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Abstract. The aim of this paper is to extend Hamilton and Slutsky�s (1990) endogenous timing
game by including the possibility for players to cooperate. At an initial stage players are assumed
to announce both their purpose to play early or late a given duopoly game as well as their intention
to cooperate or not with their rival. The cooperation and timing formation rule is rather simple:
when both players agree to cooperate and play with a given timing, they end up playing their
actions coordinately and simultaneously. Otherwise, they play as singletons with the timing as
prescribed by their own announcement. We check for the existence of a subgame perfect Nash
equilibrium (in pure strategies) of such a cooperation-timing duopoly game. Two main results on
the emergence of cooperation are provided. If players�actions in the symmetric duopoly game are
strategic substitutes and there is no discount, cooperating early is a subgame perfect equilibrium of
the extended timing-cooperation game. Conversely, cooperating late (at period two) represents an
equilibrium when players�strategies are strategic complements. Other equilibria are also possible.
Most importantly, our model shows that, in general, the success of cooperation is a¤ected by the
endogenous timing of the game. Moreover, the slope of players�best-replies appears crucial both
for the success of cooperation as well as for the players�choice of sequencing their market actions.
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1. Introduction

A wide number of papers have recently attempted to endogenize the timing of moves in a two-
player duopoly model. In their seminal paper, Hamilton and Slutsky (1990) (HS, henceforth)
consider an extensive form game (denoted extended game with observable delay) in which at a pre-
play stage two players (duopolists) decide independently whether to move early or late in the basic
game (e.g., a duopoly quantity game). If both players announce the same timing (early, early) or
(late, late), the basic game is played simultaneously. If the two players�time-announcements di¤er,
the basic game is played sequentially, with the order of moves as announced by the players. HS�s
main results are that the two leader-follower con�gurations (with either order of play) constitute
pure subgame perfect equilibria of the extended game only if at least one player�s payo¤ as follower
weakly dominates her corresponding payo¤ of the simultaneous game. In this case, in fact, neither
the leader nor the follower have an incentive to deviate, inducing a simultaneous play. When,
conversely, the payo¤ of a follower is lower than in the simultaneous case, the only pure strategy
subgame Nash equilibrium prescribes that both players play simultaneously the basic game. As
�rstly shown by Gal-or (1985), Amir et al. (1999) and, most recently, by von Stengel (2010), in a
symmetric duopoly in which some regularity conditions hold (mainly single-valued best-replies and
payo¤s monotone on rivals�actions) if players actions are strategic complements (and best-replies
non decreasing) the follower�s payo¤ dominates which of the leader (and therefore which of the
simultaneous case). When instead actions are strategic substitutes (and best-replies non increasing)
the opposite holds and a �rst-mover advantage exists.1

The aim of this paper is to extend Hamilton and Slutsky�s (1990) endogenous timing game
by including the possibility for players to cooperate. At a pre-play stage players are assumed to
announce both their purpose to play early or late a given duopoly game as well as their intention
to cooperate or not with the rival. The cooperation and timing formation rule is rather simple:
when both players agree to cooperate and play with a given timing, they end up playing their
actions coordinately and simultaneously. Otherwise, they play as singletons with the timing as
prescribed by their own announcement. We check for the existence of a subgame perfect Nash
equilibrium (in pure strategies) (SNE) of such a cooperation-timing duopoly game. Two main
results on the emergence of cooperation are provided. If players�actions in the symmetric duopoly
game are strategic substitutes and there is no discount, cooperating early is a SNE of the extended
timing-cooperation game. Moreover, cooperating late is an equilibrium as long as there is not a
too strong �rst-mover advantage which, in turn, depends on the slope of best-replies. In addition,
as in HS (1990), the noncooperative simultaneous play is an equilibrium, although this outcome is
Pareto-dominated for both players by the cooperative agreement. On the other hand, when players�
actions are strategic complements, we show that cooperating late (at period two) always represents
an equilibrium while, cooperating early (at period one) can, in some cases, be dominated by playing
as follower the sequential game. As in HS (1990), sequential noncooperative con�gurations remain
SNE and are also shown to be robust against joint deviations of the players. Most importantly,
our model shows that, in general, the success of cooperation is a¤ected by the endogenous timing
of the game. Moreover, the slope of players�best-replies appears crucial both for the success of
cooperation as well as for the players�choice of sequencing their market actions.

The paper is organized as follows. The next section introduces the game, and highlights how
our model departs from HS�s framework. Section 3 presents a few results on both the players�
equilibrium strategies and the payo¤s obtained in the duopoly game when actions are either strategic

1Without assuming players� actions as complements or substitutes, von Stengel (2010) proves that either the
leader�s payo¤ dominates that of the follower (which is also dominated by the simultaneous Nash) or, in turn, it
is dominated by the follower�s payo¤. See also Dowrick (1985), Amir (1995), Amir and Grilo (1995), Amir, Grilo
and Jin (1999) and Currarini and Marini (2003, 2004) for various leader-follower payo¤ comparisons among single or
coalitions of players.
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substitutes or complements. To understand the forces at work, some examples of duopoly models
under quantity and price competition are brie�y presented. Section 4 concludes.

2. The Model

Let, at a pre-play stage denoted t0, two players i = 1; 2 announce simultaneously both their
intention to cooperate or not with the rival as well as the timing � = (t1; t2) they intend to play
the market game. Every player�s announcement set Ai, for i = 1; 2 and j 6= i, can be de�ned as
(2.1) Ai = [(fi; jg ; t1) ; (fi; jg ; t2) ; (fig ; t1) ; (fig ; t2)] ;
where the �rst two announcements possess a cooperative nature, while the last two correspond to
the usual noncooperative timing choices (early, late) included in HS. As a result, players�announce-
ment space (A1 �A2) contains 16 di¤erent announcement pro�les a which, in turn, can induce the
following set of timing-partitions P (a):

(2.2) P = [(f1; 2gt1); (f1; 2gt2);
�
f1gt1 ; f2gt1

�
;
�
f1gt2 ; f2gt2

�
;
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:

Di¤erently from HS (1990), here the two players are allowed to cooperate and form an alliance
at period t1 or t2.2

We assume that in order to form, an alliance endowed with a speci�c timing requires the unanim-
ity of its members: when both players announce the intention to cooperate and to play an action at
the same time, they will play cooperatively at the prescribed time; otherwise, they will behave as
singletons with the timing as prescribed by their own announcement. Formally, for i = 1; 2, j 6= i
and � = (t1; t2), �

P (a) = f1; 2g� if ai = aj = (fi; jg ; �) and
P (a) = (fig�i ; fjg�j ) if ai 6= aj .

The above rule prescribes that if players agree on both dimensions (timing and cooperation), they
will end up playing cooperatively at a given time. Conversely, if just one player disagrees, either
on cooperation or on timing, both players will play as singletons at their preferred time.3 Figure
1 represents the announcement game in strategic form. The payo¤ under cooperative, Stackelberg
leader, Stackelberg follower and Nash simultaneous play are denoted, respectively, as �c, �`, �fand
�n.

a1na2 (f1; 2g ; t1) (f1; 2g ; t2) (f2g ; t1) (f2g ; t2)
(f1; 2g ; t1) �c; �c �`; �f �n; �n �`; �f

(f1; 2g ; t2) �f ; �` �c; �c �f ; �` �n; �n

(f1g ; t1) �n; �n �`; �f �n; �n �`; �f

(f1g ; t2) �f ; �` �n; �n �f ; �` �n; �n

Figure 1 - The announcement game in strategic form.

2Later on we will show that, by letting players �cooperating across time�, i.e. sequencing their cooperative strategy
with announcements such as a =

�
1t1 ; 2t2

	
or a =

�
1t2 ; 2t1

	
, would not alter the basic results of the analysis.

3Note that when both players announce, say, ai = (fig ; t1), thus, according to the unanimity rule, their an-
nouncement di¤er: player 1 has announced a1 = (f1g ; t1) and player 2 a2 = (f2g ; t1)) and, therefore, they end
up playing noncooperatively as singletons within the partition P (a) = (f1g�1 ; f2g�1). The same occurs when their
announcement is ai = (fig ; t2). In a two player environment, the unanimity rule works as the pairwise stability
concept (Jackson and Wolinsky, 1996), where a link forms if and only if there is the agreement of both players, while
everyone can sever a link unilaterally.
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2.1. Cooperative vs. Noncooperative Duopoly Games. Once every player has made an
announcement ai 2 Ai and a timing-partition, denoted P (a) 2 P, has been induced on the set of
players, they can decide their (cooperative or noncooperative) strategy with a timing prescribed by
P (a). Let the two players possess real-valued strategy sets Xi = X � R+. Let also their payo¤s
�i(xi; xj) : X

2 ! R be symmetric, i.e. such that �i(xi; xj) = �j(xj ; xi) for every (xi; xj) 2 X2.
We restrict players�payo¤s to be positively or negatively monotone in the rival�s strategy. We will
talk, in turn, of positive (PE) or negative externalities (NE). Moreover, player i�s strategies will be
de�ned strategic complements (substitutes) if and only if the payo¤ �i(xi; xj) exhibits increasing
(decreasing) di¤erences in (xi; xj) 2 X2, i.e., if the sign of �i(xi; x0j)��i(xi; x00j ) is positive (negative)
for every x00j > x

0
j . When players�payo¤s are smooth, increasing (decreasing) di¤erences corresponds

to @2�i
@xi@xj

> (<) 0 (Topkis, 1998).4

We are now ready to de�ne the behaviour of players in the di¤erent duopoly games as induced
by the timing-partitions described in (2.2). When cooperation takes place and the grand coalition
P (a) = f1; 2g� forms, both players will be assumed to set cooperatively their strategies either at
stage � = t1 or t2 as

(2.3) x (fi; jg� ) = xc� = (xc�i ; xc
�

j )

where, for every i = 1; 2 with j 6= i
(2.4) xc

�

i = argmax
xi

P
i=1;2�i (xi; xj) :

The above formulation implicitly assumes that players possess transferable utilities. However, no
side payments are allowed between players and, therefore, their allocation follows by the solution of
the cooperative problem (2.4). In what follows, we will presume a symmetric cooperative solution,
namely, xc

�

i = xc
�

j and, as a result, �i(x
c�
i ; x

c�
j ) = �j(x

c�
i ; x

c�
j ).

5 We will show in Appendix that,
for certain classes of games (such as games with players�strict quasiconcave payo¤ functions and
convex strategy sets), the cooperative solution is necessarily symmetric.6 This solution can be
interpreted, for instance, as the formation of a merger (or an alliance) making players� choices
binding. Therefore, once an alliance has formed, both players are assumed to behave just as a
single entity maximizing their joint payo¤.
If instead players move simultaneously as singletons either at stage � = t1 or t2, they will be

assumed to play à la Nash, and the equilibrium xn
�
of the duopoly game (played simultaneously at

stage �) can be de�ned as

(2.5) x (fig� ; fjg� ) = xn� = (xn�i ; xn
�

j )

where, for every i; j = 1; 2 and j 6= i
xn

�

i = argmax
xi

�i (xi; xj) :

By symmetry, if the simultaneous Nash equilibrium xn
�
of the duopoly game is unique, it will be

such that xn
�

i = xn
�

j .
Finally, if players decide to act sequentially, the relevant equilibrium pro�le will be a Stackelberg

(subgame perfect Nash) equilibrium, i.e. the pro�le

(2.6) x
�
figt1 ; fjgt2

�
= xs = (xsi ; rj (x

s
i ))

4We exclude, for simplicity, the case of weakly increasing (decreasing) di¤erences, thus implying, that players�
best-replies are either strictly increasing or strictly decreasing functions.

5Note that by allowing side-payments among players, the only strong Nash allocation would always be the coop-
erative one. The equal split allocation is not stricly needed to de�ne a SNE of the game. In fact, even if players�
shares of the joint payo¤ would di¤er, at least one of them could never get more than one-half of the joint payo¤ and
then, the equal-split allocation would, again, constitute the relevant payo¤ to compare the equilibrium allocations.

6For alternative proofs of this fact, see also Currarini and Marini (2006)
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such that, for the leader (henceforth player i)

xsi = argmaxxi
�i (xi; rj (xi))

and, for the follower (henceforth player j), rj : X ! X such that

rj (xi) = argmax
xj
�i (xi; xj) :

Note that for the whole game to be well de�ned, all equilibria (2.3), (2.5) and (2.6) have to exist
and be unique. We will derive our main results under such presumption, so to keep the set of
assumptions minimal. It can be observed that, if players� payo¤s are assumed continuous and
strictly quasiconcave, their best-replies are continuous and single-valued. If, in addition, players�
strategy sets are compact and convex, a Nash simultaneous equilibrium xn

�
exists by Brower�s

�xed-point theorem. The existence of a Stackelberg equilibrium xs requires both the continuity
of leader�s payo¤ over her action and a follower�s continuous best-reply, thus implying that the
leader faces a continuous maximization problem over a closed set. By the Weierstrass theorem,
a maximizer for the leader exists. The existence of a cooperative equilibrium xc

�
is ensured by a

continuous joint payo¤. The uniqueness of these three equlibria is, in general, a more demanding
property that here, for the sake of simplicity, we just assume.7

To close the model formalities, we introduce two equilibrium concepts for the announcement
game played at the pre-play stage t0. The �rst is a simple Nash equilibrium concept.

De�nition 1. (Nash equilibrium) A timing-partition P (a) 2 P is a Nash equilibrium of the an-
nouncement game if and only if P = P (a�) for some a� with the following property:

�i (x(P (a
�)) � �i(x(P (a0i; a�j ));

for any a0i 2 Ai and i = 1; 2.
Formally, if a timing-partition P = P (a�) is a Nash equilibrium, the pair �� = (a�; x�) will

be a subgame perfect Nash equilibrium (SNE) of the whole game, with the only warning that,
at the subgame in which players decide to cooperate, they behave as a single maximizing entity.8

In addition, we propose a second concept of solution, usually known as strong Nash equilibrium
(Aumann, 1959).

De�nition 2. (Strong Nash equilibrium) A timing-partition P (a) 2 P is a strong Nash equilibrium
of the announcement game if and only if P = P (a) for some a with the following property:
there exists no alternative announcement a0 2 (A1 �A2) such that

�i(x(P (a
0)) � �i(x(P (a));

for both player i = 1; 2 and

�i(x(P (a
0) > �i(x(P (a))

for at least one player.

A strong Nash equilibrium a is thus both a Nash equilibrium and a Pareto-optimal strategy
pro�le of the announcement game.

7The uniqueness of a symmetric cooperative solution can be proved using the strict quasiconcavity of players�
payo¤s See the Appendix.

8Formally, when the pro�le a = f1; 2g� is selected in the announcement game, �rms are assumed to merge and
sign a binding agreement to play their cooperative action pro�le so that no defections are allowed. This is in the
tradition of noncooperative coalition formation literature (see Ray and Vohra 1997, Bloch 2003, Yi 2003�Ray 2007,
Marini 2008 for surveys).
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3. Main Results

3.1. Payo¤s and Equilibrium Actions. It is well known that, in all symmetric duopoly games
in which players possess payo¤ functions monotone in their rivals�actions and single-valued best-
replies, if their actions are strategic substitutes (and best-replies decreasing), their equilibrium
payo¤ will respect the following inequality:9

(3.1) �` > �n > �f ;

where �n indicates each player�s payo¤ at the simultaneous Nash equilibrium (2.5), while �` and
�f denote the leader and follower�s payo¤s, respectively, at the subgame perfect Nash (Stackelberg)
equilibrium of the sequential game (2.6). On the other hand, when players�actions are strategic
complements (and best-replies increasing), it is obtained that10

(3.2) �f > �` > �n:

This means that, when (3.1) holds, since every player prefers to be leader and none wants to follow,
in the endogenous timing game à la HS (1990) there exists a unique pure SNE in which players
play simultaneously. If, conversely, (3.2) holds, both sequential (Stackelberg) equilibria are SPE,
with either order of play among players.
Now, since we have expanded the pre-play players� strategy set as in (2.1), we need to check

whether the cooperative payo¤ �c obtained by a player either at stage t1 or t2 under (2.3) is
pro�table when compared to noncooperative simultaneous or sequential payo¤s. In what follows,
we will present some general results that do not require in general the monotonicity of players�best-
replies (implied by the property of increasing or decreasing di¤erences of their payo¤s). However,
for simplicity, we will characterize our main results for the two classes of duopoly games with actions
that are, in turn, strategic complements or substitutes.
A �rst result will simply be based on (3.1)-(3.2) and on the Pareto-e¢ ciency of the cooperative

outcome.

Proposition 1. In all symmetric duopoly games in which players� strategies are strategic com-
plements (substitutes) the payo¤ of a player under cooperation must be higher than the leader�s
(follower�s) payo¤ in the sequential game, namely, �c > �`(�c > �f ).

Proof. Suppose by contradiction that, when the strategies of the duopoly game are strategic com-
plements

�c < �`

and, therefore, using (3.1), that
�c < �` < �f :

By symmetry, it follows that
2�c < �` + �f ;

contradicting the e¢ ciency of the cooperative pro�le xc
�
. Similarly, if the strategies are strategic

complements and �c < �f , by (3.2)
�c < �f < �`;

and again
2�c < �` + �f ;

a contradiction. �
9Here best-replies are strictly monotone and, therefore, Nash and Stackelberg equilibria di¤er, i.e, xs 6= xn. As a

result, the cases such that �` = �n and �f = �n do not arise.
10In von Stengel (2010) the monotonicity of best-replies to prove these payo¤ rankings is dispensed for. Also our

proofs do not require such feature of players�best-replies. However, for ease of exposition, we divide our analyis in
duopoly games with actions that are, respectively, strategic complements and substitutes.
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Corollary 1. In all symmetric duopoly games in which players�actions are strategic complements
(substitutes), the following ranking between di¤erent payo¤s arises: �c > �` > �n (�c > �n > �f ).

Proof. This is trivially obtained combining symmetry, the results of Proposition 1 and the e¢ ciency
of the cooperative allocation. �

However, to �nd out the SNE of our timing-cooperation game, a complete ranking of players�
payo¤s in all di¤erent duopoly (or monopoly) games is required. More speci�cally, when players�
actions are strategic complements, we need to assess whether, in turn, �c > �f or �f > �c and,
instead, when players�actions are strategic substitutes, whether �c > �` or �` > �c. The next
section considers �rst the class of duopoly games with actions that are strategic complements.

3.2. Actions Strategic Complements. This section introduces a number of results on the rela-
tionship between players�equilibrium actions and their payo¤s in the di¤erent duopoly games.

Proposition 2. In all symmetric duopoly games in which players�actions are strategic complements
and extermalities are negative (NE) (positive (PE)), if a leader at the Stackelberg equilibrium plays
an action that is lower (higher) than at the cooperative equilibrium, namely, xsi < xc

�

i (x
s
i > xc

�

i ),
the following ranking between players�payo¤s arises: �f > �c > �` > �n.

Proof. If, at the sequential equilibrium, player i = 1; 2 in the role of leader plays an action such
that xsi < x

c�
i (under NE) and xsi > x

c�
i (under PE), thus for the follower

�j (x
s
i ; rj (x

s
i )) � �j(xsi ; xc

�

j ) > �j(x
c�

i ; x
c�

j );

where the �rst inequality stems by the Nash property of best-reply rj (:) and the second by the

property of monotone externalities and the fact that xc
�

i > xsi under NE and x
c�
i < xsi under PE.

Therefore, by symmetry, �j (xsi ; rj (x
s
i )) = �

f and �j(xc
�

i ; x
c�
j ) = �

c and integrating this result with
those of Proposition 1, it follows that �f > �c > �` > �n. Example 1 below shows that this
condition is only su¢ cient and, by no means, necessary. �

The results of Proposition 2 are illustrated in �gure 2 and 3.

Figure 2 - Duopoly Game with strategic complements and negative externalities - Red = coop. isopro�ts;
Blu = leader�s isopro�t; Green = follower�s isopro�t.
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Figure 3 - Duopoly Game with strategic complements and positive externalities - Red = coop. isopro�ts;
Blu = leader�s isopro�t; Green = follower�s isopro�t.

The next proposition characterize the order of players�actions in the standard case in which a
cooperative agreement gives a player a payo¤ higher than as a follower in the sequential game.

Proposition 3. In all symmetric duopoly games in which players�actions are strategic complements
and players� payo¤s at the cooperative equilibrium are higher than at a Stackelberg equilibrium,
namely �c > �f , the following ranking between player equilibrium actions arises: xn

�

i > xsj > x
s
i >

xc
�

i under NE and x
c�
i > xsi > xsj > xn

�

i under PE, where xsj = rj(x
s
i ), for i; j = 1; 2, j 6= i and

� = (t1; t2).

Proof. The fact that xsi > x
c�
i under negative externalities (NE) and x

s
i < x

c�
i under positive exter-

nalities (PE) whenever �c > �f is directly implied by Proposition 2. The remaining inequalities
are standard (see for instance Amir et al., 2000). In fact, taking a player i in the role of leader,

(3.3) �i (x
s
i ; rj (x

s
i )) > �i(x

n�

i ; x
n�

j ) � �i(xsi ; x�j );

where the �rst inequality holds since xs 6= xn� and the second by the Nash property of xn� . Thus,
(3.3) directly implies that rj (xsi ) = xsj < xn

�

j under NE and rj (xsi ) = xsj > xn
�

j under PE. Since
players�actions are strategic complements (and best-replies increasing), it also follows that xsi < x

n�
i

under NE and xsi > x
n�
i under PE, since both Stackelberg and simultaneous Nash pro�les lie along

the increasing follower�s best-reply. Finally, the fact that the isopro�t curves are concave (convex)
under NE (PE) w.r.t. origin of the X2 plan, implies that, at the point of tangency, xsj > x

s
i under

NE and xsj < x
s
i under PE, and this concludes the proof. �

Example 1. (Cournot with strategic complements) Let two �rms face an inverse market demand
function P (Q) = (1 + Q)�b, where Q = (q1 + q2) and b > 1, with, for simplicity, production
costs equal to zero. Every �rm payo¤ is �i(qi; Q) = (1 + Q)�bqi, i = 1; 2 and, thus, externalities
are negative and quantities act as strategic complements, yielding increasing best-replies. Simple
computations show that the equilibrium quantities are, respectively, qn

�

i = 1
b�2 , q

s
i =

1
b�1 , q

s
j =

b
(b�1)2

and qc
�

i = 1
2(b�1) . Equilibrium payo¤s are: �n = (b� 2)�1

�
b
b�2

��b
, �` = (b� 1)�1

�
b2

(b�1)2
��b

, �f

= (b� 1)�2 b
�

b2

(b�1)2
��b

and �c = (2b� 2)�1
�

b
(b�1)

��b
. It is straightforward to see that, for b � 2,

qn
�
> qsj > q

s
i > q

c�
i and �c � �f > �` > �n. Figure 1 illustrates this case. For 1 < b < 2; there is
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a switch in players�payo¤s and �f > �c > �` > �n:11 However, since qsi =
1
b�1 and q

c�
i = 1

2(b�1) , it

is easy to see that qc
�

i < qsi holds for any level of b. This proves that Proposition 2 is only su¢ cient
and not necessary for �f > �c. This point is also illustrated graphically in Figures 4 and 5.12

53.752.51.250

5

3.75

2.5

1.25

0

q1

q2

q1

q2

Figure 4 - Numerical example (Cournot with strategic complements) - Case b = 2:5:Red = coop.
isopro�ts; Blu = leader�s isopro�t; Green = follower�s isopro�t.

17.51512.5107.552.50
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12.5
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7.5

5

2.5

0

q1

q2

q1

q2

Figure 5 - Numerical example (Cournot with strategic complements) - Case b = 1:5. Red = coop.
isopro�ts; Blu = leader�s isopro�t; Green = Ffollower�s isopro�t.

The next proposition characterizes the relation between the actions of a leader and those of
a follower at the Stackelberg equilibrium when the follower obtains a higher payo¤ than playing
cooperatively. Together with Proposition 3, this result helps to see that, when actions are strategic
complements (and best-replies increasing), the Stackelberg equilibrium will always lies below the
45 degree line when externalities are negative and above this line when externalities are positive
(see, for instance, Figure 4 and 5 above).

11Note that, for 1 < b < 2; �rm best-replies are no contraction and for such range of parameters a simultaneous
(Cournot) Nash equilibrium in pure strategies does not exist.

12As in the standard Cournot model, lower isopro�t curves correspond to higher pro�t quantity-combinations for
�rm 1, while the same holds for �rm 2 isopro�t curves lying more on the left.
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Proposition 4. In all symmetric duopoly games in which players�actions are strategic complements
and the follower�s payo¤ at the Stackelberg equilibrium is higher than what obtained at a cooperative
equilibrium, namely, �f > �c; the action of a follower is higher (lower) than the action of a leader
under negative (positive) externalities, namely, xsj > xsi under NE and x

s
j < xsi under PE, where

xsj = rj (x
s
i ).

Proof. Suppose not and xsj < x
s
i under NE and x

s
j > x

s
i under PE. Thus

�j(rj (x
s
i ) ; rj (x

s
i )) > �j(x

s
i ; rj (x

s
i )) > �j(x

c�

i ; x
c�

j )

where the �rst inequality holds by monotone externalities and the second by the fact that �f > �c.
Thus, since by symmetry �j(x) = �i(x) for any x such that xi = xj ,

�i(rj (x
s
i ) ; rj (x

s
i )) + �j(rj (x

s
i ) ; rj (x

s
i )) > �i(x

c�

i ; x
c�

j ) + �j(x
c�

i ; x
c�

j )

which contradicts the e¢ ciency of xc
�
. �

So far, the characterization of the various equilibria has shown that when actions are strategic
complements two main equilibrium action-payo¤ con�gurations are possible. By Corollary 1 and
Proposition 1, 2 and 3, under negative externalities (NE), when

xn
�
> xsj > x

s
i > x

c�

i

both rankings of payo¤s, either

�c > �f > �` > �n or �f > �c > �` > �n;

are possible, while, when

xn
�
> xsj > x

c�

i > xsi ;

thus, certainly,

�f > �c > �` > �n:

Conversely, under negative externalities (PE), when

xc
�

i > xsi > x
s
j > x

n�

i

both payo¤-rankings

�c > �f > �` > �n or �f > �c > �` > �n

can arise, while, when

xsi > x
c�

i > xsj > x
n�

i ;

thus, certainly,

�f > �c > �` > �n:

However, as the next example will illustrate, in a duopoly game with actions that are strategic
complements (as in a classical price duopoly game), the case in which the follower�s payo¤overcomes
the cooperative payo¤ rarely happens. When the follower�s best reply is a contraction, it is unlikely
that the leader�s action is lower (higher) than its own cooperative choice under NE (PE) or, that
the leader�s action is low (high) enough under NE (PE) to make the follower better o¤ than under
cooperation. This property would normally require, in fact, a slope of best-replies largely greater
than one under NE and largely lower than one under PE.
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Example 2. (Bertrand with di¤erentiated products and strategic complements) Let every �rm
market demand be qi(pi; pj) = (1�pi+�pj)b, where pi and pj are the prices charged by the two �rms
respectively. Let also b > 0, 0 < � < 1; and costs normalized to zero for both �rms. The payo¤s
are, therefore, simply given by �i(pi; pj) = (1� pi+ �pj)bpi. Note that for � > 0, every �rm payo¤
exhibit increasing di¤erences and best-replies are increasing (prices work as strategic complements).
Externalities are positive. The equilibrium payo¤s when the game is played simultaneously and
noncooperatively (at stage t1 or t2) is �n = (b� � + 1)�1�b (� � 1 + b� � + 1)b, while, if the game
is played sequentially à la Stackelberg, the leader obtains

�` =
�
b� �2 + 1

��1
(b+ 1)�1 (b+ � + 1)�;

where

� = (
�(b�2���b��b2�2b�1)

(b+1)2(�2�b�1) � b+�+1
2b+b2��2�b�2+1 + 1)

b;

and the follower �f = (b+ 1)�2
�
�2 � b� 1

��1 �
b�2 � � � b� � b2 � 2b� 1

�
�, where

� = ( �(b+�+1)
2b+b2��2�b�2+1 �

(b�2���b��b2�2b�1)
(b+1)2(�2�b�1) + 1)b:

Finally, when the two �rms decide to merge, they jointly act as a single monopolist (playing either
at stage t1 or t2) obtaining the equal-split payo¤

�c = ((� � 1) + (b+ 1) (1� �))b ((b+ 1) (1� �))b�1 :

Simple computations show that for all reasonable parameters values, �c > �f > �` > �n. Moreover,
the following ranking for players�actions (prices) is obtained; pc

�

i > psi > p
s
j > p

n�
i . Figure 6 depicts

the case with � = :5 and b = 1. No substantial changes in the ranking are obtained by manipulating
the model parameters.

1.51.2510.750.50.250
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0.75
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0
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p1

p2

Figure 6 - Numerical example (Price competition with strategic complements) - Case b = 1 and � = 0:5.
Red = coop. isopro�ts; Blu = leader�s isopro�t; Green = follower�s isopro�t.

We conclude the results of this section characterizing the Nash and strong Nash equilibria of
the announcement game (and therefore SNE of the whole game) when the actions of the duopoly
games are strategic complements.
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Proposition 5. In all symmetric duopoly games in which players�actions are strategic complements
and the cooperative payo¤ is higher than the follower�s payo¤ at the Stackelberg equilibrium, namely,
�c > �f , (i) the set of Nash equilibrium timing-partitions of the announcement game is

P (a�) = [
�
fi; jgt1

�
;
�
fi; jgt2

�
;
�
figt1 ; fjgt2

�
];

for i; j = 1; 2 and j 6= i, while the set of strong Nash timing-partitions is:

P (a) = [
�
fi; jgt1

�
;
�
fi; jgt2

�
]:

(ii) When, instead, �f > �c, the set of Nash and Strong Nash equilibrium timing-partitions is

P (a) = P (a�) = [
�
fi; jgt2

�
;
�
figt1 ; fjgt2

�
];

Proof. (i) Under strategic complementarity and �c > �f , Proposition 1 has established the following
ranking between players�payo¤s:

(3.4) �c > �f > �` > �n:

Therefore, all cooperative announcements a = (fi; jg ; �) are Nash equilibria for any � = (t1; t2),
because no player can deviate pro�tably by announcing either a0i = (fig ; t1) or a00i = (fig ; t2)
inducing, in turn, the duopoly game played simultaneously or sequentially (see �gure 1). As a
result, any cooperative partition P = (fi; jg� ) is part of a SNE of the whole game Note that in this
case also "cooperating across time" (see footnote 1) would be a Nash equilibrium. Moreover, also
the noncooperative sequential con�guration P =

�
figt1 ; fjgt2

�
is a SNE since deviating unilaterally

a player would end up playing simultaneously the duopoly game, obtaining, by (3.4), a lower payo¤.
The nonccoperative simultaneous play is not Pareto e¢ cient and, therefore, is not a strong Nash.
(ii) When �f > �c, the timing-partition P (a) =

�
fi; jgt1

�
is no longer a Nash equilibrium since

every player can deviate by announcing a0i = (fig ; t2) thus gaining a higher payo¤ as follower.
The sequential timing-partition is both Nash and strong Nash stable, since by jointly announcing
the grand coalition playing at time two would only improve the leader�s and not the follower�s
payo¤. �

Proposition 4 helps to see that, when player actions are strategic complements, apart from the two
sequential leader-follower con�gurations, also the two cooperative timing-partitions can be part of a
SNE of the extended game. Moreover, cooperation at stage t2 possesses robust stability properties,
since is the only timing-partition to remain a strong Nash equilibrium in any circumstance.

3.3. Actions Strategic Substitutes. When player actions are strategic substitutes, there are
only two possible rankings of players� equilibrium actions and payo¤s under either negative or
positive externalities. These will be characterized by the next proposition.

Proposition 6. (i) In all symmetric duopoly games in which players�actions are strategic substi-
tutes the following rankings between equilibrium actions may arise: either xsi > x

n�
i > xsj > x

c�
i or

xsi > xn
�

i > xc
�

i > xsj under NE and x
s
j > xc

�

i > xn
�

i > xsi or x
c�
i > xsj > xn

�

i > xsi under PE,
where xsj = rj(x

s
i ), i; j = 1; 2 and � = (t1; t2). (ii) Moreover, only two alternative rankings among

players�payo¤s may arise: either �c > �` > �n > �f or �` > �c > �n > �f .

Proof. (i) Similarly to Proposition 3 we can write, for the i-th player acting as leader,

�i (x
s
i ; rj (x

s
i )) > �i(x

n�

i ; x
n�

j ) � �i(xsi ; xn
�

j );

where the �rst inequality stems from the fact that playing as leader strictly dominates the simul-
taneous Nash for every player and the second by the property of a Nash equilibrium. Therefore,
it follows that rj (xsi ) = xsj < xn

�

j under NE and rj (xsi ) = xsj > xn
�

j under PE. Since actions are
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strategic substitutes, it follows that xsi > x
n�
i under NE and xsi < x

n�
i under PE, since both pro�les

xsand xn
�
lie along the follower�s decreasing best-reply. Thus

xsi > x
n�

i > xsj

under NE and
xsj > x

n�

i > xsi

under PE. By symmetry and payo¤ monotonicity coupled with the intrinsic e¢ ciency of the coop-
erative strategy pro�le, we must also have that xc

�

i < xn
�

i under NE and xc
�

i > xn
�

i under PE. We
remain, therefore, with the following two payo¤ inequalities:
either

(3.5) xsi > x
n�

i > xsj > x
c�

i

or

(3.6) xsi > x
n�

i > xc
�

i > xsj

under NE, and

(3.7) xsj > x
c�

i > xn
�

i > xsi

or

(3.8) xc
�

i > xsj > x
n�

i > xsi

under PE. Both cases may arise, as also the following example will illustrate.
(ii) From Proposition 1 we know that �c > �n > �f when actions are strategic substitutes.

Given that �` > �n, it follows that either �c > �` > �n > �f or �` > �c > �n > �f . The example
below shows that both cases may arise. The superiority of leader�s upon the cooperative payo¤ is
more likely to occur when the follower�s best-reply is very steep and, the ranking among players�
actions are as in (3.5)-(3.7) above. However, such phenomenon may also arise when the other two
rankings (3.6)-(3.8) are in place. The chance for the leader to expand (reduce) its action under
NE (PE) and - along the follower�s best-reply - to reduce (increase) her rival action, is the crucial
factor for the leader to obtain a higher payo¤ than under a cooperative agreement. This happens
when players�best-replies are (in absolute value) very steep. �

Example 3. (Cournot Game with strategic substitutes) Let assume a market inverse demand given
by P (Q) = (1 � Q)b, with Q = (q1 + q2) < 1, b > 0 and no costs for both �rms. The payo¤s are
therefore simply given by �i(qi; Q) = (1 � Q)bqi, for i = 1; 2: Note that for b > 0 payo¤s ex-
hibit decreasing di¤erences and best-replies are decreasing (quantities work as strategic substitutes).
Here externalities are negative. When the quantity game is played simultaneously and noncoop-
eratively (at stage t1 or t2) a �rm equilibrium payo¤ is �n = bb(b + 2)�(b+1), while, if the game
is played sequentially à la Stackelberg, the leader obtains �` = b2b(b + 1)�(2b+1) and the follower
�f = b(2b+1)(b + 1)�(2b+2), respectively. Finally, when the two �rms decide to merge, they jointly
act as a single monopolist (playing either at stage one or two) thus obtaining the equal split payo¤
�c = bb2(b + 1)�(b+1). Simple computations show that for b � 1 (linear or convex demand) we
obtain �c � �` > �n > �f with the equal sign holding only for b = 1. Figure 7 depicts the follower�s
best-reply and the two isopro�t curves, thus showing the described relation among players�payo¤s.
When, instead, 0 < b < 1 (concave demand), �` > �c > �n > �f . Figure 8 illustrates this case.
Figure 9 shows instead that �` > �c arises when the inverse demand is highly concave (b very low).
Moreover, the leader�s payo¤ dominance upon the cooperative outcome may occur for a follower�s
quantity either lower or higher than the cooperative output.
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Figure 7 - Numerical example (Cournot with strategic substitutes) - Case b � 1. Red = coop. isopro�ts;
Blu = leader�s isopro�t.
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Figure 8 - Numerical example (Cournot with strategic substitutes) �Case 0 < b < 1 Red = coop.
isopro�ts; Blu = leader�s isopro�t.
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Figure 9 - Numerical example - Red line: (xc
t � xsj)= Coop. output - follower�s output; Black dotted line:�

�c � �`
�
=Coop. Payo¤ - leader�s payo¤. b = 0:1; ::; 0:15.
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We conclude this section with a full characterization of all timing-partitions which are in the set
of Nash and strong Nash equilibria of the announcement game (and therefore are part of the SNE
of the whole game).

Proposition 7. (ii) In all symmetric duopoly games in which players� actions are strategic sub-
stitutes and the cooperative payo¤ is higher than the leader�s payo¤ at the Stackelberg equilibrium�
namely, �c > �`, (i) the set of Nash equilibrium timing-partitions of the announcement game is

P (a�) = [
�
fi; jgt1

�
;
�
fi; jgt2

�
;
�
figt1 ; fjgt1

�
];

for i; j = 1; 2 and j 6= i, while the set of strong Nash equilibrium timing-partitions is:

P (a) = [
�
fi; jgt1

�
;
�
fi; jgt2

�
]:

(ii) If, instead, �` > �c, the set of Nash equilibrium timing-partitions is:

P (a�) = [
�
fi; jgt1

�
;
�
figt1 ; fjgt1

�
];

while the set of strong Nash equilibrium timing-partitions is:

P (a) = [
�
fi; jgt1

�
]:

Proof. (i) When actions are strategic substitutes and �c > �`, by Proposition 1,

(3.9) �c > �` > �n > �f :

Therefore, all cooperative announcements a = (fi; jg ; �) are Nash equilibria for any � = (t1; t2),
since no player i = 1; 2 can deviate pro�tably by announcing either a0i = (fig ; t1) or a00i = (fig ; t2)
inducing, respectively, the simultaneous or sequential duopoly game (see �gure 1). Moreover, when
actions are strategic substitutes also the noncooperative simultaneous play P =

�
figt1 ; fjgt1

�
is a Nash equilibrium, just because, by deviating unilaterally with an alternative announcement
a00i = (fig ; t2), a player ends up playing sequentially as follower, thus obtaining a lower payo¤. This
simultaneous noncooperative equilibrium is not Pareto-e¢ cient and therefore cannot be a strong
Nash. (ii) When �` > �c, the cooperative timing-partition P (a) =

�
fi; jgt2

�
is no longer a Nash

equilibrium since every player can deviate by announcing a0i = (fig ; t1) and gaining a higher payo¤
as leader. Moreover, the simultaneous noncooperative partition cannot be improved upon by a
player who deviates as follower. Finally, since cooperating at stage t1 is both Nash stable and
Pareto-e¢ cient, this is the only strong Nash timing-partition of the announcement game. �

4. Concluding Remarks

This paper constitutes a �rst attempt to connect two usually distinct issues concerning players�
strategic interaction, one dealing with the endogenous timing of their actions, the other with their
capacity to cooperate. The idea that players can coordinate their time of play when acting cooper-
atively, appears reasonable. Many meaningful social, economic and political examples witness the
relevance of this issue. Our paper has introduced a new setup in which players can decide both the
timing and the nature (cooperative or noncooperative) of their actions. We have shown that the
type of the interaction among players in the strategic setting (duopoly game) plays an important
role: when their actions are strategic complements (and best replies increasing), cooperation is
more likely to be stable if deferred to the second stage. This is because no player can take advan-
tage by deviating as leader (at stage one) expecting her rival reacting as follower. Similarly, no
player can credibly object by inducing a noncooperative simultaneous play. Conversely, when the
duopoly game is one of strategic substitutes (and best-replies decreasing), cooperation at stage one
always emerges as a stable option. The reason is that no player can pro�tably deviate as follower
expecting her rival to play as leader in a sequential game. Other equilibrium con�gurations may
arise in the model, thus broadening the range of results which can be used to interpret strategically
a number of economic and social situations.
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5. Appendix

Lemma 1. (Existence of a unique cooperative equilibrium) Let players�payo¤s be continu-
ous and stricly quasiconcave and their strategy set be compact and convex intervals Xi = X � R+.
Then, there is a unique strategy pro�le xc

�
= argmaxx2X2

P
i=1;2 �i(x) and it is such that,

xc
�

1 = xc
�

2 :

Proof. Compactness of each X implies compactness of X2: Continuity of each player�s payo¤ �i(x)
on x implies the continuity of the social payo¤ function

P
i=1;2 �i(x). Existence of an e¢ cient

pro�le xc
� 2 X2 directly follows from Weiestrass theorem.We prove that this strategy pro�le is

symmetric.
Suppose xc

�

i 6= xc
�

j : By symmetry we can derive from xc
�
a new vector ex by permuting the

strategies of players i and j such that

(5.1)
X
i=1;2

�i(ex) = X
i=1;2

�i(x
c� )

and hence, by the strict quasiconcavity of all �i(x); for all � 2 (0; 1) we have that:

(5.2)
X
i=1;2

�i(�ex+ (1� �)xc� ) > X
i=1;2

(xc
�
):

Since, by the convexity of X; the strategy vector
�
�ex+ (1� �)xc� � 2 X2; we obtain a contradiction.

Finally, by the strict quasiconcavity of both individual and social payo¤s, the e¢ cient pro�le xc
�

can be easily proved to be unique. �
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