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Abstract

In this paper we test for mean reversion in the Nordic stock markets using
monthly nominal data 1947-1998. By simply account for the heteroscedasticity of
the data with a regime-switching model of normal distributions and taking estima-
tion bias into account via a Bayesian approach we can …nd no support of mean
reversion. This is a contradiction to some previous result from Denmark and Swe-
den. Our …ndings suggest that the Nordic stock markets can be characterized by
two regimes and within the regimes the stock markets is random. This …nding of
randomness is in line with recent evidence in literature.
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1 Introduction

This paper addresses the question of whether or not the Nordic stock markets are subject
to mean reversion. Previous research by Frennberg and Hansson (1993) on the Swedish
stock market and by Risager (1998) on the Danish stock market has found stock returns
to exhibit mean reversion. The evidence of mean reversion via variance ratio, VR, is
controversial because as the null hypothesis of random walk is only valid under the as-
sumption of constant expected return especially as asset returns are well known to exhibit
time varying volatility. Hence, mean reversion might be explained by the time-variation
in volatility and taking this heteroscedacity into consideration the market might be ef-
…cient. Kim, Nelson and Startz (1991, 1998a) questions the signi…cant mean reversion
some times found when using VR statistic and argue that it might in fact be explained
by time varying volatility. They conclude that returns are white noise. Nielsen and
Overgaard-Olesen (1999) …nd weak support of mean reversion when they employ Hidden
Markov models and compute variance ratio test on annual Danish stock market data.
Malliaropulos and Priestly (1999) utilize a bootstrap approach to test for mean reversion
in international stock market data. Gra‡und (2000) can not …nd any support of mean
reversion in Swedish excess returns when accounting for the time varying volatility with
a regime-switching model.1

This study di¤ers from previous studies on the Nordic stock markets in that we em-
ploy Bayesian approach to test for mean reversion on standardized returns as suggested
by Kim et al (1998a). The idea is to capture the time variation in the variance by a
regime-switching model of Gaussian mixtures. Goldfelt and Quandt (1973) introduced
the regime-switching models but its application in economics and …nance came a decade
ago when Hamilton (1989) employed a two-state hidden Markov model (HHM) on GDP
data. The drawback with the HMM is the multi modality of the likelihood function and
ordinary optimization techniques are likely to fail.2 Albert and Chib (1993) suggest a
Bayesian approach and estimate the marginal distributions of the parameters in a two-
state HMM suggested by Hamilton (1989) with Gibbs sampling.3 Geman and Geman

1This paper is an independent extended version of Gra‡und (2000) “A Bayesian approach to testing
mean reversion in the Swedish stock markets”.

2Ordinary optimisation algorithms often fail to estimate the true HMM correct. Another approach is
to employ the simulated annealing, SA, algorithm. This is also a MCMC approach and thus, computer
intensive.

3Kim et al (1998a, 1998b) extended Albert and Chib’s model to a three-state HMM. See the papers by
Lunginbuhl and De Vos (1999) and Dueker (1999) for other applications of the gibbs sampling framework
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(1984)’s Bayesian framework of Gibbs sampling is very advantageous. First, we can use
prior information in the estimation of the conditional distribution of the parameters, with-
out estimation of a likelihood function. This is an appealing approach as the likelihood
function of hidden Markov models can be cumbersome to estimate. Second, all inferences
in Gibbs sampling are made from joint distributions of the variates and the unknown
parameters of the model. Thus, we are able to account for the parameter uncertainty of
the underlying parameters in the model.

The Nordic countries have many common attributions; …rst they are all small open
economies.4 Second, analysts often tend to view them as a group, and this is also our
approach. Our data consists of monthly nominal stock market returns calculated as the
logarithmic di¤erences of stock market indexes from Finland (HEX), Norway (BOX),
Denmark (KFX) and Sweden (AGI).5 Our post-war sample period is December 1947 to
December 1998 a total of 612 monthly observations.

In our analysis we …nd no support of mean reversion in the any of the Nordic stock
markets. Our regime switching models of normal distributions suggests that mean re-
version if found in the Nordic stock markets can be explained by time variation in the
volatility and within the regimes the stock markets is random.

The outline of the paper is as follows: In section 2 we describe the underlying as-
sumptions of the variance ratio test. The methodology is presented in section 3. Section
3.1 describes the regime-switching model. A brief presentation of Bayesian statistics is
given in section 3.2. The Gibbs sampler and the prior distributions are speci…ed in section
3.3. The Bayesian re-sampled variance ratio tests are presented in section 3.4. Section 4
presents the results and section 5 concludes the paper.

2 Variance ratio

The variance ratio test, VR, of Cochrane (1988) have been frequently used as a test of
mean reversion. The advantage of the test is that it allows us to study if returns follows
a random walk and if this property changes with the investment horizon q. We compute
the q period return Rqt as the q period di¤erence between the log of the monthly index
values of the portfolio It and It¡q. In our case this is done for each one of the stock market

of Albert and Chib (1993).
4The Nordic countries include Iceland. Due to lack of available data Iceland is excluded from the

study.
5http://www.global…ndata.com
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portfolios from Sweden, Norway, Finland and Denmark.

Rqt = It ¡ It¡q (1)

Let rq be the monthly return of a stock market portfolio. Compounded returns, It, are
assumed to be a random walk. This implies the arithmetic return being a drift ¹ plus a
white noise term "t. In this context the q-month arithmetic return is:

Rqt = q¹+ "t + : : :+ "t+q (2)

Rqt = ¹+ rq¡1 + "t+q (3)

The expected q period return is equal to the monthly mean return times the holding period
q and the variance of the q period return is q times the variance of monthly returns.

E [Rqt ] = q¹, V ar [R
q
t ] = q¾

2 (4)

The variance ratio statistic, VR, is de…ned as:

V R (q) =
V ar [Rqt ]
q ¢ V ar [R1

t ]
(5)

The VR-test equals unity under the null hypothesis of random walk. In our investigation
we have chosen the investment horizon q to range from two to twelve months and yearly up
to ten years. This enables us to study the random walk hypothesis both in the short-run
and the long-run.

3 Methodology

3.1 The Regime Switching Model

Let the monthly de-meaned excess stock returns yt be described as a k-state regime-
switching model of Gaussian mixtures.6 Where St is an unobserved state variable following
a Markov process.

6We have also done estimations using three-state hidden Markov model. The results suggest that a
two-state hidden Markov model being more appropriate. The results of the estimations are available on
request.
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yt s N
¡
0; ¾2i

¢
(6)

¾2t = ¾
2
1S1t + ¾

2
2S2t (7)

subject to the restriction:

¾1 < ¾2 < ::: < ¾k (8)

Pr [St = j j St¡1 = i] = pij ; i; j = 1; :::; k

kX

J=1

pij = 1; i = 1; :::; k

The above model is a standard Markov switching model that can be estimated with
maximum likelihood (see Hamilton (1994)). In our case we have chosen two regimes
(k=2).7

3.2 Bayesian statistic

The fundamental idea behind Bayesian statistic is to condition on the observed data, Y ,
and regard the parameters, µ, as random variables. Suppose that p (µ) is a probability
distribution of the parameter µ.

p (Y j µ) p (µ) = p (Y; µ) = p (µ j Y ) p (Y )

The probability distribution of µ conditional on the observed data is expressed by Bayes
theorem:

7We have also done estimations using a three-state hidden Markov model. The results suggest that a
two-state hidden Markov model being more appropriate. The results of the estimations are available on
request.
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p (µ j Y ) = p (Y j µ) p (µ)
p (Y )

(9)

where p (µ) is the prior probability density function and describes the information in µ
without any knowledge about the data Y . p (µ j Y ) is the posterior probability density
function and gives a description of what is known about µ given the data, Y . Given
the data, Y , the conditional probability distribution p (Y j µ) can be seen as a function of
the parameters µ. This function is in fact proportional to the likelihood function of µ,
L(Y j µ).Let us consider p (Y ) as being constant, then we can write the above as

p (µ j Y ) _ p (Y j µ) p (µ) (10)

and

p (µ j Y ) _ L (Y j µ) p (µ) (11)

Hence, posterior probability density function is proportional to the likelihood function
times the prior probability density function and we do not need to specify the likelihood
function in order to sample from the marginal distributions of the parameters of interest.

3.3 The Gibbs sampler

Introduced in 1984 by Geman and Geman the breakthrough of Gibbs sampling, a spe-
cial case of the Metropolis-Hastings algorithm (see Metropolis et al (1953) and Hastings
(1970)), came with the seminal papers of Ge‡and and Smith (1990) and Ge‡and et al
(1990). It is easiest explained, as a technique for numerical integration and the di¤erence
between Gibbs sampling and M-H algorithm is that all generated candidates are accepted.
The Gibbs sampler provides the means to sample from the marginal distribution of the
parameters of interest. The idea behind the algorithm is to sample from the conditional
distribution of the parameter spacefµ1; µ2; : : : ; µkg.

Step 1: Specify arbitrary initial values,
³
µ(0)1 ; µ

(0)
2 ; : : : ; µ

(0)
k

´
, and set n = 1.

Step 2: Cycle through the full conditionals by drawing:

(1) µ(n)1 from
h
µ1 j µ(n¡1)2 ; : : : ; µ(n¡1)k

i
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(2) µ(n)2 from
h
µ2 j µ(n)1 ; µ

(n¡1)
3 ; : : : ; µ(n¡1)k

i

...

(k) µ(n)k from
h
µk j µ(n)1 ; : : : ; µ

(n)
k¡1

i

Step 3: set n = n+ 1, and go to step 2.

This cycle is then repeatedN times and we obtain the sample values
³
µ(N)
1 ; µ

(N)
2 ; : : : ; µ

(N)
k

´
.

Where N is set to a large number, in our case N is set to 20:000 iterations.8 The …rst M
iterations when the chains have not converged are discarded leaving us with a sample of
m useful iterations. For a large number m the simulated values

³
µ(M)
1 ; µ(M)

2 ; : : : ; µ(M)
k

´
...³

µ(N)
1 ; µ

(N)
2 ; : : : ; µ

(N)
k

´
can be treated as an approximate sample from [µ1; µ2; : : : ; µk](see

Tierney (1994)).

3.3.1 Priors and prior distributions

We use conjugate prior distributions and the speci…cation of the prior parameters and
their distributions follows from Albert and Chib (1993), Tanner (1996), Kim et al (1998a),
Robert and Casella (1999) and Roberts (Gilks et al (1996), Ch 24, pages 441-464).9

The probabilities for the Markov process to move from one state i at time t¡1 to state
j at time t are called transition probabilities, pij = p (St = j j St¡1 = i). The transition
probabilities pij are collected in the transition matrix P, which forms the nucleus of the
Markov model. Each row of the transition probability matrix P is generated as random
draws from a Dirichlet distribution.10

P(i) » D (ui1 + ni1; ui2 + ni2) ; i = 1; 2 (12)

where nik, are the number of transitions from state i to state k. We consider uik, i = 1; 2;
k = 1; 2, as non-informative priors and set them equal to 1.

8This is a computer intensive simulation. All simulations are done in MATLAB. The estimation time
is approximately 6 hours per country on a standard Intel PII 450 MHz CPU.

9See Gilks et al (1996) ”Markov Chain Monte Carlo in Practice” and Tanner (1996) ”Tools for Sta-
tistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions”

10The Dirichlet density function has the property that it can assume a large number of various shapes
in the sample space [0, 1]. Another property of the multivariate Dirichlet distribution is that the sampled
probabilities sum to unity. This makes the Dirichlet distribution family very suitable in representing any
experiments on multivariate continuous random variables in the [0, 1] space.
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We generate volatilities, ¾21 and ¾22 , from the inverse-gamma, IG, distribution family.11

In order to satisfy the constraint, ¾21 < ¾22, we need to …rst generate ¾21 and re-de…ne ¾22
conditional on ¾21.

¾22 = ¾
2
1 (1 + h) (13)

where h > 0. Where ¾21 and h = (1 + h) are random draws from the inverse-gamma, IG,
distribution family.

Y1t =
ytp

¾21 (1 + S2th)
(14)

h
¾21 j eY1T ; eST ;eµj 6=¾21

i
» IG

Ã
v1 + T

2
;
±1 +

PT
t=1 Y

2
1t

2

!
; (15)

Y2t =
ytp
¾21

(16)

We de…ne N2 as the number of times state 2 occurs N2 = ft : St = 2g and T2 is the sum
of the elements in N2.

h
h j eY2T ; eST ;eµj 6=h

i
» IG

Ã
v2 + T2

2
;
±2 +

PN2
t=1 Y

2
2t

2

!
I[h>1]; (17)

We use non-informative priors and set v1, v2, ±1, and ±2equal 1.

3.3.2 States

We regard the states as missing data. Thus, we cannot observe the states. However, we can
compute the probability of a given observation yt belongs to state i, i = 1; :::; k, and from
this information construct forecast probabilities of which state i, i = 1; :::; k, observation
yt+1 belongs to. The probabilities are computed for all observations yt; t = 1:::T; via the

11A random sample from the inverse gamma is the reciprocal of a draw of a random number from the
gamma distribution. The reason to employ the (inverse) gamma density function as a prior distribution
is that it enables the researcher to sample nonnegative real numbers. See also Mittelhammer (1995).
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local updating algorithm of Robert (1993).12 This is repeated for every Gibbs run. The
local updating algorithm is an forward algorithm in which each state is simulated from
the full conditional (1 6 i 6 k). Thus we have utilized the fact that this is a …rst order
Markov chain as the distribution only depends on the value of two neighboring states.

p (S1 = i j S2; :::;P) _ ½ipiS2f (x1 j 0; ¾)

p
¡
St = i j :::; St¡1; St+1;:::;P

¢
_ pSt¡1ipiSt+1

f
¡
xj j 0; ¾

¢
; (1 < t < T )

p (ST = i j :::; ST¡1;P) _ pST¡1if (xT j 0; ¾)

Where (½i; :::; ½k) is the stationary distribution of the transition matrixP and f (¢ j 0; ¾)
denotes the density of the normal distribution. Thus, the ½i’s are computed from the tran-
sition matrix at each iteration of the Gibbs sampler. Using the probabilities from the local
updating algorithm we generate the states S = 1; :::; K, from a k-point distribution. qijt
are the normalized probabilities from the local updating algorithm.

qijt =
pjtPk
j=1

; (18)

kX

j=1

qijt = 1 (19)

Given the regime Si the move to regime Sj is determined by comparing a random
draw, ¹t, with the cumulative probability distribution.

¹t = U (0; 1) (20)

St := min

"
j :

jX

i=1

qijt ¸ ¹t

#
: (21)

This is then repeated for all observations t = 1:::T at each Gibbs sweep.

12We have also made runs using the backward-forward algorithm. See pages 690-693 in Hamilton
(1994) ”Time Series Econometrics”.
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3.4 A Bayesian approach to variance ratio test

Remember our basic assumption that yt is heteroscedastic de-meaned return with volatil-
ity ¾t (µ) which can be described by a mixture of two normal distributions yt s N (0; ¾2i ).
µ = f¾21; ¾22; St; p11; p22g is a parameter vector describing the dynamics of ¾2t (µ). The
following two re-sampled based variance ratio tests have been suggested by Kim et al
(1998a). At the end of each run of the Gibbs-sampling algorithm the following procedure
is computed:

Step 1: We divide the monthly returns yt by the standard deviation ¾t in order to get
the standardized returns y¤t .

Step 2: Scramble the standardized returns y¤t to yield a new randomized vector yr¤t .

Step 3: Create a new series of de-standardized randomized monthly returns yrt by scaling
the randomized-standardized returns yr¤t by the standard deviation ¾t.

Thus we compute four return series, original returns yt, standardized original returns
y¤t , randomized standardized returns yr¤t and …nally randomized de-standardized returns
yrt . Then we calculate t q-month variance ratio for the four return series. The signi…cance
level of the null hypothesis is the fraction of the variance ratios for the arti…cial returns
that fall below the variance ratios of the original historical returns. In this setting we
compute a test on original returns and a test based on standardized returns for every
q-month horizon. At the end of the 20.000 iterations we will have 20.000 realizations of
each of the two tests for each of the 20 q-month test horizons. An advantage with our
Bayesian approach is that we are able to account for the parameter uncertainty in µ as
well as the e¤ect of the randomization.

4 Empirical Results

4.1 Bayesian inferences on parameter estimates

The convergence of the Gibbs sampler or burn in time is determined via monitoring
techniques. The convergence of the Gibbs sampler or burn in time has been determined
by running several Gibbs sequences and by using di¤erent values of the priors. This
is done in order to reveal possible slow mixing of the Markov chain. We monitor all
parameters of the Gibbs sequence and the burn in time based on the worst scenario, the
parameter with the slowest mixing. The mixing, being based on the average value versus

10



the number of iterations, the transition probability p11 for Sweden, can been seen in …gure
1. The variance parameters converge quickly, but the transition probabilities exhibits slow
convergence. Thus the burn in time is based on the latter and m is set to 8:000 iterations,
leaving 12:000 Gibbs sequences from which to make statistical inference.

[Figure 1]

The stability of the states for di¤erent countries is quite clear from the graphs in …gure
2- …gure 5. These are called assignment maps and plot the assignments of the states as
gray levels against the iterations (black for state 1 and white for state 2) (Robert and
Mengersen (1999)). Random state vectors gives a blurred assignment map. If the Gibbs
sampling algorithm have problems identifying the states the assignment map will have
horizontal stripes. However, if the Gibbs sampler at each sweep assigns the same state to
the same observation the assignment map will have vertical bars.

Our Gibbs sampler is able to …nd stable allocations for each one of our four data sets.
Thus, we have quite clear allocations for Finland, Sweden and Norway while Denmark
presents the lowest persistence of the allocations.

[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]

The mean, median and the 2.5 upper and lower percentiles of the posterior distribution
of the transition probabilities are presented in table 1. Given that we are in regime S we
can compute the duration of the regime by 1=

¡
1 ¡ pij

¢
conditional on i = j13. The last

column in table 1 shows the persistence or duration of a regime. The expected duration of
the regimes varies between 1.5 up to 3 months. Finland has the most persistent regimes
with duration of 1.67 months for and 18 months for regime 1 and regime 2. Thus, we seem
to catch the heteroscedasticity by frequently switching between regimes with di¤erent
volatility.

[Table 1]

The the mean, median and the 2:5% upper and lower percentiles of the conditional
distributions of the estimated variance parameters are displayed in table 2 and …gure 6-
…gure9. There is a signi…cant di¤erence in the variance between the two regimes and this

13For proof see Kim and Nelson (1999) pages 71-72
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result is robust for all four countries. Denmark has the highest volatility for both regimes
with 10.1% and 50.5% for regime 1 and regime 2. In the case of Norway, Sweden and
Finland the volatility is around 7.8% to 8.1% for regime 1 and around 33.9% to 37.3%.

[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Table 2]

4.2 Variance Ratios

Figure 10 shows the distributions of the variance ratio test computed on the Swedish data
for the …ve-year horizon on the randomized standardized returns and randomized de-
standardized returns and the standardized original returns. Table 3 and table 4 presents
the tests based upon original returns and the variance ratio tests computed from the
standardized randomized returns are presented in table 5 and table 6. The mean, median
and the 2.5 upper and lower percentiles of the variance ratios for all twenty horizons are
presented in the tables.

[Figure 10]

The probability values of the VR decrease as the horizon q increase. This is expected
as the randomization of the returns leads to ‡atter posterior distributions of the VR
as the horizon increases. Sweden presents us with the lowest variation in the VR from
original returns whereas Finland and Denmark have a very high variation in the VR
computed on the original returns. The maximum and minimum values are from Finland
with (VR(q)=2.5896) at 24 months and (VR(q)=0.8950) at 120 months. This is an
unexpected result especially as the high VR occur at 12, 24, 36 and 48 months and decay
with q. This might also explain the evidence on mean reversion on annual horizons from
the Danish stock market by Risager (1998) and Nielsen and Ovegaard-Olesen (1999).
Thus, it justi…es our approach of utilizing computations of monthly VR with short-run
horizons of 2-12 months and long-run horizons of 1 to 10 years. The p-values from the
standardized returns are lower then the p-values computed from the VR test of the original
returns. Our lowest p-value is 0.4489 at 120 months horizon for standardized returns from
Norway. Our highest p-values are all from the short run horizons. We cannot reject the
null hypothesis of random walk for any of horizon q and any of the countries. This result
is robust to VR computed on standardized or de-standardized returns.

12



[Table 3]
[Table 4]
[Table 5]
[Table 6]

Risager (1998) concludes that the Danish stock market is subject to mean reversion
and this is veri…ed by Nielsen and Overgaard-Olesen (1999) who …nd weak support of
mean reversion when they employ regime switching models and compute variance ratio
test on annual Danish stock market data. Frennberg and Hansson (1993) …nd support
of mean reversion in the Swedish stock market and the mean reversion to increase with
the length of the investment horizon. This they conclude indicates that the risk in the
Swedish stock market decrease with the holding period. In our analysis we use monthly
nominal stock market return and …nd no support of the above result. When we take the
heteroscedasticity of the monthly data the estimation bias into account we …nd no support
of mean reversion. The results suggest that two regime models with di¤erent volatility
captures the heteroscedacity in nominal stock market returns in Finland, Sweden Norway
and Denmark, and given the regimes the stock markets is random. Our result is in line
with what Kim et al (1998a) …nds for the U.S. stock market 1926-1986, Malliaropulos and
Priestly (1999) results on international data and Gra‡und (2000) study on Swedish stock
market excess returns 1918-1998. Thus, accounting for estimation bias and time-variation
in volatility improves the variance ratio test.

5 Conclusion

This paper addresses the question if the Nordic Stock markets, i.e. Finland, Sweden,
Denmark and Norway are subject to mean reversion. Previous studies …nd support of
mean reversion in the Danish and the Swedish stock market and the mean reversion to
increase with the length of the investment horizon. However the result of these studies are
controversial as they ignore the assumption of constant expected return. Resent research
has found that heteroscedasticity seriously a¤ects the probability of the variance ratio
test to reject the null hypothesis of random walk.

We model the well-known heteroscedasticity of the stock markets returns with a two
regime hidden Markov model of normal mixtures. The model is estimated with Bayesian
approach of Gibbs sampling, a computer intensive Markov chain Monte Carlo method.
Our two regime hidden Markov model is clearly speci…ed along with the priors and prior
distributions employed in the Gibbs sampler. Further we use the information at each
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run of Gibbs sampler to compute variance ratios test on standardized as well as de-
standardized returns.

Our analysis …nds no support for mean reversion in the any of the Nordic stock markets
We cannot reject the null hypothesis of random walk for any of the countries. This result
is robust to VR computed on standardized or de-standardized returns. Our two regime
models of normal distributions captures the variance and suggests that mean reversion if
found in the Nordic stock markets can be explained by time variation in the volatility.
Within the regimes the market is random.
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Table 1: Bayesian inferences on parameter estimates from two-state HMM’s on monthly
Nordic stock markets returns, 1919-1998.

Parameter Posterior
mean median duration

Sweden
p11 0:5836

[0:5835, 0:5837]
0.5836

p22 0:4353
[0:4351, 0:4354]

0.4353

Denmark
p11 0:5430

[0:5428, 0:5431]
0.5429

p22 0:4747
[0:4746, 0:4748]

0.4748

Norway
p11 0:6000

[0:5999, 0:6002]
0.6001

p22 0:4323
[0:4322, 0:4325]

0.4323

Finland
p11 0:6237

[0:6235, 0:6239]
0.6237

p22 0:4428
[0:4428, 0:4430]

0.4428

Comment: Parameters estimated using di¤use priors
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Table 2: Bayesian inferences on parameter estimates from two-state HMM’s on monthly
Nordic stock markets returns, 1947-1998.

Parameter Posterior
mean median

Sweden
¾1 0:1108

[0:1000, 0:1230]
0.1106

¾2 0:5100
[0:4602, 0:5664]

0.5090

Denmark
¾1 0:1558

[0:1375, 0:1783]
0.1551

¾2 0:7172
[0:6331, 0:8210]

0.7142

Norway
¾1 0:0998

[0:0904, 0:1102]
0.0996

¾2 0:4594
[0:4162, 0:5075]

0.4586

Finland
¾1 0:1065

[0:0958, 0:1189]
0.1062

¾2 0:4903
[0:4411, 0:5475]

0.4889

Comment: Parameters estimated using di¤use priors
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Table 3: Variance ratios test based on original returns for Sweden and Denmark
Horizon Sweden Denmark
q Original Scrambled Prob. Original Scrambled Prob
2 1.1603 0:9996

[0:9210, 1:0822]
0.9988 1.2050 0:9991

[0:9192, 1:0820]
1.0000

3 1.2063 0:9987
[0:8833, 1:1210]

0.9959 1.3739 0:9980
[0:8816, 1:1230]

1.0000

4 1.2476 0:9982
[0:8548, 1:1548]

0.9873 1.5521 0:9967
[0:8526, 1:1577]

1.0000

5 1.2793 0:9976
[0:8319, 1:1827]

0.9777 1.7063 0:9955
[0:8274, 1:1838]

1.0000

6 1.2942 0:9972
[0:8109, 1:2068]

0.9619 1.8204 0:9944
[0:8070, 1:2079]

1.0000

7 1.3211 0:9968
[0:7908, 1:2278]

0.9518 1.9339 0:9930
[0:7854, 1:2301]

1.0000

8 1.3370 0:9958
[0:7734, 1:2501]

0.9418 2.0379 0:9916
[0:7694, 1:2494]

1.0000

9 1.3485 0:9946
[0:7595, 1:2661]

0.9315 2.1286 0:9902
[0:7547, 1:2668]

1.0000

10 1.3666 0:9934
[0:7442, 1:2819]

0.9288 2.1923 0:9889
[0:7396, 1:2850]

1.0000

11 1.3934 0:9923
[0:7323, 1:2994]

0.9343 2.2355 0:9875
[0:7260, 1:3000]

1.0000

12 1.4258 0:9909
[0:7188, 1:3181]

0.9418 2.2592 0:9861
[0:7106, 1:3155]

1.0000

24 1.3581 0:9701
[0:5979, 1:4545]

0.8452 1.7996 0:9682
[0:5893, 1:4672]

0.9984

36 1.2454 0:9452
[0:5104, 1:5476]

0.7327 1.5384 0:9454
[0:5049, 1:5710]

0.9695

48 1.2734 0:9185
[0:4422, 1:6206]

0.7294 1.3433 0:9230
[0:4389, 1:6405]

0.9039

60 1.3103 0:8932
[0:3884, 1:6782]

0.7505 1.2422 0:9012
[0:3888, 1:7162]

0.8532

72 1.3294 0:8693
[0:3443, 1:7186]

0.7411 1.0935 0:8789
[0:3422, 1:7825]

0.7650

84 1.2927 0:8440
[0:3034, 1:7602]

0.7050 0.9958 0:8563
[0:3081, 1:8425]

0.7082

96 1.3103 0:8192
[0:2687, 1:8002]

0.6929 0.8967 0:8333
[0:2746, 1:8824]

0.6435

102 1.3650 0:7948
[0:2420, 1:8369]

0.7019 0.9906 0:8090
[0:2457, 1:9087]

0.7341

120 1.3561 0:7703
[0:2158, 1:8665]

0.6634 0.9639 0:7842
[0:2204, 1:9435]

0.7340

Comment: 2.5 and 97.5 percentiles within brackets
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Table 4: Variance ratios test based on original returns for Norway and Finland
Horizon Norway Finland
q Original Scrambled Prob. Original Scrambled Prob
2 1.1612 0:9995

[0:9203, 1:0828]
0.9991 1.2612 0:9988

[0:9157, 1:0845]
1.0000

3 1.2133 0:9991
[0:8830, 1:1243]

0.9986 1.3897 0:9977
[0:8771, 1:1253]

1.0000

4 1.2817 0:9981
[0:8533, 1:1567]

0.9990 1.4770 0:9967
[0:8467, 1:1554]

1.0000

5 1.3144 0:9970
[0:8300, 1:1855]

0.9983 1.5473 0:9958
[0:8233, 1:1826]

1.0000

6 1.3207 0:9959
[0:8073, 1:2062]

0.9967 1.6273 0:9954
[0:8038, 1:2075]

1.0000

7 1.3420 0:9951
[0:7893, 1:2318]

0.9958 1.7255 0:9944
[0:7843, 1:2310]

1.0000

8 1.3588 0:9943
[0:7731, 1:2555]

0.9952 1.8083 0:9932
[0:7675, 1:2514]

1.0000

9 1.3521 0:9933
[0:7577, 1:2728]

0.9919 1.8858 0:9923
[0:7524, 1:2679]

1.0000

10 1.3672 0:9925
[0:7435, 1:2908]

0.9908 1.9777 0:9913
[0:7398, 1:2881]

1.0000

11 1.3939 0:9916
[0:7307, 1:3063]

0.9913 2.0778 0:9903
[0:7240, 1:3041]

1.0000

12 1.4215 0:9905
[0:7167, 1:3198]

0.9915 2.1705 0:9894
[0:7119, 1:3209]

1.0000

24 1.2604 0:9737
[0:6041, 1:4735]

0.8967 2.5896 0:9729
[0:5941, 1:4807]

1.0000

36 1.1141 0:9482
[0:5205, 1:5497]

0.7603 2.4142 0:9472
[0:5090, 1:5762]

0.9999

48 1.1027 0:9213
[0:4492, 1:6145]

0.7559 2.1741 0:9197
[0:4411, 1:6465]

0.9985

60 1.1307 0:8972
[0:3970, 1:6760]

0.7850 2.0683 0:8967
[0:3875, 1:6972]

0.9956

72 1.0996 0:8743
[0:3541, 1:7271]

0.7712 1.9762 0:8740
[0:3429, 1:7630]

0.9882

84 1.0936 0:8494
[0:3159, 1:7594]

0.7784 1.7430 0:8493
[0:3030, 1:8247]

0.9687

96 1.0592 0:8238
[0:2810, 1:8026]

0.7685 1.4736 0:8235
[0:2705, 1:8645]

0.9278

102 1.0146 0:7984
[0:2496, 1:8373]

0.7530 1.1371 0:7965
[0:2439, 1:8764]

0.8226

120 0.9544 0:7733
[0:2235, 1:8599]

0.7314 0.8950 0:7706
[0:2174, 1:9060]

0.6987

Comment: 2.5 and 97.5 percentiles within brackets
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Table 5: Variance ratios test based on standardized returns for Sweden and Denmark
Horizon Sweden Denmark
q Scrambled Standardized Prob. Standardized Scrambled Prob
2 1:1570

[1:1061, 1:2088]
0:9984

[0:9186, 1:0783]
0.9998 1:1526

[1:0802, 1:2229]
0:9986

[0:9202, 1:0774]
0.9978

3 1:2017
[1:1140, 1:2939]

0:9970
[0:8820, 1:1172]

0.9998 1:2644
[1:1480, 1:3797]

0:9975
[0:8845, 1:1173]

0.9987

4 1:2278
[1:1013, 1:3624]

0:9958
[0:8513, 1:1481]

0.9982 1:3652
[1:2158, 1:5142]

0:9963
[0:8554, 1:1459]

0.9993

5 1:2454
[1:0873, 1:4145]

0:9945
[0:8284, 1:1787]

0.9972 1:4534
[1:2794, 1:6318]

0:9947
[0:8325, 1:1758]

0.9997

6 1:2440
[1:0611, 1:4403]

0:9933
[0:8086, 1:2005]

0.9958 1:5026
[1:3011, 1:7146]

0:9930
[0:8106, 1:1991]

0.9993

7 1:2528
[1:0470, 1:4738]

0:9920
[0:7892, 1:2206]

0.9951 1:5514
[1:3225, 1:7947]

0:9913
[0:7918, 1:2219]

0.9993

8 1:2612
[1:0353, 1:5038]

0:9906
[0:7749, 1:2402]

0.9941 1:5971
[1:3452, 1:8663]

0:9896
[0:7740, 1:2388]

0.9993

9 1:2627
[1:0204, 1:5235]

0:9892
[0:7598, 1:2601]

0.9928 1:6373
[1:3656, 1:9250]

0:9879
[0:7586, 1:2526]

0.9993

10 1:2736
[1:0173, 1:5513]

0:9879
[0:7446, 1:2774]

0.9926 1:6610
[1:3750, 1:9676]

0:9860
[0:7425, 1:2660]

0.9993

11 1:2960
[1:0277, 1:5869]

0:9865
[0:7323, 1:2934]

0.9934 1:6733
[1:3767, 1:9909]

0:9842
[0:7287, 1:2811]

0.9991

12 1:3214
[1:0435, 1:6217]

0:9851
[0:7211, 1:3076]

0.9939 1:6721
[1:3689, 1:9972]

0:9825
[0:7144, 1:2948]

0.9988

24 1:2575
[0:9061, 1:6586]

0:9646
[0:5968, 1:4584]

0.9512 1:2772
[0:9681, 1:6230]

0:9618
[0:5956, 1:4385]

0.8748

36 1:1552
[0:7330, 1:6531]

0:9452
[0:5099, 1:5783]

0.8698 1:1364
[0:7992, 1:5493]

0:9412
[0:5158, 1:5521]

0.7417

48 1:1612
[0:6792, 1:7589]

0:9246
[0:4426, 1:6624]

0.8798 1:0229
[0:6713, 1:4832]

0:9199
[0:4455, 1:6316]

0.6399

60 1:1886
[0:6789, 1:8559]

0:9026
[0:3902, 1:7423]

0.8908 0:9783
[0:6121, 1:4883]

0:8985
[0:3930, 1:7098]

0.6116

72 1:1655
[0:6379, 1:8725]

0:8796
[0:3432, 1:8015]

0.8916 0:9247
[0:5179, 1:5018]

0:8762
[0:3460, 1:7634]

0.5794

84 1:0953
[0:5471, 1:8297]

0:8558
[0:3044, 1:8451]

0.8764 0:9366
[0:4877, 1:5777]

0:8536
[0:3050, 1:8265]

0.6075

96 1:0531
[0:5159, 1:7881]

0:8313
[0:2716, 1:8728]

0.8873 0:9136
[0:4271, 1:6129]

0:8304
[0:2677, 1:8630]

0.6044

102 1:0323
[0:5157, 1:7401]

0:8063
[0:2411, 1:8859]

0.9029 0:9721
[0:4731, 1:7057]

0:8059
[0:2432, 1:9015]

0.6688

120 0:9354
[0:4544, 1:5965]

0:7809
[0:2168, 1:9156]

0.9023 0:9269
[0:4226, 1:7041]

0:7810
[0:2180, 1:9301]

0.6524

Comment: 2.5 and 97.5 percentiles within brackets
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Table 6: Variance ratios test based on standardized returns for Norway and Finland
Horizon Norway Finland
q Standardized Scrambled Prob. Standardized Scrambled Prob
2 1:1418

[1:0833, 1:1970]
0:9980

[0:9216, 1:0778]
0.9965 1:1786

[1:1198, 1:2345]
0:9986

[0:9187, 1:0774]
0.9997

3 1:1947
[1:0903, 1:2922]

0:9965
[0:8838, 1:1185]

0.9916 1:2673
[1:1736, 1:3614]

0:9972
[0:8815, 1:1184]

0.9996

4 1:2585
[1:1210, 1:3855]

0:9947
[0:8566, 1:1455]

0.9929 1:3202
[1:1920, 1:4532]

0:9956
[0:8532, 1:1498]

0.9988

5 1:2963
[1:1360, 1:4473]

0:9931
[0:8313, 1:1705]

0.9932 1:3646
[1:2025, 1:5335]

0:9942
[0:8283, 1:1795]

0.9982

6 1:2937
[1:1197, 1:4647]

0:9913
[0:8091, 1:1929]

0.9869 1:4189
[1:2287, 1:6175]

0:9929
[0:8071, 1:2020]

0.9983

7 1:3080
[1:1209, 1:4928]

0:9897
[0:7891, 1:2140]

0.9831 1:4871
[1:2681, 1:7143]

0:9916
[0:7858, 1:2251]

0.9988

8 1:3225
[1:1243, 1:5186]

0:9881
[0:7719, 1:2338]

0.9811 1:5512
[1:3017, 1:8104]

0:9899
[0:7694, 1:2443]

0.9990

9 1:3162
[1:1075, 1:5221]

0:9866
[0:7560, 1:2527]

0.9738 1:6064
[1:3296, 1:8931]

0:9882
[0:7541, 1:2597]

0.9990

10 1:3277
[1:1091, 1:5451]

0:9852
[0:7422, 1:2682]

0.9730 1:6706
[1:3708, 1:9818]

0:9865
[0:7393, 1:2749]

0.9993

11 1:3511
[1:1247, 1:5774]

0:9838
[0:7285, 1:2835]

0.9748 1:7412
[1:4208, 2:0730]

0:9848
[0:7256, 1:2879]

0.9995

12 1:3739
[1:1398, 1:6078]

0:9823
[0:7151, 1:3004]

0.9758 1:8139
[1:4749, 2:1666]

0:9831
[0:7143, 1:3031]

0.9996

24 1:2846
[1:0065, 1:5820]

0:9635
[0:5990, 1:4479]

0.8878 2:2664
[1:7479, 2:8259]

0:9633
[0:5969, 1:4447]

0.9999

36 1:2194
[0:8671, 1:6145]

0:9429
[0:5148, 1:5526]

0.8117 2:3463
[1:7147, 3:0782]

0:9420
[0:5129, 1:5455]

0.9988

48 1:2440
[0:8304, 1:7307]

0:9214
[0:4498, 1:6433]

0.8106 2:3486
[1:5926, 3:2693]

0:9196
[0:4514, 1:6182]

0.9963

60 1:3044
[0:8408, 1:8566]

0:8992
[0:3916, 1:7157]

0.8366 2:3216
[1:4830, 3:3700]

0:8961
[0:3944, 1:6944]

0.9920

72 1:2764
[0:7804, 1:8759]

0:8763
[0:3432, 1:7759]

0.8203 2:2769
[1:3724, 3:4229]

0:8721
[0:3453, 1:7484]

0.9858

84 1:2674
[0:7536, 1:9022]

0:8528
[0:3057, 1:8249]

0.8173 2:1914
[1:2457, 3:3981]

0:8472
[0:3063, 1:7853]

0.9780

96 1:2143
[0:6964, 1:8730]

0:8287
[0:2733, 1:8508]

0.7977 2:0259
[1:0987, 3:2149]

0:8222
[0:2737, 1:8167]

0.9646

102 1:1167
[0:6159, 1:7775]

0:8042
[0:2432, 1:8914]

0.7553 1:7522
[0:9147, 2:8546]

0:7967
[0:2450, 1:8464]

0.9307

120 0:9890
[0:5099, 1:6531]

0:7791
[0:2184, 1:9179]

0.6980 1:4294
[0:7135, 2:4099]

0:7707
[0:2215, 1:8751]

0.8716

Comment: 2.5 and 97.5 percentiles within brackets
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Figure 2: Assignment of state 1 for Sweden
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Figure 5: Assignment of state 1 for Finland
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Figure 6: Posterior distribution of low and high volatility for Sweden
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Figure 7: Posterior distribution of low and high volatility for Denmark
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Figure 8: Posterior distribution of low and high volatility for Norway
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Figure 9: Posterior distribution of low and high volatility for Finland
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(a) Estimated VR(60) on original historical returns
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(b) Estimated VR(60) on scrambled returns
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(c) Estimated VR(60) on scrambled de-standardised returns

Figure 10: Conditional distribution of 5-year VR for Sweden
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