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1. Introduction 

 

A few studies modelling some dynamic aspects of prod uction in a nonparametric 

framework have been emerging in the production literature over the last decade.   

Sengupta (1995) uses the first-order conditions of dynam ic optimisation to generate a 

dynamic Data Envelopment Analysis (DEA) model.  In the context of the adjustment-

cost theory of investment, Nemoto and Goto (1999, 2003) present dynamic efficiency 

measures by treating the stock of capital at the end of the period as an output and 

incorporate it in the conventional DEA model.  Silva and Stefanou (2003) develop a 

nonparametric revealed preference approach to the dynamic theory of production in the 

context of an adjustment-cost technology and intertemporal cost minimization.  Using 

this theoretical framework, Silva and Stefanou (2004) propose lower and upper bounds 

on input-based dynamic measures of technical, allocative and cost efficiency. 

 Besides the introduction of dynamic aspects of production in efficiency analysis, 

extensions of the Farrell technical efficiency measures have also emerged recently [e.g., 

Briec (1997), Bogetoft and Hougaard (1998), Chambers, Chung and Färe (1996, 1998), 

Chavas and Cox (1999), Halme et al. (1999)].  Exploring the relation between 

Shephard´s input distance function (1953) and Luenberger´s benefit function (1992), 

Chambers, Chung and Färe (1996) propose the directional input distance function and 

show the duality between this function and the cost function.  Chambers, Chung and 

Färe (1998) propose a directional technology distance function and dem onstrate the 

relationship between this function and Shephard´s input and outpu t distance functions, 

McFadden´s gauge function and the d irectional input distance function.  Furthermore, 

the duality between the directional technology distance function and the profit function 

is established and efficiency measures are developed (Chambers, Chung and Fare, 

1998).  

  In this paper, we propose input-based dynamic efficiency measures using the 

theoretical framework proposed by Silva and Stefanou (2003) and a directional input 

distance function approach.  A dynamic input directional distance function can be 

generated from an adjustment-cost technology where the dynamics are explicitly 

incorporated in the form of the properties of the input requirement sets with respect to 

the quasi-fixed factors.  The properties of the dynamic input directional distance 
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function are inherited from the properties of the technology as in the static framework.  

Properties of the adjustment-cost technology are presented in Silva and Stefanou 

(2003).  Following a similar procedure as Chambers, Chung and Färe (1998) and Färe 

and Grosskopf (2000) propose in the static context, dynamic input efficiency measures 

can be generated from the adjustment-cost directional input distance function and the 

dual relation between this function and the dy namic cost function.  These efficiency 

measures are applied to a panel data set of Dutch glasshouse horticulture firms in the 

period 1991-1995. 

 The paper proceeds as follows. Section 2 presents the short- and long-run 

dynamic input efficiency measures.  Section 3 describes the data and the empirical 

results are discussed in sect ion 4.  Finally, section 5 concludes. 

 

 

 

2. Dynamic Efficiency Measurement 

 

A directional distance function approach is used to measure dynamic efficiency in the 

short- and long-run.  Short-run efficiency involves measuring the efficiency of variable 

inputs, given the quasi-fixed factors.  Long-run efficiency consists in evaluating the 

efficiency of all factors of production and the efficiency of quasi-fixed factors, given the 

optimal level of variable inputs.   

 

 

2.1 Short-run Efficiency 

The directional variable input distance function is given as 

 

(1) { }))(:)(())(,)()((:)(sup)0,);(),(),(),(( tktyVtIgttxtgtktItxtyD xxxHxvi ∈−=− θθ  

 

with 0)0,);(),(),(),(( ≥− Hxvi gtktItxtyD .  y(t) is the (Mx1)-output vector at time t, x(t) is the 

(Vx1)-variable input vector, I(t) is the (Hx1) gross investment vector, k(t) is the (Hx1) 

initial capital stock vector at time period t, and (-gx) is a directional vector in which the 

variable input vector x(t) is projected onto the boundary of V(y(t): k(t)) at 

))()(( xx gttx θ− , V
xg +ℜ∈  and Vxg 0≠ .  V(y(t): k(t)) is the input requirement set for y(t) 
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given k(t).  The properties of (.)viD  encompasses the properties of the directional input 

distance function presented in Chambers, Chung and Färe (1996) plus two other 

properties: (.)viD  is non-increasing in I(t) and non-decreasing in k(t).1 

The directional variable input distance can be interpreted as the number of times 

the input bundle gx is overused in x(t).  The directional vector must be chosen.  In 

practice, the observed variable input vector can be chosen; implying the direction of the 

scaling is determined by the observed variable input mix. 

Using DEA, the directional variable input distance function can be generated for 

each observation as follows: 
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where 㮰 is the (Nx1) intensity vector, 㭀h is the constant depreciation rate of the quasi-

fixed factor h, h=1,…,H, and all the other variables are defined as before. 

A variable cost efficiency measure can be generated as 

(3)   
)()0,);(),(),(),((

)(
))(),(),(),(()()()(

tAEgtktItxtyD

gtw
tytktItwCtxtwtOE

xHxvi

x
x

+−=

′
−′

=
 

 

where OEx(t)≥0, w(t) is the (Vx1) variable input price vector, C(…) is the short-run 

variable cost function and AEx is the allocative efficiency of variable inputs.   

Using DEA, the variable cost function for each firm can be generated as 

                                                   
1 Proofs of these properties will be included in a more complete version of this paper. 



 4 

 

(4) 
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Given C(…) in (4) for each observation, AEx(t) is determined residually for each firm 

using (3). 

The cost efficiency of variable inputs in (3) can also be decomposed as follows: 
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where x*(t) is the optimal variable input vector determined in (4) and OEv(t) is the cost 

efficiency of the variable input v, v=1,…,V. 

The decomposition in (5) allows identifying which variable inputs are overused 

or underused.  OEv(t) can be zero, negative or positive.  The cost efficiency of the V 

inputs can  be all zero or all positive.  However, OEv(t) cannot be all negative because if 

vtxtx vv ∀< ),()( * , then x(t) ∉  V(y(t): k(t)) . 

 

 

2.2 Long-run Efficiency 

The directional input distance function represen ting the efficiency of all factors of 

production is given by: 
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(6)

{ }))(:)(())()(,)()((:)(sup),);(),(),(),(( tktyVgttIgttxtggtktItxtyD IxIxi ∈+−=− θθθ  

 

with 0),);(),(),(),(( ≥− Ixi ggtktItxtyD .  The directional vector g = (-gx, g I) projects 

the input vector (x(t), I(t)) onto the boundary of V(y(t): k(t)) at 

))()(,)()(( Ix gttIgttx θθ +− , V
xg +ℜ∈ , H

Ig +ℜ∈ , and HVg +≠ 0 .  The directional 

distance function (.)iD satisfies an extended version of the properties of the directional 

input distance function presented in Chambers, Chun g and Färe (1996).  In particular, 

(.)iD is concave in (x(t),I(t)) and non-decreasing in k(t).2 

Using DEA, the directional input distance function can be generated for each 

observation as follows: 
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In practice, the directional vector g = (-gx, g I) can be the observed input vector (xi(t), 

I i(t)). 

 Cost efficiency of all inputs can be expressed as 

 

                                                   
2 Properties of the distance function and proofs will be presented in a later version of this manuscript. 



 6 

(8)  
)(),);(),(),(),((

)()(
))(),(),(),(())()(()()()()()(

)(

tAEggtktItxtyD

gtWgtw
tytktctwrWtktItWtktctxtw

tOE

iIxi

Ikx

k
i

+−=

′−′
−′−′+′+′

=
δ

 

 

 

where OEi(t)≥0, rW(w(t),c(t),k(t),y(t)) is the long-run cost function in flow terms or the 

shadow cost function and AEi is the allocative efficiency of all inputs. 

The short-run variable cost in (4) and the efficiency measures for variable inputs 

depend on  observed variables (wi(t),yi(t),xi(t),I i(t),ki(t)).  In contrast, the long-run 

dynamic cost depends additionally on the underlying shadow value of capital.  The 

shadow value of capital is an endogenous variable, thus it is estimated simultaneously 

with the long-run shadow cost using mathematical programming techniques.  Following 

Silva and Stefanou (2004), the Linear Complementarity Problem (LCP) can be used to 

generate the long-run shadow cost. 

 Using DEA, the shadow cost for each observation can be generated as  
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where Wk
i(t) is the vector of the shadow value of capital for observation i, i=1,…,N.  

Taking into consideration that Wk
i(t) is an endogenous variable, the Kuhn-Tucker 

conditions of (9) are3 

(10) 
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where the dual variables y
mµ  and x

vµ  are the current value of the Langrangian 

multipliers associated with the con straint on the output m and the variable input v, 

respectively.  The Langrangian multipliers associated with the constraints on the 

intensity vector are λµ1  and λµ2 .  The dual variable I
hµ  is the current value of the 

Langrangian multiplier associated with the constraint on the net investment of the quasi-

fixed factor h.  Using the Envelope Theorem, it can be shown that the negative value of 

the shadow value of capital ) W(- kh
is equal to I

hµ , h=1,…,H. 

The Kuhn-Tucker conditions in (10) can be stated in a LCP form.  The Kuhn-

Tucker conditions in (10) for DMU i can be stated as 
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3 The time index is suppressed for the sake of clearer exposition. 
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where M is a square matrix of order (2V+N+M+H+2) and q is an (2V+N+M+H+2) 

vector.  The vectors  s and z are the vector of slack variables and the vector of primal and 

dual variables, respectively.  Conditions (11) are the Kuhn-Tucker necessary optimality 

conditions associated with the dynamic cost minimization problem in (9).  The LCP 

consists of finding vectors z and s satisfying (11).  Although, there is no objective 

function to be optimised, the LCP can be stated as a qu adratic programming problem: 

 

(12)  { }0,0':'')(min ≥≥++= zzMqMzzzqzQ
z

. 

 

The function Q(z) is bounded from below on the feasible set 

{ }0,0': ≥≥+= zzMqzF .  If F =Ø , the LCP is not feasible.  If F ≠ Ø, then there 

exist two possible cases.  Either Q(z*) = min Q(z) = 0, z*∈  F, implying z* is the solution 

of the LCP or min Q(z) > 0 implying the LCP is feasible but has no solution (Al-

Khayyal, 1987, 1989; Cheng, 1984). 

The solution obtained by solving (12) provides the optimal variable input and 

quasi-fixed factor vectors minimizing the dynamic cost function in (10), the value of the 

intertemporal cost function and the value of the underlying shadow values of the quasi-

fixed factors. 

 Alternatively, the long-run shadow cost can be generated through the dual of 

problem (9).  The dual problem of (9) is as follows: 
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where all variables are defined as before. 

 

The directional quasi-fixed input distance function representing the efficiency of quasi-

fixed factors is given by 
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(14) { }))(:)(())(,)((:)(sup),0);(),(,)(),(( ** tktyVgtItxtgtktItxtyD IqqIqi ∈+= θθ , 

 

with 0),0);(),(,)(),(( * ≥Iqi gtktItxtyD  and x(t)* is obtained through problem (12) or 

(13).  The directional vector gI projects the gross investment vector I(t) onto the 

boundary of V(y(t): k(t)) at ))()(( Iq gttI θ+ , H
Ig +ℜ∈  and HIg 0≠ .  Properties of (.)qiD  

are not presented in this version of the paper.  Some of those properties are: non-

increasing in y(t), non-decreasing in k(t) and x(t) and concave in I(t). 

The directional quasi-fixed input distance can be interpreted as the number of 

times the input bundle gI is overused in I(t).  The directional vector must be chosen.  In 

practice, the observed gross investment vector can be ch osen; implying the observed 

gross investment bundle determines the direction of scaling.   

Using DEA, the directional distance function for quasi-fixed factors can be 

generated for each observation as follows: 
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Cost efficiency of quasi-fixed factors can be expressed as 
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where I(t)* is the optimal gross investment vector obtained by solving (12) or (13). 

Equation in (16) can also be decomposed in the following way: 
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where OEh is the economic efficiency of the quasi-fixed factor h, h=1,…,H.  This 

decomposition allows identifying the quasi-fixed factors that are over-invested or 

under-invested. A quasi-fixed factor is over-invested (under-invested) if OEh > 0 (<0), 

whereas a value of OEh = 0 implies an optimal investment level. 

 

 

3. Data 

 

Data on specialised vegetables firms covering the period 1991-1995 are obtained from a 

stratified sample of Dutch glasshouse firms keeping accounts on behalf of the LEI accoun-

ting system. The panel is balanced such that each firm is in the sample over the full five-

year sampling period. The data contain 426 observations on 89 firms.  

One output and six inputs (energy, materials, services, structures, machinery and 

installations and labour) are distinguished.  Output mainly consists of potplants, 

vegetables, fruits and flowers.  Energy consists of gas, oil and electricity, as well as heat 

deliveries by electricity plants.  Materials consist of seeds and planting materials, 

pesticides, fertilisers and other materials.  Services are those provided by contract workers 

and from storage and delivery of outputs. 

 Quasi-fixed inputs are structures (buildings, glasshouses, land and paving) and 

machinery and inst allations. Capital in structures, machinery and installations is measured 

at constant 1985 prices and is valued in replacement costs4.   Labour is a fixed input and is 

measured in quality-corrected man years, including family as well as hired labour.  Labour 

                                                   
4 The deflators for capital in structures and machinery and installations are calculated from the data supplied 

by the LEI accounting system. Comparison of the balance value in year t and the balance value in year t-1 

gives the yearly price correction used by the LEI. This price correction is used to  construct a price index for 

capital and a price index for machinery and installations. These price indices are used as deflators. 
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is assumed to be a fixed inpu t because a large share of total labour consists of family 

labour.  Flexibility of hired labour is further restricted by the presence o f permanent 

contracts and by the fact that hiring additional labour involves search costs for the firm 

operator.  The quality correction of labour is performed by th e LEI and is necessary to 

aggregate labour from able-bodied adults with labour supplied by you ng people (e.g., 

young family members) or partly disabled workers.  

 Tornqvist price indexes are calculated for output and the three composite 

variable inputs with prices obtained from the LEI/CBS.  The price indexes vary over the 

years but not over the firms, implying differences in the composition of inputs and 

output or quality differences are reflected in the quantity (Cox and Wohlgenant, 1986).  

Implicit quantity indexes are generated as the ratio of value to the price index. A more 

detailed description of the data can be found in Table 1.  

 

 

Table 1: Variables and Descriptive Statistics 

Variable Dimension Mean Standard Deviation 

Output 

Energy 

Materials 

Services 

Structures 

Machinery and Installations 

Labor 

1000 Guilders 

1000 Guilders 

1000 Guilders 

1000 Guilders 

1000 Guilders 

1000 Guilders 

Man years 

1092.98 

168.42 

146.32 

94.73 

969.66 

305.09 

6.81 

780.97 

136.49 

112.09 

60.11 

755.12 

290.06 

4.18 
 

 

 

4. Empirical Results  

 

Efficiency scores are generated for each horticulture firm in each year over the 

1991-95 period using the program GAMS.5  Results of overall short run efficiency and 

its decomposition are reported in Table 2. The short-run efficiency results indicate that 

horticulture firms over the period 1991-1995 have an average overall efficiency of 

                                                   
5 Due to space limitations, efficiency levels are not reported for each firm.  The efficiency scores by firm 
are available from the authors upon request. 
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0.600. This implies that horticultural firms can save 40% on their variable costs by 

improving their technical and allocative performance.  The decomposition of overall 

efficiency shows that, allocative efficiency is larger than technical efficiency, i.e. the 

average technical efficiency score for the period 1991-95 is 0.714 and the allocative 

efficiency score is on average 0.886.   Results in Table 2 also show that the technical 

performance ranges between 0.669 (1994) and 0.783 (1995). Variation in allocative 

efficiency  is smaller as it ranges between 0.859 (1991) and 0.903 (1994). 

 

Table 2  Technical, Allocative and Cost Efficiency of Variable Inputs 

Period TE AE OE 

1991 0.713 0.859 0.572 

1992 0.677 0.896 0.573 

1993 0.723 0.876 0.599 

1994 0.669 0.903 0.571 

1995 0.783 0.897 0.680 

1991-1995 0.714 0.886 0.600 

 

 

Table 3 presents the results of the inefficiency decomposition of different variable 

inputs by year. Results suggest overuse of all variable inputs except for materials in 

1995. Furthermore, results show that the average overall inefficiency is much higher for 

energy rather than for materials and services.  On  average, in the period 1991-1995, 

energy comprises 29.5% of the overall inefficiency of 40% (see table 2). The 

contribution of materials is smallest, i.e. 3.3% of the overall inefficiency of 40% in the 

period 1991-1995 is coming from materials. 

 

Table 3 Overall inefficiency by variable input  

Period Energy Materials Services 

1991 0.325 0.044 0.059 

1992 0.298 0.060 0.070 

1993 0.300 0.044 0.068 

1994 0.297 0.004 0.092 

1995 0.258 -0.011 0.073 
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1991-1995 0.295 0.033 0.072 

 

 

Table 4 presents the average long-term overall efficiency and its decomposition in the 

period 1991-1995.  Long-term overall efficiency of all factors is, on average 9% smaller 

than short-term overall efficiency of variable inputs. Comparison of results in Table 4 

with results in Table 2 shows that long-term and short-term efficiency have a similar 

size. However, allocative efficiency is smaller (by approximately 9%) in the long term 

rather than in the short term. These results suggest that the technical efficiency of 

variable factors of production does not substantially differ from technical efficiency of 

quasi-fixed factors of production. However, the allocation of quasi-fixed factors of 

production is less optimal than the allocation of variable factors of production. This may 

be explained by sluggish adjustment of quasi-fixed factors to long-term optimal levels 

due to the presence of adjustment costs.   

 

Table 4 Long-term technical, Allocative and Cost Efficiency of All Factors of 

Production 

Period TE AE OE 

1991 0.723 0.797 0.519 

1992 0.688 0.806 0.494 

1993 0.729 0.785 0.514 

1994 0.671 0.824 0.495 

1995 0.785 0.765 0.550 

1991-1995 0.720 0.795 0.515 

 

Table 5 provides further insight in the overall inefficiency of individual quasi-fixed 

factors. Results show that the firms in the sample are, on average over-invested in 

Machinery and installations, whereas the Structures is at the optimal level. The value of 

–0.003 for machinery/installations in 1991 suggests a situation of a slight under-

investment in 1991, which is followed by over-investment in the years thereafter. The 

over-investment in machinery/installations may imply that firms are overall too eager to 

invest in new energy installations to reap the benefits of new, energy saving 

technologies. 
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Table 5  Overall inefficiency by quasi-fixed input 

Period Structures Machinery/installations 

1991 0.000 -0.003 

1992 0.002 0.008 

1993 -0.001 0.021 

1994 0.000 0.033 

1995 -0.000 0.038 

1991-1995 0.000 0.019 

 

 

5. Conclusions  

 

This paper proposes input-based dynamic efficiency measures using an adjustment-cost 

directional input distance function approach.  Short-run efficiency reflects the relative 

efficiency in the use of variable inputs, whereas long-run measures evaluate the relative 

efficiency of variable and quasi-fixed production factors.  

 These measures are illustrated for a sample of Dutch glasshouse horticulture 

firms over the period 1991-1995.  The results presented show that these firms can 

achieve substantial cost savings from a better technical and allocative performance, both 

in the long and short run.  The technical efficiency of Dutch horticulture firms is lower 

than the allocative efficiency. Results also provide evidence for the presence of 

adjustment costs since the allocative efficiency of quasi-fixed factors is lower than the 

allocative efficiency of variable production factors. The decomposition of inefficiency 

for individual variable inputs suggests overuse of all variable inputs and particularly for 

energy.  
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