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when estimating a treatment effect ∗

Eva Cantoni† and Xavier de Luna‡
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Abstract

We consider a non-parametric model for estimating the effect of a binary
treatment on an outcome variable while adjusting for an observed covariate.
A naive procedure consists in performing two separate non-parametric regres-
sion of the response on the covariate: one with the treated individuals and the
other with the untreated. The treatment effect is then obtained by taking the
difference between the two fitted regression functions. This paper proposes a
backfitting algorithm which uses all the data for the two above-mentioned non-
parametric regression. We give theoretical results showing that the resulting
estimator of the treatment effect can have lower finite sample variance. This
improvement may be achieved at the cost of a larger bias. However, in a sim-
ulation study we observe that mean squared error is lowest for the proposed
backfitting estimator. When more than one covariate is observed our backfit-
ting estimator can still be applied by using the propensity score (probability of
being treated for a given setup of the covariates). We illustrate the use of the
backfitting estimator in a several covariate situation with data on a training
program for individuals having faced social and economic problems.
Keywords: Analysis of covariance, Backfitting algorithm, Linear smoothers,
Propensity score.
JEL: C14
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1 Introduction

The estimation of the effect of a binary treatment w on an outcome variable y

is often performed with the classical linear analysis of covariance1 when a covariate
x must be adjusted for. A more general non-parametric analysis of covariance can
be performed by considering the model, for a random sample of size n,

yi = β0(xi) + wiτ(xi) + εi, i = 1, . . . , n, (1)

where εi is the usual regression error term with mean zero, and τ(xi) is the condi-
tional treatment effect which is often of main interest. The use of this model can
be illustrated with a dataset previously analysed in Young and Bowman (1995) and
Ratkowsky (1983), where the logarithm of the yield, y (g/plant) of a variety of Span-
ish Onion is explained by the covariate density, x (plants/m2), and what may be
called a treatment, that is a binary indicator, w, for two different regions in South
Australia. The data consists in 42 observations for each of the two regions Virginia
(w = 0) and Purnong Landing (w = 1), and is displayed in Figure 1 (top left panel)
together with a non-parametric fit of the functions β0(x) and β1(x) = τ(x) + β0(x).
Different inferential purposes may be sought with such a fit. For instance, differ-
ent hypotheses (e.g., τ(x), is a constant function) may be formally tested, see, e.g.,
Young and Bowman (1995), Akritas and Van Keilegom (2001) and Neumeyer and
Dette (2003). It is also common to provide pointwise confidence bands around non-
parametric fits as shown in Figure 1 (dotted lines). Such confidence bands are ±2
times the standard error of the fitted value at a given design point. They correspond
to pointwise 95% confidence intervals for the true curve if bias in estimation is neg-
ligible, see Bowman and Azzalini (1997, Sec. 4.4), and Hastie and Tibshirani (1990,
Sec. 3.8).

Model (1) is more general than it appears because when more than one covariate
must be adjusted for the model can be used by replacing the univariate variable xi

with the propensity score, Pr(wi = 1|x1i, . . . , xpi) if p covariates are available, see
Rosenbaum and Rubin (1983). This can be done under certain conditions given in
Section 3, where an application is also presented.

Model (1) is usually fitted by considering separately the treated (wi = 1) and
untreated (wi = 0) individuals. A non-parametric regression technique (e.g. kernels,
smoothing splines, etc.; see, for example, Härdle, 1990, Fan and Gijbels, 1996) is
used to fit the function β0(x) based solely on the untreated and to fit the function
β1(x) based solely on the treated.

In this paper we propose a backfitting algorithm which improves on the above
naive estimation of the functions β0(x), β1(x) and τ(x). This is achieved by using the
information contained in both the treated and untreated individuals when estimat-
ing both β0(x) and β1(x) non-parametrically. For linear smoothers (e.g. smoothing

1That is an additive separable linear regression model.
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Figure 1: White Spanish Onions dataset. Top panels: Non-parametric fits (gaussian
kernel with smoothing parameter h = 12) of the functions β0(x) and β1(x) (plain
lines). The top left panel displays the fits obtained separately for data on location
w = 0 and w = 1. The top right panel shows the fits obtained with the backfitting
algorithm. The bottom panels display the corresponding fits of the function τ(x).
Dotted lines are confidence bands for the fitted functions.
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splines, kernels), we show that our algorithm provides an estimator with lower vari-
ance under certain conditions. The improvement is illustrated in Figure 1 where
both the naive estimators and the backfitting estimators are displayed together with
their respective confidence bands. Bias may increase with the backfitting estimator,
although, in a simulation study we observe that the decrease in variance is large
enough to imply a decrease in mean squared error.

The paper is organised as follow. In the next section we briefly introduce linear
smoothers. The backfitting estimator is then presented, followed by finite sample
theoretical and simulation results showing the difference in terms of variance and
bias between the naive and the novel estimator. Section 3 presents an application
where the propensity score of Rosenbaum and Rubin (1983) is utilized to adjust for
several covariates. Section 4 concludes the paper.

2 Estimators and properties

2.1 Linear smoothers

Various methods (see, e.g., Hastie and Tibshirani, 1990, Sec. 9.5, Härdle, 1990,
Fan and Gijbels, 1996 and Young and Bowman, 1995) can be used to estimate the
involved functions in model (1) without making stringent parametric assumptions.
Linear smoothers are such methods, including smoothing splines, kernels and local
polynomials. They are called linear because the implied fitted values at the design
points are linear in the outcome. That is, for a model yi = f(xi)+εi for i = 1, . . . , n,
the estimation of f at the design points, x = (x1, . . . , xn)T , is given by

f̂(x) = Sh[x]y, (2)

where y = (y1, . . . , yn)T contains the observed outcomes, f̂(x) is the vector contain-
ing the fitted values at each xi, and Sh[x] is a matrix of weights not depending on
the yi’s and depending on a smoothing parameter h.

The results derived in this paper focus on linear smoothers, and, in particular,
their kernel representation. A kernel estimator is defined at a generic point z based
on a sample (xi, yi) for i = 1, . . . , n by

f̂(z) =

∑n
i=1 K( z−xi

h
)yi

∑n
i=1 K( z−xi

h
)

, (3)

where K satisfies the following conditions
∫

K(u)du = 1 and
∫

uK(u)du = 0. A
commonly used kernel smoother is the gaussian kernel, which utilizes the standard
normal density as function K. Linear smoothers have an equivalent kernel represen-
tation, see, e.g., Hastie and Tibshirani (1990, Sec. 2.8).

In the setting of model (1), naive kernel estimators of the functions β0 and β1

are obtained by considering two separate subsamples consisting in the untreated
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and treated individuals respectively. Denote by y0 = (y01, . . . , y0n0)
T and x0 =

(x01, . . . , x0n0)
T the observed response and covariate values for the n0 non-treated

individuals, and similarly y1 = (y11, . . . , y1n1)
T and x1 = (x11, . . . , x1n1)

T for the
n1 treated units. Then, the fitted values at x0 and x1 are β̂naive

0 (x0) = Sh0
0 [x0]y0

and β̂naive
1 (x1) = Sh1

1 [x1]y1. More generally, for a vector z of size nz, we have the

predictions β̂naive
j (z) = S

hj

j [z]yj , j = 0, 1, where the nz × nj matrix Sh
j [z] is defined

as

Sh
j [z] =





























K(
z1−xj1

h
)

∑nj
i=1 K(

z1−xji

h
)

K(
z1−xj2

h
)

∑nj
i=1 K(

z1−xji

h
)

· · ·
K(

z1−xjnj

h
)

∑nj
i=1 K(

z1−xji

h
)

K(
z2−xj1

h
)

∑nj
i=1 K(

z2−xji

h
)

K(
z2−xj2

h
)

∑nj
i=1 K(

z2−xji

h
)

· · ·
K(

z2−xjnj

h
)

∑nj
i=1 K(

z2−xji

h
)

...
...

...
...

K(
znz−xj1

h
)

∑nj
i=1 K(

znz−xji

h
)

· · · · · ·
K(

znz−xjnj

h
)

∑nj
i=1 K(

znz−xji

h
)





























. (4)

From the above fits/predictions of the functions β0 and β1, we obtain the naive
estimator of τ as τ̂naive(z) = β̂naive

1 (z) − β̂naive
0 (z).

2.2 A backfitting procedure

To improve the quality of the naive fit, we propose the backfitting procedure
described in Algorithm 1.

Algorithm 1 The backfitting algorithm to estimate β0, β1 and τ .

1. β̂0(x0) = Sh0
0 [x0] y0 = β̂naive

0 (x0). Predict β̂0(x1) = Sh0
0 [x1] y0.

2. τ̂(x1) = Shτ

1 [x1] (y1 − β̂0(x1)).

3. β̂
backfit
0 ((xT

0 ,xT
1 )T ) = Sh0

0,1[(x
T
0 ,xT

1 )T ](yT
0 , (y1 − τ̂(x1))

T )T .

4. β̂1(x1) = Sh1
1 [x1] y1 = β̂naive

1 (x1). Predict β̂1(x0) = Sh1
1 [x0] y1.

5. τ̂(x0) = Shτ

0 [x0] (−y0 + β̂1(x0)).

6. β̂1
backfit

((xT
0 ,xT

1 )T ) = Sh1
0,1[(x

T
0 ,xT

1 )T ]((y0 + τ̂(x0))
T ,yT

1 )T .

7. τ̂ backfit((xT
0 ,xT

1 )T ) = β̂1
backfit

((xT
0 ,xT

1 )T ) − β̂
backfit
0 ((xT

0 ,xT
1 )T ).

In this algorithm, predictions at z are given by

β̂
backfit
0 (z) = Sh0

0,1[z](y
T
0 , (y1 − τ̂(x1))

T )T

IFAU - Non-parametric adjustment for covariates when estimating a treatment effect 5



and

β̂1
backfit

(z) = Sh1
0,1[z]((y0 + τ̂(x0))

T ,yT
1 )T .

For a kernel estimator, the (k, l) element of the nz × (n0 + n1) matrix Sh
0,1[z] is

(Sh
0,1[z])k,l =















K(
zk−x0l

h
)

∑n0
i=1 K(

zk−x0i
h

)+
∑n1

i=1 K(
zk−x1i

h
)

1 ≤ l ≤ n0

K(
zk−x1(l−n0)

h
)

∑n0
i=1 K(

zk−x0i
h

)+
∑n1

i=1 K(
zk−x1i

h
)

n0 + 1 ≤ l ≤ n0 + n1,

for k = 1, . . . , nz.

In Figure 2 we illustrate Steps 1. and 3. of the backfitting algorithm on the
Spanish Onion dataset. The algorithm starts by computing a first estimate of β0

based on the untreated individuals only. The fit produced (panel (a) of Figure 2) is
the naive estimator β̂naive

0 of Section 2.1. This fit is used to obtain predicted values
of β0 at the design points x1. Note that β̂0(x1) does not depend on y1. In Step 2.
we use the fact that τ(x1) = β1(x1) − β0(x1) to obtain a first estimate of τ(x1)
by smoothing the prediction errors y1 − β̂0(x1) on x1. With this estimate τ̂(x1)
we impute values of the response for pseudo non-treated individuals at the design
points x1 as y1 − τ̂(x1). Step 3. re-estimates β0 by smoothing (yT

0 , (y1 − τ̂(x1)
T )T

on (xT
0 ,xT

1 )T as it appears on panel (b) of Figure 2. Intuitively, this refitting based
on a larger sample should improve the finite sample properties of the final fit. This
is studied in Sections 2.3 to 2.5. The algorithm is fully symmetric for both groups
and Steps 4. to 6. mimic Steps 1. to 3. for the estimation of β1. Finally, Step 7.
produces the estimation of τ by taking the difference between β̂1 and β̂0.

It is possible to iterate Steps 1. to 3. (4. to 6. respectively) by using β̂0(x0) =

β̂
backfit
0 (x0) (and β̂1(x1) = β̂

backfit
1 (x1) respectively). The gain of precision by iter-

ating these steps is, however, negligible.

The smoothing parameter h0, hτ and h1 are usually unknown in practice. They
must be estimated and cross-validation is often used in this setting, see, e.g., Hastie
and Tibshirani (1990, Sec. 3.4).

Note that the algorithm implicitly assumes that the distribution of xi|wi = 0 and
xi|wi = 1 have common support. The practical counterpart of this assumption is that
we want the prediction β̂0(x1) and β̂1(x0) to be made within (or at least very close)
to the design space where the functions are fitted. This is because extrapolation
does not make sense in non-parametric regression unless some restrictive parametric
assumptions at the border are made. When the common support assumption does
not hold, a solution consists in applying the backfitting algorithm selectively. That
is by making predictions only where the functions β0 and β1 are fitted in Step 1.
and 4. respectively.

6 IFAU - Non-parametric adjustment for covariates when estimating a treatment effect
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Figure 2: Illustration of Algorithm 1: Panel (a) displays the fit of β0(x0) at Step 1
of the algorithm; panel (b) displays the fit of β0(x0,x1) at Step 3.

2.3 Variance

In this section we present the exact variances of the naive and backfitting estima-
tors introduced earlier. We, moreover, give theoretical results describing situations
where the backfitting estimators have lower variance. The design points are through-
out considered as fixed.

For the naive estimators we have

V ar(β̂naive
0 (z)) = σ2Sh0

0 [z]Sh0
0 [z]T and V ar(β̂naive

1 (z)) = σ2Sh1
1 [z]Sh1

1 [z]T . (5)

Furthermore, because these estimates are obtained with two independent sub-samples
we obtain

V ar(τ̂naive(z)) = V ar(β̂naive
0 (z)) + V ar(β̂naive

1 (z)). (6)

The variance of the backfitting estimators are deduced in Appendix A.1. We
find

V ar
(

β̂
backfit
0 (z)

)

= σ2Sh0
0,1[z]V Sh0

0,1[z]T (7)

V ar
(

β̂
backfit
1 (z)

)

= σ2Sh1
0,1[z]WSh1

0,1[z]T , (8)

where

V =

(

In0 C

CT B

)

and W =

(

D E

ET In1

)

.
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with
C = Sh0

0 [x1]
T Shτ

1 [x1]
T , E = Shτ

0 [x0]S
h1
1 [x0],

B = In1 + Shτ

1 [x1]
[

In1 + Sh0
0 [x1]S

h0
0 [x1]

T
]

Shτ

1 [x1]
T − Shτ

1 [x1] − Shτ

1 [x1]
T ,

and

D = In0 + Shτ

0 [x0]
[

In0 + Sh1
1 [x0]S

h1
1 [x0]

T ]Shτ

0 [x0]
T − Shτ

0 [x0

]

− Shτ

0 [x0]
T .

Moreover,

V ar(τ̂ backfit(z)) = V ar(β̂backfit
0 (z)) + V ar(β̂backfit

1 (z))

−2Cov
(

β̂
backfit
1 (z), β̂backfit

0 (z)
)

, (9)

where the latter covariance is deduced in Appendix A.2.
We now give two results giving conditions ensuring that the backfitting estimators

have lower variance than the naive estimators.

Proposition 1 Assume that Algorithm 1 of Section 2.2 is used with symmetric
matrices S0[x0] and S1[x1], whose eigenvalues are within [0, 1]. If, moreover, treated
and non-treated have the same design points (x0 ≡ x1) we have that

V ar
(

β̂
backfit
0 (z)

)

≤ V ar
(

β̂naive
0 (z)

)

, (10)

V ar
(

β̂
backfit
1 (z)

)

≤ V ar
(

β̂naive
1 (z)

)

. (11)

Proof. We give the proof for (10) only. We need to prove that

Sh0
0,1[z]V Sh0

0,1[z]T ≤ Sh0
0 [z]Sh0

0 [z]T .

Because x0 ≡ x1, we have that the (n0 + n0) × 1 matrix Sh0
0,1[z] = 1

2(Sh0
0 [z], Sh0

0 [z]).
Hence,

Sh0
0,1[z]V Sh0

0,1[z]T =
1

4
(Sh0

0 [z], Sh0
0 [z])

(

In0 C

CT B

)

(Sh0
0 [z], Sh0

0 [z])T

=
1

4
Sh0

0 [z](In0 + CT + C + B)Sh0
0 [z]T .

Further, because x1 ≡ x0 and we work with a symmetric smoother we have
C = Sh0

0 [x0]S
hτ

0 [x0]. Also, by the condition on the eigenvalues of the smoothing
matrix we can write C ≤ Sh0

0 [x0] ≤ In0 .
The matrix B can also be bounded above by In0 . Indeed, by the same arguments

than above we have Shτ

1 [x1]S
hτ

1 [x1] ≤ Shτ

1 [x1], and Sh0
0 [x1]S

h0
0 [x1] = Sh0

0 [x0]S
h0
0 [x0] ≤

In0 . Therefore, we can write

B = In0 + Shτ

1 [x1]
[

In0 + Sh0
0 [x1]S

h0
0 [x1]

]

Shτ

1 [x1] − Shτ

1 [x1] − Shτ

1 [x1]

≤ In0 + Shτ

1 [x1]S
hτ

1 [x1] + Shτ

1 [x1]S
hτ

1 [x1] − Shτ

1 [x1] − Shτ

1 [x1] ≤ In0 .

8 IFAU - Non-parametric adjustment for covariates when estimating a treatment effect



Finally, we have the desired result

Sh0
0,1[z]V Sh0

0,1[z]T =
1

4
Sh0

0 [z](In0 + CT + C + B)Sh0
0 [z]T

≤
1

4
Sh0

0 [z](4In0)S
h0
0 [z]T = Sh0

0 [z]Sh0
0 [z]T .

Proposition 2 Assume that Algorithm 1 of Section 2.2 is used with symmetric
matrices S0[x0] and S1[x1], whose eigenvalues are within [0, 1]. If V ar(β̂naive

j (z)) >

V ar(β̂backfit
j (z)), for j = 0, 1, and h0 = h1 then

V ar(τ̂ backfit(z)) < V ar(τ̂naive(z)).

Proof. The proposition is shown by noting that

Cov(β̂backfit
1 (z), β̂backfit

0 (z)) ≥ 0.

This covariance was deduced in Appendix A.2 and has the form

Cov(β̂backfit
1 (z), β̂backfit

0 (z)) = σ2Sh0
0,1[z]USh1

0,1[z]T ,

where

U =

(

In0 − Shτ

0 [x0] F

0 In1 − Shτ

1 [x1]

)

.

Because the eigenvalues of the smoothing matrix are between 0 and 1 the two diag-
onal blocks of U are positive definite, and so is U itself because it is triangular by
block. Hence, Sh0

0,1[z]USh1
0,1[z]T ≥ 0 if Sh0

0,1[z] = Sh1
0,1[z]. The latter equality holds by

the assumption h0 = h1, thereby completing the proof.
Note that the assumption h0 = h1 will rarely be needed in practical applications.

Indeed, Sh0
0,1[z]USh1

0,1[z]T ≥ 0 hold with h0 6= h1, for instance, if the vectors S
hj

0,1[z],
j = 0, 1, contain only positive values. Even when negative weights are allowed,
those are typically very close to zero, making the condition h0 = h1 superfluous in
practice.

The condition on the eigenvalues has been used before in the literature, see,
e.g., Hastie and Tibshirani (1990, Sec. 5.3.7). Smoothers fulfilling it include cubic
splines, regression splines and linear regression. With asymmetric smoothers, em-
pirical evidence shows that the conclusion of the propositions hold often; see Section
2.5.

The condition asking for equality of design points for treated and untreated
in Proposition 1 is not either a necessary assumption. In real applications, we
often have design points that are not too different from each other for treated and
untreated, in which case we will often observe an improvement of the variance when
using the backfitting estimator.

IFAU - Non-parametric adjustment for covariates when estimating a treatment effect 9



We stress here that, in any particular case, the improvement in variance can be
checked by computing the exact variances of the naive and backfitting estimators
with the explicit formulas given in (5)–(9). In Figure 1 the confidence bands provided
are based on these exact variances. In this example we observe narrower confidence
bands for the backfitting estimators, even if the assumptions of the Propositions 1
and 2 do not hold exactly.

2.4 Bias

For an estimator f̂(z) of f(z), we define its bias at z as Bias(f̂(z)) = E(f̂(z))−
f(z). It depends on the unknown function f . Notice first that the bias at a given de-
sign point z can both be decreased or increased by adding information/observations
at other design points. It is, therefore, not possible to give a general statement when
comparing the bias of the naive and backfitting estimators at a given design point.

The naive estimators have biases

Bias(τ̂naive(z)) = Bias(β̂naive
1 (z)) − Bias(β̂naive

0 (z)) (12)

with Bias(β̂naive
0 (z)) = Sh0

0 [z]β0(x0) − β0(z) and Bias(β̂naive
1 (z)) = Sh1

1 [z]β1(x1) −
β1(z).

The backfitting estimators have biases

Bias(τ̂ backfit(z)) = Bias(β̂backfit
1 (z)) − Bias(β̂backfit

0 (z)), (13)

with

Bias(β̂backfit
0 (z)) = Sh0

0,1[z]E

[(

y0

y1 − τ̂ (x1)

)]

− β0(z) =

= Sh0
0,1[z]

(

β0(x0)

β1(x1) − Shτ

1 [x1]β1(x1) + Shτ

1 [x1]S
h0
0 [x1]β0(x0)

)

− β0(z)

and

Bias(β̂backfit
1 (z)) =

= Sh1
0,1[z]

(

β0(x0) − Shτ

0 [x0]β0(x0) + Shτ

0 [x0]S
h1
1 [x0]β1(x1)

β1(x1)

)

− β1(z).

Looking at Bias(β̂backfit
0 (z)), we see that the extra observations y1 − τ̂(x1) that

are utilized for β̂
backfit
0 (z) are themselves biased (as estimators of y1 − τ(x1)). The

simulations performed in Section 2.5 indicate that using such biased observations
tend to increase the bias in estimating β0(x0), but may have the reverse effect
when estimating β0(x1). The latter effect may be explained by the fact that extra

information at x1, even biased, is beneficial to β̂
backfit
0 (x1). Note that to obtain a

fit of τ(x1), for instance, both β1(x1) and β0(x1) are needed.

10 IFAU - Non-parametric adjustment for covariates when estimating a treatment effect



2.5 Simulation study

In this section we aim at studying two main issues: (1) Compare the variance
for the naive and backfitting estimators in cases where Propositions 1 and 2 do not
apply exactly, and (2) study the bias and mean squared error (MSE) of these two
estimators.

We simulate data inspired from the white Spanish Onions dataset. Ratkowsky
(1983) fitted two parametric curves βj(x) = (αj0 + αj1x + αj2x

2)−1, j = 0, 1 to the
data with least squares. We use their estimate and simulate

yi = β0(xi) + (β1(xi) − β0(xi))wi + εi, (14)

with α00 = 0.002054, α01 = 0.8571 ∗ 10−4, α02 = 0.3808 ∗ 10−7, α10 = 0.002084,
α11 = 0.1311 ∗ 10−3, α12 = 0.7796 ∗ 10−7, and where εi ∼ N(0, 0.01). We simulate
design points xi from a uniform distribution with support (18.78, 184.75) which is
the range of the design points available for the Spanish Onions dataset. In the first
experiment (Experiment 1 in the sequel) we simulate 42 design points and use them
to simulate the outcome yi both with wi = 0 and wi = 1. That is we simulate data
where treated and untreated have the same design points. The second experiment
(Experiment 2) is obtained by simulating different design points for 42 treated and 42
untreated individuals. All computations are performed with Splus. Each experiment
is replicated 1000 times.

For all the nonparametric fit performed we fix the value of h0, h1 and hτ . It is
indeed not the purpose of this paper to study the estimation of the smoothing pa-
rameters on which there exists an extensive literature. Instead of choosing arbitrary
values for the smoothing parameters we used cross-validation to estimate h0 and h1

on the untreated and treated individuals respectively. This was done on the 1000
replicated data sets and the median of the 1000 estimated parameters is used in
the sequel, namely h0 = 7.5 and h1 = 8.2 for gaussian kernels, and h0 = 0.005 and
h1 = 0.006 for the cubic smoothing splines. The backfitting algorithm was then run
on the 1000 replicates and cross-validation was used to estimate hτ in Step 2 of the
algorithm. The median of the 1000 estimates is used in the sequel, namely hτ = 17.6
for kernels and hτ = 0.109 for splines. Note that even though it is used to pursue the
same goal, the definition of the smoothing parameter is particular to each smoother,
therefore explaining the difference in magnitude we observe for kernels and splines.

To compare estimators we compute on each replicate an average (over the design)
bias (using (12) and (13)), variance (using (6) and (9)) and MSE. We present results
on the estimation of τ since it is the curve of main interest. In Experiment 1 we
used both smoothing splines and kernels. When using smoothing splines, we are in a
situation covered by Proposition 1. With kernels, the assumptions of the proposition
are violated since the smoother is not symmetric. In Experiment 2 we only used
kernels.

The results summarized as boxplots in Figure 3 and Figure 4 show that the
backfitting estimator lead to a decrease in average variance in all 1000 cases of

IFAU - Non-parametric adjustment for covariates when estimating a treatment effect 11
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Figure 3: Results for Experiment 1 with gaussian kernels. Boxplots of the aver-
age (over the design) squared bias, variance and MSE of the naive and backfitting
estimators of τ for 1000 simulated cases.

Experiment 1, both with splines and kernels. Averaged squared bias is increased
as expected. However, the average MSE is always improved by the backfitting
estimator.

In Experiment 2 where the design points are not identical for treated and un-
treated, we see (Figure 5) that the average variance is still decreased by the back-
fitting estimator. Moreover, the average squared biases are here slightly lower for
the backfitting estimator. This decrease in bias can be explained as follows. When
estimating τ , for instance, at x0, β̂1 must be evaluated at x0, which is a prediction
in the case of the naive estimator. These predictions have large bias, as can be no-
ticed by comparing the bias of the naive estimator in Experiment 1 −where x0 ≡ x1

(Figure 3) and no predictions are therefore made to estimate τ− and Experiment 2
(Figure 5). In contrast, the backfitting estimator uses information at x0 when fitting
β1. This yields a less biased estimator of β1(x0), thereby explaining the pattern of
squared biases observed in Figure 5.

Finally, the average MSE is decreased with the backfitting estimator. Although
this is not apparent from the last boxplot in Figure 5, the decrease in MSE takes

12 IFAU - Non-parametric adjustment for covariates when estimating a treatment effect
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Figure 4: Results for Experiment 1 with cubic smoothing splines. Boxplots of the
average (over the design) squared bias, variance and MSE of the naive and backfitting
estimators of τ for 1000 simulated cases.

place in all 1000 simulated cases.

3 Covariance adjustment with the propensity score: an

application

The results presented in this paper are not restricted to a single covariate sit-
uation thanks to the results obtained by Rosenbaum and Rubin (1983). We now
briefly introduce the potential outcome framework for non-randomized experiments
(Rubin, 1974) and how it leads to model (1) where a single covariate xi is replaced
by a scalar valued function of a vector of p covariates, denoted xi = (x1i, . . . , xpi)

T .
The use of the backfitting estimator in this general context is then illustrated with
a data set on training program evaluation.

IFAU - Non-parametric adjustment for covariates when estimating a treatment effect 13
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Figure 5: Results for Experiment 2 with gaussian kernels. Boxplots of the aver-
age (over the design) squared bias, variance and MSE of the naive and backfitting
estimators of τ for 1000 simulated cases.

3.1 Potential outcomes and non-parametric covariance adjustment

Let y0
i and y1

i be the response for individual i had he been not treated or treated,
respectively. Assume that, for all xi, i) y0

i and y1
i are independent of the treatment

wi when conditioning on xi (denoted y0
i , y

1
i ⊥⊥ wi|xi) and ii) 0 < Pr(wi = 1|xi) =

p(xi) < 1, then (Rosenbaum and Rubin, 1983, Theorem 3)

y0
i , y

1
i ⊥⊥ wi|p(xi), (15)

where p(xi) is called the propensity score. Assumption ii) is equivalent to the
common support assumption discussed at the end of Section 2.2.

Note that y0
i , y

1
i cannot be both observed for a given individual i. On the other

hand, we observe always the response yi = y0
i (1−wi) + y1

i wi, whose expectation we
want to model. A direct consequence of (15) is that

E(yi|p(xi), wi) = E(y0
i |p(xi))(1 − wi) + E(y1

i |p(xi))wi. (16)
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Rearranging we have

E(yi|p(xi), wi) = E(y0
i |p(xi)) + wi(E(y1

i |p(xi)) − E(y0
i |p(xi))).

We, therefore, retrieve model (1)

yi = β0(p(xi)) + wiτ(p(xi)) + εi,

where β0 = E(y0
i |p(xi)) and τ(xi) = E(y1

i |p(xi)) − E(y0
i |p(xi)). The functions

involved are functions of scalars and the backfitting algorithm may be applied as
described in Algorithm 1. In practice the propensity score is not known and must
be estimated.2

Finally, note that assumptions i) and ii) are natural since the former is essential
for τ(p(xi)) to have causal content, and the latter guarantees τ(p(xi)) to be well
defined on the support of xi.

3.2 Training program: estimation of a conditional training effect

We consider data on a training program implemented in the mid-1970’s for in-
dividuals having faced economic and social problems prior to enrollment (Lalonde,
1986). Because both a randomized and several non-randomized control (untreated)
groups are available, this data was used by Dehejia and Wahba (1999) to vali-
date the use of result (15) to estimate average treatment effects on wage based
on non-randomized data. They performed their analysis on various subsets of in-
dividuals obtained by stratification in order to make treated and untreated more
homogeneous in their covariate values. We refer the reader to Dehejia and Wahba
(1999) for a detailed description of the data. We consider in the sequel a subset
of the data where the control group was obtained from the Westat’s Matched Cur-
rent Population Survey-Social Security Administration File. The data set, called
CPS3 in Dehejia and Wahba (1999), consists in 185 treated and 429 controls, on
which ten covariates are measured: Age (x1), Education (x2), Black (x3), His-
panic (x4), No degree (x5), Married (x6), Unemployed in 1974 (x7), Unemployed
in 1975 (x8), Earnings in 1974 (x9, U.S. $) and Earnings in 1975 (x10, U.S. $).
The outcome of interest is Earnings 1978 (y, U.S. $). The data is available at
http://www.columbia.edu/~rd247/nswdata.html.

We focus on the conditional treatment effect τ(p(xi)) defined in the previous
section, and illustrate the use of the backfitting estimator proposed earlier. For this
purpose, we need to estimate p(xi). We follow Dehejia and Wahba (1999) and use
a logistic regression model with the following linear predictor

2It is common practice to use the estimated propensity score since the true one is generally
unknown. Although Theorem 5 in Rosenbaum and Rubin (1983) shows that an estimated propensity
score can have the desired property (15), this is not guaranteed.

IFAU - Non-parametric adjustment for covariates when estimating a treatment effect 15



log
( p(xi)

1 − p(xi)

)

= θ0 + θ1x1i + θ2x2i + θ3x3i + θ4x4i + θ5x5i + θ6x6i + θ7x7i + θ8x8i

+ θ9x9i + θ10x10i + θ11x
2
1i + θ12x

3
1i + θ13x

2
2i + θ14x2ix9i.

Based on the estimated propensity scores we estimate τ(p̂(xi)) with the naive and
backfitting estimator. The fits and their confidence bands are displayed in Figure 6
(bottom panels). We observe that the backfitting estimator decrease significantly
the variability on the right hand side of the range of the propensity score, while
on the left hand side the variability is slightly increased. This asymmetry is due
to the distribution of the treated and untreated along this propensity score axis.
Most controls are found on the lower values of the propensity score, making the
naive estimator of the β0 function highly variable for large values of the propensity
score. This large variability is corrected by the backfitting estimator of β0 using
information from the treated group, thereby improving on the variability of the
estimation of τ . On the other hand, there is no evidence of a treatment effect even
with the backfitting estimators since the value zero is overlapped by the confidence
bands.

4 Discussion

We have considered a model for estimating a conditional treatment effect while
adjusting for covariates without making strong parametric assumptions. A backfit-
ting algorithm has been proposed to estimate non-parametrically the functions of
the covariates involved. This new estimator has been shown to improve on the naive
procedure which consists in estimating separately a function of the covariates for the
treated individuals and for the controls. The variance calculated are for finite sam-
ples, thereby allowing us to avoid the use of asymptotic arguments when comparing
estimators.

We have implicitly assumed (see model (1)) that treated and controls have iden-
tical residual variances: V ar(yi|xi, wi = 1) = V ar(yi|xi, wi = 0) = σ2. Diverging
variances do not affect the implementation of the backfitting estimator. The ex-
pressions deduced for the variances of the different estimators must, however, be
adapted. For both the real data sets used in this paper the estimated variances were
close enough to be assumed equal (an F-test can be carried out to test for equality).

We have focused our work on linear smoothers because of their analytical tractabil-
ity. Similar results are, however, expected to hold with more complex non-parametric
regression methods, such as neural networks and wavelets. Another natural general-
ization would be to consider discrete responses through generalized additive models.

A series of papers have recently appeared on tests of constant treatment effect,
that is for the null hypothesis τ(x) = c for all x, see Young and Bowman (1995),

16 IFAU - Non-parametric adjustment for covariates when estimating a treatment effect
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Figure 6: Non-parametric fits (gaussian kernels with smoothing parameter chosen
with cross-validation) for the CPS3 data set. Treated are marked with 1’s and
controls with dots. Top panels: fits of the functions β0(p̂(x)) and β1(p̂(x)) (plain
lines) with confidence bands (dotted lines). Bottom panels: Corresponding fits of
the function τ(p̂(x)) (plain lines) with confidence bands (dotted lines).
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Akritas and Van Keilegom (2001) and Neumeyer and Dette (2003), and the references
therein. The tests proposed build on the naive estimator. A more powerful test could
result based on the backfitting estimator.

Finally, another area of possible application of the backfitting algorithm is the
estimation of an average treatment effect Ex(τ(x)). The non-parametric estimation
of this parameter in non-randomized experiments has been largely discussed in the
literature building on the work of Rosenbaum and Rubin (1983). In particular,
Heckman, Ichimura, and Todd (1998) and Abadie and Imbens (2004) consider a
regression imputation estimator which uses an estimate of the conditional treatment
effect τ(x).

A Variances

All the variances and covariances computed here are conditional on (xT
0 ,xT

1 )T .

A.1 Variance of β̂
backfit
0 and β̂

backfit
1

V ar
(

β̂
backfit
0 (z)

)

= (17)

= Sh0
0,1[z] V ar

(

(yT
0 , (y1 − τ̂(x1))

T )T
)

Sh0
0,1[z]T

= Sh0
0,1[z]

(

V ar(y0) Cov(y0,y1 − τ̂(x1))
Cov(y1 − τ̂(x1),y0) V ar(y1 − τ̂(x1))

)

Sh0
0,1[z]T

Moreover, we have that

V ar(y1 − τ̂(x1)) =

= V ar(y1) + V ar(τ̂(x1)) − Cov(y1, τ̂ (x1)) − Cov(τ̂(x1),y1)

= σ2In1 + Shτ

1 [x1]V ar(y1 − β̂0(x1))S
hτ

1 [x1]
T

−Cov(y1,y1 − β̂0(x1))S
hτ

1 [x1]
T − Shτ

1 [x1]Cov(y1 − β̂0(x1),y1)

= σ2In1 + Shτ

1 [x1]
[

σ2In1 + V ar(β̂0(x1))
]

Shτ

1 [x1]
T − σ2Shτ

1 [x1] − σ2Shτ

1 [x1]
T

= σ2In1 + Shτ

1 [x1]
[

σ2In1 + V ar(Sh0
0 [x1] y0)

]

Shτ

1 [x1]
T − σ2[Shτ

1 [x1] + Shτ

1 [x1]
T ]

= σ2
(

In1 + Shτ

1 [x1]
[

In1 + Sh0
0 [x1]S

h0
0 [x1]

T
]

Shτ

1 [x1]
T − Shτ

1 [x1] − Shτ

1 [x1]
T
)

= σ2B

where we have used the fact that Cov(y1, β̂0(x1)) = 0.
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We also have that

Cov(y0,y1 − τ̂ (x1)) =

= −Cov(y0, τ̂(x1))

= −Cov(y0, S
hτ

1 [x1](y1 − β̂0[x1])

= Cov(y0, S
hτ

1 [x1]S
h0
0 [x1] y0)

= σ2Sh0
0 [x1]

T Shτ

1 [x1]
T = σ2C

Finally, V ar(y0) = σ2In0 , and we write

V ar
(

β̂
backfit
0 (z)

)

= σ2Sh0
0,1[z]V Sh0

0,1[z]T , (18)

where

V =

(

In0 C

CT B

)

.

Similarly we have

V ar
(

β̂
backfit
1 (z)

)

= σ2Sh1
0,1[z]WSh1

0,1[z]T (19)

where

W =

(

D E

ET In1

)

,

where D = In0 + Shτ

0 [x0]
[

In0 + Sh1
1 [x0]S

h1
1 [x0]

T ]Shτ

0 [x0]
T − Shτ

0 [x0

]

− Shτ

0 [x0]
T and

E = Shτ

0 [x0]S
h1
1 [x0].

A.2 Variance of τ̂ backfit

V ar
(

τ̂ backfit(z)
)

= V ar
(

β̂
backfit
1 (z) − β̂

backfit
0 (z)

)

(20)

= V ar
(

β̂
backfit
1 (z)

)

+ V ar
(

β̂
backfit
0 (z)

)

−Cov
(

β̂
backfit
1 (z), β̂backfit

0 (z)
)

− Cov
(

β̂
backfit
1 (z), β̂backfit

0 (z)
)T

We are left to evaluate the covariance between β̂
backfit
1 (z) and β̂

backfit
0 (z). We have

Cov
(

β̂
backfit
1 (z), β̂backfit

0 (z)
)

= Sh0
0,1[z]USh1

0,1[z]T ,

where

U = Cov
(

(y0 + Shτ

0 [x0](S
h1
1 [x0]y1 − y0), y1)

T , (y0, y1 − Shτ

1 [x1](y1 − Sh0
0 [x1]y0))

T
)

= σ2

(

In0 − Shτ

0 [x0] F

0 In1 − Shτ

1 [x1]

)

,

and

F = (In0 − Shτ

0 [x0])S
h0
0 [x1]

T Shτ

1 [x1]
T + Shτ

0 [x0]S
h1
1 [x0](In1 − Shτ

1 [x1])
T .
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