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Abstract

Under its conventional positive interpretation, game theory predicts that the
mixed strategy profile of players in a noncooperative game will satisfy some set-
valued solution concept. Relative probabilities of profiles in that set are unspecified,
and all profiles not satisfying it are implicitly assigned probability zero. However
the axioms underlying Bayesian rationality say that we should reason about player
behavior using a probability density over all mixed strategy profiles, not using a
subset of all such profiles. Such a density over profiles can be viewed as a solution
concept that is distribution-valued rather than set-valued. A distribution-valued
concept provides a best single prediction for any noncooperative game, i.e., a uni-
versal refinement. In addition, regulators can use a distribution-valued solution
concept to make Bayes optimal choices of a mechanism, as required by Savage’s
axioms. In particular, they can do this in strategic situations where conventional
mechanism design cannot provide advice. We illustrate all of this on a Cournot
duopoly game.
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1 Introduction

It is common practice in game theory to define “rational” decision-makers as Bayesian
decision makers. This means that they make their decision(s) so as to maximize their
posterior expected utility, conditioned on their information about the world external to
them, and on their prior beliefs.

Game theoreticians themselves, in conducting their daily lives, are decision makers.
In particular, one decision that game-theoreticians often have to make is what strategy
profile q to predict as the outcome of a given N -player non-cooperative game Γ. To
make this decision they have information specifying Γ, and they also have prior beliefs
concerning the players of Γ and the strategy profile of those players, q.

In this paper we use the Bayesian definition of rational decision-making to analyze
this prediction decision that game theoreticians often have to make. More precisely,
by identifying rational decision making with Bayesian decision making, we analyze how
a “rational” Predictor agent, external to the game Γ, would combine her information
concerning that game with her prior beliefs concerning the players of the game and their
profiles q, to predict what profile q is jointly adopted by the players of Γ.

Being Bayesian, such a rational Predictor would use a posterior distribution over
strategy profiles q, conditioned on her information about the the game Γ and its players.
This posterior distribution is essentially a solution concept. However in contrast to set-
valued solution concepts over q’s, like the Nash Equilibrium (NE), Quantal Response
Equilibrium (QRE), etc., this solution concept is not a set of q’s. Rather it is a distribution
over all q’s, providing their relative probabilities.1 So in particular, this posterior provides
the relative probabilities of all the NE profiles, rather than just providing the set of such
profiles.

The usual axiomatic justifications for Bayesian reasoning mandate that Predictor
use such a distribution-valued solution concept rather than a set-valued one. However
there are also numerous practical advantages to using such a distribution-valued solu-
tion concept. One advantage is that with distribution-valued solution concepts, there
are no difficulties in choosing a single “best prediction” for q, as there often are with
set-valued solution concepts. If Predictor must decide on a single “best” q as her pre-
diction, Bayesian decision theory tells Predictor exactly how she must do this: she must
combine her posterior distribution over q’s, together with her loss function for predicting
q when the actual profile is q′, to give the (unique) single best prediction for q. In this,
Bayesian decision theory, combined with a distribution-valued solution concept, provides
a universally applicable refinement.

Another advantage of a distribution-valued solution concept is that it is needed for
Predictor to implement a Bayesian alternative to mechanism design. More precisely, say
that Predictor is choosing the value of a parameter in the game to be played. Each game
parameter Predictor might choose will induce a different associated posterior over q. Say
that Predictor is concerned with the value of a function f : q → R, e.g., the social welfare

1In this paper, to simplify the exposition, whenever we don’t need to be formal we loosely use the
term “distribution”, even if we mean a probability density function, properly speaking.
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of q. Since different values of the game parameter induce different distributions over q,
they induce different expected values of f . Accordingly, to strictly adhere with Savage’s
axioms, Predictor should choose the parameter with the maximal associated posterior
expected value of f . This cannot be done without a distribution-valued solution concept.

In the rest of this introduction we elaborate these practical advantages of using
distribution-valued solution concepts rather than set-valued solution concepts. More
general discussion of the relationship between distribution-valued solution concepts and
set-valued solution concepts can be found in the appendix. We end the introduction with
a brief discussion of the relation of PGT to other work in the literature.

In Sec. 2 we introduce a prior over profiles q, and then a likelihood over q’s. Taken
together, these give us a distribution-valued solution concept in the form of a posterior
distribution over q’s. In its homogeneous formulation (all players have the same parameter
values), this model has two parameters.

Illustrations of our solution concept for simple games with small pure strategy spaces
can be found in Wolpert and Bono (2008). In Sec. 3 we illustrate the solution concept
on a more computationally challenging domain, the Cournot game.

We emphasize that we do not claim that the prior and likelihood considered in this
paper are “the correct” prior and likelihood. Rather we use them to illustrate distribution-
valued concepts in general. Just like one can have different set-valued solution concepts,
one can have different distribution-valued concepts. Ultimately field and laboratory ex-
periments should be used to determine what such concept to use.2

We refer to distribution-valued solution concepts in general as Predictive Game The-
ory (PGT). PGT is the application of statistical inference to games, in contrast to the
use of statistical inference by some players within a game. As such, it can be used to
analyze any type of game.3

1.1 Posterior distributions in PGT

Often the information available to Predictor, I , includes the precise game structure,
set of strategy profiles and player utility functions. This is not always the case though.
Sometimes Predictor will have some uncertainty about such quantities. Or it may be
that I contains non-conventional information that is relevant for predicting behavior,
e..g., information about player rationality, focal points and demographic data.

Any Bayesian quantifies whatever information she has about the state of the world in
terms of distributions over the set of all possible states of the world. So to be Bayesian,
Predictor must quantify I in terms of such distributions. In noncooperative game theory,
the set of “all possible states of the world” is usually the set of mixed strategy profiles
available to the players of the game. So to be Bayesian, Predictor must quantify I in
terms of distributions over the set of strategy profiles.

2Indeed, to best match experimental data, it may end up being easiest to construct the posterior
directly, rather than construct it by first constructing a prior and likelihood that then get combined.

3An earlier version of this paper can be found at Wolpert and Bono (2008), and a brief high-level
summary of PGT was published in Wolpert and Bono (2010).
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To make this more precise, let Xi be the set of player i’s pure strategies, X = ×N
i=1Xi

be the set of pure strategy profiles, ∆(Xi) be the set of player i’s mixed strategies and
∆X = ×N

i=1 be the set of mixed strategy profiles. We refer to a generic element of X as
x = (x1, ..., xn), and we refer to a generic element of ∆X as q = (q1, ..., qN). For simplicity,
we restrict attention to finite pure strategy sets. So a “probability distribution” over
mixed strategy profiles is a density function mapping from ∆X → R.

As a point of notation, we will often use integrals with the measure implicit. So
in particular, if the integration variable is finite, we implicitly are using a point-mass
measure, and the integral is a sum. Similarly we generically use “P” to indicate either a
probability density function or a probability distribution, as appropriate.

The states of the world are all of ∆X , and the Bayesian posterior over states of the
world conditioned on I is

P (q | I ) ∝ P (q)L (I | q) (1)

where P (q) represents Predictor’s prior beliefs about the probability of q being chosen
and L (I | q) is the likelihood of the information in I given that q is chosen by the
players.

As mentioned above, in general I may not fully specify the game the players are
engaged in, i.e., Predictor may have uncertainty about the game. This uncertainty is
reflected in P (q | I ). As an example, say Predictor is uncertain about the utility
functions, so that I is a distribution over possible utility functions. (Recall that allowing
Predictor to be uncertain about the utilities does not mean the players themselves are.)
Then P (q | I ) is given by averaging over that distribution over utility functions. To
illustrate this, suppose that I specifies that that the players’ utility functions are U ′

with probability m, and that they are instead U ′′ with probability 1−m. Let I ′ be all
information in I other than this information about the players utility functions. Then

P (q | I ) = mP (q | U
′,I ′) + (1 − m)P (q | U

′′,I ′). (2)

However arrived at, the posterior over mixed strategy profiles induces posterior ex-
pected values of any function f(q) of the mixed strategy profiles,

E(f | I ) =

∫

∆X

f(q)P (q | I )dq

=

∫

∆X

f(q)P (I | q)P (q)dq
∫

∆X

P (I | q)P (q)dq
(3)

Often Predictor is most interested in such posterior expected values. For example, for
appropriate choices of f , the associated posterior expectation gives posterior expected
posterior expected profits of the two firms, posterior expected social welfare, posterior
expected covariance between player pure strategies, etc.

As an example, by choosing f(q) = q(x) for any given x, we get the posterior over
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pure strategy profiles:

P (x | I ) =

∫

P (x | q,I )P (q | I )dq

=

∫

q(x)P (q | I )dq

= E[q]. (4)

Typically under P (x | I ) the pure strategies of the players are not statistically indepen-
dent. This is true even though the support of the posterior density function P (q | I ) is
restricted to mixed strategy profiles q under which the players are statistically indepen-
dent. Formally, the distribution over pure strategy profiles is given by

P (xi, x−i) =

∫

dq P (xi, x−i | q,I )P (q | I )

=

∫

dq q(xi, x−i)P (q | I )

=

∫

dqidq−i qi(xi)q−i(x−i)P (qi, q−i | I ) (5)

and in general this differs from the product of the distributions over pure strategies,

P (xi)P (x−i) =

[
∫

dqi qi(xi)P (qi | I )

][
∫

dq−i q−i(x−i)P (q−i | I )

]

. (6)

Note that this coupling of pure strategies is different from the correlation that arises
in a correlated equilibrium [see Aumann (1974)]. The coupling between xA and xB that
arises in P (x | I ) is from Predictor’s perspective, arising from her averaging over all
q’s. However, there is no coupling between the player’s pure strategies from the players’

perspective because they choose their strategies independently.
To illustrate this, say we had a game with multiple NE, and we knew that the players

of the game were fully rational. Then by observing the pure strategy of one of the players,
we would gain statistical information about what equilibrium is most likely being played.
That information would in turn tell us something about the move of the other players.

Note there are two different kinds of probability arising in PGT. q(x) refers to the
probability that the players choose pure strategy profile x. In contrast, P (q | I ) refers
to the probability that the external modeler of the system, Predictor, assigns to the event
that the players jointly decide to choose x with probability q.

As an illustration, even if the players are involved in a complete information game,
and so know one another’s utilities exactly, this does not mean that Predictor knows
those utilities exactly. Indeed, if the game being played were an incomplete information
game, there would be yet a third kind of probability, giving the beliefs the players have
concerning the types of one another. (Similarly, there are other kinds of probability for
games involving imperfect information, states of Nature, etc.)
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1.2 Point Prediction in PGT

A Bayesian Predictor’s posterior distribution over strategy profiles contains far more
information than a single “best” prediction of a strategy profile. However, if Predictor
needs to select a single strategy profile as a best prediction, then decision theory tells
her how to. First, she must specify her loss function L(q, q′), which quantifies the loss
experienced by Predictor when she makes prediction q′ while the actual profile turns out
to be q.

Example 1: A game theoretician working for a company may be required to make a
single prediction for how the company’s employees will behave under a new organization
structure. That game theoretician will have her salary tied, implicitly or explicitly, to how
closely her prediction q′ for the behavior of the employees matches their actual behavior
q. This connection between the accuracy of her prediction and her salary provides the
game theoretician’s loss function for making prediction q′ when the actual profile of the
employees turns out to be q.

Example 2: An academic game theoretician publishes a prediction for what profile
will be adopted by the subjects of an upcoming behavioral game theory experiment.
Her professional prestige is tied to how closely her prediction q′ for the outcome of the
experiment matches the actual profile adopted by the experimental subjects, q. This
connection between the accuracy of her prediction and her prestige provides the game
theoretician’s loss function for making prediction q′ when the actual profile of the subjects
turns out to be q.

Given her loss function, the Bayesian Predictor combines it with her posterior dis-
tribution over profiles, by choosing as her “best prediction” the strategy profile that
minimizes the associated expected loss. If Predictor’s loss function is L(q, q′), where q′ is
the predicted profile and q is the realized profile., then that Bayes-optimal prediction is

q∗ = argmin
q′

∫

L(q, q′)P (q | I )dq.

Since this optimal predicted profile is almost always unique, it can be viewed as a unique
“refinement”.4

Often under q∗ no player’s strategy is a best response to the strategies of the other
players. Assuming there is more than one NE of the game, this is true even if the players
are all fully rational, i.e., if the support of the density over strategy profiles is restricted
to the NE. In this sense, “predictive” bounded rationality is automatic under PGT.

It is possible to use the posterior P (q | I ) to specify a unique mixed strategy profile
without using a loss function. In particular, the expected posterior mixed strategy profile,

4Note that this refinement depends on the loss function of Predictor, which is not part of the specifi-

cation of the game. As such, it varies from one Predictor to another. An alternative that does not have
such variability is to predict the posterior expected profile; see below.
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P (x | I ), provides such a unique profile.5 In yet other circumstances, a researcher may
be interested in the mode of the posterior, argmaxq P (q | I ). Both quantities always
exist and are typically unique.

Alternatively, if Predictor wishes to choose a single best pure strategy profile, the
procedure is again straightforward. She first specifies her loss function, L(x, x′), where
x′ is the predicted pure action profile and x is the realized pure action profile. Predictor
then chooses

x∗ = argmin
x′

∫

L(x, x′)q(x)P (q | I )dxdq. (7)

As an example, if all xi are real-valued, and Predictor’s loss function is given by
L(x, x′) = ||x− x′||2, then the optimal choice is the expected value of x computed under
P (x | I ), given in Eq. (4). Note that in general, this optimal choice may not be an
element of X. If it is required that the prediction lie in X, then Predictor must instead
do a search over the (convex) function mapping every x′ to

∫

L(x, x′)q(x)P (q | I )dxdq.
As another example, say Predictor’s loss function is a zero-one loss function, where

L(x, x′) = 1 for x 6= x′ and L(x, x′) = 0 for x = x′. Then the optimal choice is the mode
of P (x | I ), argmaxx P (x | I ).

1.3 PGT Alternative to Mechanism Design

Say Predictor (the regulator) can set a parameter λ specifying some aspect of a game to
be played by a set of players who will choose a mixed strategy profile q. As an example, λ
might specify the form of an auction, or any similar choice of a mechanism in a mechanism
design problem. More generally, λ can be any choice that someone external to the N -
player game can make that will modify that game before it is played. Although it is not
required mathematically, to ground intuition we can assume that λ is perfectly observed
by all N players.

Let W (q, λ) be Predictor’s utility function, and indicate the game specified by λ as Γλ.
Let I be some other information that Predictor has concerning the game and/or player
behavior, in addition to the value λ that she will choose. Then the standard approach of
optimal control (i.e., Bayesian decision theory) says that Predictor should set λ to

argmaxλ

[

E(W | I , λ)

]

= argmaxλ

[
∫

W (q, λ)P (q | I , λ)dq

]

(8)

So for example, if Predictor’s utility function only depends on the pure strategy profile
of the players, we can write W (q, λ) =

∫

dx q(x)w(x) for some function w. In this case
Predictor should set λ to

argmaxλ

[
∫

W (q, λ)P (q | I , λ)dq

]

= argmaxλ

[
∫

w(x)q(x)P (q | I , λ)dqdx

]

(9)

5Note that P (x | I ) is also the Bayes optimal prediction, if the loss function is quadratic, L(q, q′) =
∫

dx[q(x) − q′(x)]2.
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There are many ways to extend the foregoing. As an illustration, consider the case
where Predictor’s utility is not W (q, λ), but rather W (θ, λ) where θ ∈ Θ is set stochas-
tically by P (θ | q, λ). In other words, Predictor does not directly care about the mixed
strategy profile, but rather about the ramifications of that profile on the state of some
other system with state space Θ. As an example, say the player pure strategy profile
stochastically sets the state θ ∈ Θ of a system, and Predictor only cares about that
value θ. Then using the PGT alternative to mechanism design, Predictor should set λ to
maximize

∫

P (θ | x)q(x)P (q | I , λ)W (θ)dqdxdθ.

In this way Predictor makes her choice of λ in strict accordance with Savage’s axioms.
That is, Predictor chooses λ by answering the question, “what value of λ (the mechanism)
maximizes Predictor’s associated expected utility?”.

In contrast, for mechanism design based on set-valued solution concepts, this question
cannot be properly posed. Perhaps the closest analog of this question would be something
like “what value of λ maximizes Predictor’s expected utility under a set-valued solution
concept?” However, consider the case where the N -player game has multiple equilibria
for every value of λ. Let W j

λ be Predictor’s expected utility under the j’th equilibrium
for value λ. In particular, there are pairs λ, λ′ 6= λ such that the intervals [minj(W

j
λ),

maxj(W
j
λ)] and [minj(W

j
λ′), maxj(W

j
λ′)] overlap. Mechanism design with set-valued so-

lution concepts can provide no advice on whether the controller should choose λ or λ′ in
this situation (in contrast to the PGT alternative to mechanism design).

By using a distribution-valued solution concept, Predictor can compare choices of λ
(i.e., choices of “mechanism”) based on other considerations beside the associated values
of expected welfare. In particular, Predictor can use the posterior to answer many of the
questions that real-world stakeholders often ask concerning the possible policy choices of
a regulator, such as:

• “Which policy produces the lowest variance in welfare?”

• “What is the probability that policy λA produces greater welfare than policy λB?”

• “Which policy minimizes the probability that welfare is below some threshold
value?”

• “Which of the policies maximizes welfare subject to the condition that the expected
profits of firms are positive with probability greater than some threshold value?”

Answering any of these questions requires a distribution over mixed strategy profiles.
This means that set-valued solution concepts cannot answer these questions, since they
do not provide such a distribution. In section 4.4 below, we will elaborate in detail the
general procedure for using PGT to answer all the questions listed above. We then show
how to use that procedure to answer the questions for a Cournot duopoly with negative
externalities.

In many situations, a regulator changes their policy choice very infrequently on the
timescale of the decision-making of the players subject to that policy. (In fact firms often
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prefer that regulators change policy infrequently, to “allow them to plan for the long
term”.) In such situations, often the players effectively view the regulator’s choice of
policy as the value of a state of Nature. In other words, even if the players know the
regulator’s utility function, in such situations they don’t account for that utility function
when making their decisions. We deal with this setting in our Cournot duopoly example
below.

1.4 Relation to other work

In this paper we are interested in ex ante predictions, not ex post fitting of a model to
data. However ex ante predictions are closely related to Bayesian ex post fitting of a
model to data. Ex post maximum likelihood fitting of the parameters of a model to data
can be done with a set-valued solution concept, if one simply treats which of the equilibria
under that concept actually arose as another parameter to be chosen by the maximum
likelihood. However if one were to use Bayesian fitting, one would need to have a prior
over all parameters. That includes a prior over the parameter of which equilibrium arises.
This prior is nothing other than the ex ante relative probabilities of the profiles allowed
by the set-valued solution concept. Similarly, since we are interested in making ex ante

predictions, we need a way to provide ex ante relative probabilities of the profiles allowed
by any set-valued solution concept.6

This need for a distribution over equilibria when fitting set-valued concept models
to data is not integrated into most work in the experimental game theory literature. In
contrast, it is integrated into some prominent work in the econometric literature on struc-
tural modeling (e.g., Bajari et al. (2010); Aguirregabiria and Mira (2009) and references
therein). However most structural modeling requires player trembles, incomplete infor-
mation, observational noise by the researcher or some such source of noise. In contrast
to the field experiments studied in econometrics, many of the laboratory experiments
studied in game theory are designed so that those types of noise are vanishingly small.7

Accordingly, structural modeling is not well-suited to analysis of some game theory ex-
periments.

Finally, it should be noted that subsequent to the appearance of early versions of
this paper, the “Heterogeneous Logit Quantal Response Equilibrium” was introduced
(see Rogers et al. (2009)).8 For games in which the HQRE results in a unique choice of qi

6Note that in general a prior over which of the profiles q allowed by the set-valued solution concept
arises would vary with the game. In other words, it would take the form P (q | I ). So this “prior” is
identical to what in our analysis here PGT serves as the “posterior”, since in this paper we do not extend
the PGT conditioning argument to include experimental data.

7Perhaps the most problematic issue in game theory experiments is ensuring the common knowledge
assumption that players know one another’s utility functions, not just one another’s payoffs. This issue
can be minimized by having payoffs be small (so non-concavity of the utility functions is irrelevant),
games be anonymous (so there are no reputation effects), and players told they are playing computers
(so there are no other-regarding preferences). See Starmer (2000) for more on the issue of designing
game theory experiments to match the assumptions of game theory.

8 That work posits a distribution over exponents λi in the logit response functions of the players. It
then treats the λi’s as types in a Bayesian game. (Note that in the logit QRE, it is only the product
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by any player i having response function exponent λi, a population distribution P (λ) over
such exponents results in a distribution over qi’s. In this sense, in this special situation,
the HQRE is a particular type of PGT.

Note though that even in this special situation, for any given P (λ), the HQRE assigns
zero probability density to almost all qi’s.

9 Moreover, of course, if some λ do not result
in a unique q, we cannot interpret the HQRE as a distribution over q’s of any sort, even
one whose support has measure zero.

However even in the special situation where each λ results in a unique q, there remains
a subtle but important distinction between PGT and the HQRE. In the HQRE, the
map from the type of a player i to qi is single-valued. So if only Predictor knew every
player’s type, Predictor would know q exactly, with no uncertainty. In contrast, the PGT
paradigm is founded on the fact in the real world, even if Predictor knows the type of
every player, she is still (very) uncertain about their mixed strategies.

2 Posteriors over Mixed Strategy Profiles

In this section we describe a Bayesian formulation of Predictor’s distribution-valued so-
lution concept, the posterior distribution. We write this as

P (q | I ) ∝ P (q)L (I | q),

where L (I | q) is the likelihood of I given q, P (q) is the prior distribution over mixed
strategy profiles, and as before, I is Predictor’s relevant information.

In this paper we focus on cases where the information I is an exact and complete
specification of the number of players, their associated (finite) strategy spaces and utility
functions, for a particular noncooperative game. So formally, any particular I is an
element of the set of all possible such game specifications. Note that this set of game
specifications has the same cardinality as R, and so density functions across it across it
are well-defined.

2.1 The Likelihood

The likelihood function L (I | q) is a distribution over game specifications I , condi-
tioned on the mixed strategy profile actually being q. For a fixed game specification I ,
the likelihood will assign greater weight to q’s that better “coincide” with I , as deter-
mined by some external criterion. Choosing that criterion is a core component of how
Predictor chooses to model human behavior. As such, it is analogous to the choice of
what precise set-valued solution concept to adopt when pursuing a set-valued analysis.

λiui that arises in player i’s response function; uncertainty in exponents λi is on the same footing as
uncertainty about utilities ui.) So a player i’s strategy in the Bayesian game is the map from their type
λi to qi. The logit QRE of this Bayesian game is the HQRE.

9To see this, note that for any fixed ui and q−i, almost all distributions qi(xi) are not proportional
to exp[λiEq

−i
(ui | xi)] for any value of λi.
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In this paper, we focus on a likelihood that involves a quantification of bounded
rationality, i.e., we consider cases where Predictor models human behavior in terms of
such a quantification. For any given q−i and I , we will quantify the rationality of
player i as the exponent of a logit response by player i that best fits i’s actual mixed
strategy qi. For cases of a single player playing against Nature, quantifying rationality
in terms of logit responses has a long history [see Train (2003)]. In the context of multi-
player games, it goes back at least to the seminal work of McKelvey and Palfrey (1995)
on quantal response equilibria. Accordingly, we call the likelihood associated with this
rationality quantification the QR-rationality likelihood.

To simplify the exposition we introduce some more notation. Let U i
q−i

be the vector
of expected utilities that player i gets from playing each of his possible pure strategies
against the mixture q−i. We call this player i’s environment. The logit mixed strategy
distribution for player i facing environment U i

q−i
is

LU i
q−i

,bi
(xi) ∝ ebiEq(ui|xi,j)

where Eq(ui | xi,j) is player i’s expected utility from playing her j’th pure strategy against
the mixture q−i. Note that as bi increases, the mixed strategy L assigns greater probability
to those pure strategies of i with greater expected utility. Moreover, as bi → ∞, the logit
mixed strategy is a best response to q−i [see McKelvey and Palfrey (1995)]. Accordingly,
in the experimental literature, the constant bi is commonly interpreted as a measure of
i’s rationality.

In both laboratory and field experiments, players do not adopt exactly logit responses.
To be a proper Bayesian, Predictor’s likelihood function must reflect this. (Otherwise,
strictly speaking, any experimental data would invalidate Predictor’s Bayesian model.)
Therefore her measure of rationality must be well-defined even for arbitrary, non-logit
responses. So we need a way to define rationality for each player i for an arbitrary profile
q.

One method of doing so is to define rationality as the value of bi such that the logit
response distribution specified by bi best fits the actual qi. This in turn requires choosing
how to measure how well one distribution fits another.

Here we use the Kullback-Leibler (KL) divergence to measure that fit. KL divergence
is an extremely common measure of how well one distribution fits another, with its
origins in information theory [see Kullback and Leibler (1951); Kullback (1951, 1987);
Cover and Thomas (1991a); Mackay (2003b)]. The KL divergence from qi to the logit
response distribution parameterized by bi is

KL
(

qi(xi), LU i
q−i

,bi
(xi)

)

=
∑

xi,j∈Xi

q(xi,j) ln

(

q(xi,j)

LU i
q−i

,bi
(xi)

)

=
∑

xi,j∈Xi

q(xi,j) ln

(

q(xi,j)
∑

xi,l∈Xi
ebiEq(ui|xi,l)

ebiEq(ui|xi,j)

)

. (10)

We define the rationality of player i for arbitrary q to be the (unique) minimizer over bi

of KL
(

qi(xi), LU i
q−i

,bi
(xi)

)

. This gives us the following characterization of rationality.
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Definition 2.1. The QR-rationality of qi against q−i, written βi(q, Ui), is the value of
bi that minimizes the KL distance from qi to LU i

q−i
,bi

(xi), equation 10. The vector of

all players’ rationalities for the mixed strategy profile q and set of utility functions U is
β(q, U).

We will often simplify notation and just write “βi(q, U)”. If U is implicitly held fixed, we
will often write “βi(q)”, or even “βi”.

In the special case where U i
q−i

(xi) is independent of xi, the QR-rationality parameter
βi can be any real number. (The same theoretical pathology applies when fitting logit-
QRE’s to experimental data.) Usually the set of q exhibiting this pathology is of zero
measure in ∆X however, and therefore can be ignored. However, for completeness we
define βi = ∞ when U i

q−i
(xi) is independent of xi.

The QR-rationality βi(q, Ui) is invariant under shifts of the player utility functions.
However, just like the logit-QRE profile, βi is not invariant to positive rescalings of utility
functions. So QR-rationality depends on utility units. This dependence is simply linear
however: Multiplying the scale of the utility function of player i by some constant A is
equivalent to using the original utility function but multiplying player i’s rationality by
A.

β(q) is a single-valued vector-valued function of q. In addition, it is bounded function
almost everywhere in ∆X . Moreover, the expected utility of player i is the same under
qi as under the logit mixed strategy of player i for a rationality value βi(q). Formally,

Eq(ui) = E
q

βi(q)
i ,q−i

(ui) where q
βi(q)
i is the logit distribution given by LU i

q−i
,bi

. These and

other properties of QR rationality are established inWolpert and Bono (2008).
Here we presume that the likelihood L (I | q) is a product over each player i of the

value of a real-valued function Fi of the QR rationality of player i for mixed strategy
profile q, for the game specified in I :

L (I | q) ∝
∏

i

Fi(βi(q)) (11)

We also presume that each Fi is a monotonically increasing function, i.e., we presume
that everything else being equal, Predictor expects each player to be more likely to have
high rationality rather than lower rationality.

One way to justify this presumption is to assume that a particular human’s rationality
is a feature of their behavior that is invariant across games. A weaker assumption that
justifies our presumption is that the population average of the rationality of humans is
invariant across games. Formally though, our likelihood doesn’t require the existence of a
population of players; it is simply a quantification of Predictor’s uncertainty about player
behavior.

Given our presumed form of the likelihood, our remaining task is to specify the precise
functions Fi. To do so, we proceed by computational expediency.10 To make calculations

10In this, we are inspired by random utility models, where computational expediency is sometimes used
to justify modeling player utility uncertainty in a way that makes the resultant decision distributions be
functions like the logit and probit.
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in PGT typically requires use of Monte Carlo procedures. Accordingly, computational
expediency lead us to choose an f so that the resultant Monte Carlo estimators have
good convergence behavior, i.e., have low variance. In particular, note that if L (I | q)
were unbounded as βi(q) grows, Monte Carlo estimates of (functions of) the posterior
could have infinite variance. Accordingly, we choose an f that is bounded:

L (I | q) ∝
∏

i

[tanh(βi(q) − .5) + 1]αi (12)

This choice for Fi is monotonically increasing and bounded, as required. In addition,
using this Fi means that any q under which there is a player with zero QR-rationality
will receive zero weight in the posterior. The separate Fi may differ in their values of the
parameter αi. Since an increase in αi increases the likelihood that i chooses strategies
with a high βi, αi quantifies Predictor’s information/beliefs about how much more likely
player i is to be rational rather than irrational. This provides a way for Predictor to use
the likelihood to model heterogeneity in player abilities.

It should be emphasized that equation 12 is not the only reasonable choice for a
QR-rationality likelihood.11 Such a multiplicity of modeling choices is ubiquitous in all
types of statistics, not just PGT. (In particular, it is ubiquitous in econometrics). When
making a prediction about a system, ultimately a Bayesian statistician must choose how
to quantify their insight into how the system’s state is related to what information they
have concerning it, in terms of a likelihood. This is just as true when the system being
predicted is a set of players as when it is a more conventional “inanimate” system.

In this regard, in the appendix we discuss two likelihood that do not involve QR ra-
tionality. The first of these involves N-rationality, and says that the likelihood of a player
choosing a specific qi when the other players choose q−i depends on how close the associ-
ated expected utility, Eqi,q−i

(ui), is to the best response expected utility, maxq′i
Eq′i,q−i

(ui).
This likelihood is closely related to the epsilon equilibrium concept of Radner (1980),
which also uses the best response expected utility as a target. The second likelihood in-
volves intelligence, and says that the likelihood of a particular qi given q−i depends on the
proportion of strategies q′i that yield a lower expected utility than qi, given q−i. The ap-
pendix contains a simple example to illustrate the differences among the QR-rationality,
N-rationality and intelligence likelihoods.

2.2 The Prior

The role of the prior distribution, P (q), is to quantify Predictor’s subjective beliefs about
the relative probabilities of mixed strategy profiles without regard to the game-specific

11For example, one could use

L (I | q) ∝
∏

i

gi(βi(q)) (13)

where

gi(βi(q)) =

{

αi ln(βi(q) + 1) + 1 if βi(q) ≥ 0

eαiβi(q) otherwise.
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information I (which instead goes into the likelihood function). Properly speaking, this
should reflect the relative probability Predictor assigns to a population average, over
all game-playing situations she might encounter, of the profile arising in those games.
To avoid pre-judging the results of such an average, here we instead use a prior over
distributions with roots in information theory.

Based on any of several separate sets of simple desiderata, there is a unique real-
valued quantification of the amount of syntactic information in a distribution q(x) [see
Shannon (1948), Mackay (2003a), Cover and Thomas (1991b)]. That quantification, the
Shannon entropy of a density q, is written as S(q) = −

∑

x q(x) ln(q(x)). The entropic
prior density is

P (q) ∝ exp(δS(q))

for a real-valued parameter δ. This prior has proven extremely powerful in many branches
of Bayesian statistics [see Mackay (2003a), Gull (1988), Strauss et al. (1994)]. Loosely
speaking, for δ > 0 it says that everything else being equal, mixed strategy profiles are
more likely the flatter they are. This means it favors those profiles that have least effect
on the posterior over pure strategy profiles,

P (x | I ) =

∫

q(x)P (q | I )dq. (14)

Similarly, the prior over pure strategy profiles, P (x) =
∫

q(x)P (q)dq is flat under the
entropic prior P (q). (By symmetry, this is true regardless of δ.)

Setting δ < 0 rather than δ > 0 has an important behavioral interpretation: it means
that Predictor believes that human beings are particularly poor at randomizing. As
usual, if Predictor is actually uncertain how to set δ, in the Bayesian framework she
should average over it.

Just as there is more than one reasonable likelihood, there is more than one reasonable
prior. Indeed, the entropic prior is just one member of the Cressie-Read family of dis-
tributions [see Cressie and Read (1984); Read and Cressie (1988)]. As usual, ultimately
real-world behavior should be used to set the prior. For simplicity though, here we will
focus on the entropic prior.

Given the choice of an entropic prior, the associated posterior for the QR rationality
likelihood is

P (q | I ) ∝ exp(δS(q))
∏

i

[tanh(βi(q) − .5) + 1]αi (15)

It is important to emphasize that this posterior is not an average of QRE’s having different
exponents. The set of q ∈ ∆X that can be expressed as a QRE for some β has measure
0. In contrast, the posterior in equation 15 is non-zero for every q.

In addition, consider an alternative likelihood where Predictor knows the rationality
of each player exactly:

P̂β∗(I | q) =
∏

i

δ(βi(q) − β∗
i )
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for some set of player-indexed constants {β∗
i }. Combining this alternative likelihood

with the entropic prior provides an alternative posterior, P̂β∗(q | I ). It turns out that
for either games against Nature, or multi-player games where all the pure strategy spaces
are binary, the mode of P̂β∗(q | I ) is the QRE for QRE exponents β∗

i . However for more
general games this need not be the case. On the other hand, even in such games the mode
of P̂β∗(q | I ) is often well-approximated by the associated QRE, and the correction terms
can be calculated explicitly.

These results and others are established in Wolpert and Bono (2008). That paper
also analyzes the relationship between the alternative posterior P̂β∗(q | I ) and regret
(see Shoham et al. (2007)). This analysis establishes that the alternative likelihood, which
stipulates that a player’s rationality has the same constant value for all games, is not
equivalent to a likelihood that instead stipulates that a player’s expected regret has the
same constant value in all games. Finally, that paper also explores the relation among
the alternative posterior, statistical physics and information theory.

3 Cournot Duopoly

We now illustrate PGT for prediction and design using the Cournot duopoly. We start
with a review, to introduce our notation for the Cournot duopoly.

There are two firms, A and B, that produce goods α and β respectively. They
independently decide how much of their own good to produce. The produced quantities
are xA ∈ XA = [0, x̄A] and xB ∈ XB = [0, x̄B], where x̄i is the maximum quantity that
firm i can produce. We define X = XA × XB.

The market price for firm i’s product is decreasing in both xi and x−i, i.e. goods α
and β are substitutes. So if we write this price as Di(xi, xj), then Di(xi, xj) ≥ 0, ∂Di

∂xi
≤ 0

and ∂Di

∂xj
≤ 0 for all (xi, xj) ∈ X. The total cost for firm i of producing xi units is written

as Ci(xi). As is standard, we assume that Ci(xi) ≥ 0, ∂Ci

∂xi
≥ 0 and ∂2Ci

∂x2
i

≥ 0 for all i,

xi ∈ Xi. Combining, each firm i’s profit function is

Πi(xi, xj) = xiDi(xi, xj) − Ci(xi).

We now analyze this duopoly model using PGT, using illustrative parametric forms
of Di(·, ·) and Ci(·), i = A,B. We will concentrate on Di’s having the form

Di(xi, xj) =

{

di1 − di2xi + di3x
2
i − di4x

3
i − xj, if greater than zero

0, otherwise

We require −di2 + 2di3xi − 3di4x
2
i ≤ 0 for all xi ∈ Xi to ensure that ∂Di

∂xi
≤ 0. The

parametric form for Ci(·) is

Ci(xi) =
exi

ci1

.

These parametric forms describe a very broad range of strategic settings. As an
example, the parameters [x̄i = 20; di1 = 20.4; di2 = 2.165; di3 = 0.12; di4 = 0.0025; ci1 =
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16, 000, 000] for i = A,B produce the symmetric best response functions x∗
i (xj) illustrated

in figure 1. In this example there are five intersections of the best response functions,
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Figure 1: Best response functions for x̄i = 20; di1 = 20.4; di2 = 2.165; di3 = 0.12; di4 =
0.0025; ci1 = 16, 000, 000 for i = A,B.

indicating five pure strategy NE. That equilibrium set is

∆NE
1 = {(16.6, 0.94), (10.2, 3.1), (5.6, 5.6), (0.94, 16.6), (3.1, 10.2)}.

Changing the parameter dA1 from 20.4 to 19.1 represents a downward shift in firm
A’s inverse demand function of 1.7 dollars. This shift reduces the number of equilibria
from five to one. The associated best response functions are depicted in figure 2. The
unique equilibrium is ∆NE

2 = (0.55, 16.84).

4 Results

We formed our estimate of E(f | I ) using conventional Monte Carlo importance sam-
pling: We constructed a sampling distribution H(λ), and then IID sampled H to generate
many λ’s, with our estimate of E(f | I ) given by averaging the (importance sampling
corrections to) the associated values f(qλ)P (qλ | I ). The details are given in the ap-
pendix.

As an illustration, P (x | I ) is depicted in figure 3 for the Cournot setting in figure
1. For comparison, we present in figure 4 the QRE distribution for the same Cournot
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Figure 2: Best response functions for the same parameters as in figure 1, except that
dA1 = 19.1 instead of 20.4.

setting.12

4.1 Model Combination

As was mentioned in regard to equation 2, if Predictor is uncertain about her modeling
choices, she can simply marginalize out that uncertainty. As an example, to calculate the
surface in figure 4, Predictor had to discretize the move spaces of the players, modeling
each of them as though had a finite set of pure strategies, Λi{0, 0.1, 0.2, ..., 19.9, 20}.
However Predictor is not forced to make a hard choice of one particular set of Λi’s. She can
instead average over such sets, according to how well she suspects each of them describe
real-world behavior. As another example, Predictor can average over the values of the
parameters in the likelihood function of equation 12. She can even average over rationality
functions, or for that matter over entirely different types of likelihood functions.

Just as she can average over likelihoods, which involve the firms’ profit functions,
Predictor can average out her uncertainty about the firms’ profit functions themselves.
Note that in doing this Predictor is modeling her uncertainty concerning the player utility

12To specify this QRE we must choose the value of its exponent. We chose the mean of the distribution
over QR-rationalities induced by P (q | I ), which is approximately 0.42. We must also discretize the
move space. We do this by having the pure strategy sets of the players be the subspace Λ ⊂ X, where
for all players i, Λi = {0, 0.1, 0.2, ..., 19.9, 20}.
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Figure 3: The Bayesian PGT posterior over x’s with QR-rationality likelihood parameter
α = 2.5 and entropic prior parameter δ = 1. Cournot profit parameters are as in figure
1.

functions. Since the players have complete information in the Cournot game scenarios
Predictor is analyzing, they have no such uncertainty — which is reflected in the posterior
Predictor creates.

To illustrate this, let m be the probability that the profit function parameters are
those depicted in figure 1, comprising the set I ′, and let 1 − m be the probability that
the profit function parameters are instead those depicted in figure 2, comprising the set
I ′′. Recall that I ′ has five NE, and I ′′ has only one. If she believed the players
were perfectly rational (as reflected in her choices of likelihood function), then by using
PGT Predictor can average her model over those two sets of NE to properly capture her
uncertainty about the profit functions. Formally, we write I = {I ′,I ′′,m} and break
the likelihood into a sum of two terms:

L (I | q) = mL (I ′ | q) + (1 − m)L (I ′′ | q).

Alternatively, if Predictor does not assume perfect rationality, but instead assumes the
QR-rationality likelihood, she can do the same sort of averaging over her uncertainty
about profit functions. Figure 5 depicts such an averaging of I ′ and I ′′ with m = .5.
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Figure 4: QRE distribution of moves with βq
i = 0.42 i = A,B. The move space for each

player i is Λi = {0, 0.1, 0.2, ..., 19.9, 20}.

4.2 Correlation of Pure Strategies

As was mentioned in Sec. 1.1, despite the fact that each q ∈ ∆X is a product distribution,
P (x | I ) is generally not a product distribution. This is true in particular in our Cournot
duopoly setting. As an example, consider an industry comprised of many firms, where
subsets of those firms engage in noncooperative games with each another. To simplify
the analysis, assume that all the games are the same, and all involve only two firms. (For
example, the firms might be a set of many distinct duopolies, each duopoly controlling
production of the same good, but in a different city.) Say that Predictor observes the
joint moves of many different pairs of the firms engaged in such two-player games. Then
even if there is no collusion — in each game, the moves of the two firms are independent
— to Predictor it would appear as though there is collusion in the industry.

To illustrate this, consider the duopoly setting from figure 1 with the QR-rationality
likelihood where α = 2.5. The correlation between xA and xB is −0.29. Changes to the
likelihood, such as an increase in α, can increase the magnitude of the correlation. For
instance, by setting α = 4, we increase the correlation from −0.29 to −0.53. Changes to
the profit function also affect the degree of coupling in P (x | I ). For example, in the
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Figure 5: Posterior distribution over moves formed by integrating Predictor’s uncertainty
concerning firm A’s profit function; α = 2.5 and δ = 1.

duopoly setting from figure 2 the correlation between xA and xB is −0.28. When α = 4,
the correlation is −0.59. In all these cases, the fact that the covariance is non-zero means
that the quantity choice of firm A is, on average, informative about the quantity choice
of firm B.

4.3 Decision-Theoretic Prediction

Suppose Predictor wants to make a point prediction of the quantities (xA, xB) that will
be played in the Cournot duopoly. As discussed in Sec. 1.1, to do this she must specify a
loss function, and then make the prediction that minimizes her posterior expected loss.
That prediction is Bayes-optimal. (See equation 7.)

For our Cournot duopoly game, calculating that Bayes-optimal prediction is straight-
forward for both the zero-one loss function and the quadratic loss function. The results
for the Cournot game parameters from figures 1 and 2 are reported in table 1. For each
of those game parameters, there is a single QRE, i.e., a single profile over pure strategies.
Accordingly we can also calculate the Bayes-optimal point-predictions for the QRE, for
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both game parameters. Those point predictions are also reported in the table.13 Of
course, if there were multiple QRE’s for either set of game parameters, then we would
not be able to make this calculation. Finally, for completeness, the table also reports the
NE pure strategy profiles for the two game parameters.

One interesting point is that the PGT pure strategy prediction that results from
a zero-one loss function applied to figure 1 is not unique. This is because P (x|I ) is
bimodal and symmetric. In the PGT context, this is not problematic as it is with set-
valued concepts because we know the associated probabilities of each mode, which are
the same, i.e. both modes minimize the zero-one loss function. Therefore, a researcher
with a zero-one loss function is indifferent between the two modes in exactly the same
way that any decision-maker is indifferent between any two alternatives that yield the
same expected utility.

Prediction Figure 1 Figure 2

PGT zero-one loss (16.9, 1.1), (1.1, 16.9) (0.8, 16.8)
PGT quadratic loss (8.7, 8.7) (7.9, 9.4)
QRE zero-one loss (5.4, 5.4) (4.0, 6.5)
QRE quadratic loss (6.5, 6.5) (4.8, 7.5)

Pure NE
{(16.6, 0.94), (10.2, 3.1), ...

(0.55, 16.8)
(5.6, 5.6), (3.1, 10.2), (0.94, 16.6)}

Table 1: Predictions based on PGT & on set-values solution concepts. The QR-rationality
likelihood parameter is α = 2.5. The entropic prior parameter is δ = 1. The QRE
parameter is βq = 0.42 for the game from figure 1 and βq = 0.50 for the game from figure
2.

4.4 Decision-Theoretic Choice of a Mechanism

Suppose Predictor must choose a per-unit tax, τ , for our Cournot duopoly setting with
negative consumption externalities. Let W (q, τ) be the social welfare under τ for player
mixed strategy profile q. As an example, the negative externality could by a total external
cost function given be EC(x) = e(xA + xB)2 for some e > 0. We could then have the
social welfare function be the social surplus, which equals consumer surplus (CS) plus
firm profits plus tax revenue minus external costs.14 For a given strategy profile q and
tax τ , this social welfare is

W (τ, q) = Eq[CS] + Eq[πA + πB] + τEq[xA + xB] − eEq[(xA + xB)2].

Regardless of what the social welfare functions is, being a Bayesian decision theorist,

13As in figure 4, the QRE is computed with β
q
i = 0.42 (i = A,B), for the Cournot game from figure

1. For the game from figure 2, βq = 0.3, the mean of the distribution over β’s from the corresponding
Bayesian PGT posterior.

14For a discussion of analysis of Cournot efficiency using set-valued solution concepts, see Seade (1985)
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Predictor wants to choose τ to maximize the associated expected social welfare,

E(W | τ) =

∫

W (q, τ)P (q | τ,I )dq (16)

To illustrate this, consider the Cournot setting represented by the best response func-
tions in figure 1, and set e = .5. Table 2 reports the posterior expected welfare values
for five tax levels, τ = 0, 1, 2, 3, 4. Also reported there are predictions of expected social
welfare for the five tax values under the NE and QRE modeling choices. As before, the
logit exponents βq for the three QRE’s correspond to the PGT values of α for the three
PGT models, respectively.

Before using these results to compare the various solution concepts, it’s worth making
some general comments. First, note that for the PGT models with α > 1 and the
corresponding QRE models with βq > 0.13, expected social welfare is highly nonlinear in
the tax rate. In fact, even when the tax rate is restricted to the range [0, 4], there is at
least one local maximum that is not a global maximum. For instance, in the PGT model
with α = 2.5, the expected social welfare for τ = 1, w1, is greater than the expected
social welfare for τ = 0 and τ = 2. However, w1 is less than w4. Similarly, the PGT
optimal tax rate is highly nonlinear in α.

Note also that for several tax rates the QRE expected welfare values makes large jumps
as the tax rate changes only slightly. This is because the QRE mapping encounters a
bifurcation point as τ varies. For example, in the QRE model with βq = 1.21, the
expected social welfare is 97.17 for τ = 2.074, then drops to 92.84 for τ = 2.0745, then
jumps to 137.61 for τ = 2.075. This contrasts with the PGT model which, being an
average over all q’s, does not exhibit such sensitive dependence on exogenous parameters.

The advantages of using PGT extend substantially beyond such robustness however.
For example, the optimal tax level under the NE model is not well-defined, since it
depends on which of the three NE under each of the first two tax values, τ = 0, 1, are
selected. The fact that there is a well defined optimal tax level for the QRE models is
serendipitous, given that there are multiple QRE’s for τ ≥ 1. The reason the optimal tax
level is well-defined despite this multiplicity is that the Cournot game considered here is
symmetric, and therefore so are its QRE’s. This means that all of the QRE’s yield the
same expected welfare.15 In general, whenever there are multiple QRE’s for some tax
level but we are not so fortunate that they all give the same value of social associated
social welfare values, there is no well-defined optimal tax level under the QRE solution
concept. Such problems cannot arise with PGT.

Because PGT provides a full posterior distribution over welfare, P (w | τ,I ), Predic-
tor’s model contains far more information for each τ than simply the associated posterior
expected social welfare. Figure 6 illustrates this extra information by plotting the pos-
terior distribution over social welfare for tax rates τ = 0, 2, 4, where α = 2.5. For
comparison purposes, that figure also gives the QRE expected social welfare values and
several of the NE expected social welfare values for the same three tax rates.

15We should note that although we think we have found all the QRE’s numerically, we have not
formally proven this.

22



Model Welfare
w0 w1 w2 w3 w4

PGT (α = 1) 73.06 77.24 77.99 78.88 80.36

PGT (α = 2.5) 82.10 88.93 88.76 88.31 88.97

PGT (α = 3.25) 88.72 95.88 95.59 94.55 94.92
PGT (α = 4) 95.86 102.09 102.79 101.63 102.13
QRE (βq = 0.13) 68.37 71.75∗ 74.16∗ 75.81∗ 78.54∗

QRE (βq = 0.42) 92.11 93.49∗ 91.29∗ 99.75∗ 105.85∗

QRE (βq = 0.74) 94.72 95.77∗ 95.46∗ 123.92 133.31∗

QRE (βq = 1.21) 95.80 96.84∗ 96.41∗ 146.35∗ 152.63∗

Pure NE
316.27∗ 301.06∗

154.18 139.82 135.69210.10∗ 234.19∗

174.10 164.07

Table 2: Comparing welfare values across taxes and across models. For the PGT and QRE
models, the optimal tax (among the choices τ = 0, 1, 2, 3, 4) is indicated by boldface type
for the associated expected welfare value. An asterisk indicates that multiple equilibria
give rise to the same expected welfare. The QRE is computed for the subspace Λ ⊂ X
where Λi = {0, 0.1, ..., 19.9, 20}.

Predictor can use this extra information to use decision theory to analyze many issues
that are often very important in practice. For example, Predictor’s objective may not be
interested in choosing the tax level τ that maximizes posterior expected social welfare, but
rather interested in choosing the τ that maximizes the posterior expected value of some
function g(W (q, τ)) = (W (q, τ))r. For example this is the case if she is risk-averse, being
more concerned that the social welfare not be too low than that it be large. Because PGT
provides a full posterior distribution over social welfare values, Predictor can use PGT
to choose the tax value that accounts for this risk aversion by maximizing the posterior
expected value of g. In contrast, set-valued solution concepts, since they allow multiple
equilibria, in general cannot be used in such a decision-theoretic way to accommodate
risk-aversion.

Modeling Predictor’s risk-averse objective in this decision-theoretic manner is partic-
ularly appealing in the case of a major market change like new taxes. Major market
changes are the result of costly legislative processes, and are often very difficult to retract
once in place. Therefore, a social planner (Predictor) may be averse to the risk that firms
engage systematically in behavior that is detrimental to her objective. She may prefer a
mechanism that produces lower expected welfare with less risk rather than a mechanism
that produces greater expected welfare with more risk.

PGT’s posterior over social welfare provides many other capabilities to Predictor that
are similar to allowing her to incorporate risk aversion. Armed with such a posterior,
Predictor can compare mechanisms by answering questions that real-world stakeholders
often ask. The following calculations are for the PGT model of the Cournot duopoly
from figure 1 with α = 2.5 and δ = 1.
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Figure 6: Bayesian PGT posterior distribution over social welfare W (q, τ) for tax rates
0, 2 and 4. QRE (β = 0.42) and NE social welfare points are provided for comparison.

• “Which of the taxes minimizes the variance in welfare?”

Procedure:

min
τ

var[wτ ] =

∫

(w − E[wτ ])
2 P (w | τ,I )dw.

Solution: τ ∗ = 0, var[w0] = 376.00.

• “Which of the taxes minimizes the probability that welfare is below some threshold

value w = 50?”
Procedure:

min
τ

Pr(w ≤ w | τ,I ) =

∫ w

−∞

P (w | τ,I )dw.

Solution: τ ∗ = 0, Pr(w ≤ 50 | τ = 0,I ) = 0.045.

• “Which of the taxes maximizes social welfare subject to the condition that the ex-

pected profits of firms are positive with probability greater than some threshold value

p = 0.5?”
Procedure:

max
τ

∫

wP (w | τ,I )dw s.t.

∫ ∞

0

∫ ∞

0

P (πA, πB | τ,I )dπAdπB ≥ p
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where

P (πA, πB | τ,I ) =

∫

I [π(q), (πA, πB)] P (q | τ,I )dq

and I[a, b] is the indicator function that equals one when a = b and zero otherwise.

Solution: τ ∗ = 1, Pr(π ≥ 0 | τ = 1,I ) = 0.779, E(w|τ = 1,I ) = 88.93.

Note that depending on what question she wants to answer, Predictor gets a different
answer for the optimal tax value. Note also that Predictor cannot answer any of these
questions using a set-valued distribution concept.

5 Future Work

There are very many ways that the PGT analysis above can be extended. Some of them
have to do with numerical issues (see the appendix). In this section we briefly describe
some of the more theoretical future work.

Most set-valued solution concepts have been motivated by introspection. This is also
true of the distribution-valued solution concept used in this paper. However since our
purpose with PGT is to predict behavior in the real world, it would be preferable to
use a distribution-valued solution concept motivated by experimental data. Constructing
distribution-valued solutions concepts that are directly motivated by experimental data
will be the focus of some future work.

The PGT analysis in this paper considered complete and perfect information single-
shot strategic form games. Some future work involves extending PGT models to include
noncooperative strategic scenarios that differ from these kinds of games. For example, it
would be interesting to extend PGT to analyze extensive form games, Bayesian games,
signalling games, repeated games, etc. (In regard to the latter, note that due to its
stochastic formulation, PGT might be particularly well-suited to analyze Markov games.)

In addition to analyzing such noncooperative games though, PGT might also be ex-
tended to consider cooperative games. Such a “Predictive Cooperative game Theory”
(PCT) would assign relative probabilities to all possible sets of coalitions and payoff vec-
tors. Ideally, by providing this set of probabilities, PCT would resolve the difficulty that
current cooperative game theory faces, of having several different (set-valued) solution
concepts that all seem quite reasonable. According to PCT, the issue is not which such
set-valued solution concept is “correct”. Rather the issue is to determine the relative
probabilities of the associated coalitions and payoff vectors.

PGT can also be extended to consider unstructured bargaining games, providing a
Predictive Unstructured Bargaining (PUB). In PUB, one does not map a bargaining
problem S ⊂ R

N to a single point in that problem’s feasible set, s ∈ S. Rather one maps
S into a density function over R

N , µ(s). In particular, it is straight-forward to translate
the Nash bargaining axioms into a form that concerns such a map taking any S to a µ(s).
For example, the Nash scale invariance axiom gets translated into an axiom saying that
if S is scaled by a certain amount, then µ(s) is scaled accordingly.
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It turns out that the only map f : S → µ(s) that obeys these translations of the Nash
bargaining axioms is

[f(S)](s) ∝
N
∏

i=1

sαi

i for s ∈ S

= 0 otherwise

for some set of player-indexed constants {αi}, where it is implicitly assumed that the
default point is s = 0. (Interestingly, Nash’s Pareto axiom is not used in deriving this
result.) If all constants αi are the same, the mode of µ(s) is just the Nash bargaining
solution, while if they differ, the mode is the Harsanyi solution. Of course, in general
the Bayes-optimal prediction of s by Predictor, specified by her loss function,16 will differ
from the mode of µ(s) in general.

More generally, the PUB distribution is perfectly-well defined even if the feasible set
is non-convex, non-comprehensive and consists of only a finite number of values. (This is
formally proven in work in preparation by the authors.) In addition, PUB can be used by
Predictor to design the feasible set, to maximize the associated expected social welfare.

Finally, we note that PGT can be used to elaborate some subtleties in interpreting
the physical scenario underlying single-shot normal form noncooperative games of perfect
and complete information. The first distinction has to do with what it is that the players
choose, and the second has to do with whether they have previously interacted. These
subtleties can be important for deciding how best to model a strategic scenario using a
distribution-valued solution concept. Since they are somewhat philosophical in nature,
we defer discussion of them to the appendix.
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Appendix

A Advantages of Distribution-Valued Solution Con-

cepts

There are many important advantages to using PGT models rather than set-valued equi-
librium concepts. We mention two such arguments here:

1. One benefit of PGT is that, in general, it assigns non-zero probability to all mixed
strategy profiles. This means that PGT respects the fact that in the real world,
all mixed strategy profiles can occur with some non-zero probability. In contrast,
set-valued solution concepts generally assigns probably zero to almost all profiles,
in the sense that it treats all strategy profiles outside a measure-zero equilibrium
set as physically impossible.17

This feature of using set-valued solution concepts presents a well-known empirical
problem. In particular, it means that all econometric studies of equilibrium concepts
must first devise an error structure and append it to the equilibrium theory before
estimation can be carried out. This error structure effectively converts the set-
valued solution concept into a distribution-valued solution concept. In other words,
this ex post error structure converts an equilibrium model into an instance of PGT.

Such ex post theorizing carries its own assumptions about strategic behavior. These
assumptions are in addition to the assumptions of the equilibrium theory, and the
two sets of assumptions can be difficult to reconcile. Regardless of whether or not
the two sets of assumptions can be reconciled, it is clear that empirical tests of
equilibrium concepts are not direct tests of the equilibrium theory. Rather they are
tests of the equilibrium theory as modified by the error structure.

In contrast, when a researcher devises a PGT model, that model can be tested
without modification. So empirical studies can be direct tests of the PGT theory,
where the theory itself accounts for the inherently stochastic nature of the strat-
egy observations. In this way, by explicitly modeling the researcher’s uncertainty
regarding which strategy profile will be played, PGT accounts for the systematic
risk discussed above.

2. Another advantage of PGT is that, being a fully statistical model, it can combine
multiple types of information / data into an associated posterior. This ability is
necessary to properly express the uncertainty the game theoretician still has about
the strategy profile after all that information. As an example, say the game the-
oretician is uncertain about the utility functions, so that I is a distribution over
possible utility functions. (Note that the game theoretician may have such uncer-
tainty about the players utility functions even for a complete information game,
where the players have no such uncertainty about one another’s utility functions.)

17One notable exception is the epsilon equilibrium concept of Radner (1980)
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Then the proper way for the game theoretician to express her associated uncertainty
over mixed strategy profiles is by averaging over that distribution.

As a simple illustration, suppose m is the probability that the utility functions
are U ′, and 1 − m the probability that they are instead U ′′. Then PGT says we
must average over those two sets of utility information to properly express game
theoretician uncertainty. Formally, we write I = {U ′,U ′′} and break the posterior
into two terms:

P (q | I ) = mP (q | U
′) + (1 − m)P (q | U

′′).

In contrast, with set-valued solution concepts, trying to address uncertainty about
the utility functions in a similar fashion would entail averaging over the associated
equilibrium sets somehow. It is not at all clear that the axiomatic foundations of
equilibrium concepts provide a principled way of doing such averaging.

Furthermore, often we will have types of information that are relevant to our pre-
diction of the player profile but that do not directly concern the game specification.
Examples of such information are demographic data, observational data concern-
ing a particular player’s idiosyncrasies (e.g., in the form of a Bayes net stochastic
model of that player’s behavior in the absence of utility functions), and empirical
data about the relative probabilities of various focal points. Again, a statistical
approach like PGT is necessary to use these types of information to refine our
prediction in a principled manner. (For example, given a distribution over focal
points,one should use it to average the posteriors given each possible focal point, in
exact analogy to the average over utility functions described above.) In contrast,
there is nothing in set-valued solution concepts that would allow us to incorporate
this information in such a principled way. This is why the (possibly huge) bene-
fits of integrating such information into predictions of strategic behavior has been
largely unexplored in conventional game theory.

These alternative types of information have the potential of bringing true explana-
tory power to game theory modeling. However, because it is unclear how one might
combine this data with the more traditional utility information in set-valued so-
lution concepts, the usefulness of such data has largely gone unexplored. PGT
represents one way to begin exploring the explanatory power of such data.

In fact, in PGT the principled integration of uncertainty extends even to uncertainty
about what model of human strategic behavior to use. Just as a game theoretician
does not need to make a choice between utility information I ′ and I ′′, she also
does not need to make a choice among models that describe player behavior. As
an example, she does not need to choose between a posterior P (q | I ′) motivated
by the QRE model (like the posterior analyzed below) and a posterior P (q | I ′′)
motivated by a level-k model. In fact, she should not make such a choice. Rather
she should average over both posteriors, according to the the relative probabilities
that she assigns to the possibilities that each of those two models applies to her
particular prediction problem. No such principled averaging is possible with set-
valued solution concepts.
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B Two Alternative Likelihoods and an Example

B1 N-rationality

Similar to QR-rationality, N-rationality says that the likelihood of qi given q−i increases
as qi gets closer to a best response. The difference is how we measure the distance to
a best response. With N-rationality we borrow from the epsilon equilibrium concept to
say that players differentiate between responses according to the payoffs they generate.
Therefore, we measure the rationality of qi given q−i as the normalized distance between
the payoff yielded by qi and the payoff yielded by i’s worst response.

Definition B.1. The N-rationality of qi against q−i is the normalized distance from the
payoff to qi to the payoff from i’s worst possible response. Alternatively,

ηi(q) =
Eq(u

i) − minxi
[U i

q−i
(xi)]

maxxi
[U i

q−i
(xi)] − minxi

[U i
q−i

(xi)]

where minxi
[U i

q−i
(xi)] is the minimum expected utility achievable by player i when the

other players are randomizing according to q−i, and maxxi
[U i

q−i
(xi)] is similarly defined.

The following are is a general form of L (I | q) based on N-rationality.18

L (q) ∝
∏

i

ηi(q)
αi (B1)

Note that this formulation gives a likelihood ratio L (q)
L (q′)

that is invariant to affine

transformations of utility. It is also invariant to the deletion of strategies q′i ∈ ∆i(Xi)
except the minimizers and maximizers. It should again be noted that choosing a specific
functional form for the N-rationality likelihood is subject to the same considerations as
were mentioned with respect to QR-rationality.

When using N-rationality the modeler must be careful that U i
q−i

is bounded for every

q−i. If one entry of U i
q−i

diverges, then N-rationality is not well-defined. Take for example

a first price auction with 2 players where x ∈ R
2
+ is the profile of bids and v ≤ ∞ is

the profile of valuations. If the modeler wants to use N-rationality here, then she cannot
specify that Ui(xi, x−i) = vi−xi whenever xi > xj for all x. This is because if i is allowed
to bid an infinite amount, then the minimum entry of U i

qj
is negative infinity for every

“reasonable” qj (i.e. qj in which there exists some number N such that qj(n) = 0 for all
n ≥ N ) and undefined for other qj.

18Another example is

L (q) ∝
∏

i

tanh (αiηi(q))
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B2 Intelligence

As an alternative to the rationality criteria outlined above, an intelligence criterion is
useful in capturing the relative likelihood of coming across good responses in a random
search of one’s strategy space.

Definition B.2. The intelligence of qi against q−i is the proportion of q′i ∈ ∆(Xi) such
that Eq(ui | qi) ≥ Eq(ui | q′i). Alternatively,

ξi(q) =

∫

q′i∈∆(Xi)

dq′if(qi)I(Eq(ui | qi) ≥ Eq(ui | q′i)) (B2)

where I(a ≥ a′) is the indicator function that returns one if the argument is true and
zero if it is false and f(qi) = 1 is the area of the simplex ∆(Xi) [see Wolpert (2003)].

The intelligence of q is defined as the vectors of intelligences of each qi against q−i

individually. We suggest one approach to estimating intelligence by importance sampling
∆(Xi) that is general enough to be applied to any game. However, more efficient methods
for calculating intelligence in closed form may be available depending on the details of
the game in question (see matching pennies example below).

Since it occurs in the associated likelihood function, we will want to estimate the
integral B2 to investigate that likelihood. One way to do that is with Monte Carlo
estimation. To do this we will choose a sampling density h(·) with full support on ∆(Xi).
In our case, a sufficient condition for obtaining a finite variance estimator [see Geweke
(1989)] is that 1

h(qi)
is bounded for all qi ∈ ∆(Xi). (Formally, this is true because ∆(Xi)

is compact, varf (I(·)) is bounded, and because our target density f(qi) is uniform, it is
therefore bounded over ∆(Xi). )

Having selected a suitable distribution h(·), we can form T i.i.d. samples {q′i,t}
T
t=1.

The estimate of intelligence is then:

ξi(q) = Ef (I(·)) ≈
1

T

T
∑

t=1

I(Eq(ui | qi) ≥ Eq(ui | q′i,t))

h(qi)
.

Repeating the above procedure for each player i yields a vector of player intelligences,
ξ(q), where ξi(q) is the estimated intelligence of qi. As usual, we want the likelihood
function to assign more weight to q than q′ if and only if q is more intelligent than q′.

For example, the intelligence analog to equation B1 is

L (I | q) ∝
∏

i

ξi(q)
αi . (B3)

The likelihood ratios L (q)
L (q′)

for the likelihood in equation B3 are invariant under affine
transformations of utility. However, it is clear from the definition of intelligence that the
likelihood ratio between q and q′ does not remain unchanged when deleting q′′ from ∆X .
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Just as the choices of likelihood function for QR-rationality and N-rationality depend
on the specifics of the strategic setting, so does the choice of likelihood function for intel-
ligence. Ultimately, the likelihood implies a distribution over intelligence or rationality.
For intelligence, this distribution is given by

P (ξ̂ | I ) =

∫

∆X

I(ξ(q) = ξ̂)L (I | q)dq (B4)

where I(a = a′) is the indicator function that returns one when the argument is true and
zero otherwise. Therefore, changes in the likelihood imply changes in the distribution of
intelligence or rationality.

B3 Example: comparing likelihood criteria

The following example illustrates the difference between QR-rationality, N-rationality,
and intelligence.

Consider zero-sum matching pennies, where player 1 wants to match and player 2
wants to mismatch. Assume the environment where player 1 randomizes with q1 = .25.
Then for any given q2, the proportion of alternatives q′2 ∈ [0, 1] that give expected utility
less than or equal to q2 is simply q2. In other words, when q1 = .25, the intelligence of q2

is ξ2(q) = q2. If q1 increases to q′1 = .4, the intelligence of q2 is still ξi(q) = q2.
Now consider QR-rationality in both cases, q1 = .25 and q′1 = .4. In the first case,

where q1 = .25, β2(q) solves

q2 =
exp[β2(−.25 + .75)]

exp[β2(−.25 + .75)] + exp[β2(.25 − .75)]

and in the second case, where q′1 = .4, β2(q) solves

q2 =
exp[β2(−.4 + .6)]

exp[β2(−.4 + .6)] + exp[β2(.4 − .6)]

Now consider N-rationality in both cases. In the first case, where q1 = .25 we have

η2(.25, q2) =
q2

2
.

In the second case, where q′1 = .4, we have

η2(.4, q2) = .2q2.

In both cases, q1 = .25 and q′1 = .4, intelligence equals ξ2(q) = q2. However, QR-
rationality, β2(q), changes when q1 changes from .25 to .4. Whether β2(q) increases or
decreases depends on the value of q2. N-rationality also changes when q1 changes from
.25 to .4, but the direction of the change is certain. It decreases.
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C Sampling the Posterior

The formal PGT framework introduced in Sec. 2 assumes finite pure strategy spaces Xi.
Accordingly, we must modify our Cournot duopoly setting to analyze it with PGT, by
replacing each infinite-dimensional space of possible mixed strategy density functions qi

with a finite-dimensional subspace Λi. Once we choose the finite-dimensional subspaces
Λi, we can then use Monte Carlo importance sampling to estimate the associated expec-
tation values E(f | I ) for any f of interest to Predictor, by estimating the numerator and
denominator terms in equation 3 (see Robert and Casella (2004)). More precisely, say
we parameterize elements of Λi with vectors λ, writing the associated density functions
as qλ

i (xi). Then following along with equation 3, motivated by the reasoning behind the
posterior introduced in Sec. 2 we would write

E(f | I ) =

∫

f(qλ)P (qλ | I )dλ

=

∫

f(qλ)P (I | qλ)P (λ) dλ
∫

P (I | qλ)P (λ) dλ

=

∫

f(qλ)
∏

i[tanh(βi(q
λ) − .5) + 1]α exp(δS(qλ)) dλ

∫
∏

i[tanh(βi(qλ) − .5) + 1]α exp(δS(qλ)) dλ
(C1)

(For pedagogical simplicity, we are assuming that the constant α is the same for all
players.)

To carry out this procedure we must choose the players’ mixed strategy spaces, {Λi}.
How should we do that? To guide us, consider how the logit quantal response function
became the focus of work on the QRE. The original choice of a logit quantal response
function was not motivated by comparing it to other possible quantal response functions
to see which best approximated experimental data. Nor was it derived from theoretical
considerations. While it was pointed out that the logit response function arises for a
Weibell distribution governing utility uncertainty, there was no effort to justify the Weibell
distribution from first principles in the context of multi-player games. In short, the choice
of a logit distribution was made because it was a reasonable model of real-world single-
player choice behavior (and therefore hopefully also of multi-player choice behavior), and
because it was computationally tractable.

These kinds of modeling choices, central to using set-valued solution concepts, are
also central to modeling with distribution-valued solution concepts. In particular, they
mean that we must choose Λi’s for the players that meets two criteria. First, they must
result in computationally tractable estimates of expectations E(f | I ). Second, it must
be that we would expect the values of the expression in equation C1 for the f ’s of interest
to well-approximate the values given by real-world behavior.

As an example, say we chose Λi to be probability distributions over a (finite) dis-
cretization of [0, x̄i], Ai ≡ {0, a, 2a, . . . x̄i}.

19 Formally, choosing this Λi means we do not

19In fact, this choice for Λi is implicitly made in forming the two figures of the previous subsection;
all computer code that uses “floating point arithmetic” uses such a discretization.
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allow player i to choose any density function over [0, x̄i], but rather only to choose those
density functions given by a normalized weighted sum of square wave functions,

qi(xi) =
∑

j

λi(j)I(xi ∈ [ja, j(a + 1))

≡ qλ
i (xi) (C2)

where
∑

j λi(j) = x̄i/a. If we made this choice for the Λi’s, we would use it to complete
the specification of the numerator and denominator integrals in equation C1, and then
use Monte Carlo to estimate those two integrals.

Unfortunately, for a relatively fine discretization (i.e., for a ≪ x̄i), the associated
Λi is a very high-dimensional space. In such a situation, Monte Carlo estimation of
either of the two integrals in equation C1 can be prohibitively slow to converge. On the
other hand, for a coarse discretization, we might worry that our associated estimates of
E(f | I ) are poor approximations to real world behavior, since they amount to modeling
mixed strategy profiles in terms of broad square waves.

As an alternative, here we parameterized mixed strategy profiles as mixtures of Gaus-
sians, truncated to have no support outside the domain [0, x̄A] × [0, x̄B]. So for us, the
variable λ occurring in equation C1 is the parameter vector specifying a truncated mix-
ture of Gaussians. Our choice of this Λi rather than one given by Ai’s amounts to an
assumption about real-world behavior: we are assuming that for a fixed number of de-
grees of freedom M , for most q arising in real world Cournot duopolies, we can form a
better fit to that q by using the M degrees of freedom to specify a mixture distribution
than we can by using those M degrees of freedom to specify a density in terms of sums
of square waves (like in equation C2).

Given the choice of mixture distribution Λi’s, we formed our estimate of E(f | I )
using conventional Monte Carlo importance sampling: We constructed a sampling dis-
tribution H(λ), and then IID sampled H to generate many λ’s, with our estimate of
E(f | I ) given by averaging the (importance sampling corrections to) the associated
values f(qλ)P (qλ | I ).

The q’s are drawn from the sampling distribution H(q) = H(ρ, µ, Σ). Without much
information about the space of joint distributions q, it is safest to explore the space of
triples (ρ, µ, Σ) uniformly. Hence, each ρi is sampled uniformly from the Mi-dimensional
simplex, where Mi is the number of mixture components in qi. The means, µi, are
sampled uniformly from the hypercube given by lower and upper bounds µil and µih.
Finally, Σj

i is the covariance matrix of the j’th component of i’s mixture distribution. It
is determined by random Jacobi rotations of a diagonal matrix with eigenvalues λ. These
eigenvalues are drawn from a uniform distribution with lower bound λl and upper bound
λh. In order to guarantee positive definiteness of Σi

j, λl is non-negative.
Specifically, to obtain each q, we draw a mixture of truncated multivariate normal

distributions for each player,

qi(xi) =

{

∑Mi

j=1
ρj

i φj
i (xi)

Zi
if Bi ≤ xi ≤ Li

0 otherwise
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where

φj
i (xi) =

1

2πDi/2 | Σj
i |

.5
exp

[

−.5(xi − µj
i )

′(Σj
i )

−1(xi − µj
i )
]

.

and

Zi =

∫ Bi

Li

Mi
∑

j=1

ρj
iφ

j
i (xi)dxi.

The constant Zi normalizes the mixture to the hypercube [Li, Bi], where Li is the mini-
mum of i’s action and Bi is its maximum. Di is the dimensionality of i’s mixed strategy
vector.

The question of whether to let M (the vector that gives the number of component
distributions in each player’s mixture) be fixed or allow it to be determined randomly
remains. Aside from the obvious computational issues that arise by extending the dimen-
sion of our integral over all possible values of M, there are strong behavioral reasons to
fix the number of component distributions. Suppose Mi = M̄. With M̄ components,
a mixture of Gaussians can have any number of peaks less than or equal to M̄. In a
behavioral model, it does not seem unreasonable to assign probability zero to situations
in which a player has a mixed strategy with many multiple peaks. This restriction con-
tradicts the QRE, which assumes that each qi can have any number of peaks. However
as shown in the results section, restricting the sampling routine to single-peaked q’s does
not rule out the possibility of a multi-modal posterior distribution over xi’s.

The Cournot duopoly in this paper involves only two players each with a one-dimensional
move space. Therefore, importance sampling with a uniform proposal distribution is feasi-
ble. However, as more players are introduced, and the move spaces increase in dimension,
the space of q’s grows exponentially. With higher dimensional games, a uniform proposal
distribution may not efficiently explore the space of q’s. In such a case, it may be more
appropriate to select a more targeted proposal distribution or to employ alternative sam-
pling routines such as the Metropolis-Hastings algorithm.

D Estimating the posterior expected value of f(q)

Now that we have a method for sampling the posterior, it is possible to form Monte Carlo
estimates of statistics that come from the posterior.

Let qρ,µ,σ be the parameterized mixed strategy profile distribution and f(qρ,µ,σ) be
any function of qρ,µ,σ. The posterior expectation of f(·) is then:

Eρ,µ,σ[f(q)] =

∫

f(qρ,µ,σ)P (qρ,µ,σ | I )dρdµdσ (D1)

=

∫

f(qρ,µ,σ)
V (qρ,µ,σ)

Z
dρdµdσ

where
V (qρ,µ,σ) = eαS(qρ,µ,σ)

L (I | qρ,µ,σ)
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and

Z =

∫

V (qρ,µ,σ)dρdµdσ

is the normalizing constant.
As an example, choose f(q) = q. Then Eρ,µ,σ(f(q) | I ) = Eρ,µ,σ(q | I ) is the

expected mixed strategy profile. Now each mixed strategy profile q is a distribution
P (x | q). Accordingly, for this choice of f , Eρ,µ,σ(f(q) | I ) is just the posterior expected
pure strategy profile, P (x | I ).

We can estimate the numerator integral in equation D1 with T i.i.d. samples {ρ(t), µ(t), Σ(t)}T
t=0

from H. In the usual way with importance sampling Robert and Casella (2004), we write

∫

f(qρ,µ,σ)V (qρ,µ,σ)dρdµdσ ≃
1

T

T
∑

t=1

f(qρ(t),µ(t),σ(t))V (qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))

Similarly, we can estimate the denominator integral by

∫

V (qρ,µ,σ)dρdµdσ ≃
1

T

T
∑

t=1

V (qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))
.

E Large games

For larger games than the ones considered in this paper, it may not be feasible to use
importance sampling Monte Carlo to perform the computations, even if one works in the
space of mixtures of Gaussians. For such problems more sophisticated computational
techniques would be needed. As an example, it might prove necessary to use Markov
Chain Monte Carlo (MCMC) techniques, e.g., with the starting points for the Markov
random walk being the QRE’s of the system for several different values of the logit
exponents. (Conceivably, by using MCMC we could even dispense with the mixture of
Gaussians parameterization used for the experiments in this paper, and instead use a very
fine discretization of the player’s pure strategy spaces.) Future work involves investigating
such more sophisticated MC techniques.

F Whether the players have previously interacted,

and whether they choose pure or mixed strategies

Much of the earliest, pre-Nash work on game theory did not assume that players ran-
domize. It was assumed that a player chooses a pure strategy, not a mixed strategy that
is later randomly sampled. This seems a reasonable modeling choice for many real-world
scenarios. Indeed, in the field outside of the laboratory, arguably humans choose pure
strategies far more often than they purposely randomize. However there are some sce-
narios where it instead seems reasonable to model the humans as though they do indeed
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choose mixed strategies that they then sample. (For example, this seems reasonable in
soccer where the shooter of a penalty kick must choose where to aim her kick.)

Most current game theory set-valued solution concepts consider the second type of
scenario, by presuming the players choose mixed strategies. This is also the presumption
underlying the analysis in this paper; each player i directly chooses qi, and Predictor’s
uncertainty about which choice they make is given by P (qi | I ).

However some more recently explored solution concepts always result in a unique
predicted mixed strategy profile q, in contrast to set-valued solution concepts like the
NE. For example, this is the case in Level-K reasoning (see Crawford and Iriberri (2007);
Costa-Gomes and Crawford (2006)). Although not conventionally interpreted that way,
such single-valued concepts can be interpreted as concerning scenarios where each player
i chooses a single pure strategy, not a mixed strategy. Under this interpretation each
player chooses a unique pure strategy, without any randomization. However Predictor
is uncertain about that choice. So we interpret player i’s distribution over their pure
strategies under the solution concept, qi, as Predictor’s uncertainty about i’s pure strategy
choice, P (xi | I ).20 In this way a concept like Level-K reasoning can be reconciled
with the desiderata forcing us to make predictions using probability theory (and thereby
reconciled with PGT), in contrast to a set-valued solution concept like NE which cannot
be reconciled with those desiderata.

We will refer to strategic scenarios where players choose mixed strategies as mixed

scenarios, and to scenarios where players choose pure strategies as pure scenarios. Mixed
vs. pure is the first major distinction among different strategic scenarios.

Next, note that in Level-K reasoning, cognitive hierarchy (see Camerer et al. (2006))
etc., it is implicitly presumed that the players have not had earlier, personalized (i.e.,
non-anonymous) interactions with one another. Due to this lack of earlier interactions,
each player must choose their strategies based on population averages, or theoretical
notions of how their opponents might reason, rather than based on knowledge of their
human opponent’s idiosyncratic tendencies. Such solution concepts are most appropriate
for one-shot games, or for scenarios where the game has been repeated, but play is
anonymous.

In contrast, in set-valued solution concepts like the NE, QRE, etc., the players implic-
itly do choose their strategies based on knowledge of one another’s idiosyncracies. (This
is necessary for them to coordinate in the choice of the same equilibrium out of a set of
multiple equilibria.) To pertain to real-world behavior, such solutions concepts implicitly
presume some form of personalized interactions among the players before start of play.21

This distinction among strategic scenarios based on whether the players have (not)
had earlier personalized interactions can be formalized using distribution-valued solution
concepts. We use the term non-interacted to refer to a distribution-valued solution con-
cept where the posterior over the variable the players jointly choose (be it the pure or

20The more conventional interpretation of Level-K reasoning is that each Level-K player i chooses
a unique mixed strategy qi, so that P (q | I ) is a Dirac delta function, and P (xi | I ) is given by
marginalizing that delta function.

21Although these solution concepts must presume such earlier interactions, they do not model those
interactions. The premise is that the details of those earlier interactions can be abstracted away.
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mixed strategy profile) is a product distribution. So for example, for non-interacted-
mixed (where the players have not previously interacted), we must have P (q | I ) =
∏

i P (qi | I ). On the other hand, for interacted mixed (the case investigated in this
paper), that equality is violated.

In the field, all four kinds of strategic scenario — interacted/mixed, non-interacted/mixed,
interacted/pure, and non-interacted/pure — seem to be quite common. In this paper we
only use PGT to consider interacted/mixed scenarios, to most directly match the bulk of
the literature on set-valued solution concepts. However there are many ways to extend
PGT to the other scenarios.

As an example, it is straight-forward to modify the PGT posterior introduced above
for interacted/mixed scenarios to consider interacted/pure scenarios. The set of the states
of the world in such scenarios is X. A natural prior over X is the uniform prior. We
could then use essentially the same likelihood as the one introduced above:

L (I | x) ∝
∏

i

[tanh(βi(x) − .5) + 1]αi (F1)

where βi(x) is just βi(q) for a profile q given by a product of Kronecker delta functions
about the components of x.

The resultant posterior P (x | I ) could be viewed as a kind of a set-valued solution
concept over ∆X , just like the NE or QRE. There are some important advantages of using
the PGT distribution P (x | I ) instead of the NE or QRE though. First, its motivation
clarifies that it is appropriate only when the players are choosing pure strategies, not
mixed strategies. So we know that in scenarios where we expect that players randomize,
we should not use this P (x | I ), but should instead use the posterior P (q | I ). There
is no corresponding sensitivity for what the choice space of the players is in conventional
set-valued solution concepts.

More practically, whereas conventional set-valued solution concepts can have multiple
equilibria, P (x | I ) is always unique. Another practical advantage is that in experiments
of one-shot games, it is extremely difficult (if not impossible) to directly elicit the mixed
strategies of the players.22 This makes it a fraught exercise to statistically analyze a
particular set-valued (mixed strategy) concept using experimental data. In contrast,
since the PGT distribution-valued solution concept for interacted/pure scenarios directly
predicts the probability of what pure strategies the player chooses, we have no such
difficulty in analyzing it using experimental data.

22Typically one instead measures population averages, or has the players repeat the game, hoping that
they do not learn as they do so. Both attempts to deal with the issue are quite problematic (see Starmer
(2000)).
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