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A cointegration analysis of wool prices∗∗

Hui-Shung (Christie) Chang∗∗

Abstract
Based on cointegration analysis and monthly data from 1976.8 to 1999.10, a long-run
equilibrium relationship was found to exist between prices for wools of 19 to 23 microns,
despite the wool Reserve Price Scheme operated until February 1991. Furthermore, the
prices for 19, 20 and 21 micron wools were found to be weakly exogenous. The latter
result suggested that, although co-integrated, prices for finer wools tended to be less volatile
than coarser wools. The implications are that wool producers would enjoy more stable
prices by producing finer wools and that cross-hedging is possible given co-movements of
prices.
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A cointegration analysis of wool prices

Introduction

In 1998/9, wool brought in around $4 billion in export earnings for Australia (806 kt greasy

equivalent in volume); however, in 1999/2000, the value of wool exports is expected to be down to

$2.764 billion (681 kt greasy equivalent in volume) (Ashton, Alexander and Gleenson 2000). Weak

demand and falling profitability in recent times indicate that the wool industry may be in crisis, which

prompted another review of the Australian wool industry (Wool Task Force 1999).  Two key

recommendations regarding wool marketing were made: that producers produce what the customers

want; and that producers engage in risk management. Increasing the supply of finer wools is a key

step towards meeting changing customer needs, and hedging on the futures market is a key step for

managing price risk. However, these recommendations will be taken on board only when producers

are convinced that the benefits for doing so outweigh the costs. The main objective of this research is

to determine the linkages between prices for wools of different fibre diameter using cointegration

analysis. An analysis of the price relationships over time between wools of different fibre diameter

would help evaluate potential benefits of producing finer wools. Further, better understanding of the

price relationships can provide information that is essential for determining hedging strategies

(Lubulwa et al. 1997). In the process, the study also examines the effects on price linkages of the

wool Reserve Price Scheme (RPS).

The paper begins with a stylised description of the Australian wool market and a preliminary analysis

of the data. It then provides a brief introduction of the main concepts involved in the cointegration

analysis and the Johansen procedure (Johansen and Juselius 1990). Estimation and discussion of the

results are then provided, including implications for wool marketing. The paper ends with some

concluding remarks.
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The Australian wool market

Wool is not a homogeneous product. Therefore, the price at any point in time for a specific bale

(typically around 500 kg clean) or lot (comprising 5-10 bales of similar wools) is determined

primarily by six key quality attributes: micron (fibre diameter), strength, length, colour, style and

vegetable matter content (Woolmark Company 2000; Gleeson, Lubulwa and Beare 1993). Among

these physical attributes of wool, fibre diameter is by far the most important, accounting for about 60

percent of price variations (Woolmark Company 2000). It is an important attribute because it affects

the spinning capacity, strength and texture of the yarns, which in turn determines the fabric quality.

Prices for finer wools are generally higher because they produce fabrics that are softer, less prickly

and more comfortable and because supply of finer wools are not as abundant as coarser wools. As

such, price differentials between wools of different fibre diameter are determined by the demand and

supply balances of associated wools. Moreover, with the passage of time, price differentials may

change in response to shifts in the supply and demand (Tomek and Robinson 1990, p.133). Indeed,

it has been observed that price differentials between finer and coarser wools have increased in recent

years (Griffith 1999). The main reason is the recent fashion changes from more traditional and formal

wear (suits, coats and trousers) to casual wear with lighter, softer and easier-care fabrics. This shift

in demand is in favour of finer wools at the expense of coarser wools. Since traditionally the

Australian wool industry had concentrated on supplying wool for formal wear, the increasing demand

for finer wools, not yet matched by supply, has resulted in an increase in premiums for finer wools

over coarser wools.

Nevertheless, wools of different fibre diameter are, to varying degrees, potential substitutes (Beare

and Meshios 1990). As such, prices of wools of different fibre diameter can be expected to move

more or less in tandem over the long run, except of course where market imperfections exist. This

means, if the market is efficient, a price change in one type of wool will be followed by similar

changes in related wool types. The co-movement among related price series implies that a log-run

equilibrium relationship exists among the series and that the series are cointegrated (Banerjee et al.

1993, p. 2-5). In cases where a market is not efficient, price linkages may be weakened or broken.
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Therefore, an equilibrium relationship may not exist and the related price series may not be

cointegrated. One such market imperfection in the Australian wool market may have been the RPS.

The RPS for Australian wool was introduced in the early 1970s with an aim of stabilising wool prices

and thereby insulating growers, and perhaps users, from the extremities of price fluctuations

(Bardsley 1994; Garnaut 1993). Under the Scheme, wool was bought and stored as buffer stock

when the price was considered to be too low; the stock was later put on the market if the price

improved. The Scheme appeared to work well in the early years. However, when the exchange rate

was floated in the early 1980s, it became increasingly difficult to manage the Scheme due to

exposures to the international financial market. The situation was worsened when the price-setting

authority was handed over to the Australian Wool Council (AWC) in 1987 as a part of the general

policy of reforming the statutory marketing authorities (Bardsley 1994). As an organisation that

represented woolgrowers’ interest, AWC soon raised the guaranteed floor price to a level far above

the average market-clearing price.

For example, the market indicator (the weighted average price) for wool increased from 508

cents/kg clean in 1986/87 to 645 cents/kg clean in 1987/88, then to 870 cents/kg clean in 1988/89,

resulted in a rise of over 70 percent in two years (Malcolm, Sale and Egan 1996). As sales

plummeted in response to the steep price increase, the AWC purchases, as well as the borrowing

that used to finance the purchases, grew rapidly. In May 1990, the floor price was dropped to 700

cents/kg clean in return for a government guarantee on the debt. However, with no improvement in

demand, the Scheme was suspended in February 1991, leaving behind a stockpile of 4.7 million

bales and a debt of A$2.7 million. The price of wool fell overnight from 700 cent/kg clean to 430

cents/kg.

The fact that the stockpile comprised mostly broader micron wools was an indication that the lower

quality wools had been over-priced, which provided an incentive for woolgrowers to produce

excess quantities of inferior wools with no regard for market requirements. Not only did it reduce

incentives for growers to be market-oriented, but it inhibited commercial R&D and promotion and

discouraged futures trading in favour of the auction system (Garnaut 1993, p. 6). The end result was
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the progressive deterioration in the quality of marketing, a less competitive wool industry and the

greater use of substitute fibres.

Data

Monthly prices for wools of different fibre diameter were used for the current analysis. The series

covered the period from August 1976 to October 1999, providing a total of 279 observations. The

price series are and published in the AWEX Eastern Market Indicator and Micron Price Guide and

are available for purchase in electronic format from the Woolmark Company. The original price

series include the Eastern Market Indicator (EMI) and prices (cents/kg clean) for wools of fibre

diameter between 19 and 31 micron. However, only wools of fibre diameter from 19 to 25 micron

and 30 micron are available from 1976 when the series were first compiled. These data are also

available on a weekly basis.

Among all the wool types produced in Australia, the 22 micron wool is the most commonly

produced, accounting for 19.1 percent of total Australian wool production (Stanton and Coss

1995). The second most commonly produced wool is 21 micron (16.5 percent), followed by 23

micron (16.2 percent), 24 micron (10.2 percent), 20 micron (10.2 percent), 25 micron (5.6 percent)

and 19 micron (4.8 percent). The remaining 17 percent of total Australian wool production are made

up by superfine wools of 15 to 18 micron (less than 2 percent), wools of 26 to 30 micron (about 12

percent) and wools of 31 to 41 micron (about 3 percent).

This study focussed on wools ranging from 19 to 25 micron due to data availability. Together these

wool types account for about 83 percent of total wool production in Australia (Stanton and Coss

1995). Because their importance, up-to-date movements in premiums and discounts for this group of

wools are published regularly by the Woolmark Company (2000). Moreover, the group is broken

down into three micron ranges: fine (18.6 – 20.5 micron), medium (20.6 – 22.5 micron) and broad

(22.6 – 24.5) for ease of comparison. They are also of particular interest because the Sydney

Futures Exchange (SFE) offers three wool futures contracts: the greasy wool futures contract (21

micron) and the fine (19 micron) and the broad (23 micron) futures contracts (SFE 2000, p.4).  The

type of futures contracts on offer has significant implications for growers’ hedging strategy.



7

Price volatility

Wool prices, like most other commodity prices, are volatile because both supply of and demand for

wool vary widely over time. As such, there is indeed the need for managing price risk, although not

necessarily through price stabilisation schemes such as the RPS. One alternative is hedging on the

futures market (SFE 2000).

Since the primary objective of the RPS was to stabilise prices, its effectiveness is evaluated by

comparing the volatility of prices and price premiums for wools of different fibre diameter before and

after the suspension of the RPS. Average values and volatility for prices and price premiums are

presented in Tables 1 and 2, respectively. Volatility is measured in terms of  coefficient of variation

(COV), defined as the ratio of mean over standard deviation. Furthermore, to account for differing

levels of rate of inflation in the two sub-periods, all price series are normalised using the price for 25

micron wool as numeraire. As such all prices are in relative terms.

 It can be seen that wool prices had become more variable under the RPS than without the RPS. For

example, the COV for wool of 19 micron (RP19) was 0.33 with the RPS while it was 0.26 without

the RPS (see Table 1). This is true across all wool types. This finding is, however, contrary to what

was suggested in Lubulwa et al. (1997, p.8) where prices had become more volatile after the RPS.

Also indicated in Table 1 is that price volatility increased with a decrease in fibre diameter. This

finding is consistent with the finding of Lubulwa et al. (1997, p.25).

Volatility in price premiums is presented in Table 2. Again, price premiums for adjacent fibre

diameter, defined as the difference between prices for wools of adjacent fibre diameter, were more

variable with the RPS than without the RPS. For example, the COVs are 1.10 and 0.54 for price

premiums for M19 over M20 (M19-20) with the RPS and without the RPS, respectively.

Moreover, price premiums for finer wools (M19 to M22) appeared to have increased after the

demise of the RPS while price premiums for coarser wools (M23 to M25) had decreased. The latter

result is consistent with Griffith’s finding that price differentials between finer and coarser wools have

accentuated as the demand for finer wools increases. The result is also supported by recent market

analysis where prices for wools of 19 micron and finer were found to have risen substantially while

21 micron and broader wools have remained steady (Thomson 2000). It is clear that when the free
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market was allowed to operate, prices (premiums) better reflect the demand/supply conditions for

wools.

The RPS was also found to have created artificial price linkages between prices and between price

premiums. As can be seen from Table 3, with the RPS, coefficients of correlation between wool

prices of different fibre diameter range from 0.78 to 0.98, except for 30 micron wool (RP30). By

comparison, without the RPS, coefficients of correlation between wool prices of different fibre

diameter range from 0.35 to 0.96. In particular, correlation between finer wools (RP19 to RP22)

and coarser wools (RP23 to RP24) is greatly reduced (Table 4). As such, it appears that after the

RPS, wools of 23 and 24 microns may be considered as a group distinct from wools of 19 to 22

microns.

Similar results are found with price premiums (Tables 5-6), except that some price premiums have

moved in opposite directions after the demise of the RPS, as indicated, for example, by the negative

coefficients of correlation between M19-20 and M23-24 and M24-25 (second column of Table 6).

Based on these data analyses, it is evident that the RPS had resulted in an increase in volatility of

price and price premiums of Australian wool rather than stabilising them, as was intended by the

Scheme. Another unintended effect of the RPS is the artificial linkages between finer and broader

wools, both in terms of prices and price premiums.

Co-integration analysis

Means, standard deviations, COV and coefficient of correlation were used in the preceding section

to compare changes in the price series as a result of the RPS. However, these descriptive statistics

are meaningful only if the underlying random variables are stationary, ie having constant mean and

variance. Many economic time series are non-stationary and do not have a constant mean or

variance (Myers 1994). This is indeed the case for the prices of Australian wools that are under

investigation in this research. As such, the properties of the series and relationships between them

need to be re-examined based on techniques that are designed for non-stationary data. In the

following section, cointegration analysis is conducted to determine the short-run and long-run

dynamics of wool prices, taking into account the likely impact of the RPS on price relationships. In
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particular, the primary interest is to test whether prices for wools of different fibre diameter are

cointegrated.

A set of nonstationary variables are said to be cointegrated if some linear combinations of these

variables are stationary (Banerjee et al. 1993). Cointegration implies that long-run equilibrium

(stationary) relationships exist among the nonstationary variables. Further, because cointegrated

series are linked by common stochastic trends, they do not move independently of each other. As

such, one would expect to see systematic co-movements among the series. Moreover, because they

are linked, the dynamic paths of those variables are influenced by any deviation from the long-run

equilibrium. That is, a cointegrated system is characterised by some error correction process. The

relationship between cointegration and error correction is best demonstrated by the Granger

Representation Theorem (Engle and Granger 1987). The Theorem states that an error correction

model (ECM) representation for a set of variables which are integrated of order one implies

cointegration among the variables and vice versa. Moreover, it can be shown that, with re-

parameterisation and term manipulation, the ECM can be obtained by transforming a standard vector

autoregressive model (VAR) in terms of first differences and error correction factors (Enders 1995,

p.367). The transformation is illustrated below.

Given a standard VAR with lag length p, VAR(p), written as:

(1) xt =  A0+ A1 xt-1 + ... + Ap xt-p + B Dt  + C St + vt,   t = 1,...,T,

where

p =  the lag length;

xt =  an (n x 1) vector of variables;

A's = (n x n) matrices of unknown parameters;

xt-i =  an (n x 1) vector of the i th lagged value of xt for i = 1, 2,…, P;

Dt = a set of centred seasonal dummies;
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St = a set of dummy variables representing structural changes;

As, B and C = unknown parameters to be estimated; and

vt = white-noise disturbance terms which may be contemporaneously correlated.

Substracting xt-1 from each side of equation (1) and letting I be an (n x n) identity matrix, we get

(2) ∆xt =  A0 + (A1 – I) ∆xt-1 + (A2 + A1 – I) xt-2 +... + Ap xt-p + B Dt  + C St + vt,   t =

1,...,T.

Next, adding and subtracting (A2 + A1 – I) xt-3 on the right hand side to obtain

(3) ∆xt =  A0 + (A1 – I) ∆xt-1 + (A2 + A1 – I) xt-2 + (A3 + A2 + A1 – I) xt-3 + …

+ Ap xt-p + B Dt  + C St + vt, t = 1,...,T.

We can continue in this fashion until we get

(4) ∆xt = Π0 + Π1 ∆xt-1 + ... + Πp-1 ∆xt-(p-1) + Π xt-p + B Dt  + C St + vt

= Π0 + 
i = 1 

p − 1 

∑ Πi ∆xt-i + Π xt-p + B Dt  + C St + vt, t = 1,...,T,

where 

Π0 = A0,

Πi = - (I - ∑
=

i

1j

Aj), j = 1, 2, ..., p - 1;

Π = - (I - 
i = 1 

p 

∑ Ai); and

∆xt-i = an (n by 1) vector of xt-i in first differences for i = 1, 2, ..., p - 1.
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Other variables are as previously defined. For detailed derivations, see Enders (1995, pp. 389-90).

Therefore, without any loss of information, we have transformed a VAR(p) into a ECM(p) with an

error correction term, Π xt-p. The Π matrix is of primary importance. Firstly, the rank of Π

provides the basis for determining the existence of cointegration or the long-run relationship among

the variables. According to Johansen (1988), if Rank(Π) is zero, then the variables are not

cointegrated and the model is equivalent to a VAR in first differences. If 0 < Rank(Π) < n, then the

variables are cointegrated. And if Rank(Π) = n, then the variables are stationary and the model is

equivalent to a VAR in levels.

Secondly, the Π matrix can be decomposed into the product of matrices α and β, ie Π = αß'. ß is

the matrix representing the cointegrating relations. When ß'xt = 0, the system is in equilibrium;

otherwise, ß'xt is the deviation from the long-run equilibrium (or the equilibrium error) and is

stationary in a cointegrated system (Johansen and Juselius 1990). α is the matrix of speed of

adjustment coefficients, which characterises the long-run dynamics of the system. A large (small)

value of α means that the system will respond to a deviation from the long-run equilibrium with a

rapid (slow) adjustment. On the other hand, if α is zero for some equation, it implies that the

corresponding variable is weakly exogenous and does not respond to equilibrium error. In a

cointegrated system, at least one α must be non-zero.

Based on these concepts, a testing procedure for cointegration (the Johansen procedure) is

proposed by Johansen and Juselius (1990). The Johansen procedure involves (1) pre-testing the

order of integration of individual series, (2) determining the lag length for the ECM, and (3)

estimating the ECM and determining the rank of Π (Enders 1995, pp.396-400). 

Empirical model and estimated results

In this section, the Johansen procedure is carried out to test the hypothesis that long-run relationships

exist among prices for Australian wool.

First of all, the order of integration for wool prices (expressed in relative prices) of different fibre

diameters is tested based on the augmented Dickey-Fuller (DF) test using SHAZAM (Version 8,
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1997). The results indicate that the null hypothesis of a unit root cannot be rejected for all the prices

considered. The same tests are performed on the first differences of these series and the rejection of

the null hypothesis of a unit root verifies that all prices are integrated of order one, I(1).

After confirming that the price series under consideration are I(1), the next step is to determine the

proper lag length for the ECM. This involves making pair-wise comparisons between various

versions of standard VAR, each having a different lag length, based on the likelihood ratio (LR) tests

(Enders 1995, pp. 312-315). For the wool data, the standard VAR in equation (1) are defined as

follows:

xt = [RP19t, RP20t, RP21t, RP22t, RP23t]' = a vector of prices, expressed in relative price

terms using M25 as numeraire, eg RP19 = M19/M25; t = 1, 2,…, 279.

 xt-i =[RP19t-i, RP20t-i, RP21t-i, RP22t-i, RP23t-i]' for i = 1, 2, 3,..., p;

St = 1 for the period between 1976.8 to 1991.2 when the RPS was in operation; and St

= 0, otherwise; and

Dt = centred monthly seasonal dummies, using December as the base period.

Other variables are as previously defined. In terms of model specification, a conscious decision was

made to measure prices in terms of relative price. It is believed that the relative measure removes the

deterministic time trends, as well as accounts for differing rates of inflation, as discussed earlier, and

therefore is a more appropriate indicator for real changes over time. Another advantage is that the

relative prices can be interpreted as price premiums in percentage terms (Gardner 1975). St is

included in the VAR model to capture the likely impact of the RPS on the system dynamics. Dt is

included to capture possible seasonality associated with monthly data. The relevance of both dummy

variables are tested based on LR tests.

Using RATS (Doan 1996), the LR test results suggest that 16 months to be the appropriate lag for

the model, ie p = 16. In addition, they indicate that neither seasonality nor the RPS had an impact on

the price relationships. As such, both dummy variables were excluded from the ECM. The finding
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that the RPS had no impact on the price relationships is surprising and contradicts the results that are

presented in the price volatility section, where the RPS is shown to have increased price volatility and

distorted price linkages. However, one should bear in mind that we are dealing with nonstationary

data and as such some results may not be comparable with those results that assume stationarity.

With the lag length of the ECM being determined, the ECM(16), based on the wool data, is

specified as:

(5) ∆xt = Π0 + 
i= 1

15

∑ Πi ∆xt-i + Π xt-16  + vt,

where

∆xt = [∆RP19t, ∆RP20t, ∆RP21t, ∆RP22t, ∆RP23t]' = prices in first differences;

∆xt-i = [∆RP19t-i, ∆RP20t-i, ∆RP21t-i, ∆RP22t-i, ∆RP23t-i]' for i = 1, 2, ..., and 15;

xt-16 = [RP19t-16, RP20t-16, RP21t-16, RP22t-16, RP23t-16]';

Πi's = (5 by 5) matrices representing the short-run dynamics; and

Π = αß' = the matrix representing the long-run dynamics.

Other variables are as previously defined.

Because the rank of Π is sensitive to the presence of exogenous variables and deterministic

components, two versions of the ECM(16) are estimated using CATS in RATS (Doan 1996). The

two versions (Models A and B) differ only in the way the intercept terms (Π0) are specified. Model

A is the unrestricted model where the intercept terms are incorporated as a trend drift in the

equation. Model B is the restricted model where the intercept terms are incorporated in the

cointegrating vector.

The estimated results regarding the rank of Π  for both versions are presented in Table 7. As can be

seen from the trace statistics (λtrace), the rank of Π is one for both Model A and Model B. This
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means that the five wool prices are cointegrated with one cointegrating relation. The same conclusion

is reached based on the maximum eigenvalue statistics (λmax). However, the later results are not

presented here to save space. The full results from the ECM are available from the authors for

interested readers.

To discriminate between Models A (with a trend drift) and B (with a constant in the cointegrating

vector), the test statistic, LRλ, which is suggested in Enders (1995, pp. 393), is used. The LRλ is

defined as:

(6) LRλ  = - T 
i = r + 1 ̀  

n 

∑ [ln(1 - λi*) - ln(1 - λi)],

where  λi* and λi are estimated eigenvalues of the matrix Π for the restricted (Model B) and

unrestricted (Model A) models, respectively; r is the number of cointegrating vectors in the

unrestricted model; and n is the number of endogenous variables. Given that n = 5 (types of wool

considered) and r = 1 (one cointegrating relation), the computed value for LRλ is 0.92, which is

much smaller than the critical value of 9.49 with four degrees of freedom at the 5 per cent

significance level (bottom of Table 7). Therefore, Model B (the restricted version) is not rejected. It

is concluded that the data do not exhibit a linear (deterministic) time trend and that it is appropriate to

specify the intercept term in the cointegrating vector.

The estimated cointegrating relation or long-run equilibrium relationship (Table 8), normalised by the

β  associated with the price premium for 19 micron wool, is:

(7) RP19 - 6.33 - 7.55 RP20 + 20.50 RP21 - 25.50 RP22 + 18.23 RP23 = 0.

It can also be written as:

(8) RP19 = 6.33 + 7.55 RP20 - 20.50 RP21 + 25.50 RP22 - 18.23 RP23.

As indicated in equation (8), when the wool market is in equilibrium, the prices for 19, 20 and 22

micron wools are positively related while prices for wools of 21 and 23 microns are negatively

related.
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The existence of the long-run relationship, as described by equation (7) or (8), means that, first,

prices for different types of wool share common stochastic trends and therefore tend to move

together over time. Secondly, the system can be expected to return to equilibrium after being

perturbed by some exogenous shocks. The speed of adjustment is determined by the value of

estimated adjustment coefficients. As shown in the bottom half of Table 8, the estimated αs are –

0.01 for RP19, 0.03 for both RP20 and RP22, and 0.02 for both RP21 and RP23. This means that

if there is a positive deviation from the long-run equilibrium, the system would respond with a

decrease in the price premium for 19 micron wool and an increase in the prices for wools of 20 to

23 microns. Moreover, prices for 20 and 22 micron wools appear to respond faster to equilibrium

error than 21 and 23 micron wools, which, in turn, respond faster than the 19 micron wool.

However, the adjustment process is likely to be slow, as indicated by the relatively small values of

the adjustment coefficients. Therefore, any deviation from the long-run equilibrium can be expected

to persist for a relatively long period of time.

Note also that the α coefficients associated with RP19, RP20 and RP21 are statistically

insignificantly different from zero at the 5% level of significance while they are highly statistically

significant for RP22 and RP23. This result suggests that the prices for 19, 20 and 21 micron wools

are weakly exogenous and therefore do not change in response to deviations from the long-run

equilibrium. It also means that movements in the prices for 19 to 21 micron wools are less affected

by events in the markets for 22 to 23 micron wools but movements in the prices for 22 to 23 micron

wools are dictated by events in the markets for 19 to 21 micron wools. Furthermore, the long-run

equilibrium in the Australian wool market, after an exogenous shock, is restored primarily by

corrections made by wools of 22 to 23 microns. However, this does not imply that finer wools have

no influence on the Australian wool market. Rather, changes in these markets are induced by the

short-run dynamics of the system.

These results can help provide answers to questions for woolgrowers in two key areas: whether

there is a benefit in producing finer wools and whether price risk management is feasible for most

woolgrowers of various types of wool. The answer to the first question is positive. That is, if the

demand for fine wool is to continue its upward trend, the price premium associated it will increase

relative to coarser wools. As this happens, the increase in prices, as a result of an exogenous
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demand shock, will cause the system to be out of the equilibrium. Since corrections to re-store

equilibrium are made by 22 to 23 micron wools, their prices would tend to be more variable than

otherwise. These results imply that woolgrowers would be better-off focusing on fine wool

production where prices are relatively less volatile.

That prices for the five wool types considered are cointegrated provides useful information for price

risk management. Since quality basis risk depends largely on changing premiums and discounts

associated with fibre diameter (Lubulwa et al. 1997, p.25), the finding that these prices are

cointegrated and tend to move together implies that cross-hedging is possible. Specific hedging

strategies would depend, however, on detailed statistical analysis of the relationship between prices

of wool types under consideration, which would be an interesting area for further research.

 Conclusion

Wool is one of Australia's largest export commodities. However, it has been in crisis in recent years

due to falling demand and prices. Using the Johansen's procedure, the cointegration analysis shows

that the five types of wools, with fibre diameter ranging from 19 to 23 micron, are cointegrated of

order one. This means that they are nonstationary but linked by common stochastic trends and as

such tend to move together over time. Moreover, any deviation from the long-run equilibrium is

temporary and will be removed by system dynamics.

Furthermore, wools of 19 to 21 micron were found to be weakly exogenous; therefore, corrections

to a deviation from the long-run equilibrium are made primarily in the markets for wools of 22 and 23

microns. The latter result suggested that prices for finer wools would be less volatile, compared with

coarser wools which appeared to bear the burden of making price adjustments. The implication is

that wool producers would enjoy more stable prices by focusing on finer wools. Cointegration also

suggests that cross-hedging is possible given that quality basis risk can be minimised when strong

price linkages exist between wool types that are of interest. However, there is no clear evidence that

the Reserve Price Scheme had any significant impact on the long-run equilibrium price relationship.

This latter result is contradictory to the results obtained from examining variations and correlation of

the same series based on the usual summary statistics. Therefore, caution should be exercised in

drawing conclusions from the data without a preliminary test for stationality.
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Table 1. Means and variations of prices for wools, with and without the RPS.
August 1976 – Feb

1991

(with RPS)

March 1991 –

November 1999

(without RPS)

August 1976 –

November 1999

(entire sample)

RP19 1.77

(0.33)a

1.89

(0.26)

1.82

(0.31)

RP20 1.54

(0.26)

1.58

(0.21)

1.56

(0.24)

RP21 1.34

(0.17)

1.35

(0.13)

1.34

(0.15)

RP22 1.28

(0.12)

1.22

(0.08)

1.26

(0.11)

RP23 1.17

(0.08)

1.08

(0.04)

1.14

(0.08)

RP24 1.10

(0.03)

1.05

(0.02)

1.08

(0.04)

RP30 0.80

(0.12)

0.88

(0.06)

0.83

(0.11)

EMI 1.36

(0.12)

1.32

(0.10)

1.35

(0.11)

a Figures in parentheses are coefficients of variation, defined as standard deviation/mean.
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Table 2. Means and variations of price premiums for wools, with and without the RPS

August 1976 – Feb

1991

(with RPS)

March 1991 –

November 1999

(without RPS)

August 1976 –

November 1999

(entire sample)

M19-20 138

(1.10)a

151

(0.54)

143

(0.90)

M20-21 125

(1.12)

111

(0.67)

119

(0.99)

M21-22 40

(1.51)

62

(0.78)

49

(1.17)

M22-23 59

(0.88)

69

(0.52)

63

(0.73)

M23-24 43

(1.09)

16

(0.74)

32

(1.22)

M24-25 54

(0.61)

23

(0.41)

42

(0.74)

a Figures in parentheses are coefficients of variation, defined as standard deviation/mean.
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Table 3. Correlation between wool prices, with the RPS

               RP19    RP20    RP21    RP22   RP23    RP24   RP30

RP19      1.

RP20      0.97      1.

RP21      0.93      0.98      1.

RP22      0.90      0.95      0.98      1.

RP23      0.89      0.92      0.94      0.98     1.

RP24      0.78      0.79      0.81      0.87     0.92     1.

RP30     -0.01      0.13      0.19      0.19     0.11     0.01      1.

Table 4. Correlation between wool prices, without the RPS

             RP19      RP20     RP21    RP22   RP23   RP24   RP30

RP19      1.

RP20      0.96      1.

RP21      0.81      0.93      1.

RP22      0.64      0.79      0.91      1.

RP23      0.43      0.54      0.57      0.80     1.

RP24      0.35      0.44      0.41      0.63     0.89     1.

RP30      0.05      0.12      0.22      0.25     0.15     0.07      1.



22

Table 5. Correlation between wool price premiums, with the RPS

                      M19-20      M20-21      M21-22       M22-23       M23-24      M24-25

M19-20            1.00

M20-21            0.88            1.00

M21-22            0.74            0.88            1.00

M22-23            0.76            0.91            0.89             1.00

M23-24            0.81            0.92            0.82             0.94             1.00

M24-25            0.79            0.86            0.75             0.87             0.88           1.00

Table 6. Correlation between wool price premiums, without the RPS

                      M19-20      M20-21      M21-22      M22-23       M23-24      M24-25

M19-20            1.00

M20-21            0.78            1.00

M21-22            0.56            0.74            1.00

M22-23            0.21            0.40            0.74            1.00

M23-24           -0.10            0.07            0.06            0.36            1.00

M24-25           -0.17            0.03           -0.11            0.09            0.38             1.00
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 Table 7. Summary of rank tests on matrix Π of the ECM

Model A. Incorporating the constant as a trend drift in the equation

Estimated λ λtrace

λ1 0.1459 78.58

(64.74)a

λ2 0.0636 37.11

(43.84)

λ3 0.0405 19.83

(26.70)

λ4 0.0257 8.97

(13.31)

λ5 0.0080 2.11

(2.71)

Model B. Restricting the constant in the cointegrating vector

Estimated λ λtrace

λ1* 0.1460 79.56

(71.66)

λ2* 0.0636 38.05

(49.92)

λ3* 0.0406 20.76

(31.88)

λ4* 0.0277 9.86

(17.79)

λ5* 0.0093 2.47

(7.50)

LRλ =0.92;

χ2  (df = 4; α = 5%) = 9.49; χ2  (df = 4; α = 10%) = 7.78

a Figures in parentheses are critical values for λtrace statistics at the 10 percent significance level.
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Table 8. Estimated long-run parameters, αs and βs, r = 1

RP19 RP20 RP21 RP22 RP23 CONSTANT

βs 1.00

(--)a

-7.55

(--)

20.50

(--)

-25.50

(--)

18.23

(--)

-6.33

(--)

αs -0.012

(-0.40)b

0.033

(1.69)

0.019

(1.45)

0.033

(3.70)

0.018

(3.20)

--

a T-ratios for β  coefficients are not calculated.

b Figures in parentheses are t-values.


