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Abstract

In this paper I study the e¤ects of environmental regulation which
establishes upper and lower binding targets to pollution emissions. Es-
sentially, I deal with the properties of a stochastic model of pollution
control in continuous-time under emission targets and uncertainty,
emphasizing dynamic nonlinearities. Inside the targets pollution be-
haves as if it were freely �oating until it hits one of the two limits.
The model provides three main results. First, I show that binding
targets can a¤ect the pollution �oating even when the boundaries are
currently slack. Solutions of the model show that pollution becomes
an S-shaped locus of the fundamentals. Second, I show that binding
targets will lead to more stable pollution rate determination within
the boundaries, than free �oating. Finally, stabilization of pollution
is related to the growth rate and volatility of fundamentals, to the
sensitivity to expected changes of pollution rate and to the credibility
of the authorities in defending the pollution targets.
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1 Introduction

Over the last �fteen years the world economic system shifted from a regime
of unregulated pollutant emissions, to a new and more regulated system
of rules, in which authorities committed themselves to keep emissions within
broad targets. The most prominent agreement was the Kyoto Protocol (1997)
which set pollution targets for industrialized countries to reduce greenhouse
gas emissions in the atmosphere. Later on, there were many other interna-
tional agreements whose aim was the defence of the climate and environment.
Following this trend, the European Commission (2009) has recently proposed
binding legislation for European countries to implement the climate and en-
ergy package known as the �20-20-20�targets. These targets would cut the
EU�s overall emissions from the non-ETS sectors by 10% by 2020, compared
with the 2005 levels.
In spite of the operative importance of these international treaties, little

research has been done on how such environmental commitments would op-
erate in practice. In particular, how do pollution emissions behave inside the
targets? How would such target levels operate if they are binding? Would
binding targets a¤ect the emissions of pollution when no active policy is
taking place?
In this paper I present a simple model of pollution behavior under bind-

ing targets. Essentially, I deal with the properties of a stochastic model of
pollution determination in continuous-time under emission targets and uncer-
tainty, emphasizing dynamic nonlinearities. Optimal regulation of Brownian
motion is a topic, in the theory of the stochastic optimal control, which has
found several applications in economics and �nance (Malliaris and Brock,
1988; Svensson, 1992; Dixit and Pindyck, 1994; Turnovsky, 2000; Saltari and
Travaglini 2003, 2006; Travaglini, 2008). However, over the last decade, a
number of contributions reached novel insights in the �eld of environmen-
tal economics, using the formalities of optimal stochastic modeling. Crucial
results are in Xepapades (1999), Pindyck (2000, 2002), Lin et al. (2007),
Bretscher and Smulders (2007), Soretz (2007), Ansar and Spark (2009), Lin
and Huang (2010, 2011), Balikcioglu et. al (2011) and Saltari and Travaglini
(2011, 2012). Basically these authors derive, under economic or ecologi-
cal uncertainty, conditions for optimal timing of policies whose aim is to
reduce emissions of pollutants in order to maximize social welfare and/or
discounted private utility and pro�ts. In this class of models, pollution is a
di¤usion process which a¤ects the objective functions in a nonlinear manner.
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The outcome of this complex relationship depends strictly on the form of
technology and utility functions, on the degree of market competition, on
the presence of adjustment costs, on the irreversibility of inputs, and on the
form and nature of the underlying stochastic process.
A previous consolidated literature on the economic e¤ects of pollution,

however, exists. Indeed, the optimal emission (allocation) of pollution is a
problem that should be dated back to the work of Pigou (1920). A great
deal of papers on pollution followed this original approach. But, recently
some scholars have raised the question of what we mean by a system in
which pollution-generating activities are embedded (Perman et al. 2003).
This renewed approach involves bringing together economic and ecological
subsystems to analyze their interactions, and to shed light on the feedbacks
between pollution, environment and economic activities.
There have been ambitious attempts to formalize this relationship. Among

these, one of the most appealing e¤orts is the so called �model of shallow
lake�. Using a common framework, Carpenter and Cottingham (1997), Car-
penter et al. (1999), Brock and Starrett (2003) and Maler et al. (2003)
have provided an explanation of why nonlinear dynamics of pollution can
emerge over time. But, di¤erently from the theory of optimal stochastic
control, the lake model assumes that the nonlinear pattern of pollution is
caused by an internal deterministic feedback mechanism �sometimes called
internal loading �which impairs the ecosystem�s ability to absorb loadings.
The proponents of the lake model argue that this framework can be seen as
a metaphor for many ecological problems, so that the basic framework can
have a wider applicability. As said, the feedback function is deterministic
and it is assumed to be S-shaped: that is for low stock of pollution (e.g.,
phosphorous) there is a relatively marginal damage to the water of the lake,
whereas for higher stocks this contribution rises, to fall again when a maxi-
mal threshold is approached. A common functional form of internal loading
is f(P ) = Pn

1+Pn
with n 1 2. The nonlinearity of this function is essential

to derive a nonlinear di¤erential equation of pollution which describes the
transition among multiple steady states.
From an operative point of view, the nonlinearity has important implica-

tion for how pollution targets are set, and for the way in which pollution is
mostly appropriately controlled. Some critical drawbacks weaken, however,
the theoretical outcomes of the lake model. Worthy of remark is that nonlin-
earity of pollution is crucially determined by the nonlinear internal loading
function f(P ): As a result, the lake model generates an ad hoc deterministic
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convex-concave dynamics of pollution which fails in explaining why actual
pollution behaves the way it does, obscuring the underlying economics of the
model. According to this remark, I will try to formulate a continuous-time
stochastic model where the nonlinearity of emissions is the result of the opti-
mal allocation of pollution whose dynamics depends on some �fundamentals�
driving pollution, and on policies of authorities committed in defending the
binding targets.
This paper is concerned with pollution targets, and with the best trajec-

tory to respect those levels. There are two reasons why I assume the existence
of two binding targets. First, in the context of uncertainty, characterizing
the present framework, there may be immense di¢ culties in identifying eco-
nomically e¢ cient targets. Second, policy makers are likely to have multiple
objectives. E¢ ciency matters, but it is not the only thing that matters.
Therefore, targets are often chosen in practice on the basis of a mix of objec-
tives. The mix may include technology or health considerations, regulation
and welfare.
To be more speci�c, I study the e¤ects of environmental regulation which

establishes upper and lower binding targets to pollution emissions. Inside
the targets pollution behaves as if it were freely �oating until it hits one
of the two bounds. The questions at the heart of the paper are: how will
pollution behave inside the two targets when fundamentals are stochastic?
Is the assumption of nonlinear internal loading a necessary condition to get
an S-shaped pollution trajectory? Can stochastic control theory provide an
optimal nonlinear allocation of pollution among boundaries?
The present model provides three main results. First, I show that binding

targets can a¤ect the pollution dynamics even when the boundaries are cur-
rently slack. Solutions of the model show that pollution emissions become an
S-shaped function of the fundamentals, with the potential targets exerting a
global e¤ect on the pollution dynamics. Second, I show that binding targets
will lead to more stable pollution rate determination within the boundaries,
than free �oating. Finally, stabilization of pollution emissions are related to
the growth rate and volatility of fundamentals, to the sensitivity to expected
changes of pollution rate and to the credibility of the authorities in defending
the targets.
The paper is organized as follows. In section 2 we consider the e¤ects of

fundamentals and expectation on current pollution. In section 3, I derive the
second order di¤erential equation which describes the dynamics of pollution
as long as pollution is strictly between the binding targets. Section 4 derives
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the solution at the binding targets. Section 5 outlines the conclusions of the
analysis.

2 The model

In environmental economics there are di¤erent ways to model the process
characterizing pollution accumulation and its e¤ects on economic variables
(Xepapadeas, 2003). Some authors argue that pollution is a by-product of
production or consumption process taking place during economic activities
(Brock 1973; Stokey 1996; Smulders and Gradus, 1996). In other works, it
is assumed that emissions a¤ect the �ow or the accumulation of pollution in
the environment (Solow, 1999; Brock and Taylor, 2004; Perman et al., 2003).
Finally, pollution can have detrimental e¤ects on utility of individuals and
productivity of inputs, altering, as an externality, the features of the objective
functions (Smulder and Gradus, 1996; Egli and Steger, 2007; Bretschger and
Smulder, 2007; Saltari and Travaglini, 2011, 2012).
In this paper I will adopt a comprehensive approach. Pollution is as-

sumed to be generated by a range of aggregate variables, namely, pollution
generating capital (Kp

t ), abatement capital (K
a
t ), consumption (C), abate-

ment technology (T ) and environmental regulation (Z). I call these variables
�fundamentals�. In addition, I assume that the expected changes of aggre-
gate demand (E�Y ) �where E(:) is the expectation operator and �Y is the
variation of the aggregate demand Y �may in�uence current pollution emis-
sions. Hence, the general formulation for the polluting generating process
can be written as

P = p (Kp; Ka; C; T; Z;E�Y ) (1)

where PKp > 0; PKa < 0; PC > 0; PT < 0; Pz < 0; PE�Y > 0 (with the
subscripts denoting �rst order partial derivatives).
For the purposes of the model, I employ a simple linear form of equation

(1). Therefore

Pt =

�
�
Kp
t �Ka

t

T
+ �Ct � Z

�
+ � [Et (Yt+1)� Yt] (2)

In equation (2) �; �; ; � are coe¢ cients which measure the relative weight
of inputs per unit of emissions. Pollution at time t is a by-product of capital
stock Kp

t and consumption Ct: Abatement expenditures K
a
t and technology
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parameter T are assumed to reduce pollution; the parameter Z captures
the positive e¤ect of environmental regulation. Finally, the last addendum
Et (Yt+1)�Yt provides insights about the e¤ects of expected change of aggre-
gate demand E�Y on current emissions of pollution. This latter term plays
a central role in shaping the dynamics of actual pollution Pt:
To explain this, let�s start from the basic case when Et (Yt+1) = Yt. In

this scenario aggregate demand is stable over time, and current emissions
are exclusively determined by fundamentals. But, when E (Yt+1) > Yt; �rms
realize that the level of expected aggregate demand will be higher in the
future (t + 1) than at the current time (t). This rising expectation boot
�rms to enlarge current production in order to satisfy the future demand.
As a result, emissions of pollution anticipate the expected trend. Obviously,
the opposite result occurs when Et (Yt+1) < Yt: Therefore, the di¤erence
Et (Yt+1)� Yt may be interpreted as a linear, positive or negative, expected
spill over mechanism which a¤ect, at the current time, the ability of the
aggregate system to let out pollution.
To close the model it is essential to specify the relationship between the

expected growth of aggregate demand and the expected growth of pollution.
Formally, I assume that

Et (Pt+1)� Pt = � [Et (Yt+1)� Yt] (3)

where � = Et
�P
�Y

= Et(Pt+1)�Pt
Et(Yt+1)�Yt is a semi-elasticity which measures the ex-

pected marginal impact of a change of aggregate demand on pollution emis-
sions. The accelerationist nature of this relationship is apparent: if the ex-
pected aggregate demand is above its current level Yt, the economic system
will produce pollution at a higher rate than the one realized in the previous
period. Substituting by (3) in equation (2) we get the reduced form of the
model

Pt =

�
�
Kp
t �Ka

t

T
+ �Ct � Z

�
+
�

�
[Et (Pt+1)� Pt] (4)

Equation (4) says that, given the fundamentals, an expected increase (de-
crease) in aggregate demand must lead to an immediate increase (decrease)
in actual pollution. However, whenever there is a change in fundamen-
tals, current pollution Pt changes immediately, a¤ecting the expected change
Et (Pt+1) � Pt of pollution over time. Therefore, if authorities have pollu-
tion targets they will try to manage the fundamentals in order to control the
trajectory of pollution over time.
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3 Pollution inside binding targets

In preparation to our shift to continuous time formulation, let�s assume that
the time interval is very small, of length dt, and denote the small change
Et (Pt+dt)� Pt by Et (dPt) : Further, let�s de�ne the composite variable xt �
�
Kp
t �Ka

t

T
+�Ct� Z as the fundamentals for the pollution. Equation (4) can

be rewritten as

Pt = xt + �Et

�
dPt
dt

�
(5)

where � = �
�
. In this formulation, the current value of pollution Pt depends

on fundamentals xt; and on its expected growth rate Et
�
dPt
dt

�
.

The nonstochastic problem could be approached by integrating the rela-
tionship (5) by time. If an explosive bubble path is ruled out, equation (5)
should satisfy

Pt =
1

�

Z 1

t

xse
�(s�t)ds (6)

that is the stock of pollution is given by the discounted value of expected
fundamentals xt: But, more complex is the characterization of the solution
for the stochastic version of the problem.
Suppose x is the geometric Brownian motion

dx = �xdt+ �xdz (7)

where � is the instantaneous drift, � is the instantaneous standard deviation,
and dz is the increment to a Wiener process with mean of zero and standard
deviation of

p
dt:

Absent the binding targets, equations (5) and (7) together characterize
the stochastic solution. Recall that actual pollution is assumed to be lim-
ited by the commitment of the authorities to keep pollution within binding
targets, whose upper limit is Pm; and whose lower limit is Pd:Whenever pol-
lution approaches the binding targets the authorities can intervene to insure
that pollution does not cross the boundaries. But, absent intervention, if
the fundamentals x follow the di¤usion process (7), so does the pollution.
Therefore, the key to solve the model is to recognize that if fundamentals
x follow a di¤usion process as (7) within the bounds, all information about
the future probability distribution of fundamentals is summarized in their
current level x: Hence, I may write a general solution for the pollution as

P = p(x) (8)
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with p(x) twice di¤erentiable by assumption. Applying Ito�s lemma to p(x)
I get

dP = Pxdx+
1

2
Pxx (dx)

2 (9)

dP = Px (�xdt+ �xdz) +
1

2
Pxx�

2x2dt (10)

since E (dz) = (dt)2 = 0: Taking expectation we obtain an expression for the
expected growth rate

EdP

dt
= �Pxx+

1

2
Pxx�

2x2 (11)

Substituting by (11) in equation (5) I get the second order di¤erential equa-
tion which describes the dynamics of pollution as long as P = p(x) is strictly
between Pu and Pd; that is

1

2
�Pxx�

2x2 + ��Pxx� P (x) + x = 0 (12)

Since this di¤erential equation can be thought as a function of fundamentals
x; rather than time, we suppress time subscripts by design. It is easy to
verify that its general solution is

P (x) =
x

1� �� + A1x
�1 + A2x

�2 (13)

where A1 and A2 are arbitrary constants to be determined, and �1 > 1 and
�2 < 0 are the roots of the characteristic equation

�

2
� (� � 1) + ��� � 1 = 0 (14)

Solution (13) can be interpreted as follows. The term x
1��� is the expected

present value of pollution when x process is allowed to proceed without regu-
lation, while P (x) is the same when the process is regulated using the control.
Therefore, the last two terms in (13) represent the additional value of the
control. This general solution is not enough to describe the pollution�s be-
havior in presence of binding targets. To do that, we have to tie down the
arbitrary constants A1 and A2; using our assumption that the authorities
limit the pollution�s range to the interval [Pd; Pm] :
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4 Optimal control of pollution

In the present model, authorities can directly intervene to defend environ-
mental commitments. They can modify the parameters Z and T which rep-
resent, respectively, the environmental regulation and the e¤orts to improve
abatement technology. Accordingly, authorities can also intervene imposing
pigouvian taxes and subsidies to alter the decisions of �rms and consumers
about the optimal level of capital stocks Kp; Ka and consumption C: The
compound e¤ect of these policies is to modify the fundamentals x and the
current emission of pollution P: But, these policies will also a¤ect the ex-
pected pollution growth rate.
The key to demonstrate this is to focus on how P (x) behaves approaching

the lower and upper targets Pd and Pm. Let d be the minimum value of the
fundamentals x when pollution reaches the lower target Pd; and m the max-
imum value of x when the pollution arrives at the upper target Pm: Within
these two bounds pollution can �oat freely. However, once it has reached one
of the two binding targets, its dynamics changes. This mechanism inevitably
a¤ects the �oating of pollution within the bounds. As long as P (x) is within
the range its dynamics follows the process (5). But, when the fundamentals
x reaches one of the two binding targets, the evolution of P (x) becomes a
modi�cation of the process (5). This implies that as x tends to m, P (x)
tends to its own maximum level Pm. Similarly, when x tends to d; P (x)
tends to the minimum level Pd. Therefore, at the trigger values d and m the
�rst order condition for the optimal control of P (x) can be written as

Px (d) = 0 = Px (m) (15)

This expression is often called smooth pasting condition, and usually arises
as an optimality condition. It is a su¢ cient condition to �x the constants A1
and A2: Di¤erentiating (13) with respect to x and using this condition I get

�1A1d
�1�1 + �2A2d

�2�1 = �1A1m
�1�1 + �2A2m

�2�1 (16)

Hence, the explicit solution of (13) is

P (x) =
x

1� �� +
"

1

�1 (1� ��)
d
�2�1 �m�2�1

d�1�1m�2�1 � d�2�1m�1�1

#
x�1 + (17)

+

�
1

�2 (1� ��)
m�1�1 � d�1�1

d�1�1m�2�1 � d�2�1m�1�1

�
x�2
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and the result is an S-shaped curve with slope

Px (x) =
1

1� �� + A
�
1�1x

�1�1 + A�2�2x
�2�1 (18)

where A�1 and A
�
2 are the solutions of the two constants in equation (17).

Obviously the trigger values d and m must be chosen to attain the desired
targets on P: Thus, the conditions P (d) = Pd and P (m) = Pm de�ne the
trigger values d and m in terms of the given targets Pd and Pm:
Note that the positive root �1 > 0 is associated with the negative constant

A1 < 0, whereas, the negative root �2 < 0; is associated with the positive
constant A2 > 0. The dynamics of P (x) depends on three components.
For small values of the fundamentals x the dominant component of P (x)
is the addendum with the negative root �2: This function is decreasing and
convex. For large values of x; the component with positive root �1 prevails.
This is negative, decreasing and concave. For intermediate values of x, the
unconstrained component x

1��� contributes to the increasing portion of P (x):
This implies an S-shaped curve of P (x) like that shown in Figure 1.
To understand this geometry it is useful to rearrange (12) as

P (x)� x = �

2
Pxx�

2x2 + ��Pxx (19)

This expression says that the deviation of the actual pollution P (x) from
the fundamentals x depends on the curvature of the fundamentals-pollution
relationship, that is on the signs of the derivatives Pxx and Px. Where P (x) is
convex the expected change of pollution is positive, and the actual pollution
is above the fundamentals. Conversely, where P (x) is concave the actual
pollution is below the fundamental. This is an application of the Jensen�s
inequality.
We can further use the properties of equation (12), to explain the trajec-

tory of P (x) drawn in �gure 1. P (x) is an intertemporal relationship which
depends on the fundamentals x and on the expected value of the pollution.
Given an initial value for x, any expected change of the pollution rate implies
a corresponding change in actual P (x); and, correspondingly, any change in
actual P (x) will a¤ect the expected pollution rate. This interdependence
in�uences the trajectory of pollution over the range [d;m]. As the upper
(lower) target draws closer, it exerts an ever stronger in�uence on actual
pollution emission, and after the critical value xc of the fundamentals, the
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function P (x) becomes a concave (convex) function of x. As a result, latent
binding targets will a¤ect the pollution dynamics even when the boundaries
are currently slack. Therefore, it is not surprising that as x tends to its max-
imum (minimum) value, P (x) converges smoothly to the bounds becoming
tangent at the binding targets, in such a way as to satisfy the smooth pasting
condition.
It is helpful to compare the slope of P (x) in expression (18) with the

slope 1
1��� of the unconstrained trajectory drawn in �gure 1. The smooth

pasting condition (15) implies that Px(x) tends to zero when x goes to d and
m. In addition, at the value xc; where the two functions cross, Px(xc) = 1

1���
+A�1�1x

�1�1
c + A�2�2x

�2�1
c < 1

1��� because A
�
1 and �2 are negative. In other

words, the slope of the function P (x) is everywhere �atter than 1
1��� , so that

shocks to the fundamentals x have a dampened e¤ect on the actual pollution
in the range. Interestingly, this stabilization of emissions takes place even
when the authorities are not actively defending the targets. They only have
to act when the fundamentals x reach the level m or d: Therefore, what is
remarkable here, is that the pollution dynamics changes its behavior not only
when the targets are actually binding, but even when they are slack at the
current time.

5 Conclusions

In this paper I studied the dynamics of pollution emissions in presence of
environmental commitments, showing that latent binding targets may a¤ect
the emissions of pollution even when the boundaries are currently slack. In
this simpli�ed framework the expectation that authorities will act to defend
the commitments exerts a stabilizing in�uence on pollution dynamics inside
the binding range. Therefore, the S-shaped P (x) locus captures the idea that
environmental agreements may reduce pollution emissions and its growth
rate, for any given value of the fundamentals x. Further, di¤erently from the
model of shallow lake, the nonlinear trajectory of P (x) is the result of the
optimal stochastic control, given the uncertain process of fundamentals x:
Basically, the stabilizing e¤ect of pollution targets depends on the sen-

sitivity of the current pollution to its expected growth rate, the drift and
volatility of the underlying fundamentals, and the credibility of the authori-
ties�commitment. To see this last point, let q be the probability that targets
will be defended by authorities, and 1� q the probability that they will not

11



be defended. In this scenario, the expected stock of the e¤ective pollution
is given by the expression E(P ) = qP (x) + (1 � q) x

1��� : It is clear that un-
certainty about the credibility of authorities will reduce the stabilizing e¤ect
of commitments. Indeed, when q is very small pollution E(P ) will tend to
follow the fundamental x; since qP (x) ' 0: Therefore, one important impli-
cation of the model is that credibility is a crucial instrument in the hands of
authorities to defend environmental commitments.
Finally, the following step of the present study is to generalize its basic

outcomes. This would imply the analysis of a more complex underlying
stochastic process generating fundamentals, the introduction of adjustment
costs which limit the in�uence of the fundamentals on the actual behavior
of pollution, the explicit use of corrective taxes and subsidies, and empirical
analysis to test the e¤ects of fundamentals on pollution emissions between
the targets. In practice, the basic nonlinearity emphasized in the present
model can be used to provide further answers on the relationship between
pollution dynamics and environmental policies.
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Figure 1: Pollution in binding targets.
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