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 Abstract 
 
Organic farming technology may be relatively unknown to farmers at the time when they switch from 
conventional into organic farming. Therefore, experience gained over time and learning by doing may 
be important determinants in the efficiency of organic farming. It may also take time to reach the 
optimal nutrient stock of soil and optimal nutrient supply for arable crops under organic farming. 
Thus, efficiency of organic farming can either grow or decrease over time depending on the nature of 
the technology and the learning process.  

This paper estimates technical efficiency of organic farming and its development over time. We 
control for possible selection bias and regional heterogeneity when estimating a stochastic frontier 
distance functions for a sample of conventional and organic dairy farms in Finland. The results suggest 
that organic dairy farms are less technically efficient than conventional farms. Technical efficiency at 
first diminishes when the conversion towards organic production starts. After 6 years from the switch, 
technical efficiency starts to increase again. The estimates signal that the length of the conversion and 
learning process of organic farming is in average 6-7 years.   
 
Key words: technical efficiency, technical change, output distance function, SFA 
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1. Introduction 
 
Promotion of organic farming has widely been seen as a way to improve food safety and 
environmental quality of food production in Europe. The share of organic production in the EU has 
increased but remained relatively small although well-defined and controlled standards related to the 
use of mineral fertilizers and other chemicals like pesticides provide efficient means for product 
differentiation and increase consumers’ information about organic products. 

Until recent years, the organic farming technology has developed with only little input from 
scientific research institutions (Lampkin et al. 1999). Even the number of studies comparing 
conventional and organic farming is still small. Offerman and Nieberg (2000) have compared the 
economic performance of organic and conventional farms in different countries. According to them, 
organic farms have lower yields, higher output prices and slightly lower unit costs. In addition, 
deviations of average profitability of organic farms from average profitability of comparable 
conventional farms range between about plus and minus 20 per cent of profit of conventional farms. 
Ricci Maccarini and Zanoli (2004) found that organic livestock farms were technically less efficient 
compared to the common production frontier but more efficient compared to their own frontier. They 
suggest that this lower average performance may be partially explained by underestimated difficulties 
related to conversion from conventional to organic production. Oude Lansink et al. (2002) studied the 
efficiency and productivity of organic and conventional farms using DEA. Their results indicate that 
productivity of organic farms is considerably lower than that of conventional farms concluding that 
conventional technologies more efficiently use scarce resources. In particular, productivity of capital, 
but also productivity of land and labour were found to be low in organic farming. 

In spite of preceding fairly uniform results, the existing studies on performance of organic and 
conventional farms provide contradictory results on how efficient organic farming technology is in 
using natural resources – especially if other aspects than conventional inputs and outputs are 
considered. Stoltze et al. (2000) conclude that organic farming comprises fewer detrimental effects to 
the environment and to resource use than conventional farming systems. This conclusion is partially 
contradicted by the results of Grönroos and Seppälä (2000).  Hole et al. (2005) have concluded on the 
basis of an extensive literature review about biodiversity that there are still considerable knowledge 
gaps preventing a full appraisal of the potential role of organic farming in biodiversity conservation in 
agro-ecosystems. 

Organic farming methods are relatively unknown to farmers when they switch to organic 
farming. Therefore it may be possible to observe learning effects, which may take several forms: 
technical change may be different on organic and conventional farms but also the technical efficiency 
may change over time in a different way. In some sector level studies the change in technical 
efficiency is linked to diffusion of innovations when technical progress is linked to adoption of 
innovations. Learning-by-doing literature suggests that education and management experience can 
lead to productivity gains when the knowledge increases with the results of experiments (Arrow 
1962). There are several studies that have assessed the effect of experience on technical or allocative 
efficiency.  Kumbhakar et al. (1991) and Rougoor et al. (1998) have used age, experience and 
education when describing the ability of the farm manager (technical efficiency). Reinhard and 
Thijssen (2000) also in addition, analysed the role of milk output per cow although this indicator also 
represents different feeding strategies. Stefanou and Saxena (1988) used age and experience as 
explanatory variables of varying price distortions. Kumbhakar and Bhattacharrya (1992) applied years 
of education and farm size for the same purpose. 

This paper tests for the presence of learning effects in organic farming, i.e. organic farmers may 
be expected to increase their efficiency as they gain experience with organic farming. Learning is a 
special case of adjustment costs that are caused by investments, technology switches etc. When a firm 
switches to a new technology, it may require time to learn on how to apply the new technology 
optimally. Thus, the productivity of the new technology (such as organic farming) may increase 
gradually over time. Learning plays an important role in the productivity of new technologies and as 
such it has been accounted for in innovation adoption studies (Luh and Stefanou 1993). 

Agricultural processes are stochastic. Therefore, the choice of stochastic frontier analysis (SFA) 
seems natural, in spite of its limitations. Technical efficiency effect models developed by Kumbhakar 
et al. (1991) and Battese and Coelli (1995) provide a tool to simultaneously analyse whether some 
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learning effects (an increase in technical efficiency) appears in the process of switching to organic 
farming. Consequently, SFA is used in this study to compute overall and input specific technical 
efficiencies. Model restrictions are used to test whether frontier functions differ between organic and 
conventional farms. Statistical tests are performed to test whether efficiency and productivity 
differences between conventional and organic farms are significant.  

The results of Pietola and Oude Lansink (2001) suggest that policies promoting organic farming 
may suffer from adverse selection problems since they found that subsidised organic farming is more 
attractive to farmers with lower productivity in conventional systems. Farmer switches towards 
organic technologies may have been encouraged by premium subsidies granted to organic farms rather 
than by high productivity and input use efficiency of the organic technology. Thus, there seems to be 
observable factors like intensity of production, location of the farm, age of the farmer that should be 
controlled when the performance of organic and conventional farms are compared. Therefore one of 
the first steps is to construct a self selection model for controlling the possible selection bias. 

This article applies SFA approach and output distance functions to a sample of conventional and 
organic dairy farms. We control for possible selection bias and regional heterogeneity and provide an 
estimate for the effect of experience in organic farming on technical efficiency. Still, our analysis is 
limited to conventional inputs and outputs. In addition to output oriented technical efficiencies we 
estimate input specific efficiencies for both organic and conventional farms. 

The structure of the paper is as follows. Section 2 defines the framework of stochastic output 
distance function and the general model to identify factors influencing technical efficiency and 
discusses how to correct for self-selectivity bias in models estimated for organic and conventional 
farms. Next, the sample of Finnish dairy farm is described and the specification of the empirical model 
is presented. Results of organic and conventional farms are presented next, and the paper concludes 
with comments. 
 
2. Method 
 
Derivation of parametric output distance function  
 
This section describes the stochastic output distance function. Assume that the production technology 
is defined by an output set Y(x), representing the vector of outputs My R+∈  that can be produced by 
an input vector . That is . The output distance function is 
given by . D

Nx R+∈ MY(x) {y R : x can produce y}+= ∈

OD (x, y) min{ : y / Y(x)}= θ θ ∈ O(x,y) is non-decreasing, positively linearly 
homogenous and convex in y, and decreasing in x (see Färe and Primont 1995). The value of the 
distance function is less than or equal to one for all feasible output vectors. On the outer boundary of 
the production possibilities set, the value of DO(x,y) is one. Thus, the output distance function 
indicates the potential radial expansion of production to the frontier. Assuming a translog specification 
and technical change represented by a time trend, it can be written as (Coelli et al. 1999, Fuentes et al. 
2001): 

ph h h
t t t t t t t
O i i 0 k ki kj ki ji m mi

k 1 k j 1 m 1

p p ph h
t t t t 2 t

mn mi ni km ki mi t tt kt ki
m n 1 k 1 m 1 k 1
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1ln D (x , y ) ln x ln x ln x ln y2

1 1ln y ln y ln x ln y t t ln x t2 2

ln y t

= ≤ = =

≤ = = = =

=

= β + β + β + β

+ β + β +β + β + β

+ β

∑ ∑∑ ∑

∑∑ ∑∑ ∑

∑

  (1) 

where x:s are inputs, y:s outputs, t is time, β :s are coefficients to be estimated and DO is the output 
distance function. The symmetry of coefficients is also assumed. The output distance function is by 
definition linearly homogenous in outputs which is imposed by dividing all outputs by one of the 
outputs.    
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Homogeneity in outputs implies that 

   (2) ( , / ) ( , ) /t t t t t t t t
O i i mi O i i miD x y y D x y y=

Transforming the variables in logarithms and rearranging the equation gives the translog functional 
form (TL is an abbreviation): 

 .  (3)  ln ( , / , ; ) ln ( , )t t t t t t
mi i i mi O i iy TL x y y t D x yβ− = − t

)Setting  and adding a stochastic error term (vt
it O it itu ln D (x , y= − it), our presentation is similar to that 

of a parametric stochastic frontier with a decomposed error term: 

   (4) ln ( , / , ; )t t t t
mi i i mi it ity TL x y y t u vβ− = + +

where  are time-varying inefficiency effects.  itu
The ratio form in (4) has been discussed in the literature. Kumbhakar and Lovell (2000) argued 

that the outcome of a normalisation is not independent of the choice of the numeraire output. 
Moreover, Brümmer et al. (2002) state, that the use of the norm model leads to multicollinearity and, 
thus, unstable estimates. Another related question is the possible endogeneity of output ratios. Coelli 
and Perelman (1999) have stated that transformed output variable in the ratio model are actually 
measures of output mix which are more likely exogenous than the variables in the norm model.1 
Furthermore, according to Mundlak (1996), in the case of expected profit maximisation, the ratio 
variables in the production function do not suffer from endogeneity. This result can be generalised to 
output ratio variables in output distance functions (Brümmer et al. 2002).  

Kumbhakar, Ghosh and McGuckin (1991) and Reifschneider and Stevenson (1991) proposed a 
stochastic frontier model in which the inefficiency effects (ui) are expressed as an explicit function of a 
vector of firm-specific variables and a random error. This model was adapted by Battese and Coelli 
(1995) to account for panel data, and this model is also applied in our study. The error term is 
decomposed into two components. The first component, vit, is a standard random variable capturing 
effects of unexpected stochastic changes in production conditions, measurement errors in milk output 
or the effects of left-out explanatory variables. It is assumed to be independent and identically 
distributed with N(0, 2

vσ ). The second component, uit, is a non-negative random variable, associated 
with the technical inefficiency in production, given the level of inputs. The uits are independently 
distributed with a truncation at zero of N( 2,it uµ σ ), where itµ  is modelled in terms of determinants of 
inefficiency as: 

 0
1

r

it s s
s

xµ δ δ
=

= +∑  (5) 

The parametersδ are regression coefficients capturing the effect of the independent variables x on 
inefficiency. The inefficiency effects part of the equation makes it possible to test whether technical 
efficiencies differ for example by some background variables.  

The parameters of the model are estimated by the method of maximum likelihood. We applied 
the computer program Frontier 4.1 (Coelli 1996). The variance parameters are defined as 

2 2 2
s v uσ σ σ= +  and 2 /u

2
sγ σ σ=  where γ  takes the value between 0 and 1. Parameters of the 

stochastic frontier model can be tested using the generalised likelihood ratio statistics. Given the 
translog stochastic frontier specification of output distance function, technical efficiency of production 
can be obtained from the conditional expectation of exp( )it itTE u= − , given the random variable εit 

                                                 
1  In the norm model, all outputs are divided by Euclidean norm of outputs 2

ii
y = ∑ y . In the ratio 

model, one of the outputs serves as denominator for all outputs.  
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(εit.= vit - uit; Battese and Coelli 1988) 2. The level of technical efficiency is by definition between 0 
and 1, and varies across farms, and over time.  

 
Input specific efficiencies 
 
Results of Oude Lansink et al. (2003) suggest that input specific efficiencies may differ between 
conventional and organic farms. This is because organic farms are ruled by a different set of 
restrictions concerning the application of fertilizers and chemicals. The estimation of input specific 
efficiencies requires a solution of this efficiency for each observation, given predicted output and 
actually applied quantities of other inputs. When calculating input specific efficiencies we follow the 
approach in Reinhard et al. (1999). The logarithmic value of technically efficient production is 
obtained when we set  in Equation 4. The logarithmic value of the input specifically efficient 
output can be estimated by replacing the observed input values of this input by the optimal one (

0itu =

keix ) 
and setting . Setting Equation 4 equal to the latter we get Equation 6: 0itu =
 

( , / , ; ) ln
tt t t

ki i mi it it itmiTL x y y t v u y vβ + + = − +    (6) 
 

where -ln
t

miy = ( , , / , ;t t t t
kei j ki i miTL x x y y t )β≠  and keix  the efficiently applied quantity of input kix . The 

logarithm of the stochastic input specific efficiency ( ln ln lnkit keit kitXE x x= − ) can be defined and 
calculated applying the solver equation of the second order polynomial as follows 
 

2 4ln
2kit

b b acXE
a

− ± −
= , where 

1
2 kka β= ; 

1
ln ln ln

p
t t t

k jk ij kk ik mk im kt
j k m

b x x y tβ β β β β
≠ =

= + + + +∑ ∑ ituand c = .  (7) 

 
Since technically output efficient farm also has to be input efficient we apply only the positive option 
of the formula (Reinhard et al. 1999). 
 
 
Selectivity bias  
 
We may assume that the farmers choose organic or conventional production because they from benefit 
the choice. This may cause self selection bias. Possible selection bias between organic and 
conventional production can be taken into account by applying Heckman’s (1979) two step procedure 
where in the first step a probit model is estimated in order to model the choice, which in our case is a 
choice between organic and conventional farming (see Maddala 1983, p. 22; Hsiao 2003, p. 225-227). 
In the binomial probit model the data is pooled and an unobserved latent variable z* is set as a function 
of x affecting the choice: 
 

i iz  =  ß'x  +  ,   ~ N(0,1).i iε ε    (8) 
 
What we actually observe is z (the binary choice either 0 or 1), not the continuous variable z*. We 
may, however, set threshold values for z such that  
 
                                                 
2  For the estimation purpose we reverse the signs of Equation (4). Thus, the interpretation of TE terms is as in 

the production function. 
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*
i i iz  = 1 if z > 0 and z  = 0 otherwise . 

 
Thus, we are estimating an expected value of the latent variable given x:s  instead of z. The 
above relationships yield  

( | )i iE z x

  
P( 1) P( ' ) 1 ( ' )i i iz x F ixε β β= = > − = − − ,   (9) 
 
where F is a cumulative distribution function for iε . For the binomial process the likelihood function 
can be written in the case of standardized normal distribution, i.e. a  probit model, as follows: 
 

[ ] [ 1

1

( ' ) 1 ( ' )i i
n

z z
i

i

L x xβ β −

=

= Φ −Φ∏ ]i

i

   (10) 

 
the logarithmic form of which is applied in maximum likelihood estimation. Inverse Mill’s ratio can 
be obtained for z=1 by ( ' ) / ( ' )i iIMR x xφ β β= Φ , where Φ cumulative normal distribution function 
and φ  is normal density function. Inverse Mill’s ratio (IMR) obtained on the basis of probit models is 
introduced in the frontier models to capture possible selectivity bias in the separate models of organic 
and conventional farms. The final IMR estimates were calculated by the random effects binary probit 
model3. 
 
3. Data and model 
 
The dairy farm data are collected from bookkeeping farm data base of MTT Economic Research. The 
data include a detailed farm level data on production and costs over the period from 1995 to 2002 (8 
periods). Altogether the panel includes 459 farms. Dairy farms are a subsample of this sample. Due to 
the changes in the main production line farms may entry or exit the sample of dairy farms during the 
period. In addition, because of the small number of organic farms we complemented the sample by all 
organic dairy farms in the bookkeeping data set. Less than one tenth of farms are following organic 
production rules. Also only part of the farms classified as organic dairy farms produce organic milk 
since the classification to organic and conventional farms is based on subsidies paid for organic crop 
production. The data are an unbalanced panel of 279 farms. The total number of observations is 1921, 
the number of organic farms being 49 (159 observations).  

In the analysis we distinguish two outputs (milk and other output (excluding subsidies)) and five 
inputs (labour, land, energy, material and capital). Milk, labour and land are measured in physical 
units. Milk output is the annual milk production of the farm. The differences in composition of milk 
are not possible to take into account since this information is missing since 1998. In those cases when 
output quantity is not recorded the quantity is derived from the milk return using the regional milk 
price as a proxy of the actual milk price at the farm level. Labour input is the sum of working hours of 
the farm family and hired labour on the farm. The land area covers both own and rented arable land. 
Other output, energy, materials (fertilizers, seeds, purchased feed) and capital have been calculated as 

                                                 
3 Random effects binary probit model takes the panel property of the data into account as follows (see 
Nlogit user’s manual): 
 

*
it it i it itz =  ß*'x  + u  + , where i=1,...,N; t=1,...,T; ß=ß*/ (v )v σ , 

 
*

it it =  1 if z  > 0 and 0 otherwisez , 
2 2

i it i itVar[u + ] = Var[ ] = (u ) + (v )itv ε σ σ⎡ ⎤⎣ ⎦ . 
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the ratio of the monetary value and their price index. This procedure assumes that farmers face equal 
prices and differences in the composition of the input or output or quality differences are reflected in 
the implicit quantity. Capital input is measured as a sum of machinery and building capital stock. 
Table 1 presents the descriptive statistics of the farms. 
 
Table. 1. Descriptive statistics – pooled, conventional and organic farm data for 1995-2002.  
 

  
All 

farms   
Convent-

ional   Organic  
 n Mean Std Devb n Mean Std Dev n Mean Std Dev 
Output          
Milk (ltr) a 1921 139347 73646 1762 140563 71382 159 125871 94441
Other output (€)a 1921 10224 10993 1762 10011 10616 159 12248 15341
Input         
Labour (h) 1921 5033 1485 1762 5045 1474 159 4895 1604
Land (ha) a 1921 39.2 21.5 1762 38.5 19.8 159 46.9 34.2
Energy (€) 1921 4671 2625 1762 4657 2617 159 4821 2718
Material (€) 1921 32668 19606 1762 32547 18808 159 33998 26955
Capital (€) 1921 85174 67693 1762 84420 67184 159 93527 72801
Livestock units a 1921 31 16 1762 31 15 159 34 22
Age of farmer a 1921 44 9.0 1762 45 9.0 159 42 7.8

a According to t-test, the means of conventional and organic farms differ significantly at least at 5% risk level.  
b Std Dev refers to standard deviation. 
 
Table 1 shows that organic farms have, on average a significantly larger land area and number of 
animal units than conventional farms. However, their average milk output is 10 percent smaller than 
the output of conventional farms. On the other hand, the other output is significantly larger on organic 
farms indicating that they are more diversified. In the input side there are no significant differences in 
other inputs than arable land area.  

Organic farmers are significantly younger than conventional farmers. The logarithm of the age 
of farmer is also used as an indicator of experience in general in the technical efficiency effect model. 
Farmers’ experience in organic farming is introduced in the technical efficiency effect model to 
account for possible learning by doing effects.  
 
Table 2. Number of conventional and organic farms by year.  
 
 1995 1996 1997 1998 1999 2000 2001 2002 Sum
Conventional 242 231 234 223 222 218 209 182 1762
Organic 18 22 17 21 21 19 19 22 159
Sum 260 253 251 244 243 237 228 204 1921
 
Table 2 presents the number of conventional and organic farms in the sample. The number of organic 
farms stays relatively stable but the number of conventional farms decreases. The average experience 
in organic farming is 4.3 when the first year is coded as 1. Table 3 shows that the average experience 
at first decreases but starts then to increase. When in the first year in the sample the experience is on 
average 4 years, at the end of the research period it is 5.5 years. 
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Table 3. Average experience in years of organic farmers in organic farming. 
 

year  n Mean Std Dev Min Max
1995 18 4.06 2.41 1 8
1996 22 3.27 2.64 1 9
1997 17 3.00 2.37 1 10
1998 21 3.43 2.44 1 11
1999 21 4.81 2.77 1 12
2000 19 5.32 2.71 1 13
2001 19 5.21 2.62 1 11
2002 22 5.55 3.05 1 12

 
Milk output and the use of most inputs have increased on dairy farms. The other output increased 
relatively faster than milk output but this is partially related to the devaluation of animal capital in 
years after the EU accession in 1995. Thus, initially low output levels are reflected by in relative terms 
a large increase in the other output. On the input side, the growth has been the fastest in the capital 
input per farm, which has almost doubled during the period. The use of materials has increased by the 
same rate as milk output but the use of land has increased less and use of energy has even decreased. 
Labour input has remained at the same level for the whole research period, in spite of the increase in 
output. Changes in capital and labour input suggest a substantial substitution of capital for labour in 
the period under study. 
 

0

0.5

1

1.5

2

2.5

1995 1996 1997 1998 1999 2000 2001 2002

milk other output labour land
energy material capital livestock

 
 
Figure 1. Relative use of inputs and production of outputs in 1995 - 2002 (annual average of all farms. 
The quantity in 1995 equals 1). 
 
The model applied in the study is specified as follows: 
 

 9



5 5 5
t t t t t
oi 0 k ki kj ki ji m mi

k 1 k j 1

5 1 5
t t t t 2 t

mm mi mi km ki mi t tt kt ki
k 1 m 1 k 1

7
t

mt mi r r IMR it it
r 2

1ln y ln x ln x ln x ln y2

1 1ln y ln y ln x ln y t t ln x t2 2

ln y t D IMR u v

= ≤ =

= = =

=

− = β + β + β +β

+ β + β +β + β + β

+β + β +β + +

∑ ∑∑

∑∑ ∑

∑

 (11) 
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, / ,
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y milk output y other output milk output

x labour land energy materials and capital input
t time trend D regional dummy IMR inverse Mill s ratio

estimated regression coefficientsβ

= =
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= = =
=

' ,
 

 
Neutral technical change is specified as a time trend. Biased technical change is defined by 
interactions of time trend and respective inputs and outputs. In addition to the first order terms of 
inputs and outputs, our full translog model includes second order and cross terms of inputs and 
outputs. Different production potential of different regions was taken into account by regional 
dummies. Inverse Mill’s ratio (IMR) was also introduced in the separate organic and conventional 
farming models to capture possible selection bias. 

The error term is decomposed into two components. The first component, vit, is a standard 
random variable capturing effects of unexpected stochastic changes in production conditions, 
measurement errors in milk output or the effects of left-out explanatory variables. It is assumed to be 
independent and identically distributed with N(0, 2

vσ ). The second component, uit, is a non-negative 
random variable, associated with the technical (output) inefficiency in production, given the level of 
inputs. The uits are independently distributed with a truncation at zero of N( 2,it uµ σ ), where itµ  is 
modelled in terms of determinants of inefficiency as follows: 

 , (12) 2
2 2

0 exp exp
ln( ) ln( )it age age

Exp Exp Age Ageµ δ δ δ δ δ= + + + + 2

where Exp and Exp2 refer to first and second order terms of years of experience in organic farming. 
ln(Age) and ln(Age)2 refer to the first and second order logarithmic terms of farmer’s age. Theδ :s are 
regression coefficients of respective efficiency effects. The inefficiency effects part of the equation 
makes it possible to test whether technical efficiencies differ by experience and age. Estimations are 
performed by Frontier 4.1 (Coelli, 1996). 
 
4 Results 
 
We estimate three models: an organic, a conventional and a pooled model. In separate organic and 
conventional models we also have to consider for controlling for possible self selectivity bias. We may 
assume that samples of organic or conventional dairy farms are not a random selection of dairy farms 
since the decision whether to produce organic or conventional products is up to the farmer. The 
intensity and extent of production, the location of the farm and farmer’s age were used as explanatory 
variables in the probit model where the indicator of organic/conventional production was the choice 
variable.  

The binomial probit model suggests that the time period, regional dummies and the age of the 
farmer affect significantly the choice of between organic or conventional farming (see Appendix A). 
The probability to choose organic farming is also larger on dairy farms with larger arable land area. 
Older farmers are less likely to farm organically. Increasing milk output per livestock unit decreases 
the probability of choosing organic farming but labour intensity (input per livestock unit) has an 
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opposite effect. In the random effects binary probit model the significant intensity variables are 
slightly different. In this case labour intensity is no more a significant contributor in the prediction of 
the choice but more land per livestock unit increased the probability to choose organic farming. In the 
case of energy intensity the effect was the opposite. None of the above mentioned models was good in 
predicting the actual choice of organic farming correctly, although the model was fairly good in 
predicting the choice of conventional farming.  

The probit models produce an inverse Mill’s ratio that is used in the distance function of organic 
(and conventional) farms to test and capture possible selection bias between organic and conventional 
farms. In the second stage we apply IMRs from the random effect probit model.  
 
Parameter estimates and model specification 
 
In Model 1 of Table 4 organic and conventional farms are pooled in the same data set. According to 
the likelihood ratio test, the best fit of those considered is obtained by the translog specification 
without cross terms of inputs and output (inputs are weakly separable from output; see likelihood ratio 
tests in Appendix B). Instead, the hypothesis of unbiased technical change could not be accepted. 
Translog functional form also outperforms Cobb-Douglas type function. The value of the log 
likelihood function is 20.11. The inefficiency is also highly significant when the likelihood ratio value 
exceeds considerably the critical value.  

The coefficients of the translog function cannot be interpreted as elasticities but they are 
different at each point of observation. The first order coefficient of neutral technical change does not 
differ significantly from zero. The sign is negative indicating slightly progressive but over time slower 
neutral technical change. The non-neutral technical change components were significant for energy 
and capital. The regional dummies were also significant for most regions and they were included in 
the model. They indicate that in general output decreases when going from south to north. Altogether 
20 of 36 parameters of the frontier model were statistically significant at the 5 percent risk level.  

Mean technical efficiency is 0.812. The inefficiency is on average larger on organic than 
conventional farms. In technical efficiency effect explanatory variables are the experience in organic 
farming in years and the logarithm of farmer’s age. We also added their second order terms to show 
possible non-linear changes of the effects over time. The results indicate that the inefficiency is lower 
on the farms after the conversion and inefficiency increases for several years (6-7) but at a decreasing 
rate. On the other hand, inefficiency decreases with the farmer’s age but this rate of change is also 
decreasing. On the sample farms inefficiency decreases until the farmer is approximately sixty years 
old.  

Model 2 is similar to Model 1 but we have added slope dummies that allow different elasticities 
for conventional and organic farms in the same distance function. Together these dummies were not 
significantly different from zero at 10 percent risk level, according to the likelihood ratio test (10.9 
versus the critical value of 12.0). Only the coefficients of energy and neutral technical change differed 
significantly between conventional and organic farms. The effects of experience and age are similar in 
both models. 

Model 3 is estimated separately for conventional farms. In this case the best fit is obtained using 
the full translog specification (see likelihood ratio tests in Table B2, Appendix B). Likelihood ratio 
test shows also that in this case IMR receives a significant value (22.496 vs. critical value of 3.84). 
Inefficiency is also significant (LR test of the one-sided error = 684.40 with four restrictions when the 
critical value of generalized likelihood ratio test is 8.76).  

Altogether 25 of 43 parameters are statistically significant at the 5 percent risk level. The first 
order component of neutral technical change does not differ significantly from zero but the second 
order term is highly significant. Non-neutral technical change components are significant for energy, 
materials and capital. The regional dummies are also significant for almost all regions, and they were 
included in the model.  

Mean technical output efficiency is 0.827. In technical efficiency effect model only farmer’s age 
is used as an explanatory variable. In this case the result is the same as in the pooled model: 
inefficiency decreases by age but at a falling rate. According to this estimate, inefficiency decreases 
until the farmer is approximately 61 years old. 
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Table 4. Parameter estimates and their significance. 
 
 Model 1  Model 2  Model 3  Model 4  
Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value 
β0 -23.5660 -8.017 -22.4875 -7.306 -23.8808 -7.111 -30.7847 -4.493
βY 0.2157 26.206 0.2156 24.779 0.3391 5.022 0.3619 14.857
βYD   -0.0087 -0.760     
βL -5.0518 -8.078 -4.8616 -7.596 -4.6611 -6.961 -5.5749 -3.314
βLD   0.0018 0.021     
βA 1.7787 3.050 1.7237 3.068 1.4348 2.464 -1.4118 -0.916
βAD   -0.0159 -0.301     
βE -0.3140 -0.647 -0.1429 -0.295 0.1472 0.310 -3.2893 -2.505
βED   -0.1323 -2.056     
βM -2.2108 -4.893 -2.3084 -5.223 -2.7586 -5.673 1.1768 1.083
βMD   0.1039 1.799     
βK 0.4996 1.478 0.5049 1.536 0.4130 1.242 -0.1403 -0.150
βKD   0.0160 0.322     
βR2 0.0999 3.985 0.0970 3.907 0.1219 4.552   
βR3 0.0463 1.818 0.0445 1.782 0.0602 2.221   
βR4 0.0810 3.400 0.0812 3.476 0.1102 4.316   
βR5 0.1695 5.367 0.1813 5.733 0.2207 6.631   
βR6 0.1865 6.929 0.1883 7.048 0.2117 7.461   
βR7 0.2256 6.187 0.2258 6.257 0.2413 6.358   
βT -0.0932 -0.972 -0.0537 -0.565 0.0062 0.064 -0.0707 -1.381
βTD   -0.0255 -1.971     
βTT 0.0074 5.447 0.0076 5.501 0.0075 5.404 0.0035 0.654
βYY 0.0161 26.589 0.0161 25.324 0.0152 23.018 0.0300 13.963
βLL 0.1561 2.848 0.1515 2.700 0.1465 2.542 -0.0060 -0.031
βAA 0.1858 5.101 0.1901 5.363 0.1321 3.404 -0.0152 -0.135
βEE -0.0203 -0.820 -0.0195 -0.791 -0.0185 -0.807 0.0083 0.061
βMM -0.0221 -0.824 -0.0102 -0.382 0.0131 0.466 -0.2170 -2.505
βKK 0.0113 0.920 0.0098 0.812 0.0093 0.745 0.0944 1.781
βYL     -0.0167 -2.015   
βYA     0.0181 2.609   
βYE     -0.0077 -1.203   
βYM     0.0047 0.753   
βYK     -0.0024 -0.526   
βLA -0.2867 -4.416 -0.2732 -4.231 -0.2176 -3.350 -0.1200 -0.549
βLE 0.1532 2.561 0.1497 2.482 0.1234 2.118 0.0519 0.182
βLM 0.1442 2.345 0.1364 2.228 0.1375 2.242 0.4182 2.248
βLK -0.0147 -0.316 -0.0168 -0.367 -0.0244 -0.512 0.0138 0.077
βAE -0.0749 -1.656 -0.0746 -1.658 -0.0543 -1.189 -0.0703 -0.447
βAM 0.0228 0.488 0.0122 0.263 0.0325 0.690 0.4685 3.270
βAK -0.0207 -0.630 -0.0186 -0.572 -0.0340 -0.992 -0.1887 -1.535
βEM 0.0647 1.546 0.0520 1.265 0.0275 0.692 0.1332 0.759
βEK -0.0958 -3.224 -0.0952 -3.226 -0.0864 -2.911 0.0960 0.695
βMK 0.0270 0.829 0.0300 0.930 0.0398 1.200 -0.2324 -1.708

Continues 
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Table 4. Continues. 
 
 Model 1  Model 2 Model 3  Model 4 
Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value
βYT -0.0005 -0.566 -0.0003 -0.373 -0.0014 -1.305   
βLT 0.0192 1.648 0.0177 1.532 0.0184 1.545   
βAT -0.0081 -0.922 -0.0053 -0.605 -0.0062 -0.686   
βET 0.0278 3.188 0.0265 3.039 0.0299 3.461   
βMT -0.0138 -1.729 -0.0164 -2.073 -0.0275 -3.410   
βKT -0.0193 -3.590 -0.0186 -3.477 -0.0158 -2.924   
βIMR     -0.3910 -4.915   
δ0 65.3616 9.610 65.6994 10.270 85.6276 9.133 -29.5661 -1.611
δexp 2.6457 14.118 2.7696 12.442   1.2390 1.657
δexp2 -0.2042 -18.588 -0.2020 -12.081   -0.0952 -1.624
δage -38.8263 -9.654 -39.2170 -10.312 -49.3887 -9.144 5.4571 1.349
δage2  4.7113 9.485 4.7883 10.142 6.1119 9.035 -0.2531 -0.779
σ2 3.1840 11.208 3.1749 11.941 2.9801 10.490 3.0078 1.828
γ 0.9947 1491.946 0.9949 1540.576 0.9947 1812.361 0.9905 154.772
LLF  20.113  25.563  104.894  -31.949
LR test of the  698.938  698.938  684.395   624.174 
one-sided error        

Y, L, A, E, M, K refer to other output, labour, land, energy, materials and capital 
T, exp, age refer to time trend, experience in organic farming and farmer’s age 
LLF – log likelihood function, LR one-sided – likelihood ratio test value of one-sided error term 
 
Model 4 was estimated separately only for organic farms. In this case selectivity bias was insignificant 
(2.26 versus the critical value of 3.84 according to the likelihood ratio test at 5 percent risk level) and 
we may leave it out of the list of explanatory variables. Because of a relatively small number of 
observations we also drop out regional dummies. The best fit of the model is obtained using the 
translog specification without biased technical change components and assuming that output shares do 
not affect input use (see likelihood ratio tests in Appendix B). In this case the value of log likelihood 
function is -31.994.  

Neutral technical change components do not differ significantly from zero but their signs 
indicate progressive although slowing down technical change. The non-neutral technical change 
components are not significant either (LR test 0.94 vs. critical value of 3.84).  Only 8 of 25 parameters 
are statistically significant at 5 percent risk level but we could not accept the null hypothesis of second 
order and cross terms of inputs and outputs being zero. A large number of insignificant coefficients 
raises concerns about large standard errors of elasticities in this case. 

Inefficiency is also significant (LR test of the one-sided error = 16.7, with six restrictions the 
critical value at 5 % risk being 11.91). Mean technical output oriented efficiency is 0.783. The 
experience in organic farming could at 10 percent risk level significantly contribute in explaining 
technical efficiency differences among organic dairy farms. Technical inefficiency increases with 
years of experience in organic farming but at a decreasing rate. Inefficiency is at the lowest 
approximately after six years and starts then to grow. The age of the farmer could not significantly 
contribute in explaining the efficiency differences. Even the signs of the coefficients of age were 
opposite compared to other models. 
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Elasticities 
 
Average distance elasticities are presented in Table 5. In the translog model elasticities are point 
elasticities that are different at each data point. The results are calculated only for those data points 
which do not violate the monotonicity assumption. Especially in the case of energy violations are 
common. We should also note that negative values of distance elasticities and returns to scale (RTS) 
are in accordance with the assumptions of the output distance function.  

In general the differences in elasticities and returns to scale are relatively small. In addition, 
elasticity differences should be interpreted with care because of a large number of insignificant 
coefficients in distance functions. However, we can observe some tendencies but also mixed results. 
The results show that the share of other output is on average generally bigger on organic than 
conventional farms. Thus, organic farms are less specialized. The models give mixed results for labour 
but for land the elasticity tends to be larger on organic farms, except in Model 4. The elasticity of 
energy is low in all models but it tends to be larger on organic farms. In Model 2 of organic farms and 
in Model 4 elasticity of materials is considerably smaller than in other models. The elasticity of capital 
is larger in the translog models for organic farms but in Model 4 it is the lowest.  

 
Table 5. Distance elasticities of specified models.  
 
 Model 1  Model 2  Model 3 Model 4 
 TL, Homog.slopes  TL, Heterog. slopes TL 
 All Convent. Organic Convent. Organic Convent. Organic  
Other output 0.161 0.160 0.174 0.160 0.166 0.153 0.289
Labour -0.257 -0.253 -0.303 -0.254 -0.299 -0.262 -0.403
Area -0.164 -0.164 -0.170 -0.163 -0.177 -0.154 -0.071
Energy -0.081 -0.080 -0.092 -0.076 -0.169 -0.074 -0.105
Materials -0.498 -0.498 -0.501 -0.514 -0.416 -0.499 -0.444
Capital -0.135 -0.134 -0.142 -0.133 -0.136 -0.133 -0.084
RTS -1.054 -1.050 -1.101 -1.053 -1.112 -1.033 -1.107
TC -2.75 % -2.80 % -2.60 % -2.50 % -4.80 % -2.44 % -3.88 %

TL - Translog type, RTS – returns to scale, TC – technical change 
 
Table 6 describes the direction of changes in distance elasticities over time for conventional and 
organic farms in different models. The tendencies are similar: the output share of other output is 
increasing, elasticities of labour and energy inputs are decreasing. Instead, the elasticities of materials 
and capital are increasing. The elasticity of land decreases or remains the same. 
 
Table 6. Changes in distance elasticities (absolute values) over time. 
 
  Model 1  Model 2  Model 3 Model 4 
  Convent. Organic Convent. Organic Convent. Organic  
Output  + + + + + + 
Labour (L) - - - - - -- 
Land (A)  +/- +/- - +/- - - 
Energy (E) - - - - - - 
Materials (M) + + + + + ++ 
Capital (K) + + + + + +/- 

-- substantially decreasing, - decreasing, +/- no change, + increasing, ++ substantially increasing 
absolute elasticity. 
 
The sum of input distance elasticities provides the RTS measure. In Translog models the average RTS 
is in all models slightly smaller than -1 indicating increasing returns to scale. As input distance 
elasticities are evolving over time so does the RTS measure. These changes are presented in Table 7. 
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The absolute value of RTS is slightly decreasing over time in all models for conventional farms. In the 
group of organic farms the annual variation is larger. 
 
Table 7. Average returns to scale over time. 
  Model 1  Model 2  Model 3 Model 4 
  Convent. Organic Convent. Organic Convent. Organic  
1995  -1.056 -1.057 -1.062 -1.101 -1.039 -1.261 
1996 -1.072 -1.101 -1.075 -1.109 -1.069 -1.062 
1997  -1.068 -1.213 -1.074 -1.163 -1.052 -1.126 
1998 -1.037 -1.169 -1.033 -1.175 -1.014 -1.129 
1999 -1.031 -1.082 -1.031 -1.087 -1.009 -1.109 
2000 -1.009 -1.027 -0.989 -1.134 -0.976 -1.107 
2001 -0.999 -1.070 -0.988 -1.034 -0.967 -1.030 
2002 -1.031 -0.916 -1.018 -1.094 -0.983 -1.054 

RTS is calculated only for the observations not violating monotonicity constraint 
 
When the absolute value of RTS is larger than one it is able to contribute productivity growth since the 
input output relation improves also due to scale effect. In most years the effect is slightly productivity 
increasing on average.  
 
Technical change 
 
Technical change including both neutral shift of the frontier and some inputs increasing or decreasing 
effects (biased technical change) is often the main contributor of productivity growth. The 
specification of the model also follows that the more negative value technical change receives the 
faster is technical change. Average technical change tends to be slightly faster on organic than on 
conventional farms, as Table 5 shows. In all models technical change is slowing down over time 
because of lower neutral technical change (the second order terms of time are positive). On 
conventional farms technical change slows down slightly faster than on organic farms. Technical 
change on conventional farms’ group turns even from progress to regress in the last years of the 
research period.  
 
Table 8. Technical change (%) over time in different models. 
 
  Model 1  Model 2  Model 3 Model 4 
  Convent. Organic Convent. Organic Convent. Organic  
1995  -6.31 -6.23 -6.23 -8.59 -5.86 -6.37 
1996 -5.22 -4.94 -5.05 -7.32 -4.77 -5.67 
1997  -4.13 -3.74 -3.91 -6.05 -3.64 -4.97 
1998 -3.34 -3.03 -3.06 -5.27 -3.05 -4.27 
1999 -2.36 -2.41 -2.04 -4.54 -2.09 -3.57 
2000 -1.30 -1.41 -0.93 -3.54 -1.12 -2.87 
2001 0.29 -0.43 0.65 -2.57 0.40 -2.17 
2002 1.72 1.14 2.12 -0.93 1.87 -1.47 
Average -2.80 -2.60 -2.50 -4.80 -2.44 -3.88  

 
The contribution of technical change on productivity growth is considerable on the sample farms.  
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Output oriented technical efficiency 
 
Average technical efficiencies and their distribution over research period are presented in Table 9.  
Average technical efficiency is higher on conventional than on organic farm in all models. On 
conventional farms technical (output oriented) efficiency is on average 0.83. Thus, farmers should be 
able to increase their output by seventeen percent if they were efficient. In the pooled Models 1 and 2 
the difference in average efficiency is approximately 10 percentage units. When compared separately 
to their own frontiers the difference in inefficiency of conventional and organic farms is less than half 
of that but still the organic farms are less efficient. The variation in average efficiency of organic 
farms is larger between years than in the group of conventional farms. Thus, the variation of efficiency 
in the group of organic farms is larger both within and between years than in the group of conventional 
farms.  
 
Table 9. Average technical output oriented efficiency over time. 
  Model 1  Model 2  Model 3 Model 4 
 Convent. Organic Convent. Organic Convent. Organic  
1995 0.815 0.667 0.806 0.675 0.809 0.748 
1996 0.850 0.787 0.843 0.783 0.845 0.830 
1997 0.831 0.715 0.823 0.699 0.827 0.766 
1998 0.850 0.729 0.843 0.706 0.845 0.802 
1999 0.826 0.720 0.819 0.694 0.823 0.790 
2000 0.834 0.747 0.829 0.711 0.830 0.792 
2001 0.814 0.735 0.809 0.698 0.809 0.768 
2002 0.829 0.745 0.827 0.699 0.827 0.759 
Average 0.831 0.732 0.825 0.709 0.827 0.783 
 
Figure 2 illustrates the pattern of changes in technical efficiency of different models as in Table 9. As 
the figure shows the pattern is similar in all models estimated for conventional farm. On these farms 
technical efficiency at first increased from 1995 to 1996 but started then to diminish. In 2001 the level 
of technical efficiency was the same as in 1995 but in 2002 it again slightly increased. Organic farms 
are on average less efficient in each year. In 1996 the gap is the smallest. The development of 
efficiency varies slight between models, escpecially from 2000 to 2002. Average technical efficiencies 
of organic farms are almost equal in Models 1 and 4 in 2002.  
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Figure 2. Average technical efficiencies for Models 1 – 4 in 1995 – 2002 (c and o refer to conventional 
and organic production). 
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Table 10 presents the 95 % confidence intervals of technical efficiencies for conventional and organic 
farms for different models. They are calculated following the procedure presented by Battese et al. 
(2000). The result shows that even if there are ten percentage unit’s differences in average efficiencies 
of the groups the means still belong to the confidence interval of the other group. This indicates that 
the difference is not statistically significant at 5 percent risk level. The range is largest in Model 4 
where only organic farms are included. 
 
Table 10. Technical output efficiencies and their ranges at 5 % risk level. 
 
   Mean Lower Upper Range 
Model 1  Convent.  0.831   0.677   0.953   0.277 
 Organic  0.732   0.586   0.867   0.281 
Model 2  Convent.  0.825    0.672    0.949    0.277 
 Organic  0.709    0.567    0.846    0.279 
Model 3  Convent.  0.827 0.676 0.948 0.273 
Model 4  Organic  0.783 0.597 0.937 0.340 
 
The distribution of efficiencies may also differ between models and groups. In our case the 
distributions in models for conventional farms are almost identical. In the group of organic farms the 
differences are bigger between models but the general feature is that the whole distribution has moved 
downwards when compared to the group of conventional farms. If we look at the distribution of 
technical efficiencies and experience in organic farming we can observe a similar pattern as the 
Models suggest: the average efficiency at first decreases but at a decreasing rate, and turns then after 
6-7 years to an increase. We should, however, notice that the number of farmers having an experience 
of more than ten years is small. 
 
Technical input specific efficiencies 
 
Technical input specific efficiencies were estimated applying the method introduced by Reinhard et al. 
(1999). In our case, the method yields on average very low input specific efficiencies the average 
being at the level of 0.1. In general, conventional farms are also input specifically more efficient than 
organic farms but the absolute differences between the groups are minor. The differences are largest in 
land input followed by labour and materials. In capital input there were no differences.  
 
5 Discussion and conclusions 
 
This article has applied stochastic output distance function approach in analysing technical efficiency 
of organic and conventional dairy farms. The goal was to study whether some learning-by-doing 
effects can be observed. This was mainly analysed by investigating the relationship between technical 
efficiency and experience in organic farming. We tested for possible self-selectivity bias between 
organic and conventional farms. We also studied the differences in technical efficiency and technical 
change in the groups of conventional and organic farms in general. 

 When only traditional inputs and outputs are taken into account in the pooled data technical 
efficiency is on average 10 percentage units higher on conventional than on organic farms. Although 
the data suggest learning effects related to the experience in organic farming, differences in the 
development of organic and conventional farm groups were small. In our sample organic farms are 
less efficient even compared to their own frontier than conventional farms indicating that the variation 
is larger. This result contradicts that of Oude Lansink et al. (2002) and Ricci Maccarini and Zanoli 
(2004). The difference compared to Oude Lansink et al. (2002) may be caused by a different 
evaluation method. In the last mentioned articles the target group is also more heterogeneous than in 
our case of specialized dairy farms. Our result may indicate that organic production is more risky but it 
may also be partially caused by the sample where we had to include all organic dairy farms to 
guarantee the sufficient number of observations. Further analysis with respect to risk is, however, 
required. 
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We could observe significant change in technical efficiency by the experience in organic farming. 
According to our analysis, inefficiency increases at first after the switch to organic farming. 
Inefficiency increases for several years reaching the bottom after five to six years. Inefficiency starts 
to diminish not before than after 6 – 7 years of experience in organic farming. The result suggests that 
temporary premium schemes over a certain conversion period may be justified in promotion of organic 
farming.  The result also suggests that this conversion period may take for a fairly long time. 

Conventional production seems to be more technically efficient, i.e. more productive when only 
conventional inputs and outputs are taken into account. However, we have not considered possible 
external effects on the environment or landscape. These considerations might affect the relative 
performance of different production systems. 

More panel type studies are needed to confirm the existence of learning effects. In our analysis 
we have applied pooled data of an unbalanced panel. Still the number of organic farms is relatively 
small for a separate analysis. 
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Appendix A1. The probit models.  
 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Maximum Likelihood Estimates                | 
| Number of observations             1921     | 
| Log likelihood function       -472.7296     | 
| Restricted log likelihood     -548.4102     | 
| Chi squared                    151.3612     | 
| Degrees of freedom                   13     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =  11.69512     | 
| P-value=  .16533 with deg.fr. =       8     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 TIME           .07231954      .02375956     3.044   .0023    4.35346174 
 PELTO          .00684643      .00221608     3.089   .0020    39.2240968 
 DUM2          -.47468789      .17384262    -2.731   .0063     .20510151 
 DUM3           .10234074      .15317846      .668   .5041     .18427902 
 DUM4          -.41770795      .15333180    -2.724   .0064     .34617387 
 DUM5           .18398849      .20808471      .884   .3766     .05674128 
 DUM6          -.72167390      .23178218    -3.114   .0018     .11920875 
 MAIINTEN      -.00030036    .374330D-04    -8.024   .0000    4533.83555 
 TYOINTEN       .00174870      .00077682     2.251   .0244    184.269039 
 PELINTEN      -.02519516      .08596381     -.293   .7695    1.34198864 
 TARINTEN    -.157048D-04    .259624D-04     -.605   .5452    6307.46311 
 ENEINTEN      -.00010728      .00012958     -.828   .4077    961.220143 
 KAPINTEN     .183762D-05    .539083D-05      .341   .7332    16057.4743 
 IKA           -.01343344      .00418381    -3.211   .0013    44.3352421 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable LUOMU      | 
+----------------------------------------+ 
| Proportions P0= .917231   P1= .082769  | 
| N =    1921 N0=    1762   N1=     159  | 
| LogL =  -472.72958 LogL0 =  -548.4102  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .08129  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .10674 |    .13800  |       .86423  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .10724 |    .20096  |       .07577  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria         .50675    1051.30758  | 
+----------------------------------------+ 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
Threshold value for predicting Y=1 = .5000 
            Predicted 
------  ----------  +  ----- 
Actual      0    1  |  Total 
------  ----------  +  ----- 
  0      1754    8  |   1762 
  1       152    7  |    159 
------  ----------  +  ----- 
Total    1906   15  |   1921 
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Appendix A2. The probit models.  
 
+---------------------------------------------+ 
| Random Effects Binary Probit Model          | 
| Maximum Likelihood Estimates                | 
| Number of observations             1921     | 
| Iterations completed                 41     | 
| Log likelihood function       -199.3224     | 
| Restricted log likelihood     -472.7296     | 
| Chi squared                    546.8143     | 
| Degrees of freedom                    1     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Unbalanced panel has     277 individuals.   | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 TIME           .26187083      .12515444     2.092   .0364    4.35346174 
 PELTO          .02508582      .01136932     2.206   .0274    39.2240968 
 DUM2         -9.38853682     2.59608803    -3.616   .0003     .20510151 
 DUM3         -2.03964528     1.19846621    -1.702   .0888     .18427902 
 DUM4         -2.77853798     1.11478099    -2.492   .0127     .34617387 
 DUM5         -1.91131770     1.30240319    -1.468   .1422     .05674128 
 DUM6         -5.76602944     2.34426941    -2.460   .0139     .11920875 
 MAIINTEN      -.00067622      .00014736    -4.589   .0000    4533.83555 
 TYOINTEN       .00496059      .00432029     1.148   .2509    184.269039 
 PELINTEN      1.01105816      .60464171     1.672   .0945    1.34198864 
 TARINTEN     .303731D-04      .00012606      .241   .8096    6307.46311 
 ENEINTEN      -.00139517      .00071448    -1.953   .0509    961.220143 
 KAPINTEN     .289553D-04    .539430D-04      .537   .5914    16057.4743 
 IKA           -.09668426      .02459530    -3.931   .0001    44.3352421 
 Rho            .97529251      .01056979    92.272   .0000 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable LUOMU      | 
+----------------------------------------+ 
| Proportions P0= .917231   P1= .082769  | 
| N =    1921 N0=    1762   N1=     159  | 
| LogL = -4024.60729 LogL0 =  -548.4102  | 
| Estrella = 1-(L/L0)^(-2L0/n) =*******  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|   -.05600 |  -6.33868  |       .91720  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .03576 |   3.80193  |    -36.30598  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria        4.20469    8155.06300  | 
+----------------------------------------+ 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
Threshold value for predicting Y=1 = .5000 
            Predicted 
------  ----------  +  ----- 
Actual      0    1  |  Total 
------  ----------  +  ----- 
  0      1754    8  |   1762 
  1       154    5  |    159 
------  ----------  +  ----- 
Total    1908   13  |   1921 
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Appendix B.  

 
Table B1. Likelihood ratio tests for parameters of Model 1. 

Null hypothesis Test statisticsa Critical value 
   
Cobb Douglas – neutral TC vs. Translog – neutral TC (d.f. 16) 191.0 26.3 
Translog – neutral TC vs. non-neutral TC (d.f. 6) 
Translog – additively separable (d.f. 5) 

43.5 
3.11 

12.6 
11.1 

No technical inefficiency (d.f. 6)b 698.94 11.91 
   
 
 
Table B2. Likelihood ratio tests for parameters of Model 3. 

Null hypothesis Test statisticsa Critical 
value 

   
Cobb Douglas – neutral TC vs. Translog – neutral TC (d.f. 16) 647.3 26.3 
Translog – neutral TC vs. non-neutral TC (d.f. 6) 29.5 12.6 
Translog – additively separable (d.f. 5) 12.8 11.1 
No technical inefficiency (d.f. 4)b 684.40        8.76 
   
 
 
Table B3. Likelihood ratio tests for parameters of Model 4. 

Null hypothesis Test 
statisticsa

Critical  
value 

   
Cobb Douglas – neutral TC vs. Translog – neutral TC (d.f. 16) 130.35 26.3 
Translog – neutral TC vs. non-neutral TC (d.f. 6) 3.77 12.6 
Translog – additively separable (d.f. 5) 
No technical inefficiency (d.f. 6)b

6.04 
16.70 

11.1 
11.91 

   
a  Log likelihood ratio test -2(log L(H0)-log L(H1)) 
b  The critical value is obtained from Table 1 in Kodde and Palm (1986) which shows the statistics for a mixed 

Chi-square distribution with degrees of freedom equal to 6. 
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