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Abstract

In this paper we investigate the validity of the univariate autoregressive sieve bootstrap

applied to time series panels characterized by general forms of cross-sectional dependence,

including but not restricted to cointegration. Using the final equations approach we show

that while it is possible to write such a panel as a collection of infinite order autoregressive

equations, the innovations of these equations are not vector white noise. This causes the

univariate autoregressive sieve bootstrap to be invalid in such panels. We illustrate this

result with a small numerical example using a simple bivariate system for which the sieve

bootstrap is invalid, and show that the extent of the invalidity depends on the value of

specific parameters. We also show that Monte Carlo simulations in small samples can

be misleading about the validity of the univariate autoregressive sieve bootstrap. The

results in this paper serve as a warning about the practical use of the autoregressive sieve

bootstrap in panels where cross-sectional dependence of general from may be present.

Keywords : sieve bootstrap; panel data; cross-sectional dependence, final equations.

JEL Classification: C23.

1 Introduction

In this paper we investigate the validity of the autoregressive (AR) sieve bootstrap in a panel

data context. The sieve bootstrap is very popular in applied work as it is one of the better

performing time series bootstrap methods, and moreover easy to implement. In particular
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to Alain Hecq, Marco Lippi and Franz Palm for helpful discussions. Special thanks go to Peter Boswijk for
comments that drastically improved the paper. All remaining errors are our own.
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for the analysis of unit roots and cointegration, the sieve bootstrap appears to perform very

well, see for example Chang, Park, and Song (2006) and Palm, Smeekes, and Urbain (2008).

Recently, people have also started to use the autoregressive sieve bootstrap in panel data

with finite cross-sectional dimension. While a multivariate version of the sieve bootstrap exists

based on the estimation of a vector autoregressive (VAR) model, this VAR sieve bootstrap

becomes infeasible if the dimension of the system grows, and cannot be used in typical panel

data applications where the number of cross-sectional units is too large, even in the finite

N case where it remains asymptotically valid. The VAR sieve bootstrap is therefore only

of practical use in panels with a very small cross-sectional dimension where the estimation

of a VAR model is justified. In applied work people therefore often use the univariate AR

sieve bootstrap, with the modification that the residuals are resampled jointly across units

to preserve the cross-sectional dependence.1 Examples for the analysis of unit roots and

cointegration in panel data include Chang (2004), Cerrato and Sarantis (2007), Di Iorio and

Fachin (2011), Hanck (2009), Smith, Leybourne, Kim, and Newbold (2004) and Westerlund

and Edgerton (2007).

With the exception of Chang (2004) these papers do not provide theoretical results on the

validity of the AR sieve bootstrap. Chang (2004) assumes that there is only contemporaneous

dependence between units and shows that the AR sieve bootstrap is valid under those con-

ditions. However, these conditions are likely to be violated in many empirical applications.

It remains unknown if the AR sieve bootstrap is valid under more general conditions on the

cross-sectional dependence.2

In this paper we therefore explore the properties of the AR sieve bootstrap in time series

panels with more general forms of cross-sectional dependencies. Our main tool in this analysis

is the final equations approach developed by Zellner and Palm (1974) and Palm (1977) among

others, which shows that any VAR model can be written in final form as a system of ARMA

equations for each individual unit. Starting from a general model that allows for various forms

of cross-sectional dependencies, we use this approach as well as results of Kreiss, Paparoditis,

and Politis (2011) to derive univariate AR representations for each unit that are needed in

order to be able to apply the AR sieve bootstrap. However, as we will see, the innovations of

these AR models are not vector white noise thus invalidating the use of the AR sieve bootstrap

in more general models. Our focus is on unit root testing in panels, but our results carry

through to other settings. Note that our analysis assumes that the cross-sectional dimension

1To distinguish between the multivariate sieve bootstrap where a VAR model is estimated and the uni-
variate sieve bootstrap where individual autoregressive models are estimated, we refer to the former as VAR
sieve bootstrap and to the latter as AR sieve bootstrap.

2The sieve bootstrap has been used in combination with some kind of estimation of a factor model to
filter out dependence by Fuertes (2008), Pesaran, Smith, Yamagata, and Hvozdyk (2006), Trapani (2011) and
Trapani and Urga (2010). While this is a perfectly sensible and valid approach, in this paper we only focus on
the application of the sieve bootstrap directly to the data, hence where the sieve bootstrap is the only tool that
takes into account the cross-sectional dependence. Trapani (2011) provides an extensive theoretical analysis
of the sieve bootstrap (both of AR and VAR type) in a model where common factors are estimated.
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N , although potentially large, is finite. The same assumption is for example also made in

Chang (2004).

We also illustrate our analysis with a numerical example of a model in which the AR sieve

bootstrap is invalid but where observed size distortions are not large. This example serves

as a possible explanation of the finding that the AR sieve bootstrap performs well in some

simulation studies even though it is not valid.

The structure of the paper is as follows. In Section 2 we introduce a general sieve bootstrap

algorithm used in panel data. The theoretical analysis is contained in Section 3. A small

simulation study is considered in Section 4. Section 5 offers some conclusions. Proofs are

contained in the Appendix.

Finally, a word on notation. |z| applied to a (possibly complex) number denotes its

absolute value, ‖A‖ applied to any matrix A denotes its Euclidean norm, and ⌊x⌋ is the

largest integer smaller than or equal to x. W (r) denotes a standard N -dimensional Brownian

motion. Weak convergence (convergence in distribution) is denoted by
d
−→, and bootstrap

weak convergence in probability is denoted by
d∗
−→p.

2 Sieve bootstrap procedure

Here we will describe a typical setup for an AR sieve bootstrap panel unit root test on a panel

of data yi,t, i = 1, . . . , N , t = 1, . . . , T .

1. For each i = 1, . . . , N , obtain ydi,t = yi,t − β̂′
izt, where zt = 1 or zt = (1, t)′ and β̂i is

obtained for example through an OLS or GLS regression of yi,t on zt.

2. For each i = 1, . . . , N , run an ADF regression with q lags on ∆yi,t to obtain residuals

êq,i,t = ∆ydi,t − ρ̂ydi,t−1 −

q
∑

j=1

d̂i,j∆ydi,t−j.

Recenter the residuals to obtain ẽq,i,t = êq,i,t − (T − q − 1)−1
∑T

t=q+2 êq,i,t.

3. Resample with replacement from ẽq,t = (ẽq,1,t, . . . , ẽq,N,t)
′ to obtain bootstrap errors

e∗t = (e∗1,t, . . . , e
∗
N,t)

′.

4. For each i = 1, . . . , N , construct u∗i,t recursively as

u∗i,t =

q
∑

j=1

d̂i,ju
∗
t−j + e∗i,t,

using the estimated parameters d̂i,j from Step 2, and construct y∗i,t as y
∗
i,t = y∗i,t−1+u∗i,t.
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5. Use the bootstrap sample y∗t = (y∗1,t, . . . , y
∗
N,t)

′ to calculate the desired panel unit root

test statistic.

Lag lengths qi can be selected for each equation individually, for example by information

criteria. We need to allow these lag length qi in the sieve bootstrap to go to infinity at a

controlled rate.

Assumption 1. Let qi → ∞ and qi = o((T/ ln T )1/3) as T → ∞ for all i = 1, . . . , N .

3 Invalidity of the sieve bootstrap in panel data

In this section we will show theoretically that the AR sieve bootstrap is not valid in panel

data with complex cross-dependencies. Let yt = (y1,t, . . . , yN,t)
′ and

P (L)yt = [(1 − L)IN − αβ′L]yt = Ψ(L)εt, (1)

where α and β are N × r matrices (with r < N). Furthermore we assume that

Assumption 2.

(i) εt are i.i.d. with E(εt) = 0, E(εtε
′
t) = Σ and E ‖εt‖

4 < ∞.

(ii) det(Ψ(z)) 6= 0 for all z ∈ C such that |z| ≤ 1, and
∑∞

j=0 j ‖Ψj‖ < ∞.

(iii) det (α′
⊥β⊥) 6= 0.

This DGP describes a multivariate I(1) process with possible cointegration. If α = 0,

there is no cointegration, otherwise there are r cointegrating relations. In the following we

will not treat these two cases distinctively. We assume that y0 = 0 and that there are no

deterministic components present in the DGP. However, these assumptions are made purely

for expositional simplicity and can be dispensed with without any difficulty.

By letting Φ(z) = Ψ(z)−1P (z), we can derive the VAR representation

Φ(L)yt = εt, (2)

where Φ(1) = Ψ(1)−1αβ′. We can further rewrite this to the VECM representation

∆yt = Ψ(1)−1αβ′yt−1 +Φ∗(L)∆yt−1 + εt, (3)

where the specific form for Φ∗(z) is given below equation (4) in Palm, Smeekes, and Urbain

(2010).

4



From the expression in (3) we can derive the common trends representation (see e.g.

Johansen, 1995, Theorem 4.2)

yt = C

t
∑

s=1

εt + C∗(L)εt, (4)

where C = β′
⊥(α

′
⊥β⊥)

−1α⊥Ψ(1),3 C∗(z) =
∑∞

j=0Cjz
j has all roots outside the unit circle and

∑∞
j=0 j ‖Cj‖ < ∞ as a consequence of Assumption 2. It then follows that

T−1/2y⌊Tr⌋
d
−→ B(r), (5)

where B(r) = CΣ1/2W (r) is an N -dimensional Brownian motion with covariance matrix

Ω = CΣC ′, which is equal to the long-run covariance matrix of ∆yt.

In order to be valid the AR sieve bootstrap should be able to replicate the invariance

principle (5). Consequently, in order to be able to apply the AR sieve bootstrap, we need

first to be able to write the DGP as a diagonal VAR process for ∆yt. To derive these

univariate AR representations for ∆yi,t, i = 1, . . . , N , we use the final equations approach

(see e.g. Zellner and Palm, 1974; Palm, 1977; Cubadda, Hecq, and Palm, 2009) and write the

VAR form (2) as

det(Φ(L))yt = Φ̃(L)εt,

where Φ̃(z) is the adjoint matrix of Φ(z). Note that det Φ(z) contains N − r unit roots (r = 0

if α = 0). In order for yt to be I(1), Φ̃(z) must have N−r−1 unit roots. Hence, N−r−1 unit

roots are common and cancel out. Hence, we may write det(Φ(z)) = a(z)(1− z)(1− z)N−r−1

and Φ̃(z) = B(z)(1 − z)N−r−1, where a(z) and B(z) do not contain any factors (1 − z) (see

Cubadda et al., 2009, for more details).

Let us further define Bi(z) as the i-th row of B(z), and Bi,j(z) as the (i, j)-th element of

the matrix B(z). Then we may write for unit i that

a(L)∆yi,t = Bi(L)εt =

N
∑

j=1

Bi,j(L)εi,t. (6)

We still need to show that the right hand side of (6) can be written as a univariate invertible

MA(∞) process that can be inverted to obtain an autoregressive representation. Theorem 1

shows this is indeed possible.

Theorem 1. Let the DGP be given by (1) and let Assumption 2 hold. For each i = 1, . . . , N

3Note that α⊥ = I if α = 0 and hence C = Ψ(1).

5



we may write

di(L)∆yi,t = ei,t,

where di(z) 6= 0 for z ∈ C such that |z| ≤ 1,
∑∞

j=0 j |di,j| < ∞ and ei,t is white noise with

E ei,t = 0, E e2i,t = σ̃i,i and E(e4i,t) < ∞.

Proof: see Appendix.

Note that it would be tempting to consider that the results in Theorem 1 provide a justifi-

cation for the use of an univariate AR sieve bootstrap procedure in panel data. Indeed, all

assumptions on the DGP needed in order to apply the sieve bootstrap (see e.g. Chang, 2004,

Assumptions 1 and 2) are satisfied, with the exception that et = (e1,t, . . . , eN,t)
′ is not a vector

i.i.d. process. Unfortunately, this violation is serious enough to cause the sieve bootstrap to

be theoretically invalid. There are two aspects of this violation that should be taken into

account.

First, for each i = 1, . . . , N , ei,t is not i.i.d. but white noise. As explained in detail by Kreiss

et al. (2011), this will only affect validity of the sieve bootstrap if the limiting distributions of

the resulting test statistic depends on moments of ei,t higher than the second moment. The

limit distributions of the unit root test statistics considered here are driven by the invariance

principle (as in (5)) and only depend on the first two moments of the innovations. Therefore

this does not lead to invalidity in this particular application, although it could do in others.

Second, while for each individual i = 1, . . . , N , ei,t is univariate white noise, et is not

vector white noise. This is a more serious problem that causes general invalidity of the AR

sieve bootstrap, as the off-diagonal elements of the long-run covariance matrix of et are not

equal to those of the contemporaneous covariance matrix. To see why this is the case, let

D(z) = diag(d1(z), . . . , dN (z)), such that et = D(L)yt. Note that we can write, using (4),

that

et = D(L)∆yt = D(L)Cεt +D(L)C∗(L)∆εt = C̃(L)εt.

While E ei,tei,t−s = 0 by construction for s > 0, this will in general not be true for E ei,tej,t−s

if i 6= j. Define Σ̃ = E(ete
′
t) and Ω̃ = limT→∞ET−1

(

∑T
t=1 et

)(

∑T
t=1 et

)′
and σ̃i,j (ω̃i,j) as

the (i, j)-th element of Σ̃ (Ω̃). Then, while ω̃i,i = σ̃i,i, in general we have that ω̃i,j 6= σ̃i,j for

i 6= j.

Note that this result is irreducible, as we have found valid AR representations for each unit

(making the univariate AR sieve bootstrap possible) that are derived from the fundamental

ARMA models obtained through the final form. That is, there is no further transformation

possible that will allow us to make the innovations vector white noise. Therefore, the AR

sieve bootstrap is not valid when applied to a process generated by (1).
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The invalidity of the univariate AR sieve bootstrap is due to the fact that the bootstrap

does not estimate, i.e. reproduce, the long-run covariance matrix of the data correctly. Using

established results on the sieve bootstrap, see for example Chang (2004), Chang et al. (2006,

Theorem 3.3) and Palm et al. (2010, Theorem 2), we can show that

T−1/2y⌊Tr⌋
d∗
−→p B

∗(r), (7)

whereB∗(r) is anN -dimensional Brownian motion with covariance matrix Ω∗ = D(1)−1Σ̃D(1)−1′,

which will in general not be equal to Ω = D(1)−1Ω̃D(1)−1′, the covariance matrix of B(r) in

(5).

Remark 1. Unfortunately there does not appear to be an intuitive way to link the DGP

parameters to the parameters appearing in Ω and Ω∗ (even for a bivariate VAR(1) model a

complicated cumbersome expression arises that is difficult to interpret). It is therefore hard,

if not impossible, to give simple conditions on the DGP considered here under which the

AR sieve bootstrap is asymptotically valid. The only easily interpretable condition for sieve

bootstrap validity is that α = 0 and Ψ(z) diagonal, in which case the DGP reduces to the

one used by Chang (2004).4

4 Simulations

To investigate the effect of the failure of the AR sieve bootstrap to capture the correct

covariance matrix, will now analyze a very simple model by Monte Carlo simulation. We

consider the following bivariate DGP:

[

∆y1,t

∆y2,t

]

=

[

1 θL

0 1

][

ε1,t

ε2,t

]

,

[

ε1,t

ε2,t

]

,∼ N

(

0,

[

1 0

0 1

])

. (8)

Note that this process is actually in final form as e1,t = ∆y1,t and e2,t = ∆y2,t are white

noise individually. Of course, if θ 6= 0, they are not vector white noise. Although very

simple, as shown in the previous section, this final form captures the relevant features of final

forms arising from complex and rich dependence including cointegration between y1,t and y2,t,

because the diagonal AR dynamics are not of interest for AR sieve bootstrap validity, and

the only important aspect is that the innovations are not vector white noise. Following Palm,

Smeekes, and Urbain (2011), we will perform a group-mean (demeaned) Dickey-Fuller t-test,

denoted tgm, on these series using the sieve bootstrap.

4Trapani (2011) shows that, if the sieve bootstrap is applied in a panel model with a common factor
structure that is estimated through principal components, the AR sieve bootstrap is valid for the long-run
covariance matrix as long as the cross-sectional dependence between idiosyncratic components is “small”,
i.e. vanishing with N (see his Theorem 3 for details). While this provides some guidance, such a statement
only makes sense with increasing N and is not applicable for our DGP.

7



4.1 Asymptotic Simulations

We start with an asymptotic analysis of the AR sieve bootstrap. It follows directly (cf. Chang

and Park, 2002; Chang, 2004) that

τgm →d 1

2

2
∑

i=1

Bµ
i (1)

2 −Bµ
i (0)

2 − ωi,i

2
√

ωi,i

∫ 1
0 Bµ

i (r)
2dr

,

where Bµ
i (r) = Bi(r) −

∫ 1
0 Bi(r) and B(r) = (B1(r), B2(r))

′ is a bivariate Brownian motion

with covariance matrix given by

Ω =

[

1 θ

0 1

][

1 θ

0 1

]′

=

[

1 + θ2 θ

θ 1

]

,

and ωi,i is the (i, i)-th element of Ω. On the other hand, for the sieve bootstrap statistic we

have that

τ∗gm →d∗
p

1

2

2
∑

i=1

B∗µ
i (1)2 −B∗µ

i (0)2 − ω∗
i,i

2
√

ω∗
i,i

∫ 1
0 B∗µ

i (r)2dr
,

where B∗µ
i (r) = B∗

i (r)−
∫ 1
0 B∗

i (r) and B∗(r) = (B∗
1(r), B

∗
2(r))

′ is a bivariate Brownian motion

with covariance matrix Ω =
[

1+θ2 0
0 1

]

.

To investigate the asymptotic effect of the invalidity of the AR sieve bootstrap, we simulate

the 0.05-quantiles of the distributions of τgm and τ∗gm and the asymptotic rejection frequencies

using a level of 0.05. The asymptotic distributions were obtained by direct simulation of

the relevant limiting representations, approximating the standard Brownian motion using

i.i.d. N(0, 1) random variables, and with the integrals approximated by normalized sums of

2,000 steps. All simulations were performed using 500,000 Monte Carlo replications.

In Figure 1 we report the results for θ varying from -1 to 1. Values for the quantiles are

given on the right axis, while size is given on the left axis. While the quantiles are not very

much different and follow the same pattern, they are clearly not identical. The invalidity

of the sieve bootstrap is also confirmed by the reported asymptotic rejection frequencies.

However, while they differ from the nominal level, the rejection frequencies are not that far

away, and the asymptotic size distortion is not huge.5 Hence, in this particular model the

effect of the off-diagonal parameter in the covariance matrix is fairly small, which may explain

why the sieve bootstrap often still performs well in finite sample simulations.

Insert Figure 1 about here

5Unreported results show that while for |θ| > 1 size distortions increase, size does not go above 0.12.
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4.2 Finite sample simulations

We next consider the same DGP for a finite sample Monte Carlo simulation. Sample sizes

T = 50, 100, 250, 500, 1000, 2000 are considered. Results are based on 5000 simulations and

499 bootstrap replications. Next to the AR sieve bootstrap (SB) we also consider the

i.i.d. bootstrap (IID) and the moving blocks bootstrap (MBB). As (8) is already in final

form, the augmentation with lags in the AR sieve bootstrap is unnecessary. The i.i.d. boot-

strap therefore plays the same role here as the AR sieve bootstrap; the only difference with

the sieve bootstrap is that there will be no finite sample effect from the selection of the lag

length. As such it basically provides a “clean” version of the sieve bootstrap here. The

moving blocks bootstrap was shown to be valid in this context by Palm et al. (2011), and

therefore provides a benchmark.6 The block length in the MBB is selected as 1.75T 1/3 as in

Palm et al. (2011), while the lag length in the sieve bootstrap is selected by MAIC with an

upper bound of 12(T/100)1/4 .

Figure 2 presents the results. For small to moderate T it is difficult to see any difference

between the valid moving blocks bootstrap and the invalid i.i.d. and AR sieve bootstrap. Only

for a rather large T does the bowl-shaped pattern found in Figure 1 become visible for the

invalid bootstrap methods. Therefore, if one has no knowledge of Figure 1 and only considers

sample sizes commonly considered in Monte Carlo studies, one might easily mistakenly believe

the AR sieve bootstrap to be valid from these results.

Insert Figure 2 about here

For the specific case considered here one might argue that while the AR sieve bootstrap

is invalid, the asymptotic size distortion is so minor that it could be used in practice without

problems. Even if one attaches value to this argument, it should be remembered that we

only considered one very specific case here, especially as we took N = 2. With a larger N

there is a wide range of parameters that can be selected and unreported simulations show

that some combinations lead to major size distortions while others may lead to hardly any

size distortions. Given the enormous array of possibilities it is not our goal here to investigate

and report specific combinations. We have shown that the sieve bootstrap is invalid in this

general type of models, and therefore the fact that parameters often chosen in simulation

studies do not appear to lead to size distortions cannot be seen as validation for the AR sieve

bootstrap.

6Clearly for this specific DGP we could have also used the VAR sieve bootstrap, given the small cross-
sectional dimension. We are however not interested in finding the best bootstrap method for this specific DGP.
As mentioned before, the DGP is not of interest in itself, but serves as illustration for more general models,
capturing the most important features. As the VAR sieve bootstrap is not applicable in more general models
where N is larger, we also do not consider it here.
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5 Conclusion

In this paper we have investigated the validity of the univariate autoregressive sieve bootstrap

applied to a nonstationary multivariate system that allowed for general forms of cross-sectional

dependence, including but not restricted to cointegration. While it was shown to be possible

to write this system as a collection of infinite order univariate AR models, the innovations of

these equations were shown not to be vector white noise, which causes the AR sieve bootstrap

to be invalid in such a general system.

This result was illustrated with a numerical example using a simple bivariate system in

which the AR sieve bootstrap was invalid. It was shown that the extent of invalidity depended

on the value of the parameters. It was also found that in small or moderate samples the invalid

AR sieve bootstrap was hard to distinguish from the valid moving blocks bootstrap, and only

in large samples the asymptotic pattern could be recovered. This can explain the observation

that the AR sieve bootstrap performs well in simulation studies performed in the literature.

The results of this paper have important implications for practitioners applying the au-

toregressive sieve bootstrap in a panel data setup, as it will typically be invalid for many

settings it is applied to, unless cross-sectional dependence in the true DGP is only of a con-

temporaneous nature. Moreover, the bivariate example serves as a warning that relying upon

Monte Carlo simulations to assess the validity of the AR sieve bootstrap can be very mislead-

ing. If one is not certain about the type of cross-sectional dependence present in the DGP, it

is safer to use a different bootstrap method that is valid for a wider set of DGPs, such as the

block bootstrap.
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A Appendix: Proof of Theorem 1

Proof: Let ui,t = a(L)∆yi,t as defined in (6). Then the first step is to show that

ui,t = ci(L)ei,t, (A.1)

where ci(z) 6= 0 for all z ∈ C such that |z| ≤ 1 and ei,t is white noise. This is an extension

of Theorem 1 of Teräsvirta (1977). As ui,t is a covariance stationary process, the Wold

representation applies (see e.g. Brockwell and Davis, 1991, Section 5.7). Furthermore, as the

Wold representation is fundamental, ci(z) 6= 0 for all z ∈ C such that |z| < 1. We still need

to ensure that ci(z) 6= 0 for all z ∈ C such that |z| = 1, which is true if the spectral density

of ui,t is strictly positive on [−π, π]. As shown in Teräsvirta (1977), the spectral density of

ui,t is equal to

fi(λ) =
1

2π
Bi(e

− iλ)Bi(e
i λ)′,

which is zero at some point λi,0 ∈ [−π, π] if only if all polynomials Bi,j(z) for j = 1, . . . , N

have a common root on the unit circle at e− iλi,0 .7

As B(z) does not contain any factors (1−z), a common root cannot arise at frequency λ = 0.

Suppose there is a common root at another frequency λi,0 6= 0. In that case we can factor out

(e− i λi,0 − z) from Bi(z) and consequently we have det(B(z)) = (e− i λi,0 − z)B̃(z) for some

matrix polynomial B̃(z). However,

det(B(z)) =
det(Φ̃(z))

(1− z)N(N−r−1)
=

[det(Φ(z))]N−1

(1− z)N(N−r−1)
=

[(1 − z)N−ra(z)]N−1

(1− z)N(N−r−1)
= (1− z)ra(z)N−1,

where a(z) does not contain any unit roots as

a(z) =
det(Φ(z))

(1− z)N−r
=

det(P (z))

(det(Ψ(z))(1 − z)N−r)
=

det(P ∗(z))

det(Ψ(z))
, (A.2)

7Teräsvirta (1977) considers MA models of finite order but his arguments are easily extended to infinite
order MA models.
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which cannot contain any unit roots by the assumptions on Ψ(z) and the fact that there are

only N − r unit roots in det(P (z)) and consequently det(P ∗(z)) = det(P (z))/(1− z)N−r does

not contain any unit roots.

As furthermore the unit roots (1−z)r cannot be the common roots as they occur at frequency

zero, we can conclude that for each i = 1, . . . , N there exist no common roots on the unit

circle. Therefore the spectral density of ui,t is strictly positive for any i = 1, . . . , N , which

proves (A.1).

We may then define di(z) =
∑∞

j=0 di,jz
j = a(z)ci(z)

−1, and write di(L)∆yi,t = ei,t for i =

1, . . . , N . Invertibility of di(z) then immediately follows from (A.2) and the fact that P (z)

does not contain roots within the unit circle.

We next show that the summability condition holds. As ∆yt = Cεt + C∗(L)∆εt and
∑∞

j=0 j ‖Cj‖ < ∞ from (4), it follows that
∑∞

h=−∞ h
∣

∣

∣
E∆yi,t∆y′i,t+h

∣

∣

∣
< ∞ for any n =

1, . . . , N (see e.g. Fuller, 1996, p. 367). It then follows from Lemma 2.1 of Kreiss et al. (2011)

that
∑∞

j=0 j |di,j| < ∞.

Finally, it follows from the Wold representation theorem that ei,t is white noise. From As-

sumption 2 and equation (4) one can conclude that E(∆y4i,t) < ∞, and consequently that

E(e4i,t) < ∞. This concludes the proof.
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Figure 1: Asymptotic size and quantiles
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(a) T = 50 (b) T = 100

(c) T = 250 (d) T = 500

(e) T = 1000 (f) T = 2000

Figure 2: Size in finite samples
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