisingly, middle-income households suffer

the most in HNC; many of them own a single car but only a few can afford a second one

to by-pass the driving restriction. TS, on the other hand, appears fairly regressive with

low-income households being hit, on average, 3.4 times as bad as high-income ones.

6.2 Cost difference: Evidence from taxi medallions

One of the striking observations that arise from Table 6.1 is that TS appears much costlier

than HNC. This is not obvious given some of our empirical findings, e.g., comparable

77Take for instance exercise B1 in Table 3.2. The response is quite large, a 22% increase in the stock;

yet the difference between short- and long-run losses is again small: 33.2 vs 31.0%. Note that this small

difference also extends to "good" policies. For example, the short-run (transport) gains in B6 amount

to 13.2% while the long-run gains to 13.6%.
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impacts in CO at peak hours (i.e., similar short vs long run differences) and in vehicle

stocks (increases of 3 and 5%, respectively). But this cost difference is not interesting in

itself; it would be interesting, in our context at least, only if it provides an opportunity

for additional hypothesis testing that may add (or not) to the robustness of our previous

empirical and numerical findings.

Since these transport policies affect the relative prices of all transportation options,

one would hope to see changes in the price of taxi licenses (or taxi medallions, as known

in New York City) in response to the policies. As in most cities around the world, the

taxicab markets in Mexico-City and Santiago are regulated in terms of both fares and the

total number of licenses (i.e., number of taxicabs that can operate).78 License prices must

then reflect the scarcity rents of operating in markets where there is no free entry. While

significantly lower than those in New York City (NYC), license prices in Mexico-City

and Santiago were nevertheless positive and comparable at the time HNC and TS were

introduced, around US$1000. Moreover, despite taxi rides constitute a small share of all

trips in these cities –2 and 1%, respectively–, there are good reasons for license prices

to be reliable indicators of the changes in relative prices. One reason is that since these

prices represent the present value of a stream of economic rents over an infinite horizon,

they should capture, unlike other variables like CO records, gasoline sales and car sales,

rather instantaneously the long-run effect of the policy.79 And second, the introduction of

both HNC and TS came with no modification in fares nor in the number of licenses,80 so

any change in prices around the time of policy implementation can be largely attributed

to it.

An analysis of the taxicab market in Mexico-City at the time of HNC can be found

in Davis (2008). He finds no evidence of an increase in the price of a taxi license –the

HNC coefficients were all negative but not statistically different from zero. Given the

positive price of licenses, this lack of evidence can only be explained by a modest (long-

run) increase in the demand for taxi rides, or alternatively and according to the (search)

model in Lagos (2003), by an increase in demand accompanied by an equivalent increase

in the number of licenses, which in this case must come from unauthorized vehicles.

We carried out a similar analysis of the taxicab market in Santiago. We compiled

78There were 69000 taxis in Mexico-City (Molina and Molina, 2002), or 1 for every 120 residents, and

27000 in Santiago (INE, 2010), or 1 for every 220 residents.
79There are reasons to believe that prices do not adjust instantaneously because agents either learn

gradually about the new market conditions or form (temporary) expectations that the policy may be

improved or ultimately removed.
80Except, obviously, for any rise in ilegal activity. We have some anecdotal evidence, from talking to

several taxi drivers, that at least in Santiago the fraction of unauthorized taxis does not reach 5%. There

seems to be a good deal of enforcement in place with fines of US$1000 (or, alternatively, the confiscation

of the car).
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a novel database of 430 observations of license prices based on weekend’s classified ad-

vertisements appeared in El Mercurio –Santiago’s main newspaper– of taxi licenses,

taxicabs and passenger cars for the period January 2004 through November 2010. Since

most of the ads we collected consisted of taxicabs with a single posted price for the vehicle

and the license, we proceeded to subtract from the posted price the price of an equivalent

passenger car advertised the same day. 370 of our observations were obtained this way

(the remaining 60 observations correspond to ads of taxi licenses). We are aware that

these observations are probably biased because, among other things, the vehicles we are

comparing are not necessarily of the same market value (e.g., taxis are more heavily used).

However, since we do not expect the bias to change with TS, this methodology should

provide us with an unbiased estimator of the effect of TS on license prices. Summary

statistics are in Table A.3.

The evolution of license prices (from the 60 license ads only) along with the monthly

averages from all observations is depicted in Figure 6.1. Prices are quite stable right up to

the implementation of TS, which suggests that nobody really anticipated the large impact

TS later had; otherwise, prices would have gone up together with the announcement of

implementation. This observation is important for all our empirical estimations that

are built on the assumption that agents’ adjustments only begun once the policies were

in place. The figure also show a big and quick increase in prices soon after TS, which

provides further evidence of the large impact TS had on forcing people substitute away

from public transport towards more expensive means of transportation.

Table 6.3 provides more precise estimates of the effect of TS on a license price. We

start in column (1) with an OLS regression of (the log of) license prices on a dummy

that takes the value of 1 for observations after TS. The coefficient of TS indicates a

large and statistically significant impact of 71%. If we control for the total number

of licenses (per capita), the coefficient of TS, as shown in column (2), drops to 56%.

Interestingly, the value of −091 for the price elasticity of licenses is entirely consistent
with the −157 value found by Lagos (2003) for NYC medallions, which are traded at
much higher prices. As the other columns in the table show, these results are robust to

the inclusion of linear trends and/or fixed-effects intended to correct for the potential

biases generated during the construction of our sample as well as to the sub-sample of

60 license ads. The coefficients are never below 50% and always statistically significant

at conventional levels.81

The model in Lagos (2003) can also be used to get a better idea of how much of a

demand increase in taxi rides can explain the 50-70% surge in license prices in Santiago.

81The inclusion of a large number of fixed-effects in some of the regressions leads, not surprisingly, to

less efficient estimates.
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Given that prices in NYC prices are substantially higher than those in Santiago, there is

more reason for the taxicab market in Santiago to clear above the "no-frictions frontier"

(i.e., a taxidriver’s search for a passenger in Santiago must necessarily take longer than

in NYC). And if so, the Lagos’ (2003) analytical expression for the equilibrium price of

licenses is readily applicable, at least conceptually, to Santiago (recall that regulated fares

remained unchanged). A lower bound for the demand increase can be obtained directly

from the increase in the licence price, i.e., 50-70%. A second estimate can be taken from

the same NYC market: an increase in the medallion price of 50-70% corresponds to a

ceteris paribus increase in demand of almost 3 times (note that the equilibrium is still

above the "no-frictions frontier"). Yet, a third estimate can be obtained if we use the

EOD-2006 for Santiago and the numbers in Table 2.1 to get an idea of the aggregate

number of taxi meetings (270 per min) and the average duration of a taxi ride (17 min):

the increase in demand (i.e., meetings) now is a bit less than 6 times. Based on this

range of estimates, one can safely argue that TS has at least doubled the demand for

taxicab rides, which portraits quite neatly the much higher cost of using public transport

after TS. Furthermore, because taxis are a relatively expensive mode of transportation

whatever the city, these findings are also consistent with the idea that TS was much

costlier than HNC.

7 Concluding remarks

We have developed in this paper a theoretical and empirical framework to evaluate

whether and how different transport policies –driving restrictions and public transport

reforms, in particular– can persuade drivers in highly congested and polluted cities to

give up their cars in favor of public transport. Because unique in several respects, our

empirical analysis has focused on the driving restriction program introduced in Mexico-

City in 1989 (HNC) and the public transport reform carried out in Santiago in 2007

(TS). Using hourly concentration records of carbon monoxide (CO), a pollutant directly

associated to car use, we found that households’ response to both HNC and TS have

been remarkably similar but unfortunate: an expected immediate impact –11 and 0%

reductions in CO concentrations, respectively– followed by a rapid and significant in-

crease in CO in the long run –13% and 33%, respectively. These latter numbers are the

result of more cars on the street that in the case of HNC happen to emit more than the

fleet average and in the case of TS add to the existing congestion.

Despite the bad news, there are some valuable policy lessons (not to mention how

good a proxy for car use CO proved to be, particularly at peak hours). As illustrated

by the theoretical model, the immediate or short-run impact of a policy may say little
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about its overall effectiveness. Both experiences confirm that policies that may appear

effective in the short run can be highly detrimental in the long run; thereby, the impor-

tance of understanding whether and the extent to which households adjust their stock of

vehicles and how fast in response to these policies. Again, both experiences show that

the adjustment process is quite fast, 9 to 11 months.

The magnitude of the adjustment, as measured by the large CO effects, may suggest

that a good fraction of households were nevertheless able to accommodate, at a reasonable

cost, to policy shocks that did not work as intended. With the help of the model we

showed otherwise, not only that a few did but also that the short-run (transport) costs

these policies inflicted on households –equivalent to 4 and 9%, respectively, of the value

of the existing stock of cars– remain largely unchanged in the long run regardless of

income. In this regard, the short run can be quite informative in a cost-benefit analysis.

It would be wrong, however, to interpret this limited welfare improvement as an ex-post

opportunity to remove ineffective policies and restore welfare; quite the contrary: it will

take a long time for the stock of cars to return to its ex-ante level.

Because the speed of adjustment leaves little room for ex-post corrections, the paper

also draws attention on the importance of complementing (or replacing) this type of

policies with other measures. It is clear that HNC was ineffective in moving people away

from their cars, but it less clear how much of that result can be exported to other driving

restriction programs that include elements that HNC did not, at least in its early years,

such as incentives towards a faster and cleaner fleet turnover. In fact, a few years after

implementation, both HNC and the driving restriction program in Santiago (and in other

Latin American cities) exempted cleaner vehicles (i.e., with catalytic converters) from the

ban. Our theoretical results also confirm how difficult is to persuade drivers, particularly

in the short run, to give up their cars with just improvements in public transport, however

large they be. More reason then for a serious consideration of market-based instruments

such as road pricing that so far has received none in the region.
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Table 1.1: Transport policies in Latin America

Program City Start year Typea Scope In force?

Restricción Vehicular Santiago 1986 DR gradual yes
Hoy No Circula Mexico D.F. 1989 DR drastic yes
Metrobus-Q Quito 1995 PT gradual yes
Operação Rodizio Sao Paulo 1996 DR gradual yes
Pico y Placa Bogotá 1998 DR gradual yes
Transmilenio Bogotá 2000 PT gradual yes
Pico y Placa Medelĺın 2005 DR drastic yes
Metrobus México D.F. 2005 PT gradual yes
Restricción Vehicular San José 2005 DR gradual yesb

Transantiago Santiago 2007 PT drastic yes
Pico y Placa Quito Quito 2010 DR drastic yes

Notes: a DR: driving restriction; PT: public transportation reform. b The program suffered a temporary interruption in
June-July of 2009. Source: Ide and Lizana (2011)

Table 2.1: Travel time before and after TS

Indicator Before TS After TS

0-6 months 12-18 months 2010

Total number of busesa 7,472 5,444 6,396 6,649
% of people waiting at least 10 minutes in bus stopb 21.0 7.1
Waiting time per connectionb 6.08 3.65 3.49
Travel time to work (both ways; min.)c 76.8 89.7
Travel time by transportation mode (both ways; min.)c

Public transportation 102.4 133.3
Private car 65.4 63.4

Taxi 35.1 33.9

Sources: a Subsecretaŕıa de Transporte, Ministerio de Transporte y Telecomunicaciones; b DICTUC, several reports; c Bravo
and Mart́ınez (2007).



Table 3.1: Calibration

Targets HNC TS Parameters HNC TS

s = 0 0.71 0.62 ∆ph 0.91 0.91
s = 1 0.23 0.30 ∆pl 1.01 1.23
s = 2 0.06 0.08 th 0.95 1.22
qhcar/q

h 0.16 0.31 tl 0.90 1.20
q`car/q

` 0.16 0.32 k 0.29 0.40
qhcar/q

`
car 0.98 0.85 r 0.98 0.95

Table 3.2: Simulations

Exercise ∆Ch
SR ∆C`

SR ∆Ch
LR ∆C`

LR ∆ stock

Panel A: HNC

A1 -8.2% -8.1% -5.5% -5.6% -5.7%
A2 -8.2% -8.1% -1.2% -1.2% 2.8%
A3 -8.2% -8.1% 12.7% 12.4% 2.8%
A4 -1.1% -1.1% 3.3% 3.7% 2.0%
A5 -13.5% -13.7% 3.4% 4.2% 1.6%

Panel B: TS

B1 0.0% 0.3% 33.2% 32.2% 21.8%
B2 5.1% -5.2% 32.9% 0.0% 13.4%
B3 0.0% 0.0% 8.1% 8.1% 5.3%
B4 0.4% -0.3% 11.2% 5.7% 5.4%
B5 0.4% -0.3% 31.0% 7.2% 5.4%
B6 -0.6% 0.4% -15.2% -8.5% -7.9%
B7 2.0% 0.0% 13.5% 0.3% 1.6%
B8 0.4% -0.3% 45.3% 10.2% 9.4%



Table 4.1: HNC effect on CO concentration

Peak Off-Peak Sunday
y CO SO2 CO CO SO2 CO SO2

(1) (2) (3) (4) (5) (6) (7)

Panel A: Fexible approach

HNC 0.129 0.058 0.126** 0.084* -0.053 0.143** -0.203**
(0.087) (0.067) (0.050) (0.044) (0.080) (0.068) (0.093)

Month 1 -0.199*** 0.008 -0.221*** -0.161*** 0.046 -0.109 0.077
(0.067) (0.049) (0.046) (0.040) (0.069) (0.074) (0.079)

Month 2 -0.214*** 0.063* -0.182*** -0.131*** 0.036 -0.106** 0.090
(0.052) (0.036) (0.036) (0.034) (0.055) (0.046) (0.058)

Month 3 -0.151*** 0.095*** -0.154*** -0.122*** 0.055 -0.074 0.117**
(0.046) (0.031) (0.037) (0.033) (0.046) (0.046) (0.057)

Month 4 -0.092* 0.075 -0.150*** -0.126*** 0.074 -0.059 0.143**
(0.047) (0.059) (0.036) (0.035) (0.045) (0.049) (0.058)

Month 5 -0.197*** 0.066* -0.153*** -0.086*** 0.080 -0.101 0.123**
(0.049) (0.035) (0.031) (0.029) (0.062) (0.079) (0.058)

Month 6 -0.151*** 0.109*** -0.074* -0.031 0.200*** -0.034 0.116**
(0.039) (0.036) (0.041) (0.038) (0.057) (0.054) (0.050)

Month 7 -0.245*** 0.153*** -0.084*** -0.027 0.176*** -0.098** 0.137*
(0.037) (0.035) (0.028) (0.027) (0.051) (0.041) (0.068)

Month 8 -0.166*** 0.096*** -0.029 0.013 0.095* 0.048 0.116
(0.039) (0.035) (0.030) (0.030) (0.049) (0.044) (0.079)

Month 9 -0.114*** 0.036 -0.016 0.013 0.233*** 0.054 0.200***
(0.040) (0.033) (0.034) (0.031) (0.045) (0.042) (0.050)

Month 10 -0.064 0.074** -0.090** -0.070* 0.232*** 0.029 0.182***
(0.044) (0.037) (0.044) (0.038) (0.041) (0.051) (0.057)

Month 11 0.021 0.021 0.017 0.018 0.219*** 0.084* 0.152***
(0.050) (0.043) (0.051) (0.044) (0.052) (0.044) (0.055)

Month 12 0.061 -0.134*** 0.075 0.077 -0.072* 0.061 -0.087
(0.075) (0.040) (0.072) (0.058) (0.038) (0.044) (0.071)

Panel B: Estimation with structure

Immediate impact -0.114** 0.092** -0.064** -0.003 0.034 -0.111**
(0.053) (0.039) (0.030) (0.046) (0.038) (0.053)

Adaptation trend 3.03e-05*** -6.94e-06 2.29e-05*** -1.86e-05** 2.43e-05 -1.48e-05
(1.04e-05) (6.93e-06) (7.07e-06) (7.77e-06) (7.45e-06) (9.03e-06)

Impact after adaptation 0.132 0.028 0.106** -0.063 0.196*** -0.166
(0.083) (0.063) (0.041) (0.074) (0.048) (0.106)

Trend -9.94e-06** -1.84e-05*** 2.48e-06 -1.49e-06 -9.77e-07 3.89e-06
(4.75e-06) (4.45e-06) (2.90e-06) (4.30e-06) (3.48e-06) (5.30e-06)

Real exchange rate -0.627** -0.693** -0.468 -0.049 -0.060 0.695*
(0.274) (0.341) (0.302) (0.360) (0.317) (0.387)

ynight 0.322*** 0.644** 0.069* 0.413*** 0.532*** 0.780***
(0.049) (0.341) (0.038) (0.033) (0.031) (0.041)

ypeak 0.290*** 0.213
(0.036) (0.040)

SO2 0.231*** 0.287*** 0.094**
(0.045) (0.024) (0.036)

Months of adaptation 11.5 11.5 10 10 10 10
After - Immediate impact (p-value) 0.000 0.175 0.000 0.269 0.000 0.440

Notes: The dependent variable is the pollution level in logs; for Peak it corresponds to 8 and 9 AM of all week days, for Off -Peak 12-2PM of all week days, and for
Sunday 8 to 10 AM. CO is carbon monoxide and SO2 is sulfur dioxide. HNC is a variable equal to 1 after the implementation of the program on November 20, 1989.
Months 1 to 12 are indicator variables equal to 1 if the observation belongs to the respective month after the implementation of the program. ynight is the mean
concentration of the pollutant y from 2 to 5 AM of the corresponding day; ypeak is the mean concentration of the pollutant y during 8 and 9 AM of the corresponding
day. All regressions control for weather covariates (fourth order polynomials of hourly measures of temperature, real humidity, wind speed and wind direction) and
month of the year, day of the week, and hour of the day fixed effects. Standard errors, in parentheses, are robust to heteroskedasticity and arbitrary correlation within
5-week groups. Levels of significance are reported as ***p<0.01, **p<0.05, *p<0.1.



Table 4.2: TS effect on CO concentration

Dependent variable is: CO SO2

Panel A: Flexible approach
(1) (2) (3)

TS 0.321*** 0.312*** 0.009
(0.075) (0.078) (0.074)

Month 1 -0.322*** -0.284** 0.201***
(0.100) (0.105) (0.063)

Month 2 -0.311*** -0.309*** -0.011
(0.073) (0.078) (0.069)

Month 3 0.020 0.021 -0.032
(0.052) (0.055) (0.050)

Month 4 -0.220*** -0.202*** 0.049
(0.053) (0.055) (0.054)

Month 5 0.012 0.029 0.009
(0.064) (0.064) (0.044)

Month 6 -0.137 -0.148 -0.094*
(0.087) (0.095) (0.052)

Month 7 -0.032 -0.043 -0.126***
(0.094) (0.127) (0.044)

Month 8 -0.466*** -0.459*** -0.303***
(0.067) (0.062) (0.061)

Month 9 0.087 0.149* -0.075
(0.095) (0.082) (0.053)

Month 10 -0.022 0.119* -0.000
(0.060) (0.063) (0.052)

Panel B: Estimation with structure

Immediate impact 0.045 0.059 0.131*
(0.084) (0.076) (0.065)

Adaptation trend 3.87e-05* 4.14e-05** -4.95e-5**
(2.08e-05) (1.7e-05) (1.90e-5)

Impact after adaptation 0.310*** 0.339*** 0.001
(0.067) (0.080) (0.067)

Trend 1.12e-05*** 1.02e-5*** -6.26e-06
(2.80e-06) (3.07e-06) (2.40e-06)

Real exchange rate -0.290 -0.210 -0.270
(0.293) (0.327) (0.243)

ynight 0.419*** 0.396*** 0.486***
(0.027) (0.025) (0.039)

SO2 0.517*** 0.514***
(0.086) (0.087)

Months of adaptation 9 9 9
After - Immediate impact (p-value) 0.008 0.003 0.136

Notes: The dependent variable is the pollution level in logs corresponding to 7 and 9 AM of all week days. CO is carbon monoxide
and SO2 is sulfur dioxide. TS is a variable equal to 1 after the implementation of the program on February 10, 2007. Months 1 to 10
are indicator variables equal to 1 if the observation belongs to the respective month after the implementation of the program. ynight
is the mean concentration of the pollutant y from 1 to 4 AM of the corresponding day. All regressions control for weather covariates
(fourth order polynomials of hourly measures of temperature, real humidity, precipitation, atmospheric pressure, wind speed, and
wind direction) and month of the year, day of the week, and hour of the day fixed effects. Standard errors, in parentheses, are robust
to heteroskedasticity and arbitrary correlation within 5-week groups. Levels of significance are reported as ***p<0.01, **p<0.05,
*p<0.1.



Table 4.3: Policy effects by station: HNC

Station Sector Income per HH Short-run Long-run Difference LR-SR Months of
(relative to effect effect effects adaptation

average income)

Xalostoc NE 0.55 0.0736 0.1502* 0.0766 10
(0.0916) (0.0884)

Tlalnepantla NW 0.50a -0.1646 0.0386 0.2032 9
(0.1137) (0.1649)

I.M. del Petróleo NW 0.53 -0.1741** 0.1735 0.3476*** 12.5
(0.0647) (0.1223)

M. Insurgentes E 0.70 -0.2257*** 0.1596* 0.3853*** 14
(0.0713) (0.987)

Lagunilla E 0.71 -0.2202*** -0.0002 0.2200** 10.5
(0.0997) (0.1227)

Merced E 0.84 -0.1037 0.1389 0.2426** 11
(0.0756) (0.1248)

Cerro Estrella SE 0.54 -0.1571* 0.2344** 0.3915*** 10.5
(0.0840) (0.1607)

Taqueña SE 1.14 -0.0999 0.2579** 0.3578*** 12.5
(0.0726) (0.1243)

Plateros SW 1.99 -0.0331 -0.0331 0.0000 0
(0.0973) (0.0973)

Pedregal SW 1.99 -0.0323 0.1375 0.1706* 11
(0.0807) (0.1163)

Notes: a Authors’ estimate. Levels of significance are reported as ***p<0.01, **p<0.05,*p<0.1.

Table 4.4: Policy effects by station: TS

Station Sector Income per HH Ratio of buses Percentage Short-run Long-run Months of
(relative to to total flows change in bus effect effect adaptation

average income) at peak hours availability
(before-TS) (after-TS)

El Bosque S 0.53 10.8% -34.6% -0.1091 0.2678* 11
(0.1038) (0.1466)

Cerro Navia W 0.54 13.0% -28.1% 0.0000 0.5131*** 11
(0.000) (0.1576)

Pudahuel W 0.65 11.2% -26.7% 0.0028 0.4398*** 9
(0.1815) (0.0910)

Cerrillos SW 0.81 10.5% -29.3% -0.1068 0.4313*** 8
(0.1707) (0.1150)

Independencia N 0.93 6.2% -30.2% 0.0233 0.3084*** 8
(0.0997) (0.0966)

La Florida SE 1.06 7.6% -29.5% 0.0033 0.3079*** 9
(0.0927) (0.0905)

Las Condes NE 2.45 2.2% -31.9% -0.0156 0.1759*** 8
(0.0768) (0.0709)

Notes: Levels of significance are reported as ***p<0.01, **p<0.05,*p<0.1.



Table 5.1: TS effect on gasoline sales

(1) (2)

TS 0.058*** 0.048**
(0.018) (0.016)

GDP growth 0.054 -0.013
(0.246) (0.200)

F-test joint significance Log(PGasoline/PDiesel)
× Region Dummies (p-value) 0.00 0.00

Observations 936 611
R2 0.945 0.957

Notes: The dependent variable is seasonally adjusted per capita monthly gasoline sales. TS is the inter-
action of a dummy that takes the value of 1 after January 2007 and a dummy for Santiago. The omitted
region for heterogeneous interaction effects with the relative price of gasoline is Region 1. Regressions
include regional and time fixed effects. Region 1 is the ommited category. Standard errors, in parentheses,
are robust to heteroskedasticity. Levels of significance are reported as ***p<0.01, **p<0.05,*p<0.1.

Table 5.2: Registered vehicles

(1) (2)

TS 120,068*** 38,622***
(4,376) (10,507)

Region fixed effects Yes Yes
Year fixed effects Yes Yes
Region-year fixed effects No Yes
Observations 52 52



Table 5.3: TS effect on car trades and sales

Trades Sales

(1) (2) (3) (4) (5) (6)

TS 2,406.6*** 1,028.5 -272.6 3,078.6*** 2,201.2** 2,421.2**
(503.1) (1,035.5) (1,230.7) (474.0) (969.5) (1,037.2)

Month 1 1,889.8*** 2,989.1***
(674.6) (568.4)

Month 2 2,594.7*** -316.3
(647.6) (540.9)

Month 3 1,032.5 -1,644.3***
(622.3) (515.8)

Month 4 2,778.7*** -560.5
(598.8) (493.3)

Month 5 1,438.1** -1,212.0**
(577.4) (474.0)

Month 6 -702.1 -1,876.9***
(558.3) (458.1)

Regional linear trends No Yes Yes No Yes Yes

Notes: Dependent variable is seasonally adjusted monthly data on car transfers (used cars) and car registrations (new cars) in all the Chilean regions.
TS is the interaction of ts a dummy that takes the value of 1 after January 2007and a dummy for Santiago. Months 1 to 6 are indicator variables
equal to 1 if the observation belongs to Santiago in the respective month after the implementation of the program. All regressions control for region
and time fixed effects. Standard errors, in parentheses, are robust to heteroskedasticity and arbitrary correlation within months in sample. Levels of
significance are reported as ***p<0.01, **p<0.05, *p<0.1.

Table 5.4: TS Effects on traffic flows

Final Peak hours Off-peak hours

Scenario 1: 30% reduction in bus flows

High-income stations 0.00 -0.05
(0.08) (0.05)

Low/middle-income stations 0.14** 0.05
(0.07) (0.04)

Scenario 2: 20% reduction in bus flows

High-income stations 0.00 -0.05
(0.22) (0.04)

Low/middle-income stations 0.13** 0.05
(0.06) (0.03)

Notes: Levels of significance are reported as ***p<0.01, **p<0.05,*p<0.1.



Table 6.1: Transport costs inflicted by HNC and TS

Costs HNC TS ratio TS/HNC

Short-run 3.62% 9.02% 2.5
Short-run (corrected) 3.62% 14.30% 4.0
Long-run 3.54% 8.84% 2.5
Long-run (corrected) 3.54% 14.03% 4.0
Long-run (w/car return) 3.28% 14.03% 4.3

Table 6.2: Transport costs as a function of income

Neighborhood HNC (SR) HNC (LR) TS (SR) TS (LR)

Low-income 1.52% 1.51% 11.39% 11.30%
Middle-income 3.62% 3.54% 9.02% 8.84%
High-income 2.08% 1.84% 3.38% 3.25%

Table 6.3: TS effect on taxi license prices

Dependent variable: taxi license price

(1) (2) (3) (4) (5) (6) (7) (8)

TS 0.709*** 0.561*** 0.620*** 0.483*** 0.572*** 0.547*** 0.509* 0.730***
(0.041) (0.064) (0.190) (0.070) (0.072) (0.096) (0.279) (0.102)

Log(licenses/population) -0.910*** 0.197 -0.632** -0.859** -1.118** -0.130 -2.941***
(0.288) (0.649) (0.309) (0.356) (0.464) (0.915) (0.458)

Trends Yes No Yes No No No Yes No
Year fixed effects No No No Yes No Yes Yes No
Model fixed effects No No No No Yes Yes Yes No
Sample All All All All All All All lic. ads
Observations 430 430 430 430 430 430 430 60
R2 0.422 0.437 0.466 0.493 0.546 0.719 0.741 0.738

Notes: The dependent variable is the log of the price of taxi licenses in Santiago for the period January 2004 to November 2010. TS is an indicator variable
equal to 1 after the implementation of TS on February 10, 2007. Total number of licenses is the amount of licenses available in Santiago which are set by the
authority. Trends are two linear time-trends diff erent for before and after the implementation of TS. Year is the year-of-fabrication of the car. Model is the
car model. Standard errors, in parentheses, are robust to heteroskedasticity. Levels of significance are reported as ***p<0.01, **p<0.05, *p<0.1.



Table A.1: Summary statistics for CO estimations in HNC

Series Obs Period Frequency Mean Std. Dev. Min Max

Carbon Monoxide 33704 Nov 1987 to Nov 1991 Hourly 5.102 2.110 0.644 20.78
Sulfur Dioxide 33794 Nov 1987 to Nov 1991 Hourly 0.052 0.019 0.012 0.254
Temperature 33378 Nov 1987 to Nov 1991 Hourly 15.94 4.786 0.467 30.77
Real Humidity 32773 Nov 1987 to Nov 1991 Hourly 47.92 20.20 2.300 99.60
Wind Speed 33671 Nov 1987 to Nov 1991 Hourly 4.597 2.032 0.400 17.60
Wind Direction 33677 Nov 1987 to Nov 1991 Hourly 173.3 56.03 1.000 420
Precipitation 35088 Nov 1987 to Nov 1991 Hourly 2.232 4.381 0.000 53.52
Real Exchange Rate 48 Nov 1987 to Nov 1991 Monthly 7.30 0.65 6.28 9.41

Notes: Pollutant levels are reported in parts per million, Temperature in celsius degrees, Humidity in percentage, Wind Speed in
kilometers per hour, Wind Direction in azimut degrees, and Real Exchange Rate in Mexican Pesos.

Table A.2: Summary statistics for CO estimations in TS

Series Obs Period Frequency Mean Std. Dev. Min Max

Carbon Monoxide 34,994 Feb 2005 to Feb 2009 Hourly 0.919 1.151 0.000 9.649
Sulfur Dioxide 34,944 Feb 2005 to Feb 2009 Hourly 9.258 5.873 0.852 102.7
Temperature 35,064 Feb 2005 to Feb 2009 Hourly 14.30 5.18 0.18 31.60
Real Humidity 35,064 Feb 2005 to Feb 2009 Hourly 66.44 16.01 13.99 98.01
Wind Speed 35,064 Feb 2005 to Feb 2009 Hourly 2.68 1.40 0.20 9.02
Wind Direction 35,064 Feb 2005 to Feb 2009 Hourly 187.08 49.98 38.62 302.14
Precipitation 34,752 Feb 2005 to Feb 2009 Hourly 0.01 0.09 0.00 4.87
Atmospheric Pressure 34,719 Feb 2005 to Feb 2009 Hourly 970.63 14.14 718.53 1021
Real Exchage Rate 120 Jan 2000 to Dec 2009 Monthly 95.5 6.3 81.4 108.8
Gasoline Price 96 Jan 2001 to Dec 2008 Monthly 517.9 517.9 368.4 721.7

notes: Pollutants concentration is measured in micrograms per cubic meter with the exception of Carbon Monoxide which is measured
in parts per million (ppm); Temperature in celsius degrees, Humidity in percentage, Wind Speed in kilometers per hour, Wind
Direction in azimut degrees, Precipitation in milimeters, Atmospheric Pressure in milibars, Real Exchange Rate and Gasoline Price
in Chilean Pesos.

Table A.3: Variables used for additional analyses in TS

Series Obs Period Frequency Level of Analysis Mean Std. Dev. Min Max
Gasoline sales 1,088 Jan2002 to Dec 2008 Monthly Region 19,166 28,832 1,027 146,875
Car sales 624 Feb 2005 to Feb 2009 Monthly Region 1,804.6 3,563.0 67.6 18,390.3
Car trades 624 Feb 2005 to Feb 2009 Monthly Region 3,829.3 6,611.2 189.9 30,263.2
Taxi license price 430 Jan 2004 to Nov 2010 Weekly Santiago 2,629.0 1,202.5 679.0 5,215.1

Notes: Gasoline sales is measured in litres, taxi license price in US Dollars (US$); Car sales and trades as well as Car Traffic measure
the number of cars.



Figure 2.1: CO data for HNC

Figure 2.2: CO data for TS



Figure 3.1: Decision to own a vehicle based on vertical preferences

Figure 3.2: (a) Households in group A



Figure 3.2: (b) Households in group B

Figure 3.2: (c) Households in group C



Figure 3.2: (d) Households in group D

Figure 3.2: (e) Households in group E



Figure 4.1: CO Emissions and Concentrations in Santiago (January 2002)
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Figure 6.1: Prices of taxi licenses in Santiago (sub-sample of license ads)
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