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Yale University, University of Auckland,

Singapore Management University & University of Southampton
Ji Hyung Lee
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Abstract

Limit theory is developed for nonstationary vector autoregression (VAR) with

mixed roots in the vicinity of unity involving persistent and explosive components.

Statistical tests for common roots are examined and model selection approaches for

discriminating roots are explored. The results are useful in empirical testing for multi-

ple manifestations of nonstationarity —in particular for distinguishing mildly explosive

roots from roots that are local to unity and for testing commonality in persistence.

Keywords: Common roots, Local to unity, Mildly explosive, Mixed roots, Model selec-

tion, Persistence, Tests of common roots.

JEL classification: C22

1 Introduction

Aman Ullah’s contributions cover a wide spectrum of econometrics with sustained scien-

tific work over the last four decades in finite sample theory, nonparametric estimation,

spatial econometrics, panel data modeling, financial econometrics, time series and applied

econometrics. His advanced texbook on Nonparametric Econometrics (1999, with Adrian

∗This paper is based on the first part of a Yale take home examination in 2010/2011. Phillips acknowl-
edges support from the NSF under Grant No. SES-0956687.
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Pagan) has been particularly influential, helping to educate a generation of econometricians

in nonparametric methods and providing an accessible reference for applied researchers. His

monograph on Finite Sample Econometrics (2004) encapsulates many of his own contri-

butions to this subject and touches some of the wider reaches of this diffi cult and vitally

important field.

One field of econometrics that his work has less frequently touched is nonstationary

time series and unit root limit theory. Since the mid 1980s models with autoregressive

roots in the vicinity of unity have attracted much attention. These models are particularly

useful in empirical work with nonstationary series when it may be too restrictive to insist

on the presence of roots precisely at unity or where mildly integrated or mildly explosive

behavior may be more relevant than unit roots. When multiple time series are considered,

it may be useful to allow simultaneously for various types of behavior in the individual

series: some roots that are local to unity and others that are mildly integrated or mildly

explosive.

Limit theory for regressors with roots local to unity developed early in the literature

of this field (Phillips, 1987; Chan and Wei, 1987). More recent work has considered mildly

integrated and mildly explosive cases (Phillips and Magdalinos, 2007a, 2007b; [PM7]). The

latter theory has proved particularly relevant in studying data during periods of financial

exuberance (Phillips, Wu and Yu, 2011; Phillips and Yu, 2011).

The present paper considers time series models with mixed and common roots in the

vicinity of unity. To simplify exposition, we work with a bivariate model and analyze a case

of primary interest where there is one local to unit root and one mildly explosive root. Mod-

els of this type may be anticipated when there are dual manifestations of nonstationarity

with somewhat different individual characteristics. Or there the behavior may be common

across series — for instance in asset prices — arising from a single source of persistence

of exuberance. We may be particularly interested empirically in testing commonality in

persistence or long run behavior across series, which occurs when the autoregressive roots

have the same value.

The remainder of the paper is organized as follows. Section 2 considers mixed VARs

whose variates have mixed degrees of persistence that allow for a local to unit root and a

mildly explosive root. ModifiedWald statistics for testing commonality in long run behavior

are developed and shown to produce consistent tests. Section 3 considers a model selection

approach and shows that the BIC criterion can distinguish persistent and mildly explosive

behavior. Section 4 concludes and technical derivations are given in the Appendix.
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2 Mixed Variate VARs

For simplicity of exposition, we consider the bivariate VAR(1) model

Xt = RnXt−1 + ut, t = 1, ..., n, (2.1)

Rn =

[
ρn 0

0 θn

]
, ρn = 1 +

c

n
, θn = 1 +

b

kn
, b > 0, (2.2)

which we write in component form as[
X1t

X2t

]
=

[
ρn 0

0 θn

][
X1t−1

X2t−1

]
+

[
u1t

u2t

]
, t = 1, ..., n (2.3)

with initialization X0 = op

(
k
1/2
n

)
, and martingale difference innovations ut satisfying

Assumption 1 below. Our results may be extended to systems with weakly dependent

errors ut under conditions like those in the linear process framework of Magdalinos and

Phillips (2009), but all the key ideas follow as in the simpler VAR(1) model studied here

so we do not provide details. The coeffi cient ρn = 1 + c
n is local to unity, θn = 1 + b

kn

is a mildly explosive coeffi cient with b > 0 and the sequence kn satisfies 1
kn

+ kn
n → 0 as

n→∞.
Although θn

ρn
→ 1 as n → ∞ (so both coeffi cients are in the vicinity of unity),

kn

(
θn
ρn
− 1
)
→ b > 0 and so θn is ‘further’from unity than ρn for all finite c as n → ∞.

In order to distinguish the mildly explosive behavior induced by θn from the persistence

induced by ρn, statistical tests need to differentiate θn from ρn for all finite c as n→∞.

Assumption 1. The errors {ut} in (2.1) form a martingale difference sequence with

respect to the natural filtration Ft = σ (ut, ut−1, ...) satisfying

EFt−1
(
utu
′
t

)
= Σ and EFt−1 ‖ut‖ ≥ δ a.s. for all t (2.4)

for some δ > 0 and positive definite matrix Σ =

[
σ11 σ12

σ21 σ22

]
, suptE ‖ut‖4 <∞, and

max
1≤t≤n

E
(
‖ut‖2 1 {‖ut‖ > λn}

)
→ 0 as n→∞ (2.5)
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for any sequence (λn)n∈N such that λn →∞, and where

‖M‖ = max
i

{
λ
1/2
i : λi is an eigenvalue of M ′M

}
is the spectral norm of the matrix M.

As expected from the differences in the coeffi cients ρn and θn in (2.3), the time series

components X1t and X2t have different orders of magnitude as n → ∞. These differences
translate into different rates of convergence of the sample moments of Xt and the least

squares regression components. To accommodate these differences we employ the (asymp-

totically equivalent) normalizing matrices

Dn :=

[
n 0

0 knθ
n
n

]
and Fn :=

[
n 0

0 θnn
(θ2n−1)

]
.

The unrestricted least squares regression estimate of Rn in (2.1) is written in standard

notation as R̂n = X ′X−1
(
X ′−1X−1

)−1
. This estimate is consistent and has a limit dis-

tribution that is obtained from a combination of functional limit theory that applies to

the persistent components and central limit theory that applies to the mildly explosive

components, as detailed in the following result.

Theorem 2.1 As n→∞,(
R̂n −Rn

)
Fn⇒

[ ∫ 1
0 J1c(r)dB(r)∫ 1
0 J1c(r)

2dr

Y (b)
X2(b)

]
:= Φ, (2.6)

where J1c(r) =
∫ r
0 e

c(r−s)dB1(s), which is an Ornstein-Uhlenbeck (O-U) process, B (r) =

(B1 (r) , B2 (r))′ is bivariate Brownian motion with variance matrix Σ, X(b) = (X1 (b) , X2 (b))′ ≡
N(0, 12bΣ), Y (b) =d X(b), and X(b) and Y (b) are independent. The two column components∫ 1
0 J1c(r)dB(r)∫ 1
0 J1c(r)

2dr
and Y (b)

X2(b)
of the limiting matric variate Φ are independent.

Remarks

1. The two columns of R̂n−Rn converge at different rates, the first at the usualO (n) rate

for near integrated regressions and the second at the mildly explosive rate θnn
(θ2n−1)

=
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O (knθ
n
n) = O

(
kne

bn/kn
)
. In particular, writing Φ = (Φij) , we have

n(r̂11 − r11) ⇒ Φ11 =

∫ 1
0 J1c(r)dB1(r)∫ 1
0 J1c(r)

2dr
, (2.7)

n(r̂21 − r21) ⇒ Φ21 =

∫ 1
0 J1c(r)dB2(r)∫ 1
0 J1c(r)

2dr
, (2.8)

θnn
(θ2n − 1)

(r̂22 − r22)⇒ Φ22 =
Y2(b)

X2(b)
,

θnn
(θ2n − 1)

(r̂12 − r12)⇒ Φ12 =
Y1(b)

X2(b)
. (2.9)

2. The process J1c(r) =
∫ r
0 e

c(r−s)dB1(s) that appears in the limit variate Φ11 involves

component B1(r) of B(r), so that the limit variate
∫ 1
0 J1c(r)dB1(r)/

∫ 1
0 J1c(r)

2dr has

a standard local unit root distribution that is independent of σ11 but is dependent

on c.

3. The limit variate Y (b)
X2(b)

= (2b)1/2Y (b)

(2b)1/2X2(b)
=: Y

X2
is independent of b and we can therefore

write Y (b)
X2(b)

=: Y
X2
, where Y ≡ N (0,Σ) , X = (X1, X2)

′ ≡ N (0,Σ) , and X and Y are

independent.

As indicated earlier, we may be interested in testing commonality of persistence char-

acteristics in the component series X1t and X2t. In the present case, setting Rn = (rij) and

under a maintained hypothesis that Rn is diagonal with roots local to unity, commonality

amounts to testing the hypothesis H0 : r11 = r22 = 1 + c
n for some finite c ∈ (−∞,∞) .

The null can be written as H0 : a1
′vec (Rn) = 0 where a′1 = [1, 0, 0,−1] without explicitly

specifying a common persistence parameter rn = 1 + c/n. H0 may also be subsumed in

a block test of Rn = rnI for some rn = 1 + c
n , which we can write in the form HA

0 :

A′vec (Rn) = 0 where we use row vectorization in the vec operator and

A′ =

 1 0 0 −1

0 1 0 0

0 0 1 0

 =:

 a′1
a′2
a′3

 .
The standard Wald test of H0 uses the statistic

Wn =
(
a′1vec

(
R̂n

))2
/a′1

{
Σ̂⊗

(
X ′−1X−1

)−1}
a1,
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and the corresponding block test of HA
0 has the form

WA
n =

(
A′vec

(
R̂n

))′ (
A′
{

Σ̂⊗
(
X ′−1X−1

)−1}
A
)−1 (

A′vec
(
R̂n

))
=

(
A′vec

(
nR̂n

))′ (
A′
{

Σ̂⊗ n2
(
X ′−1X−1

)−1}
A
)−1 (

A′vec
(
nR̂n

))
,

where Σ̂ = n−1
∑n

t=1 ûtû
′
t is a consistent estimator of Σ based on the least squares residuals

ût = Xt − R̂nXt−1.

Under (2.3) the coeffi cients r11 = ρn and r22 = θn, so that r11 − r22 = c
n −

b
kn
∼

− b
kn

= o(1), which is local to zero. Hence the model (2.2) actually corresponds to a local

alternative to the null H0.

Theorem 2.2 Under the null hypothesis H0 : Rn = rnI with rn = 1 + c
n , as n→∞

Wn ⇒
(a′1ξ)

2

a′1

{
Σ⊗

(∫ 1
0 Jc(r)Jc(r)

′
)−1}

a1

, (2.10)

and

WA
n ⇒ ξ′A

(
A′

{
Σ⊗

(∫ 1

0
Jc(r)Jc(r)

′dr

)−1}
A

)−1
A′ξ, (2.11)

where Jc(r) =
∫ r
0 e

c(r−s)dB(s), ξ = vec (Ξ) and Ξ =
∫ 1
0 dBJc

′
(∫ 1
0 JcJc

′
)−1

. Under the

alternative H1 : Rn = diag (ρn, θn)

Wn,W
A
n ∼

(
− n
kn
b
)2

σ11

(∫ 1
0 J1c(r)

2dr
)−1 {1 + op (1)} = Op

(
n

kn

)2
. (2.12)

Remarks

4. The null limit distributions (2.10) and (2.11) are parameter dependent. The depen-

dence involves the localizing coeffi cient c and the variance matrix Σ. When c = 0,

Ξ =

∫ 1

0
dBB′

(∫ 1

0
BB′

)−1
= Σ1/2

∫ 1

0
dV V ′

(∫ 1

0
V V ′

)−1
Σ−1/2 =: Σ1/2ΞV Σ−1/2
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where V ≡ BM (I2) is standard vector Brownian motion. The limit distribution of

the Wald statistic is then

Wn ⇒
(
a′1
(
Σ1/2 ⊗ Σ−1/2

)
ξV
)2

a′1

{
Σ⊗ Σ−1/2

(∫ 1
0 V V

′
)−1

Σ−1/2
}
a1

=
(b′ξV )2

b′
{
I ⊗

(∫ 1
0 V V

′
)−1}

b

, (2.13)

where ξV = vec (ΞV ) and

b =

(
Σ1/2 ⊗ Σ−1/2

)
a1

(a′1 (Σ⊗ Σ−1) a1)
1/2

lies on the unit sphere b′b = 1. Thus, even in the case of a common unit root, the

null limit distribution of the test depends on Σ, although this matrix is consistently

estimable by the residual moment matrix Σ̂. In the general case, the limit distributions

(2.10) and (2.11) both have nuisance parameters (c,Σ) .

5. The parameter c is not consistently estimable and it is therefore not possible to

construct a standard test of the composite H0. However, modified tests are available

to distinguish H0 from alternatives that involve a mildly explosive component. For

instance, for some (possibly slowly varying) sequence Ln → ∞, the statistic WLn =

Wn/Ln →p 0 under H0 for all finite c. Then, under the alternative hypothesis H1,

WLn = Op

(
n2

k2nLn

)
which diverges for all sequences Ln →∞ such that k2nLn

n2
→ 0. In

particular, if kn = O (nα) for some α ∈ (0, 1) and Ln is slowly varying at infinity,

then WLn = Op

(
n2(1−α)

Ln

)
→∞ as n→∞ and tests based on the statistic WLn with

any fixed critical value1 are consistent and have zero size asymptotically. Similar

remarks apply to the block test based on WA
Ln

= WA
n /Ln.

6. In view of (2.12), Wn,W
A
n = Op

(
n2

k2n

)
and the Wald statistics diverge, as do the

scaled statistics WLn and W
A
Ln
. So there is discriminatory power under the local

alternative H1 : r11 = ρn = 1 + c
n , r22 = θn = 1 + b

kn
.

1For example, asymptotic critical values might be computed for the limit distribution (2.13) with Σ = I
and

b =
a1

(a′1a1)
1/2
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3 Model Selection

Another approach to testing for common roots in (2.1) is to apply model selection methods.

This involves estimating (2.1) in the restricted case under the null of a common root and

under the alternative of unrestricted roots.

Estimating (2.1) under the restriction Rn = rnI gives the pooled least squares estimator

r̂n = (
∑n

t=1X
′
tXt−1)

(∑n
t=1X

′
t−1Xt−1

)−1 of the common root rn. We have the following
limit theory for r̂n under the null hypothesis and alternative.

Lemma 3.1 (i) Under the null Rn = rnI with rn = 1 + c
n , r̂n has the limit distribution

n (r̂n − rn)⇒
(∫ 1

0
Jc(r)

′dB

)
/

(∫ 1

0
Jc(r)

′Jc(r)dr

)
, (3.1)

and the residual moment matrix Σ̃ = n−1
∑n

t=1 ũtũ
′
t →p Σ, where ũt = Xt − r̂nXt−1, has

the form

Σ̃ =
1

n

n∑
t=1

utu
′
t +O

(
n−1

)
. (3.2)

(ii) Under the alternative hypothesis where Rn = diag (ρn, θn) , r̂n has the limit distribution

knθ
n
n (r̂n − θn)⇒ 2b

Y2 (b)

X2 (b)
, (3.3)

where Y2 (b) =d X2 (b) ≡ N
(
0, σ222b

)
and Y2 (b) and X2 (b) are independent. The residual

moment matrix Σ̃ of the restricted regression has the following asymptotic behavior under

the alternative hypothesis:

Σ̃ =
1

n

n∑
t=1

utu
′
t +

b2n

k2n

[
1
n2
∑n

t=1X
2
1t−1 0

0 0

]
{1 + op (1)} . (3.4)

Since Σ̆ = n−1
∑n

t=1 utu
′
t →p Σ, it follows from (3.2) that Σ̃ is consistent for Σ under

the null. However, from (3.4) and the fact that n−2
∑n

t=1X
2
1t−1 ⇒

∫ 1
0 J

2
1c, it is apparent

that Σ̃ is consistent for Σ when n = o
(
k2n
)
but is inconsistent when k2n

n = O (1) and, in

particular, when kn = o
(
n1/2

)
. These results enable us to determine conditions for the

consistency of model selection criteria such as the Schwarz criterion (BIC).

For the model (2.1), the restricted regression and unrestricted regression BIC criteria
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are:

BICr = log
∣∣∣Σ̃∣∣∣+

log n

n
, BICu = log

∣∣∣Σ̂∣∣∣+ 4
log n

n
.

When the null holds and Rn = rnI it is evident that

BICr = log
∣∣∣Σ̃∣∣∣+

log n

n
= log

∣∣∣Σ̆∣∣∣+
log n

n
+Op

(
1

n

)
, (3.5)

whereas for the unrestricted regression

BICu = log
∣∣∣Σ̂∣∣∣+ 4

log n

n
= log

∣∣∣Σ̆∣∣∣+ 4
log n

n
+Op

(
1

n

)
(3.6)

since Σ̂ = Σ̆ +Op
(
n−1

)
analogous to the proof of (3.2). In view of (3.5) and (3.6), BICr <

BICu up to a term of Op
(
1
n

)
. The restricted model will therefore be correctly chosen with

probability approaching unity under the null.

When the alternative holds, (3.6) continues to apply for the unrestricted regression.

But under the alternative for the restricted regression we have from (3.4)

log
∣∣∣Σ̃∣∣∣ = log

∣∣∣∣∣Σ̆ +
b2n

k2n

[
n−2

∑n
t=1X

2
1t−1 0

0 0

]
{1 + op (1)}

∣∣∣∣∣
= log

∣∣∣Σ̆∣∣∣+ log

∣∣∣∣∣I +
b2n

k2n
Σ̆−1

[
n−2

∑n
t=1X

2
1t−1 0

0 0

]
{1 + op (1)}

∣∣∣∣∣
= log

∣∣∣Σ̆∣∣∣+
b2n

k2n
tr

{
Σ̆−1

[
n−2

∑n
t=1X

2
1t−1 0

0 0

]}
{1 + op (1)}

= log |Σ|+ b2n

k2n
tr

{
Σ−1

[
n−2

∑n
t=1X

2
1t−1 0

0 0

]}
{1 + op (1)}

= log |Σ|+ b2n

k2n

n−2
∑n

t=1X
2
1t−1

σ11.2
{1 + op (1)} ,

where σ11.2 = σ11 − σ12/σ22. Then

BICr = log
∣∣∣Σ̃∣∣∣+

log n

n

= log
∣∣∣Σ̆∣∣∣+

b2n

k2n

n−2
∑n

t=1X
2
1t−1

σ11.2
{1 + op (1)}+

log n

n
.
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It follows that BICr > BICu under the alternative as n→∞ whenever

b2n

k2n

n−2
∑n

t=1X
2
1t−1

σ11.2
> 3

log n

n
,

which inequality holds with probability approaching unity provided n2

k2n logn
→∞ as n→∞

because n−2
∑n

t=1X
2
1t−1 ⇒

∫ 1
0 J

2
1c > 0 with probability one. Hence, under the alternative,

the unrestricted model will be chosen with probability approaching unity as n → ∞ pro-

vided kn goes to infinity slower than n/ log n, that is provided kn logn
n → 0.

It follows that model selection by BIC is consistent and as n → ∞ the criterion will

successfully distinguish roots in the vicinity of unity provided one of the roots θn = 1 + b
kn

is mildly explosive and suffi ciently different from local to unity in the sense that kn → ∞
slower than O

(
n

logn

)
. In this respect, the discriminatory capability of model selection is

analogous to that of classical Wald testing.

4 Conclusion

Model selection by BIC is well known to be blind to local alternatives in general (see

Ploberger and Phillips, 2003; and Loeb and Poetscher, 2005). For instance, in the current

set up, BIC cannot consistently distinguish between a model with a unit root (ρn = 1)

and models with roots local to unity (ρn = 1 + c
n), just as localizing coeffi cients such as

the parameter c are not consistently estimable. On the other hand, as shown here, BIC

and classical tests can successfully distinguish roots in the immediate locality of unity

like ρn from roots that are in the wider vicinity of unity like θn, which opens the door to

distinguishing mildly explosive behavior in data. We expect these model selection results to

be generalizable to models with weakly dependent innovations, analogous to the findings in

Phillips (2008) on unit root discrimination and Cheng and Phillips (2009) for cointegrating

rank determination.

Tests of this type will be useful in empirical work where it is of interest to differentiate

between the behavioral time series character of financial data such as asset prices and the

fundamentals that are believed to determine prices, like dividends and earnings. In such

cases, the primary maintained hypothesis is that the series have roots that are local to

unity (without being specific about the localizing coeffi cient) and the alternative is that

one or other of the series may be mildly explosive at least over subperiods of data (see

10



Phillips, Wu and Yu, 2011; Phillips and Yu, 2011). On the other hand, if the primary

maintained hypothesis is that both series may be mildly explosive and the null hypothesis

is commonality in the roots, then problems of bias and inconsistency may arise in testing

and model selection. Recent work by Nielsen (2009) and Phillips and Magdalinos (2011)

provide a limit theory for least squares regression in the case of purely explosive common

roots and show that least squares regression is inconsistent. That work may be extended

to the case of common mildly explosive roots and will be explored in later work.

5 Appendix

5.1 Preliminary Lemmas

We start with some lemmas that assist in the asymptotic development. These results rely on

existing limit theory so we only sketch the main details here for convenience. We repeatedly

use the fact that kn(θ2n−1) = 2b+O( 1kn ) and θ−nn = exp(−b nkn ) {1 + o(1)} = o(1). The first

result is from PM7. See also Phillips and Magdalinos (2008) and Magdalinos and Phillips

(2009) for related results on systems with explosive and mildly explosive processes.

Lemma 5.1 (PM7) Define

Xn(b) =

[
X1n(b)

X2n(b)

]
:=

1√
kn

n∑
j=1

θ−jn uj ,

Yn(b) =

[
Y1n(b)

Y2n(b)

]
:=

1√
kn

n∑
j=1

θ−(n−j)−1n uj .

Then, as n → ∞, Xn(b)⇒X(b) = (X1 (b) , X2 (b))′ ≡ N(0, 12bΣ), and Yn(b)⇒Y (b) =

(Y1 (b) , Y2 (b))′ , where Y (b) =d X(b), and X(b) and Y (b) are independent.

Lemma 5.2 Define Sn(r) := 1√
n

∑bnrc
j=1 uj and

Xc
1n(r) =

X1bnrc√
n

=
1√
n

bnrc∑
j=1

ρjnu1bnrc−j ,

X2n(b) =
X2n√
knθ

n
n

=
1√
kn

n∑
j=1

u2j

θjn
.

11



Then, as n→∞,

(i) Sn(r) =

[
1√
n

∑bnrc
j=1 u1j

1√
n

∑bnrc
j=1 u2j

]
⇒
[
B1(r)

B2(r)

]
= B(r) ≡ BM(Σ);

(ii) Xc
1n(r)⇒J1c(r) =

∫ r
0 e

c(r−s)dB1(s) and n−1
∑n

j=1X1t−1ut ⇒
∫ 1
0 J1c(r)dB(r);

(iii) X2n(b)⇒X2(b), where X2(b) ≡ N
(
0, σ222b

)
;

(iv) J1c(r) and X2(b) are independent.

(v) For all s, r > 0 the following joint convergence applies:[
X1bnrc√

n
,
X2bnsc
√
knθ
bnsc
n

]
⇒ [J1c(r), X2(b)] , as n→∞.

Proof. Result (i) is standard, (ii) is from Phillips (1987b), and (iii) is from lemma 5.1.

To prove (iv), it suffi ces to show that B1(r) and X2(b) are independent, since J1c(r) is a

functional of {B1(s)}s≤r . Note that the covariance

E (S1n(1)X2n(b)) = E

 1√
n

n∑
j=1

u1j

( 1√
kn

n∑
k=1

u2k

θkn

)
=

σ12√
nkn

n∑
k=1

1

θkn
=

σ12√
nkn

1

θn

(
1− θ−nn
1− θ−1n

)

=
σ12√
nkn

1

θn − 1
{1 + o(1)} =

σ12
b

√
kn
n
{1 + o(1)} = o(1),

as n→∞. Independence of the limit processes J1c(r) and X2(b) follows. To prove (v), first
observe that for any (integer sequence) Ln → ∞ such that Ln

kn
→ ∞, we have X2Ln√

knθ
Ln
n
⇒

X2(b). Note that X2n(b) =
X2Ln√
knθ

Ln
n

+ 1√
kn

∑n
j=Ln+1

u2j

θjn
and

E

∣∣∣∣∣∣ 1√
kn

n∑
j=Ln+1

u2j

θjn

∣∣∣∣∣∣
2

=
1

kn

n∑
j=Ln+1

σ22

θ2jn
=
σ22
kn

1

θ2Ln+2n

(
1− θ−2n+2Lnn

1− θ−2n

)
=

σ22

kn
(
θ2n − 1

) (θ−2Lnn − θ−2nn

)
= o(1),
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since θ−2Lnn =
(

1 + b
kn

)−2Ln
=

{(
1 + b

kn

)kn}−2Lnkn
= exp(−2bLnkn ) + o(1) = o(1). Hence,

X2Ln√
knθ

Ln
n
⇒ X2(b) by lemma 5.1. Now let Ln = bnsc for any s > 0 and then

X2bnsc√
knθ
bnsc
n

⇒
X2(b). Joint convergence and (v) follow from marginal convergence and asymptotic inde-

pendence of the components.

Lemma 5.3 As n→∞,

(i) 1
k2nθ

2n
n

∑n
t=1X

2
2t−1 ⇒

(X2(b))
2

2b ,

(ii) 1
n2
∑n

t=1X
2
1t−1 ⇒

∫ 1
0 J1c(r)

2dr,

(iii) 1
nknθ

n
n

∑n
t=1X1t−1X2t−1 = op(1).

Proof. (i) follows from MP7 and (ii) is standard (Phillips, 1987a &b). For (iii), it is

convenient to take a probability space where
[
X1bnrc√

n
,

X2bnsc√
knθ
bnsc
n

]
→p [J1c(r), X2(b)] . Then,

for any sequence Ln →∞ such that Ln
n → 0, we have

1

nknθ
n
n

n∑
t=1

X1t−1X2t−1 =
1√

nknθ
n
n

{
Ln∑
t=1

+
n∑

t=Ln+1

}(
X1t−1√

n

)(
X2t−1√
knθ

t−1
n

)
θt−1n

=
X2(b)√
nknθ

n
n

n∑
t=Ln+1

(
J1c

(
t

n

))
θt−1n {1 + op(1)}

+
θLnn√
nknθ

n
n

Ln∑
t=1

(
X1t−1√

n

)(
X2t−1√
knθ

t−1
n

)
θt−1n

θLnn

=
X2(b)√
nknθ

n
n

n∑
t=Ln+1

(
J1c

(
t

n

))
θt−1n {1 + op(1)}+Op

(
Lnθ

Ln
n√

nknθ
n
n

)

=
X2(b)√
nknθ

n
n

n∑
t=1

(
J1c

(
t

n

))
θt−1n + op(1).

Now
∑n

t=1

(
J1c
(
t
n

))
θt−1n has zero mean and variance

E

(
n∑
t=1

(
J1c

(
t

n

))
θt−1n

)2
=

n∑
t=1

n∑
s=1

E

(
J1c

(
t

n

)
J1c

( s
n

))
θt+s−2n

≤ M

(
θnn − 1

θn − 1

)2
≤M ′k

2
nθ
2n
n

b2
,

13



for some finite constants M and M ′. It follows that

Var

(
1√

nknθ
n
n

n∑
t=Ln

(
J1c

(
t

n

))
θt−1n

)
= O

(
k2nθ

2n
n

nknθ
2n
n

)
= O

(
kn
n

)
= o(1),

leading to 1√
nknθ

n
n

∑n
t=Ln

(
J1c
(
t
n

))
θt−1n = op(1), which implies that 1

nknθ
n
n

∑n
t=1X1t−1X2t−1 =

op(1) and this also holds in the original probability space, giving the required result.

Lemma 5.4 As n→∞,

(i) D−1n X ′−1X−1D
−1
n ⇒

[ ∫ 1
0 J1c(r)

2dr 0

0 (X2(b))
2

2b

]
,

(ii) u′X−1D−1n ⇒
[ ∫ 1

0 J1c(r)dB(r) X2(b)Y (b)
]
.

Proof. Using lemma 5.3

D−1n X ′−1X−1D
−1
n = D−1n

(
n∑
t=1

Xt−1X
′
t−1

)
D−1n

=

[
1
n2
∑n

t=1X
2
1t−1

1
nknθ

n
n

∑n
t=1X1t−1X2t−1

1
nknθ

n
n

∑n
t=1X2t−1X1t−1

1
k2nθ

2n
n

∑n
t=1X

2
2t−1

]

⇒
[ ∫ 1

0 J1c(r)
2dr 0

0 (X2(b))
2

2b

]
,

giving (i). Result (ii) follows directly from lemmas 5.2 and 5.3 as

u′X−1D
−1
n =

[
1
n

∑n
t=1X1t−1ut

1
knθ

n
n

∑n
t=1X2t−1ut

]
=

[ ∑n
t=1

(
X1t−1√

n

)(
ut√
n

)
1√
knθ

n
n

∑n
t=1

(
X2t−1√
knθ

t−1
n

)
utθ

t−1
n

]
⇒

[ ∫ 1
0 J1c(r)dB(r) X2(b)Y (b)

]
.

Joint convergence follows from the independence between B(r) and (X2(b), Y (b)).
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5.2 Proofs of the Main Results

Proof of Theorem 2.1. Using Lemma 5.4, continuous mapping and joint convergence,

we have(
R̂n −Rn

)
Dn =

(
u′X−1D

−1
n

) (
D−1n X ′−1X−1D

−1
n

)−1⇒ [ ∫ 1
0 J1c(r)dB(r)∫ 1
0 J1c(r)

2dr

Y (b)
X2(b)/2b

]
.

Since (θ2n − 1) = 2b
kn

(1 + o(1)) the equivalent result

(
R̂n −Rn

)
Fn⇒

[ ∫ 1
0 J1c(r)dB(r)∫ 1
0 J1c(r)

2dr

Y (b)
X2(b)

]
,

holds as stated.

Proof of Theorem 2.2. We first prove (2.10) and (2.12) for the statistic Wn. Under the

null we have by standard theory

n
(
R̂n −Rn

)
⇒
∫ 1

0
dBJ ′c

(∫ 1

0
JcJ

′
c

)−1
=: Ξ, n2

(
X ′−1X−1

)−1 ⇒ ∫ 1

0
JcJ

′
c (5.1)

Σ̂ = n−1
∑n

t=1 ûtû
′
t →p Σ, and (2.10) follows directly for Wn and (2.11) for WA

n . Under

the alternative from theorem 2.1 with correct centering we have

a′1vec
{(
R̂n −Rn

)
Fn

}
= n (r̂11 − r11)− θnn

(θ2n−1)
(r̂22 − r22) ⇒a′1vecΦ,

whereas under (2.2) with b > 0, the null centred linear combination behaves as

a′1vec
(
nR̂n

)
= n(r̂11 − r̂22) = n(r̂11 − r11)− n (r̂22 − r22) + n(r11 − r22)

= n(r̂11 − r11)−
θnn

(θ2n − 1)
(r̂22 − r22)

n(θ2n − 1)

θnn
+

(
c− nb

kn

)
= n(r̂11 − r11) +

(
c− nb

kn

)
+ op (1)

= n(r̂11 − r11) +Op(
n

kn
)→ −∞, as n→∞,

in view of (2.7) - (2.9) and since n(θ2n−1)
θnn

=
n
kn
θnn
kn(θ2n − 1) = O(

n
kn

exp(b n
kn
)) = o(1). Next,

setting dn =
(∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

)
− (
∑n

t=1X1t−1X2t−1)
2 and using Lemma 4.3 we

15



find that

dn =

n∑
t=1

X2
1t−1

n∑
t=1

X2
2t−1

1−

(
1

nknθ
n
n

∑n
t=1X1t−1X2t−1

)2
1
n2
∑n

t=1X
2
1t−1

1
k2nθ

2n
n

∑n
t=1X

2
2t−1


=

n∑
t=1

X2
1t−1

n∑
t=1

X2
2t−1 {1− op (1)} , (5.2)

and

dn

n2k2nθ
2n
n

=
1

n2

n∑
t=1

X2
1t−1

1

k2nθ
2n
n

n∑
t=1

X2
2t−1 {1− op (1)}

⇒
(∫ 1

0
J1c(r)

2dr

)(
X (b)2

2b

)
.

It follows that

n2
(
X ′−1X−1

)−1
=

n2

dn

[ ∑n
t=1X

2
2t−1 −

∑n
t=1X1t−1X2t−1

−
∑n

t=1X1t−1X2t−1
∑n

t=1X
2
1t−1

]

=

 n2∑n
t=1X

2
1t−1

− n2
∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

− n2
∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

n2∑n
t=1X

2
2t−1

 {1 + op(1)}(5.3)

=

 (∑n
t=1X

2
1t−1

n2

)−1
+ op(1) op(1)

op(1) op(1)

⇒
 (∫ 10 J1c(r)2dr)−1 0

0 0

 .
Since Σ̂→p Σ, we have

n2a′1

{
Σ̂⊗

(
X ′−1X−1

)−1}
a1

= a′1

(Σ + op (1))⊗

 (∑n
t=1X

2
1t−1

n2

)−1
+ op(1) op(1)

op(1) op(1)

 a1

⇒ a′1

Σ⊗

 (∫ 10 J1c(r)2dr)−1 0

0 0

 a1

= σ11

(∫ 1

0
J1c(r)

2dr

)−1
.
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It follows that

Wn =
(
a′1vec

(
R̂n

))2
/a′1

{
Σ̂⊗

(
X ′−1X−1

)−1}
a1

=

{
n(r̂11 − r11) +Op(

n
kn

)
}2

σ11

(∫ 1
0 J1c(r)

2dr
)−1

+ op (1)
= Op

(
n2

k2n

)
,

giving the stated result.

The proof of (2.12) for the statistic WA
n under the alternative follows the same lines but

involves more complex calculations to cope with different orders of magnitude in the com-

ponents. First consider the behavior of the centred elements under the alternative. By

(2.7) - (2.9) we have

A′vec
{(
R̂n −Rn

)
Fn

}
=


n (r̂11 − r11)− θnn

(θ2n−1)
(r̂22 − r22)

θnn
(θ2n−1)

(r̂12 − r12)
n (r̂21 − r21)


′

⇒A′vecΦ.

On the other hand under (2.2) with b > 0, the null-centred linear combinations behave as

follows. First,

a′1vec
(
nR̂n

)
= n(r̂11 − r̂22) = n(r̂11 − r11)− n (r̂22 − r22) + n(r11 − r22)

= n(r̂11 − r11)−
θnn

(θ2n − 1)
(r̂22 − r22)

n(θ2n − 1)

θnn
+

(
c− nb

kn

)
= n(r̂11 − r11) +Op(

n

kn
)→ −∞, as n→∞,

as for Wn.Second

a′2vec
(
nR̂n

)
= nr̂12 =

θnn
(θ2n − 1)

r̂12
n(θ2n − 1)

θnn
= Op

(
n
kn

exp(b nkn )

)
= op (1) ,

and third

a3
′vec

(
nR̂n

)
= nr̂21 ⇒ a′3vecΦ, as n→∞.
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Also, as in (5.3)

(
X ′−1X−1

)−1
=

 1∑n
t=1X

2
1t−1

−
∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

−
∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

1∑n
t=1X

2
2t−1

 {1 + op(1)} .

We now evaluate each of the components of the matrix

A′
{

Σ̂⊗
(
X ′−1X−1

)−1}
A

=

 a′1
a′2
a′3

[ σ̂11
(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]

[a1, a2, a3] .

Using lemma 4.3 we find

a′1

[
σ̂11

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]
a1

=

(
σ̂11

1∑n
t=1X

2
1t−1

+ 2σ̂12

∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

+ σ̂22
1∑n

t=1X
2
2t−1

)
{1 + op (1)}

= σ̂11
1∑n

t=1X
2
1t−1
{1 + op (1)} ,

a′1

[
σ̂11

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]
a2

= −
(
σ̂11

∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

+ σ̂12
1∑n

t=1X
2
2t−1

)
{1 + op (1)}

= −σ̂11
∑n

t=1X1t−1X2t−1∑n
t=1X

2
1t−1

∑n
t=1X

2
2t−1
{1 + op (1)} ,

a′2

[
σ̂11

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]
a2 = σ̂11

1∑n
t=1X

2
2t−1
{1 + op (1)} ,

a′3

[
σ̂11

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]
a3 = σ̂22

1∑n
t=1X

2
1t−1
{1 + op (1)} ,
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a′1

[
σ̂11

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]
a3

=

(
σ̂12

1∑n
t=1X

2
2t−1

− σ̂22
∑n

t=1X1t−1X2t−1∑n
t=1X

2
1t−1

∑n
t=1X

2
2t−1

)
{1 + op (1)}

= −σ̂22
∑n

t=1X1t−1X2t−1∑n
t=1X

2
1t−1

∑n
t=1X

2
2t−1
{1 + op (1)} ,

a′2

[
σ̂11

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]
a3 = −σ̂12

∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1
{1 + op (1)} ,

and

a′3

[
σ̂11

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂12

(
X ′−1X−1

)−1
σ̂22

(
X ′−1X−1

)−1
]
a3 = σ̂22

1∑n
t=1X

2
2t−1
{1 + op (1)} .

Hence

A′
{

Σ̂⊗
(
X ′−1X−1

)−1}
A

=


σ̂11

1∑n
t=1X

2
1t−1

−σ̂11
∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

−σ̂22
∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

σ̂22
1∑n

t=1X
2
1t−1

−σ̂12
∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

σ̂22
1∑n

t=1X
2
2t−1

 {1 + op (1)} .

Set Kn = diag(n, n, knθ
n
n) and observe that

KnA
′
{

Σ̂⊗
(
X ′−1X−1

)−1}
AKn

=


σ̂11

n2∑n
t=1X

2
1t−1

op (1) op (1)

σ̂22
n2∑n

t=1X
2
1t−1

op (1)

σ̂22
k2nθ

2n
n∑n

t=1X
2
2t−1

 {1 + op (1)}

since

n2
∑n

t=1X1t−1X2t−1∑n
t=1X

2
1t−1

∑n
t=1X

2
2t−1

= op (1) ,

nknθ
n
n

∑n
t=1X1t−1X2t−1∑n

t=1X
2
1t−1

∑n
t=1X

2
2t−1

=

1
nknθ

n
n

∑n
t=1X1t−1X2t−1

1
n2
∑n

t=1X
2
1t−1

1
k2nθ

2n
n

∑n
t=1X

2
2t−1

= op (1) ,
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by lemma 4.3(iii). We deduce that

WA
n =

(
A′vec

(
R̂n

))′ (
A′
{

Σ̂⊗
(
X ′−1X−1

)−1}
A
)−1 (

A′vec
(
R̂n

))
=

(
A′vec

(
R̂n

))′
Kn

(
KnA

′
{

Σ̂⊗
(
X ′−1X−1
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from Theorem 2.1 and (2.7) - (2.9). It now follows from (5.4) and (5.5) that
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giving the stated result.
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Proof of Lemma 3.1. Part (i) follows by standard methods in view of Lemmas 5.2 -

5.5. Also ũt = Xt − r̂nXt−1 = ut − (r̂n − rn)Xt−1, and so we have
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as stated. For part (ii) to obtain the limit distribution under the alternative, write r̂n as
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Then, using Lemma 5.3
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and in view of Lemma 5.1
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giving the stated result (3.3). To prove (3.4), first note that
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The restricted regression residuals are
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