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Abstract
In experiments it is typically found that many joint utility outcomes arise in any given

unstructured bargaining game. This suggests using a positive unstructured bargaining
concept that maps a bargaining game to a probability distribution over outcomes rather
than to a single outcome. We show how to “translate” Nash’s bargaining axioms to
apply to such distributional bargaining concepts. We then prove that a subset of those
axioms forces the distribution over outcomes to be a power-law. Unlike Nash’s original
result, our result holds even if the feasible set is finite. When the feasible set is convex
and comprehensive, the mode of the power law distribution is the Harsanyi bargaining
solution, and if we require symmetry it is the Nash bargaining solution. However in general
these modes of the joint utility distribution are not Bayes-optimal predictions for the joint
uitlity, nor are the bargains corresponding to those outcomes the most likely bargains. We
then show how an external regulator can use distributional solution concepts to optimally
design an unstructured bargaining scenario. Throughout we demonstrate our analysis in
computational experiments involving flight rerouting negotiations in the National Airspace
System.

1 Introduction

Most of the theoretical work to date on unstructured bargaining is concerned with a map that
takes any unstructured bargaining problem S to a single bargain x ∈ S, e.g., Nash (1950);
Harsanyi and Selten (1972); Kalai and Smorodinsky (1975); Kalai (1977). Some of this work
regards the map normatively, as providing fair or reasonable bargaining outcomes. Other work
regards it positively, as a prediction for what agreement will be reached by humans bargaining
in an unstructured manner, e.g., Nydegger and Owen (1974); Roth and Malouf (1979); Camerer
(2003). (For an extensive discussion on the interpretation of Nash’s solution, see Rubinstein et
al. (1992).) In this paper we adopt the positive viewpoint.

However as the experimental literature makes clear, in the real world more than one bargain
has non-zero probability of being the outcome of any given unstructured bargaining problem. To
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accommodate this, in this paper we consider maps that take any unstructured bargaining prob-
lem S to a probability distribution over S, rather than to a single element of S.1 Our approach
is to “translate” Nash’s axioms of unstructured bargaining to apply to this distribution-valued
map. Doing this, we derive a parameterized set of possible maps from bargaining problems to
distributions over those problems. (Intuitively, the parameters reflect the “bargaining power”
of the players.) We call such maps “distributional bargaining concepts”.

There are many advantages to using distributional bargaining concepts, in addition to their
according with experimental data. A major one arises if there is an external regulator who can
modify some aspects of the bargaining game and has their own utility function over bargaining
outcomes. By modifying the game, the regulator changes the associated distribution, and
therefore modifies the value of their own expected utility. Accordingly, they can calculate the
Bayes-optimal modification to the game.

In our approach to distributional bargaining concepts we use probabilistic versions of Nash’s
axioms of scale invariance (SI) and independence of irrelevant alternatives (IIA). We also use a
probabilistic version of the axiom of translation-invariance of utilities (TI). To these we add the
axiom that all outcomes in which all players do strictly better than the default outcome have
non-zero probability (NZ). (NZ is imposed because it holds in all experiments, due to subject
inattention if nothing else.)

The work in Peters and Tijs (1984) is also concerned with distributions over S. However,
their work differs from ours in two important ways. First, while they also use probabilistic
versions of SI and IIA, unlike us, they also use the axiom of Pareto optimality (PAR). In
addition, unlike us, they do not use NZ, nor do they (explicitly) use TI. Second, Peters and
Tijs (1984) translate IIA and SI into probabilistic versions differently than we do.

As a result of these difference, we arrive at a very different distributional solution concept
from that of Peters and Tijs (1984). In particular, our axioms force the distribution to be a
power law over the set of joint utility outcomes Pareto superior to the default outcome. In
contrast, the axioms used in Peters and Tijs (1984) do not result in a tightly characterized
solution. Accordingly, it has not been used to derive the Bayes-optimal modification to a game
that might be applied by an external regulator of the game.

Perhaps most importantly, our version of IIA means our solution concept applies to any
bargaining game, even finite ones that are non-convex and not comprehensive. This is quite
important for a positive bargaining solution concept. In real-world unstructured bargaining, it
is common for the bargainers to only consider a finite number of possible outcomes. (Typically,
real human bargainers in the field do not consider the option of tossing a weighted coin to
choose among the possible bargains.) In such scenarios the feasible set is finite.

Finally, the current paper and Peters and Tijs (1984) are not the only work that extends
game theory by replacing solution concepts that are point-valued (or set-valued) with solu-
tion concepts that are probability distributions. In particular, in Wolpert and Bono (2009), a
distribution-valued solution concept for noncooperative games is introduced. That work intro-
duces a map taking the specification of a non-cooperative game to a distribution over all mixed
strategy profiles (i.e., all player joint choices), whereas the present paper introduces a map
taking the specification of an unstructured bargaining game to a distribution over all player
joint choices.

1Our approach allows S to be either finite or infinite; for succinctness we will generically refer to a “probability
distribution” even if S is infinite and we properly should refer to a probability density function.
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1.1 Roadmap of this paper

In the following section we start with an overview of our notation. We then provide a general
definition of distributional bargaining concepts. After this we focus on the “Nash distributional
bargaining concept”, which is defined by NZ and probabilistic versions of TI, SI and IIA.
We then prove that Nash distributional bargaining concepts take the form of a power law
distribution. This result holds for any bargaining games, even non-convex, non-comprehensive
ones, and even ones with a finite set of possible bargains.

In Section 3, we discuss the Nash distributional bargaining concept. We focus on its mathe-
matical structure, its physical meaning, and its normative implications for an external regulator
who can change the feasible set. We show that the mode of the Nash distributional bargaining
concept is the Harsanyi bargaining solution. We then point out that if we also impose Nash’s
symmetry axiom, we instead get the Nash bargaining solution as the mode.

Often the modeler of the outcome of the bargaining will have a loss function, measuring the
quality to them of predicting the joint expected utility outcome is x when the actual outcome is
x′.2 Given such a loss function, and given a distribution over outcomes, there is a well-defined
Bayes-optimal prediction for a single joint utility outcome. This Bayes-optimal prediction will
vary with the loss function. Accordingly, whatever distributional bargaining concept is used, in
general the associated Bayes-optimal prediction is neither the most likely joint expected joint
utility outcome (the Harsanyi solution) nor the most likely bargain.

Let s be the vector-valued function taking bargains to the associated joint expected utility
outcomes. In general, s need not be invertible. (E.g., if the feasible set is the set of all lotteries
over K possible joint choices among the N players, where K > N +1.) In such cases we cannot
go from a prediction for the joint utility (whether made with a conventional bargaining concept
or a distributional one) to a prediction for a joint bargain. One would need a likelihood function
P (b | x) giving the relative probabilities of all bargains b given the joint utility x to invert a
prediction for joint utility into a prediction for the bargain reached.

On the other hand, if s is invertible, then the distribution over joint utilities does fix the
distribution over bargains. However even in this case, if the Jacobian of s is non-uniform, then
the most likely joint utility is not the most likely joint bargain. Intuitively, s may “concentrate”
probability density on some regions of possible joint utility outcomes (those corresponding to
relatively many possible bargains), and diminish it in others.

Note though, that when the feasible set is countable and s is invertible, the issue of a
non-uniform Jacobian of s disappears. This provides a second benefit to using a distribution
bargaining concept — like ours — that is applicable to countable (and even finite) feasible sets,
not just convex and comprehensive ones.

As an illustration of the foregoing, in Section 4 we consider a scenario naturally modeled as
unstructured bargaining. Often the path of an aircraft through the National Airspace System
is renegotiated inflight, e.g., due to unforeseen weather. Such negotiations do not follow any
particular protocol — they are unstructured. Accordingly, we use them to illustrate the Nash
distributional bargaining model. We emphasize the fact that even in this simple scenario, the
map s from bargains to joint utility outcomes is non-invertible. As a result, while it is straight-
forward to evaluate the probability density function over possible joint utility outcomes, the
same cannot be said for evaluating relative probabilities of various bargains.

2As shorthand, we will often abbreviate “joint expected utility outcome” to “joint utility outcome”, or even
“outcome”.
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In the penultimate section we consider an external regulator who has a real-valued welfare
function defined over the bargains of the players, and who can modify some parameters of
the bargaining game. We show how a distributional solution concept allows such an external
regulator to perform Bayes-optimal configuration of the bargaining game, i.e., how the regulator
can set the parameters of the game under their control to optimize the expected welfare of the
resultant bargaining outcome. In the context of the Nash distributional bargaining concept, we
call this approach to setting parameters “Nash distributional bargaining management”.

As an example, suppose that the regulator can modify the set of allowed bargains within
some range. Then the Nash distributional bargaining concept can be used to determine their
optimal such modification. Similar external interventions would be changing the default bar-
gain, or even modifying the relative bargaining power of the players.

A more complicated type of external intervention is where the regulator presents a non-
binding suggested bargain to the players. We view such a suggested bargain as a Schelling-like
focal point for the negotiations, and introduce a model mapping any such suggested bargain to
an associated distortion over the distribution over bargaining outcomes. This model provides
the regulator with a well-defined algorithm for choosing that suggested bargain which optimizes
the expected welfare of the outcome of the negotiations. We use the application of flight
rerouting negotiations introduced in Section 4 to demonstrate Nash distributional bargaining
management using such suggested bargains.

We conclude with a discussion of the results and directions for future research.

1.2 Notation

We consider conventional N -dimensional unstructured bargaining problems. Any such problem
is the pair of a bounded feasible set, S ⊂ RN , and a special disagreement point, d ∈ S. We
assume S contains at least two elements, and that there exists an x ∈ S such that x Â d (i.e,
such that the generalized strict inequality {xi > di ∀i} holds). We refer to such a problem as
simple if d = 0 and no point x ∈ S (i.e., no set of N utility values for that bargaining problem)
has a component less than 0. Given a bargaining problem (S, d), we use the term “outcome”
to refer to any element of S. We will refer to (S, d) as standard if S contains an open set and
is convex and comprehensive3.

We define A + B for two sets A,B ⊂ RN to mean the set of all x that can be written as
a + b for some a ∈ A, b ∈ B, and similarly for A − B. (So in particular, A − B is not the
same as A \B.) We will also assume the usual topology over RN , etc. Given any A ⊂ RN and
k ∈ RN where k Â 0, we define kA to be the subset of of RN given by replacing each x ∈ A by
the Hadamard (i.e., component by component) product kx , (k1x1, k2x2, . . .). We define AB
for any two sets A,B ⊂ RN similarly.

As shorthand, throughout we use “
∫

” with the measure implicit. In particular, when
feasible sets are finite, expressions like “

∫
dx . . .” implicitly use the point mass measure, i.e.,

are equivalent to sums.

3Recall that S is comprehensive if ∀x ∈ S, x º y º d, y ∈ S.
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2 Nash distributional bargaining concepts

From a Bayesian perspective, we are interested in the posterior probability density function,
P (x | S, d). Here we do not proceed by decomposing that distribution into a prior and a
likelihood. Instead, in analogy to Nash’s approach, we model P (x | S, d) directly, by using
Nash’s axioms to restrict its form.

In doing this it will be convenient to simplify notation, so that (again following Nash) we
talk in terms of maps from (S, d) to distributions over x rather than in terms of P (x | S, d):

Definition 1. An N-dimensional (distributional) bargaining concept is a map from any
N-dimensional bargaining problem (S, d) to a probability density function with support restricted
to S. (When S is countable, the image is a probability distribution rather than a probability
density function, and we will generically refer to a “distribution” with the implicit cardinality
of S making clear whether we mean a probability distribution or probability density function.)

We will generically indicate a distributional bargaining concept with the symbol µ, and
indicate its value for a problem (S, d) as µS,d. So µS,d(x) is the non-negative real number
produced by applying µ to (S, d) and then evaluating the resultant density function at x.

To use any unstructured bargaining approach to make a prediction about human bargaining
behavior in a particular physical setting (laboratory or field), in addition to explicitly specifying
the bargaining problem (S, d), there must also be a specification of the physical setting. Often
this specification is only implicit, but here we make ours explicitly. We restrict attention to
bargaining problems (S, d) and associated physical settings such that every x ∈ S is physically
possible. We then go further and also restrict attention to physical settings such that all those
physically possible x ∈ S where x Â d occur with some non-zero probability. We justify this by
noting that in most laboratory and field settings, even if the bargaining were structured with
a Pareto efficient outcome that is a dominant Nash equilibrium of the underlying game, there
would still be a non-zero probability that other outcomes arise, due to bounded rationality of
the players. (A stronger version of this reasoning — which we do not invoke here — would
require that even outcomes where some player does worse than at the disagreement point occur
with non-zero probability.)

Given the foregoing, it is straight-forward to translate Nash’s unstructured bargaining ax-
ioms into the context of distributional bargaining concepts. In particular, SI, TI and IIA get
translated as follows:

Definition 2. An N-dimensional distributional bargaining concept µ is a Nash distributional
bargaining (NDB) concept if for any S ⊂ RN ,

pSI ∀x, y, d ∈ S such that x, y Â d, ∀k º 1,

µS,d(x)

µS,d(y)
=

µ(kS,kd)(kx)

µ(kS,kd)(ky)
,

pTI ∀x, d ∈ S such that x Â d, ∀a ∈ RN , µS,d(x) = µS−{a},d−a(x− a),

pIIA ∀T ⊆ S, ∀x, y, d ∈ T such that x, y Â d,

µS,d(x)

µS,d(y)
=

µT,d(x)

µT,d(y)
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NZ ∀x, d ∈ S such that x Â d, µS,d(x) 6= 0

pSI means that if we rescale all coordinates of a problem to get a new problem, the relative
probability of any two points x and y in the original problem is the same as the relative
probability of the rescaled versions of those points in the new (rescaled) problem. This is the
“translation” of Nash’s scaling invariance axiom, SI, into the context of distributional bargaining
concepts. For the results in this paper, we could have weakened pSI to the following:

pSI∗For any simple, standard, closed problem (S, 0), ∀x, y ∈ S such that x, y Â 0, ∀k º 1,

µS,0(x)

µS,0(y)
=

µ(kS,0)(kx)

µ(kS,0)(ky)
(1)

For expository simplicity though, we use the stronger version given in Def. 2.
pTI implements the assumption of translation-invariance of utility functions. (Recall that

in our notation, the subtraction operator on sets is not the same as set subtraction.) pIIA
means that if we remove potential solutions other than x and y from a bargaining problem,
the relative probabilities of x and y don’t change. This is the “translation” of Nash’s IIA
axiom into the context of distributional bargaining concepts. Finally, as mentioned earlier, the
NZ axiom says that all outcomes in which all players do strictly better than they do under
the default outcome receive some positive probability of occurring. This axiom requires the
solution concept to conform to the physical reality of human behavior.

Given any two N -dimensional problems (S, d) and (T, d), define W ≡ S ∪ T . So S ⊆ W .
Therefore by pIIA, for any N -dimensional Nash bargaining concept µ, ∀x, y ∈ S such that
x, y Â d, µS,d(x)/µS,d(y) = µW,d(x)/µW,d(y). Similarly, T ⊆ W , and therefore ∀x, y ∈ T such
that x, y Â d, µT,d(x)/µT,d(y) = µW,d(x)/µW,d(y). This establishes the following:

Lemma 1. Fix any two N-dimensional problems (S, d) and (T, d). ∀x, y ∈ S ∩ T such that
x, y Â d, for any N-dimensional NDB concept µ,

µS,d(x)

µS,d(y)
=

µT,d(x)

µT,d(y)
(2)

The kinds of geometric distortions underlying existence proofs of the Nash, Kalai-Smorodinsky
and egalitarian solutions cannot be applied when (S, d) is non-standard, and especially when
S contains a finite number of elements. This inability to handle finite S has been one of the
major obstacles of the Nash bargaining theory. In real-world unstructured bargaining, it is
quite common for people to bargain over a finite number of possible outcomes, without ever
considering the possibility of using a randomization device to decide the final bargain.4

In contrast, Lemma 1 means that if we can establish the form of µT,d for a particular class
of problems (T, d) with infinite T , then we have establish its form for any pair (S ⊂ T, d).

4Indeed, one could argue that real bargaining scenarios cannot involve an uncountably infinite number of
bargaining outcomes. After all, real human beings cannot specify all digits of any real number in a given
interval. When communicating with one another, real human beings are only able to specify numbers having a
finite precision, together with a finite set of infinite-precision real numbers, like π,

√
2, etc.
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This is true even if S is neither convex nor comprehensive. Indeed, S can even be finite.5 The
following result provides such a form of µT,d for a particular class of problems (T, d).

Theorem 1. Let µ be an N-dimensional NDB concept such that for any closed, simple, standard
problem (T, 0), µT,0(x) is differentiable throughout the interior of T . Then there are constants
ai, i = 1, . . . n, independent of S and d, such that for all problems (S, d) and all x ∈ S such that
x Â d, µS,d(x) ∝ ∏

i(xi − di)
ai.

Proof. Define S ′′ ≡ S − {d} and x′ ≡ x − d. Then use pTI to write µS,d(x) = µS′′,0(x
′). So it

suffices to prove the theorem for all x′ Â 0 for the bargaining problem (S ′′, 0).
Let S ′ ≡ {S ′′ \ {x′′ ∈ S ′′ : ∃i where x′′i ≤ 0} ∪ {0}}. So S ′ is S ′′ without any x′′ for which at

least one player is not doing better than the disagreement point, unioned with the disagreement
point. (S ′, 0) is a simple bargaining problem. In addition, by pIIA, for all x′, y′ Â 0

µS′,0(x
′)

µS′,0(y′)
=

µS′′,0(x
′)

µS′′,0(y′)

Therefore it suffices to prove the theorem for problem (S ′, 0).
Let T be the convex, comprehensive closure of S ′. So (T, 0) is a simple, standard bargaining

problem whose interior contains (S ′, 0). Therefore by pIIA, it suffices to prove the proposition
for (T, 0).

Let ΩT be the interior of T . Note that by hypothesis, µT,0(.) is a differentiable function over
ΩT .

For any N -dimensional z Â 0, define the N -dimensional vector ln[z] , (ln(z1), ln(z2), . . .).
Make similar definitions for ez and for the sets ln[A] and eA where A is any subset of RN . Note
that with the exception of points with zero-valued components, any point in T can be written
as the vector ez for some z ∈ RN , since (T, 0) is a simple bargaining problem. So in particular,
every point in ΩT can be written ez for some z ∈ RN .

Say that z is a point such that µT,0(e
z) is non-zero (so that ez is in T ). Define the associated

scalar P(z) , ln[µT,0(e
z)]. Note that µT,0(.) is non-zero over ΩT by Def. 2(i). In addition, it

has continuous derivative throughout ΩT by our hypothesis. Therefore P(.) has continuous
derivative throughout N ≡ ln[ΩT ].

Choose a vector k all of whose components equal 1 except for component i, which is in the
interval (0, 1]. Define the set of all such k as Ki. Note that since T is simple and standard,
KiΩT ⊆ ΩT . Therefore ln[k] +N ⊆ N .

Combining pSI and pIIA, ∀x′, y ∈ ΩT

µT,0(kx′)
µT,0(ky)

=
µT,0(x

′)
µT,0(y)

Taking logarithms we get

P(ln[k] + ln[x′])−P(ln[k] + ln[y]) = P(ln[x′])− P(ln[y])

5Other authors have examined bargaining solutions on non-standard domains. For example, Kaneko (1980);
Herrero (1989); Conley and Wilkie (1996); Zhou (1997); Mariotti (1998a) all extend the Nash solution to non-
convex S. They generally do so by replacing certain of Nash’s axioms. More recent work by Mariotti (1998b);
Xu and Yoshihara (2006); Kibris and Sertel (2007); Peters and Vermeulen (2010) furthers the analysis of non-
standard problems to include finite domains. However, a general conclusion of this work is that its goal is out
of reach; this work typically fails to find a convincing solution concept that closely resemble Nash’s solution and
is single-valued for all finite problems.
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∀x′, y ∈ ΩT , k ∈ Ki.
Given that P must be differentiable across N , we can take the partial derivative of both

sides of this equation with respect to ln[ki]. Evaluate those derivatives in the limit as ki → 1.

Doing this for all allowed x′, y establishes that ∂P(u)
∂ui

− ∂P(v)
∂vi

= 0 ∀u, v ∈ N , i.e., it establishes

that ∂P(u)
∂ui

is constant across N . Therefore P is linear in coordinate i across N .

Since this is true for all coordinates i, P(x′) = ln[µS′,0(e
x′)] is a hyperplane across N .

Accordingly, µS′,o(x
′) must be a product of monomials across ΩT , i.e., µT,0(x

′) ∝ ∏
i(x

′
i)

ai across
ΩT . (The coefficients of the hyperplane give the powers {ai} of the monomials.) Converting
from x′ back to x gives the claimed result.

We refer to a distributional bargaining concept that meet the conditions in Thm. 1 as a stan-
dard distributional bargaining concept. For the rest of this paper, unless specified otherwise,
we will restrict attention to such distributional bargaining concepts.

For (a standard bargaining concept) µS,d to be normalized when S is a standard problem,
each ai must exceed −1. More generally though, S could be countably infinite, with the utilities
of player i given by xi ∈ {1/k + di : k = 1, 2, . . .}. For µS,d to be normalized in this case, ai

must exceed 0. Therefore by Lemma 1, ai must always exceed 0.

3 Discussion of standard distributional bargaining con-

cepts

3.1 The mathematical structure of standard bargaining concepts

It should be emphasized that to derive the functional form of Thm. 1 there was no need for
analogs of the last two of Nash’s unstructured bargaining axioms, PAR and SYM. However
it is straightforward to incorporate them if desired. A natural way to translate PAR into
the context of distributional unstructured bargaining would be to require that improving every
player’s utility (i.e., changing any x Â d in a way that shrinks no component xi) cannot decrease
probability density. Imposing this on an NDB concept would rule out having any ai less than
0. Similarly SYM can be translated to mean that all the ai must have the same value. We will
call an NDB concept that meets these two additional requirements a fully Nash distributional
bargaining concept.

Nowhere does the definition of standard bargaining concept explicitly refer to differences
xi−di. So why do those differences arise in Thm. 1? Ultimately, the reason is that the definition
of a bargaining problem requires specifying both the feasible set and a special disagreement
point d within the feasible set. Due to this, the translation invariance condition translates the
point d along with the point x where µ gets evaluated. This causes the difference between those
two points to be an invariant of µ, as reflected in Thm. 1.

Note also that µS,d is a product distribution over its support. In this sense, independence
of the players is automatic. Such independence is not an explicit part of the definition of a
standard bargaining concept. Ultimately, this independence arises from the fact that the SI
axiom of Def. 2 involves scaling each player’s utility independently.6

6For example, if we modified that axiom by first rotating the space RN , then applying the scaling operators,
and then rotating back, we would no longer have a product distribution in the individual xi, but rather in linear
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One must be careful in interpreting this player independence. It does not mean that under
a distribution µS,d, the utility values of the players are statistically independent. Unless S is a
box, in general the border of S will serve to couple the players. For example, when d = 0, we
have

∏
i

µS,d(xi) =
∏

i

[

∫

S

dx−i µS,d(xi, x−i)]

∝
∏

i

[

∫

S

dx−i

∏
j

(xj)
aj ]

6∝
∏

i

[xai
i ]

= µS,d(x), (3)

i.e., the product of the marginal distributions of the player utilities does not equal the joint
distribution of the player utilities.

As an example of the implications of this, say the border of S is changed by having the
range of possible utility values for player i grow for some particular range of utilities of the
other players, but stay the same elsewhere.7 Then in general the statistical coupling between
the players will change. Intuitively, after this modification to S, what I can infer about the likely
value of xj 6=i given a particular value of xi will have changed. (This is despite the independence
of irrelevant alternatives axiom.)

3.2 Physical meaning of standard distributional bargaining concepts

Thm. 1 does not specify the values of µS,d(x) if x 6Â d. However it is often the case that for any
x ∈ S where x 6Â d, there is an x′ such that x′ Â x, d where

∏
i(x

′
i − di)

ai is arbitrarily close
to zero.8 Moreover, given that x′ Â x, it would be quite peculiar if in experiments it were the
case that µS,d(x) > µS,d(x

′). This strongly suggests that if µ meets the conditions in Thm. 1,
then we should stipulate that µS,d(x) = 0 for any x 6Â d. (Formally though, we do not need to
make that requirement in the analysis of this paper.)

How the components ai in Thm. 1 are physically interpreted is determined by how the
distribution µS,d is physically interpreted. Ultimately, that has to do with what we physically
mean by an “unstructured bargaining scenario”.

One possible physical meaning is that µS,d is a population average over all humans and over
all unstructured games that have feasible set S and disagreement point d. In this interpretation,
it makes sense to have the constants ai be identical. Another possibility is that the distribution
is not interpreted as a population average, but rather to refer to a set of N particular individuals
involved in the bargaining problem at hand. In this case, the constants ai will differ in general,

combinations of the xi.
7Formally, we specify some box over the values x−i: M ≡ {xj ∈ [bj , tj ] : j 6= i, tj > bj∀j 6= i}. Then over M

alone, we extend the associated border of S along coordinate i, i.e., ∀x−i ∈ M , we modify S by expanding the
set of xi such that (xi, x−i) ∈ S.

8As an example, let S be a sphere centered on d, and consider any x such that x1 < 0 while at the same
time x2, x3, . . . > 0. Then the distribution of the point (ε, x2, x3, . . .) can be arbitrarily close to zero by taking
ε small enough.
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since different people have different unstructured bargaining styles and capabilities in different
bargaining problems.

In general these two interpretations are not mutually consistent. That’s because averaging
(a population of) different distributions all proportional to a product of monomials will not give
a product of monomials, in general. Which interpretation one adopts ultimately depends on
which interpretation one feels best fits Nash’s bargaining axioms. In this paper we will adopt
the second interpretation because it is mathematically richer. However we do not claim that
the second interpretation is more accurate experimentally.9

3.3 Knitting 2-player distributions to get multi-player distributions

There are problematic aspects to requiring that IIA applies to the full joint distribution of
all N players’ utilities when n > 2. However it seems less objectionable to stipulate that IIA
applies to the distribution of any two players’ utilities, conditioned on the utilities of the other
player(s). For example, we can require that P (x1, x2 | x3, . . . xN , S, d) obeys IIA.10 We can
also impose the other conditions defining standard bargaining concepts to any such conditional
distribution. The result is that any such conditional distribution is a product of monomials,
i.e., for all i, j 6= i,

P (xi, xj | x−i,−j, S, d) ∝ (xi − di)
ai(x−i,−j)(xj − dj)

aj(x−i,−j) (4)

where for full generality the exponents can vary with the value of x−i,−j.
This is a set of n(n − 1) equations involving the full joint distribution µS,d = P (x | S, d),

parameterized by the matrices {ai(x−i,−j)}. There are an infinite number of joint distribu-
tions P (x | S, d) that obey all of these equations simultaneously for some set of matrices
{ai(x−i,−j)}: by inspection, any distribution which is a standard bargaining concept (i.e., of
the form µS,d(x) ∝ ∏

i(xi − di)
ai) obeys those equations for the degenerate case where the

matrices are all constants.
More generally, requiring that all Eq.’s (4) simultaneously hold for some given set of ma-

trices {ai(x−i,−j)} provides constraints on how the conditioned two-player bargaining concepts
P (xi, xj | x−i,−j, S, d) “knit together” to give a full N -player bargaining concept. To be precise,
given matrices {ai(x−i,−j)}, the full joint distribution µS,d(x) = P (x | S, d) must obey the
following equations:

∫
dx µS,d(x) = 1,

∀i, j 6= i, µS,d(x) ∝ (xi − di)
ai(x−i,−j)(xj − dj)

aj(x−i,−j)

∫
dx′−i,−j µS,d(xi, xj, x

′
−i,−j)

(5)

9There is also a third possible interpretation, in which one averages not only over the bargainers, but also over
a set of structured bargaining scenarios. In this interpretation, the distribution of “unstructured bargaining” is
interpreted as an average over distributions of structured bargaining scenarios. Nash’s bargaining axioms would
then be interpreted as reflecting the ignorance of the external modeler concerning the structure of the game the
players are engaged in. We do not pursue this interpretation here.

10Note that this condition does not concern a of scenario where players 3 through N somehow fix their
utilities to the values x3, . . . xN , and after that the players 1 and 2 bargain. Rather it concerns the full N -player
bargaining scenario where all N players bargain together.
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Future work involves investigating the properties of such “knitting together” conditional bar-
gaining concepts.

3.4 Fully NDB concepts

For any fully NDB concept µ and any (S, d), µS,D over its support is the distribution
∏

i(xi−di)
α

for some scalar α. Now for fixed d, the level curves in x of
∏

i(xi − di)
α are independent of

α (assuming α 6= 0). So in particular the maximum of
∏

i(xi − di)
α is independent of α.

Accordingly, to find that maximum, we can take α = 1. Accordingly, the mode of µS,d(x) is
the maximum over x ∈ S of

∏
i(xi − di). In other words, the Nash bargaining solution of a

bargaining problem (S, d) is the mode of any fully NDB concept applied to (S, d).
In addition, for any fixed δ > 0, as we send α → ∞, the probability of the event {x lies

more than δ away from the Nash bargaining solution} → 0. In this sense, all solutions other
than the Nash solution become impossible in that limit.

However in general if the feasible set of possible bargains is uncountable, the function taking
joint bargains to joint utility outcomes will have a non-uniform Jacobian. In such cases, the
most likely bargain is not the bargain corresponding to the Nash solution.

Furthermore, for finite α, in general the Bayes-optimal guess for x is not the Nash bar-
gaining solution. For example, for quadratic loss functions, the Bayes-optimal guess for x is∫

dx µS,d(x)x. This differs from the Nash solution, argmaxxµS,d(x). Furthermore, consider ex-
panding the i’th coordinate of the border of S, while leaving its border along axis j unchanged.
Then for quadratic loss, this change to S will in general change the Bayes-optimal guess of xj,
even if it does not change the Nash bargaining solution point.

Recall that if we do not impose Nash’s SYM axiom, then the players can be heterogeneous.
In this case the mode of µS,d(x) is the “weighted Nash solution” of Harsanyi and Selten (1972).

4 NDB Flight Path Rerouting

In this section, we demonstrate NDB using the example of flight rerouting negotiations in the
National Airspace System. Flight rerouting negotiations take place between the humans in
an aircraft’s cockpit and those manning air traffic control (ATC) when severe weather or air
traffic result in the need for changes to the scheduled flight path while the aircraft is already
airborne. Such en route rerouting is often referred to as “tactical rerouting”, to distinguish it
from “strategic rerouting”, which takes place between the airlines operation center and ATC
when a flight must be rerouted before it is airborne.

Tactical rerouting negotiations can be initiated by either the cockpit or ATC. Though they
generally have a back-and-forth, offer/counter type of feel, these negotiations do not follow
any set protocol. Therefore, an unstructured bargaining approach is appropriate for studying
tactical rerouting negotiations. (Strategic rerouting negotiations might also be well suited to
an unstructured bargaining approach.)

Tactical rerouting negotiations generally result in a distance/heading pair that determines
a way-point through which the pilot agrees to fly. For example, a negotiation might look like
this:

Cockpit: Denver Center, United 1492. Request 20 degrees right for weather.

11



Controller: United 1492, how long will you need that heading?

Cockpit: Looks like about 40 miles or so.

At this point the controller might grant permission, or he might make a counter proposal, such
as “can you accept 20 [degrees] left?”. In the latter case, negotiations often continue in the
manner above. The distance/heading pair can be summarized by (l, θ), where θ ∈ [−90, 90] is
an angle in degrees, and l ∈ [0, N ] is a distance in miles.11 This constitutes the set of bargains
B, i.e., B = [0, E]× [−90, 90].

The cockpit and ATC have preferences over the bargains they can make, which are summa-
rized by utility functions over the set of available bargains, B. For example, the cockpit doesn’t
want to fly too far off course, but it also doesn’t want to fly too close to a storm center. In
many cases, ATC might want what is best for the cockpit. Yet in other cases, ATC might be
concerned about air traffic or other things (e.g., the impact of the rerouting on other traffic)
that the cockpit does not know or care about.

To evaluate the utilities of a bargain (l, θ) for the cockpit and ATC, we need to evaluate
certain features of the flight path that results from it. To determine the flight path that results
from (l, θ) we first translate that bargain into a way-point in a Cartesian coordinate system. In
this Cartesian coordinate system, we say that the flight’s current position is w1 = (0, 0), and
that the flight is pointing in the direction of the positive horizontal axis. Let θr be the radians
equivalent of θ. This means that the agreed way-point (l, θ), is located at w2 = (l cos θr, l sin θr)
in Cartesian coordinates.

After meeting its way-point, w2, the flight will return to a “fix” further along its original
flight path. In some rerouting negotiations, this fix is also part of the negotiated bargain.
However, such bargains are relatively uncommon. To simplify our model, we assume that,
whatever the bargain, the flight will return to the fix located along the horizontal axis at point
w3 = (E, 0) in Cartesian coordinates. Using linear interpolation to connect w1, w2 and w3, we
create a constant-speed, constant-altitude 3D flight path, Λl,θ(t) = (el,θ(t), nl,θ(t)). In order to
simplify notation, we will refer to the components of Λl,θ(t) as e(t) and n(t) with the dependence
on (l, θ) implicit.

We now use Λl,θ(t) = (e(t), n(t)) to calculate utility-relevant features of the bargain (l, θ).
These features include the total length of Λl,θ(t), given by

Ll,θ =

∫
dt

√
∂e(t)

∂t

2

+
∂n(t)

∂t

2

,

and whether or not Λl,θ(t) maintains a safe distance from weather with center C and radius R,

Dl,θ =

{
1 if mint ||Λl,θ(t)− C|| > R

0 otherwise.

We assume the cockpit’s utility is a linear combination of total length and maintenance of safe
distance, given by:

sc(l, θ) = αLLl,θ + αDDl,θ

for real numbers αL ≤ 0 and αD ≥ 0.

11We limit the angle to [−90, 90] because heading changes of more than 90 degrees are extremely uncommon.
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We assume ATC’s utility is a linear combination of maintenance of safe distance and the
new flight path’s impact on existing air traffic. We express this through the traffic penalty
function H(e, n), defined over Cartesian coordinates. The total traffic penalty for flight path
Λl,θ(t) is

Hl,θ =

∫
dt H(e(t), n(t)).

We express ATC’s utility as satc(l, θ) = βDD + βHHl,θ for some real numbers βD ≥ 0 and
βH ≤ 0.

The only thing left to specify is the outcome when negotiations break down, i.e., the default
bargain, db. It might be that, in the event negotiations break down, the cockpit will choose the
path that maximizes its own objectives without getting clearance from ATC. In this scenario,
the punishment the cockpit receives as a result of changing its course without ATC approval
should also enter the cockpit’s objective. However, there are likely many complicated and
variable factors to consider when modeling the effect of punishment, such as pilot attitude,
idiosyncratic airline rules, etc. Hence, for simplicity, we simply take the default bargain to
be the original flight path, i.e., the straight line between (0, 0) and (E, 0). Therefore, the
bargaining game is given by

S = {(xc, xatc) ∈ R2 : xc = sc(l, θ) and xatc = satc(l, θ) for some (l, θ) ∈ B}
and d = (sc(E, 0), satc(E, 0)).

Figure 1 shows the feasible set of utility outcomes associated with the flight rerouting model.
Note that this set is neither convex nor comprehensive. Furthermore, there are breaks, so that
the feasible set consists of disconnected subsets. Despite these irregularities of the feasible set,
the NDB distribution can be applied trivially, giving

µS,d(x) ∝ (xc − dc)
ac(xatc − datc)

aatc

for all x ∈ S such that x Â d, and µS,d(x) = 0 otherwise.
As discussed in the introduction, if we want to use the NDB distribution over joint utilities

to make predictions about the bargains in b ∈ B, but don’t have a likelihood function P (b | x),
then we must be able to invert the mapping s = (sc, satc). Unfortunately, s is not invertible,
as can be seen by noting from figure 2 that the indifference curves of sc and satc have multiple
crossings.

Recall that if the map s were invertible, then to translate from the distribution over joint
utilities to the distribution over bargains we would have to use the Jacobian of s. To be precise,
if (l, θ) is a point in B, then the NDB distribution over bargains, µB

S,d, evaluated at (l, θ) is
given by

µB
S,d (l, θ) = µS,d (sc(l, θ), satc(l, θ)) |J(l, θ)|,

where J(l, θ) is the determinant of the Jacobian of s,
∣∣∣∣

∂sc

∂l
∂sc

∂θ
∂satc

∂l
∂satc

∂θ

∣∣∣∣ .
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Figure 1: Feasible set of joint utility outcomes for the rerouting unstructured bargaining prob-
lem. Not only is the feasible set non-convex and not comprehensive, it is not even connected.
Parameters are ac = aatc = 1, αL = −4, αD = 300, βH = −0.01 and βD = 300. The weather
is a large circle with center C = (150, 20) and radius R = 40. The traffic penalty is given by
H(e, n) = n.

Note though that even if s were invertible, the Jacobian might not be well-defined. Indeed, our
flight-rerouting s contains discontinuities where flight paths cross from outside to inside the
weather radius, and the variable Dl,θ jumps from 1 to zero. Partial derivatives of sc and satc

do not exist at such points in B.
Say that the set of bargains were countable, e.g., a grid imposed by the technological

constraints of aircraft or the cognitive constraints of pilots and air traffic controllers. In this
case there would be no need to worry about discontinuities or how to calculate the Jacobian.
s might still be non-invertible however, so that we cannot transform the distribution over
joint utilities to a distribution over bargains. In fact this happens with the flight-rerouting
s when the set of bargains is modified to be a grid of integer distances and degrees, i.e.,
B′ = [0, 1, ..., N ]× [−90,−89, ..., 89, 90].

Regardless of the cardinality of B, one can translate a distribution over joint utilities to a
distribution over bargains even when s is non-invertible, so long as one know the likelihood of
bargains given joint utility outcomes. As an example, say that B is countable, and all bargains
that give rise to any particular joint utility x are equally likely. In this case, if there are |Bx|
bargains that give rise to x, then the probability of any such bargain is simply µS,d(x)/|Bx|.
Using this assumption and the grid B′ = [0, 1, ..., N ]× [−90,−89, ..., 89, 90], figure 3 shows the
NDB distribution for the flight-rerouting problem in the space of bargains.
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Figure 2: Indifference curves of sc and satc plotted in the space of bargains for the flight
path rerouting problem. s(., .) is not invertible because the indifference curves have multiple
crossings. Parameters are ac = aatc = 1, αL = −4, αD = 300, βH = −0.01 and βD = 300. The
weather is a large circle with center C = (150, 20) and radius R = 40. The traffic penalty is
given by H(e, n) = n.

5 NDB Management

5.1 Optimal choices by regulators of unstructured bargaining games

Suppose a regulator, external to an unstructured bargaining game, has preferences over the
joint utility of the bargain reached, U(x ∈ S). Suppose further that they can change some
characteristics ρ of (S, d). For example, they might be able to change the default bargain dB

in certain ways, or replace S with one of several S ′ ⊂ S. In such cases, assuming they model
the game with an NDB µS,d, the regulator should choose

ρ = argmaxρEρ(U(x))

= argmaxρ

∫
dx U(x)µSρ,dρ(x) (6)

More generally, ρ may affect s(.), dB, and/or B, not just their image (S, d). In this more
general setting the regulator should choose

ρ = argmaxρEρ(U)

= argmaxρ

∫
dx U(x)µsρ(Bρ),sρ(dρ

B)(x) (7)
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NDB Concept Translated to the Space of Bargains
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Figure 3: NDB concept mapped back into the space of bargains B′ = [0, 1, ..., N ] ×
[−90,−89, ..., 89, 90], for ac = aatc = 1, αL = −4, αD = 300, βH = −0.01 and βD = 300.
The weather is a large circle with center C = (150, 20) and radius R = 40. The traffic penalty
is given by H(e, n) = n.

More generally still, the social welfare function U might be replaced with a function W
defined over the space of bargains B. So long as sρ is invertible for all ρ, Eq. 7 still holds
for this variant. (Just define U(x ∈ sρ(Bρ)) ≡ W (s−1

ρ (x)).) However if sρ is non-invertible for
certain ρ, this equation must be modifed. In this situation, assuming they have the associated
likelihood function, the regulator should choose the action

ρ = argmaxρEρ(W (b))

= argmaxρ

∫
dxdb P (b | x)W (b)µsρ(Bρ),sρ(dρ

B)(x) (8)

In addition to these types of actions by the regulator, there are others that are not considered
in typical axiomatic analyses of unstructured bargaining, including the analysis up to this point.
An example is where the regulator’s intervention is simply to suggest a bargain to the players
before they start to bargain, i.e., to provide them a focal bargain for their bargaining. To advise
the regulator in such cases, we need to model the effects of those unconventional regulator, and
use that model in Eq. 7 .

We refer to any of these types of optimal choice by the external regulator as “NDB man-
agement”.
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5.2 NDB management in Rerouting Negotiations

Here we demonstrate a simple form of NDB management using the example of rerouting ne-
gotiations from Section 4, related to the focal point concept introduced in Schelling (1960).
Specifically, we assume that the regulator can make a suggestion for a flight rerouting to both
the cockpit and ATC before they begin rerouting negotiations. The idea is that this suggestion
will serve as a focal bargain for negotiations, having the effect of raising the relative probability
of bargains similar to the suggested one. (An experimental study by Binmore et al. (1993) finds
empirical support for a theory of focal points and bargaining.)

Use µB
S,d(l, θ) to indicate the distribution over (l, θ) ∈ B induced by the NBD for game

(S, d). (So if needed, µB
S,d(l, θ) implicitly depends on the Jacobian of s and a likelihood function

P (b | x) = P (l, θ | x).) Then we assume the regulator models the effects of a suggested focal
bargain (l0, θ0) on the distribution over B as

Pl0,θ0(l, θ) ∝
(

ψl0,θ0(l, θ)

Z(B)

)γ

µB
S,d(l, θ)

1−γ

where ψ is a bivariate Gaussian distribution with mean (l0, θ0) and covariance matrix Σ,
γ ∈ [0, 1] measures the strength of the impact of the manager’s suggestion on the players’
behavior, and Z(B) is the normalization constant for ψ. We call this the “NDB management
distribution”. It is clearly an ad hoc model of focal bargains; we use it here only only as a
simple way to demonstrate NDB management.

We assume that to minimize her computational requirements, the regulator requires that
the space of bargains be a grid of integer distances and degrees, i.e., B′ = [0, 1, ..., E] ×
[−90,−89, ..., 89, 90].12 As mentioned in Section 4, even in this finite set of possible bargains
there are instances where multiple bargains map to the same joint utility outcomes. As usual, to
address this we must specify P (b | x); here we make the simple assumption that this likelihood
is uniform over all b that map to x, and zero for all others. Accordingly,

µB
S,d(l, θ) =

µS,d(s(l, θ))

|Bx| ,

where |Bx| is the number of bargains in B that give rise to outcome x.
As usual, the regulator will choose her action — which here means suggest a heading

and distance — to maximize the resultant expected social welfare. Writing the social welfare
function as W (l, θ), this optimal action is

argmax(l0,θ0)∈BEl0,θ0,S,d (W ) =

∫

B

dl dθ W (l, θ)Pl0,θ0(l, θ).

In general, W might depend on the impact of the rerouting on traffic flow over the entire
National Airspace System, in addition to depending on the utility of the cockpit and of ATC.
For simplicity though, here we take W (l, θ) = τsc(l, θ) + (1− τ)satc(l, θ) where τ ∈ [0, 1].

Figure 4 depicts the effect of a regulator’s recommendation on the predicted flight path.
The left panel is the NDB distribution over bargains, µB

S,d. It represents the prediction before
a regulator makes a suggestion. The NDB modal bargain produces the detoured flight path

12In practice, this may not need to be an explicit requirement, since it is unlikely that non-integer values
would be considered by the players.
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denoted in the center panel by the sequence of two lines joined by an open circle; the flight
begins its detour at the point (0, 0) and returns to its original flight path at (300, 0). The reason
the modal flight path does not pass closer to the weather is that the traffic penalty is given by
H(e, n) = n, i.e., traffic is denser in the north. This means ATC is rewarded for flight paths
that pass further to the south. And since aatc = 3 > 1 = ac, ATC is relatively successful at
convincing the cockpit to accept bargains that result in longer, more southerly flight paths.

The NDB management distribution is shown in the right panel. It represents the prediction
after the regulator has made an optimal suggestion. In this case, the optimal suggestion is
(130,−10). The path associated with the optimal suggestion is denoted in the center panel by
the pair of lines joined by a triangle. The modal bargain of the NDB management distribution
induced by that suggestion is denoted by the by the pair of lines joined by a square. Note
that the regulator’s suggestion has the effect of skewing the distribution toward bargains with
shorter distances l and smaller heading changes. This is because the regulator assigns equal
weight to ATC and cockpit utility, whereas the NDB distribution is skewed toward outcomes
that are better for ATC. As a result, the modal bargain shifts significantly to the north.

6 Conclusion and future work

In both laboratory and field unstructured bargaining experiments, it is typically found that
more than one bargain can arise. To accommodate this, in this paper we consider maps that take
any unstructured bargaining problem S to a probability distribution over S, rather than to a
single element of S. Our approach is to “translate” Nash’s axioms of unstructured bargaining to
apply to this distribution-valued map. Doing this, we derive the “Nash distributional bargaining
concept”, which maps any feasible set of joint utility outcomes to a power law over that set.
This power law nature is intriguing due to the ubiquity of empirical power laws in the real
economy, e.g., in wage distributions, city sizes, etc.

Future work involves trying to translate variants of Nash’s axioms into a distributional
bargaining concept. For example, it may prove possible to translate the weak monotonicity
axiom of the Kalai-Smorodinsky solution concept Kalai and Smorodinsky (1975) into prob-
abilistic terms. If so, then by combining it with our probabilistic versions of the remaining
Kalai-Smorodinsky axioms (which are shared with the axioms of the Nash bargaining concept),
we may be able to produce a “Kalai-Smorodinsky distributional bargaining concept”.

There are many advantages to using distributional bargaining concepts, in addition to their
according with the experimental fact that multiple bargains can arise for any given game. One
advantage is that such concepts seamlessly accommodate feasible sets that are not convex and
comprehensive, and even finite feasible sets. Another advantage arises if there is an external
regulator who can modify some aspects of the bargaining game and has their own utility func-
tion over bargaining outcomes. By modifying the game, the regulator changes the associated
distribution, and therefore modifies the value of their own expected utility. Accordingly, they
can calculate the Bayes-optimal modification to the game.

We emphasize that there is nothing in the formal definition of a bargaining game or in
our translation of Nash’s axioms that restricts our analysis to scenarios that are traditionally
viewed as “bargaining”. Bargaining solution concepts can be applied to any situation where
the modeler only knows the feasible set of a noncooperative game’s outcomes, and cannot
tractably elaborate the full underlying extensive form of the game. In such situations, the best
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the modeler can do is provide a distribution over the final joint utility outcome. The Nash
distributional bargaining concept provides a way to do this, using axioms that seem applicable
in many scenarios not traditionally viewed as unstructured bargaining

As an illustration, in Smith et al. (1988) an artificial speculative market was run for T
rounds. This created a bubble which burst, leaving some test subjects poorer and some richer.
Predicting the moves in the full extensive form game the subjects engaged in over the T rounds
is laborious, at best. As an alternative, one could imagine predicting the experiment’s outcome
based only on knowing its feasible set, i.e., knowing all ways the money could end up divided
among the subjects at the end of the experiment. Future work involves analyzing the Nash
distributional bargaining concept for such situations.

Such market experiments could prove to be a useful source of data for testing alterna-
tive distributional bargaining theories, in addition to experiments explicitly viewed in terms
of unstructured bargaining. In particular, if it is possible to produce a Kalai-Smorodinsky
distributional bargaining concept, as discussed above, it may be be possible to compare the
predictions of such an alternative theory against the NDB concept using data from market
experiments. Such a comparative study would be analogous to the types of meta-studies con-
ducted to compare non-cooperative solution concepts using experimental data, e.g., Wright and
Leyton-Brown (2010).

As discussed above, the function s plays a prominent role in making predictions about
bargains rather than about joint utilities. Arguably, knowledge of s should even affect the
predictions we make over joint utility outcomes. As an example, say the set of possible bargains
is so large that the players cannot be expected to examine it completely, and that s concentrates
the vast majority of bargains onto a single joint utility x, e.g., one on the Pareto frontier. In
this case, it would seem quite reasonable to ascribe higher probability to that x than we would if
only a single bargain mapped to it. However traditional approaches to unstructured bargaining
ignore s when predicting joint utilities, relying on axioms solely concerned with the space of
joint utilities. For the most part, that is the approach we adopted here. (The section on
optimal recommendations diverged from this in modeling the effect of the recommendation.)
Future work involves incorporating knowledge of s directly into the predictions of joint utility
outcomes.
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