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Abstract. In this paper we review a number of coalitional solution concepts for the analysis
of the stability of cartels and mergers under oligopoly. We show that, although so far
the industrial organization and the cooperative game-theoretic literature have proceeded
somehow independently on this topic, the two approaches are highly inter-connected. We
�rst consider the basic problem of the stability of the whole industry association of �rms
under oligopoly and, for this purpose, we introduce the concept of core in games with
externalities. We show that di¤erent assumptions on the behaviour as well as on the timing
of the coalitions of �rms yield very di¤erent results on the set of allocations which are
core-stable. We then consider the stability of associations of �rms organized in coalition
structures di¤erent from the grand coalition. To this end, various coalition formation games
recently introduced by the so called endogenous coalition formation literature are critically
reviewed. Again, di¤erent assumptions concerning the timing and the behaviout of �rms
are shown to yield a wide range of di¤erent results.
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1. Introduction

Since the seminal work by Salant et al. (1983) on merger pro�tability, there has been
a large interest in the stability of collusive agreements between �rms under oligopoly, as
in the case of cartels and mergers (see, among the others, d�Aspremont et al. 1982, 1986,
Deneckere et al. 1985, Donsimoni et al. 1986, Rajan, 1989 and Huck et al. 2005 for a
survey). A relevant number of the initial works on this topic has mainly focussed on the
conditions under which a collusive agreement within one group of �rms can be viewed as
stable when the remaining �rms in the industry act either as price-takers (d�Aspremont
et al., 1982, Donsimoni et al., 1986, among others) or as oligopolistic �rms (see Sha¤er,
1995). As in the traditional price-leadership model (Markham, 1951), in the above literature
a group of dominant �rms is assumed to behave as one Stackelberg leader, i.e., taking as
given the reaction of the remaining �rms in the fringe. Since in absence of synergies the
cooperation within a cartel is formally equivalent to the outcome of a horizontal merger,
many of the results of the horizontal merger literature (Salant et al.,1983, Deneckere and
Davidson, 1985, Perry and Porter, 1985, Farrell and Shapiro, 1990, among others) also apply
to the problem of cartel stability.1 However, di¤erently from the cartel literature, most of the
works on horizontal mergers examines the pro�tability of mergers in (oligopolistic) markets
in which a group of collusive �rms and the fringe of competitors take their strategic decisions
simultaneously.2

A common feature of both groups of contributions listed above is that the notion of
stability usually adopted is one of individual stability: for a cartel (or merger) to be stable,
no �rm of the fringe must have an incentive to enter the cartel (external stability) and no
�rm of the cartel must possess an incentive to quit (internal stability). Recognizing the
fact that this approach �...ignores the possibility that a group of players might jointly make
themselves better o¤by leaving the cartel (Shaked, 1986)�, later on some contributions have,
in various ways, attempted to use a notion of coalition stability to approach the problem
(see, for instance, d�Aspremont and Gabszewicz, 1986, Rajan, 1989, Zhao, 1997, Thoron,
1998). The major purpose of these works is mainly to check whether some imputations
exist under which a collusive agreement signed by all �rms in the industry is stable, that is,
immune to deviations by every subcoalition of the �rms in the industry. As in the horizontal
mergers literature, the stability of an agreement is examined in a context in which a deviating
coalition and the remaining �rms of the industry act simultaneously. In such a literature,
the sequential approach typical of the price-leadership model is thus lost.
It may be questioned if the defection of a group of �rms from a cartel has to be viewed as
happening before or at the same time the remaining �rms take their action. Indeed, it is
often the case that a coalition of �rms deciding to leave the cartel and carry out its own
collusive production, can choose such an action before its formation is publicly observed.
In other terms, such a group can act as a Stackelberg leader with respect to the outside
�rms, that thus react to its action as followers. Clearly, the sequential structure is useful to
describe only those situations in which a coalition of �rms can precommit to a joint strategy

1This equivalence holds in particular if the �rms in the cartel are assumed to sign a binding agreement
on their joint prices or quantities.

2Other recent works on this topic also looks at the pro�tability of mergers under non linear demand
(Fauli-Oller, 1997, Cheung, 1992), strategic delegation in mergers (Ziss, 2001, Gonzalez-Maestre et al. 2001),
mergers under incomplete information (Amir et al. 2004), mergers and cartels with Stackelberg leaders and
followers (Daughety, 1990, Huck et al., 2001, Escrihuela-Villar and Fauli-Oller, 2008).
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expecting outside �rms observing the e¤ects of its action, and being left with no choice but
optimally reacting to it.
In order to examine all these questions, we introduce in Section 2 the notion of core of games
with externalities and thus apply it to check the stability of a merger or a cartel made by all
�rms in the industry. We show that while the simultaneous approach to the cartel formation
described above corresponds to the gamma-core or delta-core of an oligopolistic game (see,
for instance Chander & Tulkens, 1998), the sequential approach can be obtained by assuming
a Stackelberg behaviour for all deviating coalitions (see Currarini & Marini, 2003). In this
way, we are able to see that some classical results on merger stability contained, for instance,
in Rajan (1989), can be easily extended. In particular, this author considers a linear and
symmetric Cournot oligopoly with quadratic costs, and looks at the stability of cartels. In the
case in which every deviation from a cartel implies that the remaining �rms stick togheter,
the author is able to prove that, for n = 2; the game is convex and the core is non empty,
while for n � 3, the core is empty. Moreover, for n = 3 and n = 4; the only stable coalition
structure is that in which every �rms act as singletons. However, when the deviation of a �rm
from a cartel implies that remaining �rms split up in singletons, for n � 3, the �rms never
chose to stay separate and for n = 3 and n = 4;the core is non empty. In the terminology
of cooperative games, Rajan (1989) makes use of the -core. We will show here that the set
of allocations in the -core strictly contains those included in a sequential solution concept
(here denoted �-core). The possibility that the remaining �rms can observe the other �rms
deviating from an agreement represents in such case a re�nement of the set of acceptable
allocations of the joint surplus. Moreover, we prove that in the linear Cournot model, the
�-core comprehends a unique allocation.
Obviously, the formation of collusive structures which are di¤erent from the whole associ-

ation of �rms in the industry may also represent a serious options for �rms in oligopoly. The
recent developments in the theory of endogenous coalition formation have, in this respect,
provided a new set of game-theoretic tools to study this problem (Hurt and Kurz, 1983,
Bloch, 1995, Ray and Vohra, 1997, Shin and Yi, 1997 and also Yi, 2003, Bloch 1997, 2003,
Marini, 2008, for surveys of this literature). In all these works, the cooperation (and, hence
also the formation of an association of �rms) is modelled as a two stage process: at the
�rst stage players form coalitions, while at the second stage formed coalitions interact in a
well de�ned strategic setting. This process is formally described by a coalition formation
game, in which a given rule of coalition formation maps players�intentions to form coalitions
into a well de�ned coalition structure, which, in turn, determines the equilibrium strategies
chosen by players at the second stage. A basic di¤erence among the various models lies
in the timing assumed for the coalition formation game, which can either be simultaneous
(Hurt & Kurz, 1983, Ray & Vohra,1997, Yi, 1997) or sequential (Bloch, 1994, Ray & Vohra,
1999). As far as the application to associations of �rms is concerned, Bloch, 1995 shows that
in a linear Cournot oligopoly �rms may form in equilibrium an asymmetric association of
�rms, comprising aproximately three-quarters of the �rms, while the remaining �rms stay as
singletotns. We will show that this result is related to the well known Salant�s et al., 1983
result on merger pro�tability. Finally, Ray and Vohra, 1997 show that there may also be a
cyclical pattern in the formation of associations in a linear Cournot oligopoly. By using a
recursive concept of solution - denoted equilibrium binding agreement - the authors prove
that, for n = 2; there is a stable merger, while, for 3 � n � 8, any merger is unstable.
Finally, for n = 9, the grand coalition forms and is stable. In Section 3 we will review some
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of these models and show that, when applied to the formation of collusive agreements, their
results vary extensively according to the di¤erent assumptions made on the timing and the
behaviour of �rms.

The paper is organized as follows. The next section will be devoted to introduce a basic
quantity oligopoly game adopted as underlying strategic form game in all coalitional equi-
librium concepts introduced later on in the paper. Section 3 is concerned with the formation
of the grand coalition of �rms and, for this reason, it reviews some classical coalitional
concepts as the core, the strong Nash equilibrium and some variations of these two key so-
lution concepts. Section 4 considers the stability of partial cartels and mergers and reviews
some relevant approaches to the endogenous coalition formation problem. Section 5 brie�y
concludes.

2. A Quantity Oligopoly Game

Let the pro�t function of every �rm i 2 N = f1; 2; :::; ng be de�ned as
�i (y; yi) = p (y) yi � Ci (yi) ;

where yi is the output of each �rm, y =
Pn

i=1yi the total industry output, p (y) the inverse
demand function and Ci (yi) the cost function of every �rm. Let also Ci (:) = Cj (:), for every
i,j in N . Thus, we can represent the Cournot oligopoly through the following strategic form
game, G = (fYi; �igi2N ; fYSgS�N). In such a game the set of players is represented by the
set of �rms N and every �rm�s strategy set is de�ned as

Yi = fyi 2 R+ : yi � yig
where yi is a capacity constraint. Let also players�preferences be linear in pro�t and, for
every coalition of �rms S � N , let the strategy set be represented by:

YS � YS � TS
where YS =

Q
S

Yi and TS = (t1; :::; ts) is a vector of transfers such that
P
i2S
ti = 0.3

In what follows we make the following standard assumptions:

A.1 The function �i (:) and Ci (:) are twice continously di¤erentiable for every i = 1; ::; n;
A.2 For every i 2 N , the capacity constraint yi <1 determines the maximum production

level;
A.3 For every i 2 N , p00 (:) yi + p0 (:) < 0 and p0 (:)� C

00
i < 0.

De�nition 1. A (Cournot) Nash equilibrium of G is a strategy pro�le y� such that, for all
i 2 N , y�i 2 Yi and, for all yi 2 Yi, �i (y�) � �i

�
yi; y

�
�i
�
.

Proposition 1. There exists a unique (Nash) equilibrium of the game G.

Proof. By assumptions A.1, A.2 and A.3 every player�s payo¤ functions is continuous in the
strategy pro�le yN and strictly concave on yi. Strategy sets are non empty, compact and
convex (yi � yi <1), so that existence of a Nash equilibrium follows. Uniqueness is proved
as follows. By assumption A.3, the function � (yi; y) � p0 (y) yi+ p (y)�C 0i (yi) is decreasing

3Since we limit ourselves to consider game in transferable utility, we want every strategy pro�le to de�ne
exactly the payo¤ of a coalition of �rms. To this purpose we include the transfer in the de�nition of every
coalition of �rms strategy set.
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both in yi and y. In fact,
@F (yi;y)
@yi

= p0� C 00i < 0 and
@�(yi;y)
@y

= p00yi + p
0 < 0 Suppose now

that there exist two Nash Equilibria (y11; :::; y
1
n) and (y

2
1; :::; y

2
n) of G. Equilibrium conditions

require that for each i

�
�
y1i ; y

1
�
= 0

and

�
�
y2i ; y

2
�
= 0

Thus, if y1i > y
2
i , then y

2 > y1. This in turns implies that y1j > y
2
j for all j, contradicting the

fact that y2 > y1. Therefore, it must be that y1i = y
2
i for all i 2 N . �

3. Grand Coalition Stability

In this section we introduce the concept of core in games with externalities in order to
check the stability of collusive agreements among �rms in an oligopolistic market.

3.1. Cooperative Games with Externalities. Since von Neumann and Morgenstern
(1944), a wide number of works have developed solution concepts speci�c to games with
coalitions of players. This literature, known as cooperative games literature, made initially a
predominant use of the characteristic function to represent the worth of a coalition of players.

De�nition 2. A cooperative game with transferable utility (TU cooperative game) can be
de�ned as a pair (N; v), where N = f1; 2; ::i; ::Ng is a �nite set of players and v : 2N ! R+
is a mapping (characteristic function) assigning a value or worth to every feasible coalition
S 2 2N .4

The value v(S) can be interpreted as the maximal aggregate amount of utility members of
coalition S can achieve by coordinating their strategies. However, in strategic environments
players� payo¤s are de�ned on the strategies of all players and the worth of a group of
players cannot be de�ned independently of the groups (or coalitions) formed by external
players (NnS).5 Hence, to obtain v(S) from a strategic situation we need �rst to de�ne an
underlying strategic form game. In our case, the strategic form game will be represented by
a standard Cournot oligopoly game.

3.2. �- and �-characteristic functions. The concepts of �- and �- core, formally studied
by Aumann (1967), are based on von Neumann and Morgenstern�s (1944) early proposal of
representing the worth of a coalition as the minmax or maxmin aggregate payo¤ that it can
guarantee its members in the underlying strategic form game. Accordingly, the characteristic
function v(S) in games with externalities can be obtained assuming that outside �rms act to
minimize the payo¤of every deviating coalition of �rms S � N . In this minimax formulation,
if members of S move second, the obtained characteristic function,

(3.1) v�(S) = min
yNnS

max
yS

P
i2Sui(yS; yNnS);

4Here we mainly deal with games with transferable utility. In games without transferable utility, the
worth of a coalition associates with each coalition a players�utility frontier (a vector of utilities).

5See also the discussion contained in Gambarelli (2007).
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denoted �-characteristic function, represents what �rms in S cannot be prevented from
getting. Alternatively, if members of S move �rst, we have

(3.2) v�(S) = max
yS
min
yNnS

P
i2Sui(yS; yNnS)

denoted �-characteristic function, which represents what �rms in S can guarantee them-
selves, when they expect a retaliatory behaviour from the complement coalition NnS.6
When the underlying strategic form game G is zero-sum, (1) and (2) coincide. In non-zero

sum games they can di¤er and, usually, v�(S) < v�(S) for all S � N .
However, and characteristic functions express an irrational behaviour of coalitions of �rms,

acting as if they expected their rivals to minimize their payo¤. Although appealing because
immune from any ad hoc assumption on the reaction of the outside �rms (indeed, their
minimizing behavior is here not meant to represent the expectation of S but rather as a
mathematical way to determine the lower bound of S�s aggregate payo¤), still this approach
has important drawbacks: deviating coalitions are too heavily penalized, while outside �rms
often end up bearing an extremely high cost in their attempt to hurt deviators. Moreover,the
little pro�tability of coalitional objections usually yield very large set of solutions (e.g.,large
cores).

3.3. Simultaneous Interaction among Coalitions: the -characteristic Function.
Another way to de�ne the characteristic function in games with externalities is to assume
that in the event of a deviation from N , a coalition S plays à la Nash with the remaining
�rms.7 Similarly to the � coalition formation game introduced by Hart and Kurz (1983),
the -approach implicitly restricts the dynamic structure of deviations and reactions to the
coalition formation stage, and treats the strategy choice stage as a simultaneous game given
the coalition structure induced by the deviation. In other terms, in a �rst stage a coalition of
�rms forms and remaining �rms react splitting up as singletons; in a second stage, optimal
strategies are simultaneously chosen both by the deviating coalition of �rms and by the
fringe of excluded �rms. Consequently, the strategy pro�le induced by the deviation of a
coalition S � N is precisely the Cournot equilibrium among S and each individual player in
NnS. The worth of a cartel of �rms S under the  assumption is thus its aggregate payo¤
in the Cournot equilibrium between S and the outside �rms acting as singletons. This is the
setup implicitly underlying papers like Salant et al (1983) and Rajan (1989) to analyse the
pro�tability of �rms�collusion. Thus, the characteristic function v(S) can be de�ned for all
S � N as:

(3.3) v(S) =
X
i2S
�i

�
y�S;
�
y�j
	
j2NnS

�
where

(3.4) y�
S
= argmax

yS2YS

X
i2S
�i

�
yS;
�
y�j
	
j2NnS

�
6Note that �rms outside S are treated as one coalition, so the implicit assumption here is that �rms in

NnS stick together after S departure from the grand coalition N .
7This way to de�ne the worth of a coalition in as a noncooperative equilibrium payo¤ of a game played

between coalitions was �rstly proposed by Ichiishi (1983).
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and 8j 2 NnS,

(3.5) y�
j
= argmax

yj2Yj
�j

�
y�S; fy�kgk2(NnS)nfjg ; yj

�
:

where y� = (y�1; :::; y
�
n) is characterized by the following n �rst order conditions:

(3.6) p (y�) + p0 (y�)
X
i2S
yi = C

0
i (y

�
i ) for all i 2 S

(3.7) p (y�) + p0 (y�) y�j (y
�
S) = C

0
j

�
y�j
�
, for all j 2 NnS:

Moreover,

(3.8) v�(S) =
P
i2S
�i
�
y�S; y

�
NnS
�

where,

y�S = arg max
yS2YS

P
i2S
�i
�
yS; y

�
NnS
�

y�NnS = arg max
yNnS2YNnS

P
j2NnS

�j
�
y�S; yNnS

�
:

In both cases, for (3.3) and (3.8) to be well de�ned, the Nash equilibrium of the strategic
form game played among coalitions must be unique. Usually, v�(S) < v�(S) < v�(S) for all
S � N .

3.4. Sequential Interactions among Coalitions: the �-characteristic Function. It
is also conceivable to modify the - or �-assumption (coalitions playing simultaneously à la
Nash in the event of a deviation from the grand coalition) reintroducing the temporal struc-
ture typical of the � and �-assumptions.8 When a deviating coalition S moves �rst under
the -assumption, the members of S choose a coordinated strategy as leaders, thus antic-
ipating the reaction of the players in NnS, who simultaneously choose their best response
as singletons. The strategy pro�le associated with the deviation of a coalition S is thus the
Stackelberg equilibrium of the game in which S is the leader and the players in NnS are,
individually, the followers. We denote this strategy pro�le as a Stackelberg equilibrium with
respect to S. Formally, this is the strategy pro�le ey (S) = (eyS; yj(eyS)) such that
(3.9) eyS = argmaxey2YS

X
i2S
�i

�
yS; fyj(yS)g

j2NnS

�
and, 8j 2 NnS,

(3.10) yj(yS) = argmax
yj2Yj

�j

�
yS; fyk(yS)gk2(NnS)nfjg ; yj

�
:

We now establish conditions under which there exists a Stackelberg equilibrium with respect
to S. For every coalition of �rms S � N and strategy pro�le yS 2 YS, let G (NnS; yS) denote
the restriction of the game G to the set of �rms NnS, given the strategy pro�le yS.

Proposition 2. For every coalition of �rms S � N there exists a Stackelberg equilibrium
with respect to S.

8See Currarini and Marini (2003, 2004) for more details.
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Proof. By condition (3.10) and proposition 1, the strategy pro�le fyj(yS)gj2NnS is the unique
Nash equilibrium of G (NnS; yS). By the closedness of the Nash equilibrium correspondence
(see, for instance, Fudenberg and Tirole (1991), pag.30), members of S maximize a continu-
ous function over a compact set (assumption 2); thus, by Weiestrass Theorem, a maximum
exists. �

Note that condition (3.9) implies that in every Stackelberg equilibrium with respect to S
the aggregate payo¤ of S is the same. We thus able to de�ne the joint payo¤ (or worth) of
every coalition of �rms v�(S) in the sequential case as uniquely de�ned as follows:

(3.11) v�(S) =
X
i2S
�i

�eyS; fyj(eyS)gj2NnS�
where (eyS; yj(eyS)) is a Stackelberg equilibrium with respect to S and the vector (~y1; :::; ~yn)
is fully characterized by the following n �rst order conditions:

(3.12) p (~y) + p0 (~y) (1 + (n� s)g(~yS))
X
i2S

~yi = C
0
i (~yi) for all i 2 S

(3.13) p (~y) + p0 (~y) yj (~yS) = C
0
j (yj (~yS)) , for all j 2 NnS:

where g(
P

i2S ~yi) is the Cournot Equilibrium strategy of each player in the game �c (NnS; ~yS).

Obviously, v�(S) � v(S). In a similar way, the -assumption can be modi�ed by assuming
that a deviating coalition S plays as follower against all remaining players in NnS acting as
singleton leaders. Obviously, the same can be done under the �-assumption.

3.5. The Core in Games with Externalities. We can test the various conversions of
v(S) introduced above by examining the di¤erent predictions obtained using the core of
(N; v).
We �rst de�ne an imputation for (N; v) as a vector z 2 Rn

+ such that
P

i2N zi � v(N)
(feasibility) and zi � v(fig) (individual rationality) for all i 2 N .

De�nition 3. The core of a TU cooperative game (N; v) is the set of all imputations z 2
Rn+ such that

P
i2S zi � v(S) for all S � N .

3.6. Some Results in a Linear Oligopoly. We �rst introduce a linear oligopoly, i.e., the
case in which p (y) = a � by and, for every �rm i 2 N , Ci (yi) = cyi. For every �rm i 2 N ,
let the cost function be:

Ci (yi) = cyi

The constraints on the parameters are:

a > c � 0 and b > 0:

3.6.1. �- and �-core. Under the �- and �-assumptions, if either one single �rm or a group
of �rms leave the grand coalition N , the remaining �rms will play a minimizing strategy in
such a way that, for every S � N , v�(S) = v�(S) = 0. In this case, the core coincides with
all Pareto-e¢ cient imputations. The predictive power of the �- and �-core is thus minimal
for the oligopoly games.
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3.6.2. The -core. According to de�nition (3.3) the worth of a group of �rms S is given by:

(3.14) v (S) =
X
i2S

�
p
�
y�S; y

�
�S
�
y�i � Ci (y�i )

�
:

In the linear case introduced above, this is equivalent to:

v (S) = max
yS

�S (yS; (n� s)yj) = (a� by) yS � cyS

where, by the symmetry of �rms, y = syi + (n� s)yj.

The F.O.C. for coalition S is:

a� 2byS � b(n� s)yj � c = 0
from which, the best-reply function is:

(3.15) yS((n� s)yj) =
a� c� b(n� s)yj

2b
:

Note that, if we consider separately the FOC for every i 2 S, we obtain the following
best-reply function:

(3.16) yi ((n� s)yj) =
a� c� b(n� s)yj

2bs

and the analysis proceeds as shown below by summing up every i �s best-reply.

Every j 2 NnS aims at maximizing:

�j

 
yj; (n� s� 1) yr

r2(NnS)nj
; yS

!
= (a� byj � byS � b(n� s� 1)yr)yj � cyj

with F.O.Cs, for every j 2 NnS;

a� 2byj � b (n� s� 1) yr
r 6=j

r2NnS

� bys � c = 0:

By symmetry, every j�s best -reply can be written as:

(3.17) yj (yS) =
a� byS � c
b (n� s+ 1)

From the two best-replies (3.15) and (3.16) we get:

y�j =
a� c

b(n� s+ 2)
and, similarly:

y�S =
a� c

b (n� s+ 2) :

Now, in order to obtain v (S) ; we �rst compute the equilibrium price:
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p (y�) = a� by�S � b(n� s)y�j ;
that is,

p (y�) =
a+ (n� s+ 1) c
(n� s+ 2) ;

and then,
v (S) =

X
i2S
�i (y

�) = �S = p (y
�) y�S � cy�S

that can be written as:

v (S) =
(a� c)2

b(n� s+ 2)2 :

Note that, for s = n,

v (N) =
(a� c)2

4b
:

Proposition 3. Under the linear quantity oligopoly game, the -core is non empty and
strictly includes the equal split allocation.

Proof. We know from (3.3) that

v (N) =
(a� c)2

4b
and

v (S) =
(a� c)2

b (n� s+ 2)2
:

Without loss of generality let us normalize (a�c)2
b

= 1, so that the equal-split allocation gives
to each player in N a payo¤ of v(N)jN j = 1

4n
and v (S) = 1

(n�s+2)2 :Consider now the equal

split allocation for a coalition of �rms S, v(S)

jSj = 1
s(n�s+2)2 . Whatever distribution of the

worth v (S) may be chosen by S, at least one player in S must get at most a payo¤ equal
to 1

s(n�s+2)2 . This implies that coalition S improves upon the equal split allocation for N if
and only if:

1

s (n� s+ 2)2
>
1

4n
:

Straightforward calculations show that the above inequality is satis�ed respectively for:

s > n

s < 2 +
n�

p
n2 + 8n

2
< 1

s > 2 +
n+

p
n2 + 8n

2
> n

and hence, it is never satis�ed for 1 < s � n: It follows that the equal-split allocation for
N characterized by the strategy vectors (y�; t�) ; where t� = (0; 0; :::; 0) ; belongs to the -
core. To see that this allocation is strictly included in the -core, note that, since individual
deviations assign to a player just v (fig) = 1

(n+1)2
< v(N)

jN j = 1
4n
; di¤erent and unequal
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allocations belong as well to the -core. In particular, any allocation giving to a player i his
worth v (fig), and v(N)�v(fig)

jN�1j to any remaining player in N , it is not objectable.
�

3.6.3. The �-core. Using the same linear setup introduced above, the following result can be
easily proved.

Proposition 4. Under the linear quantity oligopoly, the �-core is empty.

Proof. Under the �-assumption, when a single �rm leaves the grand-coalition of �rms fNg,
a simultaneous duopoly game is played between the �rm fig and the remaining �rms Nn fig
acting as a single coalition. As a result, v(fig) = (a�c)2

9b
, which is greater than v�(N)

n
= (a�c)2

4nb
for n > 2, the maximum payo¤ that at least one �rm will obtain inside the grand coalition.
Therefore, the core is empty. �

3.6.4. The sequential case and the �-core. According to (3.11), the worth of a coalition S in
this case can be de�ned as:

(3.18) v�(S) =
X
i2S

h
p
�
~yS; fyj(~yS)gj2NnS

�
~yi � Ci(~yS)

i
As before, every j 2 NnS maximizes �j,for a given yS, and its best-reply is:

(3.19) yj (yS) =
a� byS � c
b (n� s+ 1) :

The coalition S acts as leader and maximizes:

X
i2S
�i

0@yi; (s� 1)yh
h6=i
h2S

; (n� s)yj (yS)

1A = �S ((n� s)yj (yS)) :

This is equivalent to:

�S ((n� s)yj (yS)) =
�
a� byS � b(n� s)

a� byS � c
b (n� s+ 1)

�
yS � cyS:

The F.O.C. of this problem is:

a� 2byS � (n� s)
a� c� 2byS
(n� s+ 1) � c = 0;

from which:

(3.20) eyS = a� c
2b

and
yj (eyS) = a� c

2b (n� s+ 1) :

Therefore, in order to obtain v� (S) ; we �rst compute the equilibrium price:

p (ey) = a� beyS � b(n� s)yj (eyS) ;



12 SERGIO CURRARINI AND MARCO A. MARINI

as:

p (ey) = a+ 2 (n� s) c+ c
2 (n� s+ 1) :

Finally,

v� (S) = �S (eyS; (n� s)yj (eyS)) = p (ey) eyS � ceyS
that is,

(3.21) v� (S) =
(a� c)2

4b(n� s+ 1) :

Again, the worth of the grand coalition (n = s) can be written as:

(3.22) v� (N) =
(a� c)2

4b
:

Proposition 5. For the linear quantity oligopoly, the equal split e¢ cient allocation is the
unique element of the �-core.

Proof. Without loss of generality let us normalize (a�c)
2

b
= 1, so that the equal split allocation

gives to each player in N a payo¤ of v�(N)
n

= 1
4n
and v� (S) = 1

4(n�s+1) , where s = jSj and
n = jN j. We �rst show that the equal split allocation belongs to the core. Consider the
value v�(S)

s
for an arbitrary coalition S. We have that for all S such that s � n

(3.23)
v� (S)

s
=

1

4s (n� s+ 1) �
1

4n
=
v� (N)

n
:

In fact, the above inequality reduces to

(3.24) (n� s+ 1) � n
which is satis�ed for n � s. It follows that if coalition S forms, at least one player gets a
payo¤ less than or equal to v�(S)

s
, and therefore less than or equal to v�(N)

n
. This implies that

the equal split allocation is in the �-core. To see that the equal-split is the unique allocation
in the �-core, note that (3.24) is satis�ed with equality for s = n and for s = 1. This means
that v� (fig) = v�(N)

n
for all i 2 N . Thus, consider the allocation z0 di¤erent from the equal

split allocation; in z0, some player j receives a payo¤ vj <
v�(N)
n

. Player j can thus improve
upon z0 by getting v� (fig) = v�(N)

n
, which implies that z0 is not in the �-core. �

The �-core is non-empty and selects a unique symmetric allocation out of the -core, that
includes instead a continuum of other asymmetric allocations. The �-core can be therefore
viewed as a re�nement of the -core, one that selects out of the latter the most �reasonable�
allocation for the symmetric Cournot setting.

3.7. The case of linear demand and quadratic cost. We can now consider also the
case with a quadratic cost function. As indicated above, we know from Rajan (1989), that
for n = 2, n = 3 and n = 4; the -core is non empty. We now show that this result does not
hold under the �-core assumption.
Let Ci (yi) =

y2i
2
: Let also for simplicity p (y) = a� y:



COALITIONAL APPROACHES TO COLLUSIVE AGREEMENTS 13

Proposition 6. Under linear demand and quadratic cost quantity oligopoly, the �-core can
be empty.

Proof. From �rst order conditions, it is obtained that:

v� (N) =
a2n2

(1 + 2n)2

and

v� (fig) =
a2 (a2 + 5n� 1)
(n+ 1) (n+ 5)2

:

Simple calculations show that, for every i 2 N , and for n � 2, v� (fig) > v�(N)
jN j : By the

e¢ ciency of the equal-split solution, in any other e¢ cient allocation at least one player would
receive a lower utility. This fact together with the above result that any player can improve
upon the equal-split allocation by deviating as singleton, imply that any e¢ cient allocation
can be objected by a deviation of a single player. This, in turn, implies that the �-core is
empty. �
3.8. Coalitional Equilibria in Strategic Form Games.

3.8.1. Strong Nash Equilibrium. In the �core approach�described above, players can sign
binding agreements. When this assumption is relaxed, a Nash approach to coalitional devi-
ations becomes more appropriate. The concept of equilibrium proposed by Aumann (1959),
denoted strong Nash equilibrium, extends the Nash equilibrium to every coalitional devia-
tion. Accordingly, a strong Nash equilibrium is de�ned as a strategy pro�le that no group of
players can pro�tably object, given that remaining players are expected not to change their
strategies.
A strategy pro�le bx 2 XN for G is a strong Nash equilibrium (SNE) if there exists no

S � N and xS 2 XS such that

ui
�
xS; bxNnS� � ui (bx) 8i 2 S

uh
�
xS; bxNnS� > uh (bx) for some h 2 S:

Obviously, all SNE of G are both Nash Equilibria and Pareto E¢ cient; in addition they
satisfy the Nash stability requirement for each possible coalition. As a result, SNE fails to
exist in many economic problems, and in particular, whenever Nash Equilibria fail to be
Pareto E¢ cient.

Proposition 7. For the linear oligopoly, the set of strong Nash equilibrium is empty.

Proof. The symmetric strategy pro�le y =
�
a�c
2nb
; a�c
2nb
; a�c
2nb

�
; associated with the Pareto-

e¢ cient allocation, is not a Nash equilibrium, and the result follows. �

4. Stable Associations of Firms

4.1. Cooperative Games with Coalition Structures. According to the original spirit of
von Neumann and Morgenstern (1944), "the purpose of game theory is to determine every-
thing can be said about coalitions between players, compensation between partners in every
coalition, mergers or �ght between coalitions" (p.240). To introduce the topic of competition
among coalitions, a framework di¤erent from which used by traditional cooperative games
is required. The �rst required step is to extend the game (N; v) to a game with a coalition
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structure P = (S1; S2; ::::; Sm); i.e., a partition of players N such that for all Sh; Sj 2 P ,
Sh \Sj = ? and

S
k=1;2;::mSk = N . The second step is to de�ne the worth to every coalition

belonging to a given coalition structure. Finally, a relevant issue is which coalition structure
can be considered stable.
In their seminal contribution, Aumann and Drèze (1974) extend the solution concepts of

cooperative game theory to games with exogenous coalition structures. In every P 2 P(N),
the set of all partitions of the N players, each coalition is allowed to distribute its members
only its own worth v(Sk), here assumed equal to the Shapley value de�ned for every given
coalition structure P 2 P.9 However, the above restriction has been criticized as inadequate
for all models in which "the raison d�etre for a coalition S to form is that its members try
to receive more than v(S) - the worth of S." (Greenberg, 1994, p.1313). A part from this
criticism, the most commonly used stability concept within this framework is the coalition
structure core.

De�nition 4. Let (N; v) be a cooperative game. The coalition structure P 2 P(N) is stable
if its core is nonempty, i.e., if there exists a feasible payo¤ z 2 Z(P ) such that, for every
Sk 2 P , zk � v(Sk). The game (N; v) has a coalition structure core if there exists at least
one partition that is stable.

4.1.1. The Partition Function Approach. The presence of externalities among coalitions of
players calls for a more encompassing approach than that o¤ered by a cooperative games in
characteristic function form. For this purpose, in a seminal paper Thrall and Lucas (1963)
introduce the games in partition function form.

De�nition 5. A TU game in partition function form can be de�ned as a triple (N ;P;w);
where P = (S1; S2; ::::; Sm) is a partition of players N and w(S;P ) : 2N� P ! R is a
mapping that assigns to each coalition S embedded in a given partition P 2 P(N) a real
number (a worth).

In this way, the authors can de�ne the value of every non-empty coalition S of N as

v(S) = min
fP jS2Pg

w(S; P );

where this minimum is over all partitions � which contain S as a distinct coalition. This
approach constitutes a generalization of the cooperative game (N ; v) and the two games
coincides when the worth of a coalition is independent of the coalitions formed by the other
players. When coaltions.payo¤s are not independent, some assumptions are still required to
model the behaviour of coalitions with respect to rival.coalitions. Since Ichiishi (1983), the
modern theory of coalition formation adopts the view that coalitions cooperate inside and
compete à la Nash with the other coalitions.

4.1.2. The Valution Approach. Since the games in partition function are hard to handle and
often pose technical di¢ culties, many recent contributions have imposed a �xed allocation
rule distributing the worth of a coalition to all its members. Such a �xed sharing rule
gives rise to a per-member payo¤ (valuation) mapping coalition structures into vectors of
individual payo¤s.

9The Shapley value is de�ned as �(N; v) =
P

S�N q(s)�i(s), where q(s) =
(s�1)!(n�s)!

n! ; and �i(s) =
v(S) � v(Sn fig) is the marginal contribution of player i to any coalition S in the game (N ; v): Therefore,
the Shapley value of player i represents the weighted sum of his marginal contribution to all coalitions he
can join.
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De�nition 6. A game in valuation form can be de�ned as a triple (N;P; vi), where P =
(S1; S2; ::::; Sm) is a partition of players N and vi(S) : 2N � P ! RjSj is a mapping that
assigns to each individual belonging to a coalition S embedded in a given partition P 2 P
(the set of all feasible partitions) a real number (a valuation).

De�nition 7. A coalition structure is core stable if there not exists a coalition S and a
coalition structure P 0 such that for S 2 P 0 and for all i 2 S, vi(S; P 0) > vi(S; P ):

Analogous concepts of �, �, , �, �-core stability can be de�ned for games in valuation
form. See the proposition that follows.

Proposition 8. Under the linear oligopoly game, the grand coalition is a core-stable coalition
structure under the valuations v�i , v

�
i , v


i and v

�
i . It is not core-stable under the valuation

v�i . Moreover, under the valuation v
�
i , the grand coalition is the only core-stable coalition

structure.

Proof. It follows straightforwardly by propositions 3, 4 and 5. �

4.2. Noncooperative Games of Coalition Formation. Most recent approaches have
looked at the process of coalition formation as a strategy in a well de�ned game of coalition
formation (see Bloch, 1997, 2003 and Yi, 2003 for surveys). Within this new stream of
literature, usually indicated as noncooperative theory of coalition formation (or endogenous
coalition formation), the work by Hurt and Kurz (1985) represents a seminal contribution.
Most recent contributions along these lines include Bloch (1995, 1996), Ray and Vohra (1997,
1999) and Yi (1997). In all these works, cooperation is modelled as a two stage process: at
the �rst stage players form coalitions, while at the second stage formed coalitions interact in
a well de�ned strategic setting. This process is formally described by a coalition formation
game, in which a given rule of coalition formation maps players�announcements of coalitions
into a well de�ned coalition structure, which in turns determines the equilibrium strategies
chosen by players at the second stage. A basic di¤erence among the various models lies
on the timing assumed for the coalition formation game, which can either be simultaneous
(Hurt & Kurz (1982), Ray & Vohra (1994), Yi (1997)) or sequential (Bloch (1994), Ray &
Vohra (1995)).

4.2.1. Hurt & Kurz�s Games of Coalition Formation. Hurt and Kurz (1983) were among
the �rst to study games of coalition formation with a valuation in order to identify stable
coalition structures.10 As valuation, Hurt & Kurz adopt a general version of Owen value for
TU games (Owen, 1977), i.e. a Shapley value with prior coalition structures, that they call
Coalitional Shapley value, assigning to every coalition structure a payo¤vector 'i(P ) inRN ,
such that (by the e¢ ciency axiom)

P
i2N 'i(P ) = v(N). Given this valuation, the game of

coalition formation is modelled as a game in which each player i 2 N announces a coalition
S 3 i to which he would like to belong; for each pro�le � = (S1; S2; :::; Sn) of announcements,
a partition P (�) of N is assumed to be induced on the system. The rule according to which
P (�) originates from � is obviously a crucial issue for the prediction of which coalitions will
emerge in equilibrium. Hurt and Kurz�s game � predicts that a coalition emerges if and only
if all its members have declared it (from which the name of �unanimity rule�also used to
describe this game).

10Another seminal contribution is Shenoy (1979).



16 SERGIO CURRARINI AND MARCO A. MARINI

Formally:
P (�) = fSi (�) : i 2 Ng

where

Si (�) =

�
Si if Si = Sj for all j 2 Si

fig otherwise.
Their game � predicts instead that a coalition emerges if and only if all its members have

declare the same coalition S (which may, in general, di¤ers from S). Formally:

P (�) = fS � N : i; j 2 S if and only if Si = Sjg .
Note that the two rules of formation of coalitions are "exclusive" in the sense that each

player of a forming coalition has announced a list of its members. Moreover, in the gamma-
game this list has to be approved unanimously by all coalition members. Once introduced
these two games of coalition formation, a stable coalition structure for the game � (� ) can
be de�ned as a partition induced by a Strong Nash Equilibrium strategy pro�le of these
games.

De�nition 8. The partition � is a -stable (� -stable) coalition structure if � = �(��) for
some �� with the following property: there exists no S � N and �S 2 �S such that

vi(�S; �
�
NnS) � vi(��) for all i 2 S

and
vh(�S; �

�
NnS) > vh(�

�) for at least one h 2 S:
It can be seen that the two rules generate di¤erent partitions after a deviation by a

coalition: in the �-game, remaining players split up in singletons; in the �-game, they stick
together.

In the recent literature on endogenous coalition formation, the coalition formation game
by Hurt and Kurz is usually modelled as a �rst stage of a game in which, at the second stage
formed coalitions interact in some underlying strategic setting. The coalition formation
rules are used to derive a valuation vi mapping from the set of all players�announcements �
into the set of real numbers. The payo¤ functions vi are obtained by associating with each
partition P = fS1; S2; :::; Smg a game in strategic form played by coalitions

G(P ) = (f1; 2; :::;mg ; (YS1 ; YS2 ; :::; YSm); (�S1 ; �S2 ; :::; �Sm));
in which YSk is the strategy set of coalition Sk and �Sk : �

m
k=1YSk ! R+ is the payo¤ function

of coalition Sk, for all k = 1; 2; :::;m. The game G(P ) describes the interaction of coalitions
after P has formed as a result of players announcements in �.or�-coalition formation games.
The Nash equilibrium of the game G(P ) (assumed unique) gives the payo¤ of each coalition
in P ; within coalitions, a �x distribution rule yields the payo¤s of individual members.
Following our previous assumptions (see section 1.2) we can derived the game G(P ) from

the the strategic form game G by assuming that YSk =
Q
i2SkYi and �Sk =

P
i2Sk�i, for

every coalition Sk 2 P . We can also assume �i =
�Sk
jSkj as the per capita payo¤ function of

members of Sk. Therefore, using the linear Cournot example for the �-game we know that
the payo¤ of each �rm i 2 S � N when all remaining �rms split up in singletons, is given
by:

�i (y (P (�
0))) =

(a� c)2

s(n� s+ 2)2
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where n � jN j, s � jSj and �0 =
�
fSgi2S ; fNgi2NnS

�
. We can thus present the following

proposition.

Proposition 9. Under the linear oligopoly, the grand coalition induced by the pro�le �� =�
fNgi2N

�
, is a stable coalition structure in the �-game of coalition formation.

Proof. it can be easily veri�ed that the condition

�i (y (P (�
�))) =

(a� c)2

4n
� �i (y (P (�0))) =

(a� c)2

s(n� s+ 2)2 :

holds for every s � n and, therefore, the stability of the whole industry agreement holds
under the linear oligopoly. �
4.2.2. Sequential Games of Coalition Formation. Bloch (1996,1997) introduces a sequential
coalition-formation game with in�nite horizon in which, as in Hurt and Kurz�s (1988) �-game,
a coalition forms if and only if all its members have agreed to form the same coalition. The
sequence of moves of the coalition formation game is organized as follows. At the beginning,
the �rst player (according to a given ordering) makes a proposal for a coalition to form.
Then, the player on his list with the smallest index accepts or rejects his proposal. If he
accepts, it is the turn of the following player on the list to accept or reject. If all players on
the list accept the �rst player�s proposal, the coalition is formed and the remaining players
continue the coalition formation game, starting with the player with the smallest index who
thus makes a proposal to remaining players. If any of the players has rejected �rst player�s
proposal, the player who �rst rejected the proposal starts proposing another coalition. Once
a coalition forms it cannot break apart or merge with another player or a coalition of players.
Bloch (1996) shows that this game yields the same stationary subgame perfect equilibrium
coalition structure as a much simpler "size-announcement game", in which the �rst player
announces the size of his coalition and the �rst s1 players accept; then player is1+1 proposes
a size s2 coalition and this is formed and so on, until the last player is reached. This
equivalence is basically due to the ex ante symmetry of players. It can also shown that
this size-announcement game possesses a generically unique subgame perfect equilibrium
coalition structure.
If we the linear oligopoly with n > 2 �rms, the unique subgame perfect equilibrium coali-

tion structure of Bloch�s (1996) sequential game of coalition formation is a coalition structure
P = (fSg ; fjgj2NnS), with s = jSj equal to the �rst integer following

�
2n+ 3�

p
4n+ 5

�
=2.11

The explanation is as follows. We know that when a merger of size s is formed in a Cournot
market, the equal-split payo¤ of each �rm i 2 S in the merger is �i(y�(fSg ; fjgj2NnS)) =
(a � c)2=s (n� s+ 2)2 which is greater than the usual Cournot pro�t �i(y�(figi2N)) =
(a � c)2=s (n� s+ 1)2 only for s >

�
2n+ 3�

p
4n+ 5

�
=2. When a merger of size s is

in place, each independent �rm outside the merger earns a higher pro�t than that of the
members of the merger, equal to �j(y�(fSg ; fjgj2NnS)) = (a � c)2= (n� s+ 2)2. There-
fore, in the sequential game of coalition formation, the �rst �rms choose to remain inde-
pendent and free-ride on the merger formed by subsequent �rms. When the number of
remaining �rms is exactly equal to the Salant et al., 1983 minimal pro�table merger size
s =

�
2n+ 3�

p
4n+ 5

�
=2, they will choose to merge, as it is no longer pro�table to remain

independent.

11We know (Salant et al.,1983) that
�
2n+ 3�

p
4n+ 5

�
=2.' 0:8n.
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4.2.3. Equilibrium Binding Agreement. Ray and Vohra (1997) propose a di¤erent stability
concept. In this solution concept, players start from some coalition structure and are only
allowed to break coalitions to smaller ones. The deviations can be unilateral or multilateral
(i.e., several players can deviate together). The deviators take into account future deviations,
both by members of their own coalitions and by members of other coalitions. Deviations
to �ner partitions must be credible, i.e. stable themselves, and therefore the nature of the
de�nition is recursive. We can start with a partition P and we can denote by B(P ) all
coalition structures that are �ner than P . A coalition P 0 2 B(P ) can be induced from P
if P 0 is formed by breaking a coalition in P . A coalition S is a perpetrator if it can induce
P 0 2 B(P ) from P . Obviously, S is a subcoalition of a coalition in P . Denote the �nest
coalition structure, such that jSj = 1 for all S, by P0. There are no deviations allowed
from P0 and therefore P0 is by de�nition stable. Recursively, suppose that for some P , all
stable coalitions were de�ned for all P 0 2 B(P ), i.e., for all coalition structures �ner than
P . Now, we can say that a strategy pro�le (say a quantity pro�le of our oligopoly game)
associated to a coalition structure y(P ) is sequentially blocked by y(P 0) for P 0 2 B(P ) if i)
there exists a sequence fy(P1); y(P2); :::; y(Pm)g with y(P1) = y(P ) and y(P 0) = y(Pm); ii)
for every j = 2; :::;m, there is a deviator Sj that induces Pj from Pj�1; iii) y(P 0) is stable;
iv) Pj is not stable for any y(Pj) and 1 < j < m; v) �i(y(P0)) > �i(y(Pj�1)) for all i 2 Sj
and j = 2; :::;m.

De�nition 9. y(P ) is an equilibrium binding agreement if there is no y(P 0) for P 0 2 B(P )
that sequentially blocks y(P ) .

Applying the Equilibrium Binding Agreement to the linear oligopoly game with three
�rms, we obtain that, beside y(P0), with P0 = (f1g : f2g ; f3g), which is by de�nition stable,
also the grand coalition strategy pro�le y(P ) with P = (f1:2; 3g is an equilibrium binding
agreement. For the n-�rm merger game, Ray and Vohra�s show that there is a cyclical
pattern, in which, depending on n, the grand coalition can or not be a stable coalition
structure. For n = 3; 4; 5 it is stable, but not for n = 6; 7; 8. For n = 9 is again stable and so
on, with a rather unpredictable pattern. "The grand coalition survives if there exist �large
zones of instability in intermediate coalition structures." (Ray & Vohra, 1997, p.73).

5. Concluding Remarks

This paper has quickly reviewed a number of coalitional solution concepts for the analysis
of both partial and full collusive agreements in oligopolistic markets. A number of illustrative
results were presented to show that numerous connections exist between the Industrial Or-
ganization and Game Theory approaches on the subject, which may prove highly signi�cant
and instructive for the future research agenda of both disciplines.
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