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Abstract

We study a dynamic, decentralized lemons market with one–time entry and charac-

terize its set of non–stationary equilibria. This framework offers a theory of how a

market suffering from adverse selection recovers over time endogenously; given an ini-

tial fraction of lemons, the model provides sharp predictions about how prices and

the composition of assets evolve over time. Comparing economies in which the initial

fraction of lemons varies, we study the relationship between the severity of the lemons

problem and market liquidity. We use this framework to understand how asymmetric

information contributed to the breakdown in trade of asset–backed securities during the

recent financial crisis, and to evaluate the efficacy of one policy that was implemented

in attempt to restore liquidity.
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1 Introduction

Since the seminal work of Akerlof (1970), it is well known that the introduction of low

quality assets, or “lemons,” into a market with asymmetrically informed buyers and sellers

can disrupt trade; the typical result is that sellers with high-quality assets are unwilling to

sell at depressed prices, and thus only low-quality assets are exchanged in equilibrium. Given

this result, the problem of adverse selection is often used to explain why the market for high

quality assets can break down or freeze. However, perhaps surprisingly, much less is known

about how and when the exchange of these assets resumes, or how this market thaws.

In this paper, we develop a simple model of trade under adverse selection and use it

to study how the severity of the lemons problem (i.e., the initial fraction of lemons in

the market) affects the patterns of trade over time. In contrast to much of the existing

literature, in which unfreezing a market requires an exogenous event or intervention, we

incorporate several natural features of actual asset markets that allow this process of recovery

to occur endogenously. Thus, given any initial fraction of lemons, our model delivers sharp

predictions about the length of time it takes for the market to recover, and how prices and

the composition of assets remaining in the market behave over this horizon.

We find that the patterns of trade depend systematically on the initial fraction of lemons.

In particular, when the lemons problem is mild (i.e., this fraction is small), trades are

executed quickly and at relatively uniform prices. However, when the lemons problem is

more severe, trade can take a substantial amount of time and the terms of trade can vary

significantly, both across agents and over time. We also characterize how the severity of the

lemons problem affects the expected amount of time it takes to sell a high quality asset,

which we interpret as a measure of the market’s illiquidity ; a liquid market is one where

sellers can quickly find a buyer to purchase their high quality asset (at an acceptable price),

whereas an illiquid market is one where this process takes a long time. In this sense, the

theory presented here provides a novel theory of liquidity based on adverse selection.

Given that our framework describes explicitly how markets can recover over time on their

own, it also provides a natural framework to analyze how the introduction of policies aimed
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at restoring liquidity can speed up (or, perhaps, slow down) this process. We provide a

specific example related to the recent financial crisis and illustrate how our environment can

provide unique insights into the efficacy of such policy interventions.

We take as a starting point the classic lemons market of Akerlof (1970) and make a few

simple modifications. First, in order to study how a frozen market can recover over time, the

environment must be dynamic and equilibria must be non–stationary. Therefore, we consider

a discrete–time, infinite–horizon model in which a fixed set of buyers and sellers have the

opportunity to trade in each period. In addition, we assume that agents permanently exit

the market after trading, and there are no new entrants. As a result, a central aspect of our

analysis is how the composition of assets remaining in the market evolves over time, and how

this interacts with agents’ incentives to trade at a particular point in time or delay. Thus, in

our model there is a formal sense in which trade may be sluggish because agents are waiting

for market conditions to improve, which seems to be an important feature of many frozen

markets that cannot be captured in a static or stationary setting.

Second, we focus our analysis on markets in which trade is decentralized ; in contrast to

the competitive paradigm, where agents are bound by the law of one price, we assume that

buyers and sellers are matched in pairs, and that they decide bilaterally whether to trade and

at what price. This assumption is consistent with the trading structure in many important

asset markets, such as the markets for asset–backed securities, corporate bonds, derivatives,

real estate, and even certain equities.1

There are two reasons why these modifications allow for the eventual exchange of high

quality assets. First, there are two mechanisms that can adjust to facilitate trade: the

price and, equally important, the time at which a transaction takes place. Second, agents

with different quality assets are allowed to trade at different prices.2 In the context of this

environment, we then ask the following questions. Are all assets—and in particular high

quality assets—eventually bought and sold? If so, how long does it take? How does the

1By now, the literature on decentralized or “over–the–counter” asset markets has grown quite large; see,

e.g., Duffie et al. (2005), Vayanos and Weill (2008), and Lagos and Rocheteau (2009).
2See Blouin (2003) and Moreno and Wooders (2010) for more extensive comparisons between centralized

and decentralized exchange in a dynamic setting with adverse selection.
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presence of low quality assets affect the expected amount of time it takes to sell high quality

assets? How do prices and the composition of assets in the market evolve over time?

Before we report our findings, it is helpful to describe the model in more detail. The

economy starts at t = 0 with an equal measure of buyers and sellers. A fraction q0 ∈ (0, 1)

of sellers possess a single high quality asset, and the remainder possess a single low quality

asset. The quality of a seller’s asset is private information. In each period t = 0, 1, 2, . . ., all

agents receive a stochastic discount factor shock, and then buyers and sellers in the market

are randomly and anonymously matched in pairs.3 Once matched, buyers make one of two

exogenously set price offers: a high price (that in equilibrium is accepted by all sellers) or

a low price (that in equilibrium is only accepted by impatient sellers with the low quality

asset). If a seller accepts the buyer’s offer, trade ensues and the pair exits the market; if the

seller rejects, the agents remain in the market. There are gains from trade in every match;

in particular, the efficient outcome is for all trade to take place immediately.

Within this environment, we completely characterize the equilibrium set for all q0 ∈ (0, 1),

and use this characterization to study the effects of asymmetric information on the patterns

of trade. First, given any q0, we show that all assets are bought and sold—the market

clears—in a finite number of periods. The patterns of trade are such that average price

offers and the average quality of assets in the market increase over time until, eventually, the

average quality is high enough that all remaining buyers offer the high price, and the market

clears. However, the amount of time it takes until the market clears depends crucially on the

initial fraction of high quality assets: the equilibrium characterization involves partitioning

the interval (0, 1) based on how many periods of trade, k, it takes before all assets are bought

and sold, for a given q0 ∈ (0, 1). Figure 1 below depicts a typical (very simple) partition.

We highlight two interesting features of this equilibrium characterization. First, there

is a natural monotonicity to the equilibrium set: as q0 gets smaller, it takes longer for the

market to clear. We also derive the expected amount of time it takes to sell a high quality

3The assumption of random discount factors not only captures the idea that some agents need to transact

more urgently than others at a given time, but it is also technically convenient, as it allows us to focus on

pure strategy equilibria.
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Figure 1: Number of Periods (k) Before Markets Clear for q0 ∈ (0, 1)

asset, which measures the extent to which the market for these assets is illiquid, and analyze

the relationship between this measure of illiquidity and the initial fraction of lemons. It is in

this sense that our model provides a theory of endogenous liquidity that varies systematically

across states of the world and over time.

Second, note that the equilibrium regions in Figure 1 overlap: for some values of q0,

there are multiple equilibria that take different amounts of time for the market to clear. The

driving force behind this multiplicity is a complementarity between buyers’ actions. When

other buyers offer the high price, average quality in the ensuing period does not change,

since sellers with both high and low quality assets accept the high price in equal proportion.

This gives buyers less incentive to wait for future periods to trade and more incentive to

offer a high price now. On the other hand, when other buyers are offering the low price, a

larger proportion of sellers with low quality assets accept this offer relative to sellers with

high quality assets, and average quality in the future increases. This provides buyers less

incentive to offer a high price and trade immediately. The existence of multiple equilibria for

a given q0 suggests that coordination failures can also contribute to illiquidity in dynamic,

decentralized market settings with adverse selection.

As pointed out above, since our model provides an explicit theory of how markets recover

on their own, it also provides a natural framework to analyze policies aimed at speeding up

this process. As a leading example, we consider a stylized version of a policy implemented in

the market for asset–backed securities in the wake of the financial crisis that began in 2007,

the so–called Public–Private Investment Program for Legacy Assets.4 This policy provided

4Our model captures many of the essential features of this market: trade is decentralized, the fall of

housing prices implied substantial heterogeneity in the value of these assets, and in many cases sellers had

more information about these assets than potential buyers. We argue each of these points in greater detail

in Section 6.
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non–recourse loans to buyers willing to purchase these securities, thus reducing the buyers’

downside exposure should they discover that they acquired a lemon.

In the context of many standard models of adverse selection, a reduction of down–side

risk would almost surely ease the lemons problem and help restore liquidity. Within the

context of our model, we show that this policy can have an ambiguous effect on market

recovery. Intuitively, this policy increases the incentive of buyers to offer the high price,

thus increasing both current and future payoffs for sellers holding low quality assets. If

the increase in future payoffs is greater than the increase in current payoffs, this provides

the owners of low quality assets with the incentive to delay trade, thus slowing the market’s

recovery. As it turns out, this is more likely when q0 is small. We believe this result highlights

the importance of analyzing policies to restore liquidity within the context of an environment

that models explicitly the interaction between the evolution of market conditions and the

agents’ incentives to delay trade.

The rest of the paper is organized as follows. After discussing the related literature below,

we introduce the environment in Section 2. In Section 3, we establish some basic properties

of equilibria, and in Section 4, we provide a complete characterization of the equilibrium set.

In Section 5, we discuss three aspects of our equilibrium characterization: the relationship

between liquidity and the lemons problem, the dynamics of trade, and the multiplicity of

equilibria. In Section 6, we discuss our application to the market for asset–backed securities.

In Section 7, we discuss some of our assumptions, including the restriction to exogenous

prices, and also what happens to market efficiency when the time interval between trading

opportunities converges to zero. Section 8 concludes.

Related Literature

Our work builds on the literature that studies dynamic, decentralized markets with asymmet-

ric information and interdependent values.5 The majority of this literature restricts attention

5There is a parallel literature that studies dynamic, decentralized markets with asymmetric information

about private values; most closely related to our work is Moreno and Wooders (2002), who focus on the

characterization of non–stationary equilibria.
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to stationary equilibria; see, for example, Inderst (2005), Moreno and Wooders (2010), and

the references therein. A notable exception is Blouin (2003), who analyzes non–stationary

equilibria. In all of these papers, the primary focus is to determine what happens to equilib-

ria in a decentralized trading environment as market frictions vanish.6 In contrast to these

papers, we provide a complete characterization of the set of non–stationary equilibria, and

use this characterization to study the patterns of trade over time and how these are affected

by the severity of the lemons problem.

There is also a large literature that studies the lemons problem in a dynamic setting in

which trade is conducted through competitive markets. Most similar to our paper is Janssen

and Roy (2002), who also focus on non–stationary equilibria and the patterns of trade over

time.7 In their model, the market price at each date is the expected value of the asset to

buyers, due to free entry, so that buyers are somewhat passive and receive zero payoffs in

equilibrium. In contrast, the buyers in our model are quite active, and the trade–off they face

between current and future payoffs is a dominant feature of the equilibrium characterization.

Our work is also related to the growing literature studying the effects of intervention in

frozen markets. Perhaps most similar is Chiu and Koeppl (2009), who introduce asymmetric

information into the random–matching framework of Duffie et al. (2005) and characterize

steady–state equilibria in which the lemons problem is sufficiently severe to shut down trade.

They, too, analyze the effect of policy intervention on trading dynamics, and show that a

government purchase of low quality assets can help to restore liquidity. We highlight the

crucial differences between this result and our own in Section 6.8

From a technical point of view, our work is related to the literature on sequential bargain-

ing with asymmetric information and interdependent values. This literature typically studies

the case of a single seller and a single buyer who bargain over time, or a single long–lived

6This was an exercise first conducted in a perfect information setting by Rubinstein and Wolinsky (1985)

and Gale (1986a, 1986b).
7Within the context of a stationary environment, there are many papers in this literature that study how

introducing additional institutions, technologies, or contracts can further ease the lemons problem; see, for

example, Hendel et al. (2005) and the references therein.
8Other recent papers studying the effects of asymmetric information on asset market liquidity and policy

interventions include Guerrieri and Shimer (2010), Chari et al. (2010), Tirole (2011), Philippon and Skreta

(2010), and House and Masatlioglu (2010).
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seller who faces a sequence of short–lived buyers.9 As in our framework, a feature of these

models is that buyers use time to screen different types of sellers.10 However, these models

typically have a unique equilibrium, whereas we find multiple equilibria. In Section 5, we

discuss how the multiplicity in our environment is driven by the fact that we have a market

setting with long–lived agents.

Finally, this paper adds to the class of models that provide a theory of endogenous mar-

ket liquidity based on asymmetrically informed counterparties. Rocheteau (2009) provides

an excellent survey of search–based models in which information frictions interfere with ex-

change and thus decrease liquidity. Eisfeldt (2004), on the other hand, develops a formal

relationship between the severity of the lemons problem and liquidity within a competitive

market framework; in her model, an influx of low quality assets drives down the (pooling)

equilibrium price of the high quality asset, thus decreasing a seller’s ability to exchange the

latter type of asset for cash. Finally, the dominant theory of liquidity in the finance literature,

pioneered by Glosten and Milgrom (1985) and Kyle (1985), also uses informational asymme-

tries to generate differences in liquidity by focusing on the problem of a market–maker and

treating the size of the bid–ask spread as a measure of liquidity.

2 The Environment

Time is discrete and begins in period t = 0. There is an equal mass of infinitely lived buyers

and sellers. At t = 0, each seller possesses a single, indivisible asset, which is either of high

(H) or low (L) quality. We refer to a seller with a type j ∈ {L,H} asset as a type j seller.

The fraction of sellers with a high quality asset at t = 0 is q0 ∈ (0, 1). We describe below

the payoffs to a buyer and a seller from each type of asset.

In every period, each agent’s discount factor δ is drawn from a continuous and strictly

increasing c.d.f. F with support [0, δ], where δ < 1. These draws are i.i.d. across both agents

and time. This is meant to capture the idea that buyers and sellers have different needs at

9See Vincent (1989), Evans (1989), and Deneckere and Liang (2006) for examples of the former type of

model, and Daley and Green (2010), and the references therein, for an example of the latter.
10This basic idea goes back to, at least, Wilson (1980).
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different times. At a given time, some sellers may need to sell their asset more urgently than

others, while similarly some buyers may desire immediate consumption more than others.

Across time, each individual agent may be more or less patient in any given period.11

Preferences

An asset of quality j ∈ {L,H} yields flow utility yj to a seller in each period that he holds the

asset. It is convenient to denote the present discounted lifetime value of a type j ∈ {L,H}

asset to a seller, computed before the seller draws his discount factor, by cj, where

cj =
yj

1− E[δ]
, (1)

with E[δ] =
∫
δdF (δ) < 1. We normalize yL to zero, so that cL = 0. A buyer who purchases

an asset of quality j ∈ {L,H} receives instantaneous utility uj. We assume that

uH > yH + δcH , uL > cL = 0, and yH > uL. (2)

The first two inequalities imply that there are gains from trade in every match, while the

final inequality implies that the lemons problem is present. Indeed, as long as yH+δcH > uL,

the price that buyers are willing to pay for a low quality asset would not be accepted by a

sufficiently patient high quality seller. When yH > uL, the lemons problem is most severe,

as the price that buyers are willing to pay for a low quality asset would not be accepted by

even the most impatient high quality seller. Relaxing this assumption does not substantively

change any of our results.

There are two aspects of this specification of preferences that warrant discussion. First,

as in Duffie et al. (2005), buyers and sellers receive different levels of utility from holding

a particular asset. This can arise for a multitude of reasons: for example, agents can have

different levels of risk aversion, financing costs, regulatory requirements, or hedging needs.

In addition, the correlation of endowments with asset returns may differ across agents. The

current formulation is a reduced–form representation of such differences.12

11Note that all types of agents draw their discount factors from the same c.d.f. F . Though non–essential,

we think this is reasonable. For a deeper look at the use of random discount factors, see Higashi et al. (2009).
12For more discussion and examples in which these differences arise endogenously, see, e.g., Duffie et al.

(2007), Vayanos and Weill (2008), and Gârleanu (2009).
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Second, we assume that sellers receive flow payoffs from holding the asset, while buyers

receive an instantaneous payoff upon trade. This hybrid specification is done for a number

of reasons. On the one hand, we could easily adapt our analysis to the case where sellers

pay a one–time production cost (cL or cH) when they trade with a buyer, as is standard

in models of lemons markets. The current formulation is more natural for the analysis of

asset markets. On the other hand, we could also assume that buyers receive flow payoffs

yBj > yj from owning an asset of type j ∈ {L,H}. As we describe below, buyers exit the

market upon trading, and thus the payoff from acquiring an asset would depend on the

buyers’ discount factor: the payoff to a buyer with discount factor δ from acquiring an asset

of type j would be uj(δ) = yBj + δyBj /(1−E[δ]). This heterogeneity in buyers’ payoffs would

make the analysis more cumbersome without providing any additional insights. The current

formulation allows for sellers to receive flow payments while they own the asset, without

introducing any additional heterogeneity in the buyers’ payoffs.

Matching and Trade

In every period, after the agents draw their discount factors, buyers and sellers are randomly

and anonymously matched in pairs.13 Discount factors and the quality of the seller’s asset

are private information. Once matched, the buyer can offer one of two prices, which are

fixed exogenously: a high price ph that we assume lies in the interval (yH + δcH , uH), or a

low price p` that we assume lies in the interval (0, uL).14 The seller can accept or reject. If

a seller accepts, trade ensues and the pair exits the market; there is no entry by additional

buyers and sellers. If a seller rejects, no trade occurs and the pair remains in the market.

This ensures that there is always an equal measure of buyers and sellers in the market.15

13Because of our assumption of random discount factors, our environment is a random matching model

with infinitely many types. See Podczeck and Puzzello (2010) for a formalization of such models.
14One could imagine that buyers possess two indivisible objects that are worth ph and p` to sellers.
15The use of exogenous prices is common in the literature on matching and bargaining in the presence of

asymmetric information, both in stationary and non–stationary environments, as it allows for much greater

tractability in the analytical characterization of equilibria; see, e.g., Wolinsky (1990), Samuelson (1992), and

Blouin and Serrano (2001).
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We make the following assumptions:

uH − ph > uL − p`, (3)

yH + δph ≤ ph, (4)

δ(uH − ph) ≤ uL − p`. (5)

The first assumption implies that, in a world with no information frictions, a buyer would

prefer a high quality asset to a low quality asset given the terms of trade. Though not

necessary for our results, this assumption seems the most natural one. In particular, since a

type H seller rejects p`, (3) implies that uH − ph is the highest payoff possible for a buyer.

As we prove in Section 3, the second assumption implies that all sellers accept an offer of

ph regardless of their discount factor; this assumption is useful for tractability, but could be

relaxed without changing the main substantive results presented below. Finally, since we

restrict buyers to offer either p` or ph, we focus our attention on the region of the parameter

space in which they would never prefer to simply not make an offer at all. The inequality in

(5) is a sufficient condition for this to be true; it implies that a buyer would always prefer to

at least make an offer of p` at time t, even if he was guaranteed to buy a high quality asset

at price ph in the following period. We return to this last assumption in Section 7, when we

discuss the restriction to two prices more generally.

Strategies and Equilibrium

A history for a buyer is the set of all of his past discount factors and (rejected) price offers.

However, a buyer has no reason to condition behavior on his history: this history is private

information, discount factors are i.i.d., and the probability that he meets his current trading

partner in the future is zero, as there is a continuum of agents. Moreover, since there is

no aggregate uncertainty, the buyer’s history of past offers is not helpful in learning any

information about the aggregate state. Thus, a pure strategy for a buyer is a sequence

p = {pt}∞t=0, with pt : [0, δ]→ {p`, ph} measurable for all t ≥ 0, such that pt(δ) is the buyer’s

offer in period t, conditional on still being in the market and drawing discount factor δ.

A history for a seller is the set of all of his past discount factors and all price offers that
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he has rejected. The same argument as above implies that a seller has no reason to condition

behavior on his history. Thus, a pure strategy for a type j seller is a sequence aj = {ajt}∞t=0,

with ajt : [0, δ] × {p`, ph} → {0, 1} measurable for all t ≥ 0, such that ajt(δ, p) is the seller’s

acceptance decision in period t, conditional on still being in the market, drawing discount

factor δ, and receiving offer p. We let ajt(δ, p) = 0 denote the seller’s decision to reject and

ajt(δ, p) = 1 denote the seller’s decision to accept.

We consider symmetric pure–strategy equilibria, which can be described by a list σ =

(p, aL, aH).16 In order to define equilibria, we must determine payoffs at each date t under

any strategy profile σ. Though this is a standard calculation for all t in which there is a

positive measure of agents remaining in the market, we must also specify what happens when

there is a zero measure of agents remaining on each side of the market. More specifically,

when all remaining agents trade and exit the market in the current period, we must specify

the (expected) payoff to an individual should he choose a strategy that results in not trading.

In order to avoid imposing ad hoc assumptions, we adopt the following procedure for

computing these payoffs. Consider the slightly more general version of our model in which,

in each period t, agents get the opportunity to trade with probability α ∈ (0, 1], where α

is independent of an agent’s type and history. The environment we analyze corresponds to

the case in which α = 1. Thus, in every period t, a fraction α ∈ (0, 1] of the buyers and

sellers in the market are matched in pairs, and the remainder do not get the opportunity to

trade. The definition of strategies when α ∈ (0, 1) is the same as when α = 1.17 However,

when α ∈ (0, 1), in every period t there is a strictly positive mass of agents remaining in

the market, and thus payoffs are always well–defined; in particular, future payoffs are well–

defined when all buyers and sellers who are matched trade in the current period. We define

payoffs when α = 1 as the limit as α converges to 1 of payoffs when α < 1.

16Since F has no mass points, the restriction to pure strategies is without loss of generality, as at most a

zero mass of agents is indifferent between two or more actions in each period. Moreover, with a continuum of

agents, two agents with the same discount factor can behave differently only if they are indifferent between

the possible action choices. Thus, the restriction to symmetric equilibria is also without loss of generality.
17Now a player’s strategy at time t is conditional on being matched. Moreover, a history for a player

also includes the periods in which he was able to trade; for the same reasons given above, a player has no

incentive to condition his behavior on this information, though.
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More precisely, given a strategy profile σ, let V j
t (a|σ, α) be the expected lifetime payoff to

a type j seller in the market in period t following the strategy a and V B
t (p|σ, α) be the same

payoff to a buyer in the market in period t following the strategy p when the probability

of trade in each period is α ∈ (0, 1). Both payoffs are computed before discount factors are

determined in period t. The payoff to a type j seller in the market in period t following the

strategy a is then given by

V j
t (a|σ) = lim

α→1
V j
t (a|σ, α), (6)

while the payoff to a buyer in the market in period t following the strategy p is

V B
t (p|σ) = lim

α→1
V B
t (p|σ, α). (7)

See the Supplementary Appendix for the construction of V j
t (a|σ, α) and V B

t (p|σ, α) and a

proof that the limits (6) and (7) are well–defined regardless of a, p, and σ.

For any strategy profile σ = (p, aL, aH), let

Ajt(p|σ) =

∫
ajt(δ, p)dF (δ);

by construction, Ajt(p|σ) is the likelihood that a seller of type j in the market in period t

accepts an offer p ∈ {p`, ph}. Now let T (σ) be the period in which the market “clears,”

i.e., the period in which all sellers remaining in the market accept the price offers made

by the buyers; we set T (σ) = ∞ if the market never clears. Moreover, let qt(σ) be the

fraction of type H sellers in the market in period t. Finally, let V B
t (σ) = V B

t (p|σ) and

V j
t (σ) = V j

t (aj|σ). We can now define an equilibrium in our environment.18

Definition 1. The strategy profile σ∗ =
(
p∗ = {p∗t}, a∗L = {aL∗t }, a∗H = {aH∗t }

)
is an equilib-

rium if for each t ∈ {0, . . . , T (σ∗)} and j ∈ {L,H}, we have that:

(i) for all δ ∈ [0, δ], p∗t (δ) maximizes

qt(σ
∗)
{
AHt (p|σ∗)[uH − p] +

(
1− AHt (p|σ∗)

)
δV B

t+1(σ∗)
}

+(1− qt(σ∗))
{
ALt (p|σ∗)[uL − p] +

(
1− ALt (p|σ∗)

)
δV B

t+1(σ∗)
}

;

18Note that, in the definition below, we assume that a seller accepts any offer that he is indifferent between

accepting and rejecting. This is without loss since F has no mass points, and so the probability that a seller is

ever indifferent between accepting and rejecting is zero. Also note that we only require sequential rationality

when there is a positive mass of agents in the market. We obtain the same results if we also require sequential

rationality when the mass of agents in the market is zero.

13



(ii) for each p ∈ {p`, ph} and δ ∈ [0, δ], aj∗t (δ, p) = 1 if, and only if,

p ≥ yj + δV j
t+1(σ∗).

In words, the strategy profile σ∗ is an equilibrium if the behavior of buyers and sellers is

optimal in every period t ≤ T (σ∗). Indeed, the term in (i) is the expected payoff to a buyer

in the market in period t when his discount factor is δ and he offers p ∈ {p`, ph}: conditional

on being matched to a type j seller, an offer of p is accepted with probability Ajt(p|σ∗), in

which case the buyer’s payoff is uj − p, and rejected with probability 1−Ajt(p|σ∗), in which

case the buyer’s payoff is δV B
t+1(σ∗). Likewise, the optimal behavior for a seller in the market

in period t is to accept an offer of p if, and only if, this offer is at least as high as the payoff

he obtains from holding on to his asset for another period.

3 Basic Properties of Equilibria

In this section, we establish that the market clears in finite time in every equilibrium and

that the fraction of type H sellers in the population is strictly increasing over time before

the market clears. We start with the following result.

Lemma 1. Suppose the market has not cleared before period t and that the fraction of type

H sellers in the market is positive. The market clears in period t if, and only if, all buyers

in the market offer ph.

Suppose a positive fraction of buyers offer p`. Since matching is random, some of them

will be matched with type H sellers, who always reject an offer of p` because of (2). Hence,

a positive fraction of buyers who offer p` have their offer rejected, and thus the market does

not clear. We show in the Appendix that V j
t (σ) ≤ ph for any strategy profile σ. Thus, since

ph ≥ yH + δph by (4), in equilibrium all sellers accept an offer of ph.

By Lemma 1, for any equilibrium σ∗, the market clears in the first period T in which all

remaining buyers in the market offer ph. For all t < T , a positive mass of buyers offer p` and

the fraction of type L sellers who accept this offer is F
(
p`/V

L
t+1(σ∗)

)
. Since all sellers who

14



receive an offer of ph accept the offer and exit the market, we then have that if qt = qt(σ
∗),

then qt+1 = qt+1(σ∗) is given by

qt+1 =
qt

qt + (1− qt)
[
1− F

(
p`/V L

t+1(σ∗)
)] . (8)

Now notice that V L
t+1(σ∗) ≤ ph implies that for all t < T , the fraction of type L sellers

who accept an offer of p` is at least F (p`/ph), and thus bounded away from zero. Looking

at the law of motion for {qt}Tt=0, equation (8), the following result follows immediately given

that q0 ∈ (0, 1).

Lemma 2. For any equilibrium σ∗, the sequence {qt}Tt=0 is strictly increasing.

This result is a common feature of dynamic models of trade with adverse selection: since

the opportunity cost (the foregone dividends) of selling a high quality asset is larger than

that of selling a low quality asset, type H sellers are de facto more patient and remain in the

market, on average, longer than type L sellers. As a result, over time the average quality of

assets in the market increases.19 As we now show, this implies that the market eventually

clears in every equilibrium. The proof is in the Appendix.

Lemma 3. In any equilibrium, the market clears in finite time.

Intuitively, if the market never clears, then it must be that the mass of buyers who offer

p` is strictly positive in every period t. Moreover, since qt is strictly increasing, the sequence

{qt}∞t=0 must converge to some q∞ ≤ 1. Given that buyers discount the future (δ < 1), it

must be that q∞ < 1; otherwise, as qt gets sufficiently close to one, the gain from waiting for

the market to improve vanishes, and it becomes a strictly dominant strategy for all buyers to

offer ph. However, if q∞ < 1, the law of motion (8) implies that as t gets large, the fraction

of type L sellers who accept p` gets arbitrarily close to zero, which is not possible.

19Lemma 2 does not depend on the assumption of exogenous prices, nor does it depend on the assumption

that uL < yH . Indeed, if the continuation payoff to a type j seller from staying in the market is V j , then

the fraction of type j sellers who accept an offer of p is F ((p − yj)/V j). Since yH > yL = 0 and a type H

seller can always replicate the behavior of a type L seller, it is necessarily the case that V H > V L. Thus,

F ((p− yH)/V H) < F (p/V L), and so as long as the market does not clear, the fraction of type L sellers who

exit the market in any period is greater than the fraction of type H sellers who do the same.
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4 Characterizing Equilibria

In this section, we provide a complete characterization of the equilibrium set. The first step

consists in characterizing the equilibria in which the market clears in the first period of trade,

i.e., all buyers offer ph in t = 0. We refer to such equilibria as “0–step” equilibria; more

generally, we refer to equilibria in which the market clears in period k as “k–step” equilibria.

Then we use the fact that a (k+ 1)–step equilibrium must be such that (i) some agents offer

p` at t = 0, and (ii) behavior after the first period of trade is given by a k–step equilibrium

to construct the set of 1–step equilibria, and so on. Since the market clears in finite time

in any equilibrium, this recursive procedure exhausts the equilibrium set. All proofs in this

section are relegated to the Appendix.

Zero–step equilibria

Denote by πBi (q, δ, vL, vH , vB) the payoff to a buyer who offers pi, with i ∈ {`, h}, when: (i)

the fraction of type H sellers in the market is q ∈ (0, 1); (ii) the buyer’s discount factor is δ;

(iii) the continuation payoff to a seller of type j who chooses not to trade is vj; and (iv) the

continuation payoff to the buyer should he not trade is vB. Since a type j seller can hold his

asset forever, vj ≥ cj. Also note that vB ≤ uH − ph and, since a buyer can always offer p`

and trade at least with probability F (p`/ph) > 0, it follows that vB > 0.

Since sellers always accept an offer of ph, we have that

πBh (q, δ, vL, vH , vB) ≡ πBh (q) = q(uH − ph) + (1− q)(uL − ph).

We also know that a type H seller always rejects an offer of p`. Therefore,

πB` (q, δ, vL, vH , vB) ≡ πB` (q, δ, vL, vB)

= (1− q)F
(
p`
vL

)
[uL − p`] +

{
q + (1− q)

[
1− F

(
p`
vL

)]}
δvB, (9)

where F (p`/vL) is the fraction of type L sellers who accept p`. Note that πB` (q, δ, vL, vB) is

strictly increasing in vB. Since vB > 0, πB` (q, δ, vL, vB) is also positive and strictly increasing

in δ. Moreover, since vB ≤ uH − ph, (5) implies that δvB ≤ uL − p`, and so πB` (q, δ, vL, vB)

is non–increasing in vL.
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Let v0
B(q0) and v0

j (q0) be the payoffs to buyers and type j sellers in a 0–step equilibrium,

respectively.20 It is easy to see that v0
B(q0) = πBh (q0) and v0

j (q0) ≡ v0
j = ph.

21 To construct

the set of 0–step equilibria, consider the strategy σ0 in which, in every t ≥ 0, pt(δ) = ph for

all δ ∈ [0, δ] and type j sellers accept an offer p if, and only if, δ ≤ (p−yj)/ph. It follows from

our refinement for computing payoffs when the mass of agents in the market is zero that for

all t ≥ 1, V B
t (σ0) = v0

B(q0) and V j
t (σ0) = v0

j . Indeed, under σ0, when the fraction of buyers

and sellers who are matched in each period is α < 1, all buyers who get the opportunity to

trade exit the market, and so the fraction of type H sellers among the sellers who remain in

the market stays the same. Hence, the strategy profile σ0 is an equilibrium only if v0
B(q0) > 0

and all buyers find it optimal to offer ph in t = 0, which is true as long as, for all δ ∈ [0, δ],

πBh (q0) ≥ πB`
(
q0, δ, v

0
L, v

0
B(q0)

)
.

Since v0
B(q0) > 0 implies that πB` (q0, δ, v

0
L, v

0
B(q0)) is strictly increasing in δ, a necessary and

sufficient condition for σ0 to be an equilibrium is that v0
B(q0) > 0 and

πBh (q0) ≥ πB`
(
q0, δ, v

0
L, v

0
B(q0)

)
. (10)

In the proof of Proposition 1, we show that there exists a unique q0 ∈ (0, 1) such that (10)

is satisfied if, and only if, q0 ≥ q0. Moreover, we show that v0
B(q0) > 0, and so v0

B(q0) > 0 for

all q0 ≥ q0. Thus, σ0 is an equilibrium if, and only if, q0 ∈ [q0, 1). Finally, we also show that

(10) is the loosest possible constraint on q0 that ensures that a buyer finds it optimal to offer

ph at t = 0 when all other buyers in the market offer ph as well. In other words, no strategy

profile σ̃0 such that all buyers offer ph in t = 0 is an equilibrium when (10) is violated.

20In general, we will adopt the convention that a numerical subscript refers to a particular time period,

while a numerical superscript refers to the number of periods it takes for the market to clear in equilibrium.

In addition, we will use lower case v to denote equilibrium payoffs.
21Note that, for a given q0, there may be multiple 0–step equilibria that differ in how they specify behavior

off the equilibrium path (i.e., for t ≥ 1). However, for a given q0, all such equilibria are outcome equivalent;

two equilibria σ and σ′ are outcome equivalent if T (σ) = T (σ′) = T and for all t ≤ T , the buyers and sellers

in the market behave in the same way under both strategy profiles. Since we use the set of 0–step equilibria

to construct the set of 1–step equilibria, this multiplicity also exists for 1–step equilibria, but for a given

q0, the latter equilibria are outcome equivalent as well. This is true, more generally, for all k ≥ 0. In the

analysis below, we mainly ignore this trivial multiplicity; however, we will explore in great detail cases in

which, for a given q0, there exist multiple equilibria that are not outcome equivalent.
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Proposition 1. Let q0 ∈ (0, 1) denote the unique value of q0 satisfying (10) with equality.

There exists a 0–step equilibrium if, and only if, q0 ≥ q0.

Notice that q0uH + (1 − q0)uL ≥ ph > yH + δcH for any q0 in the interval [q0, 1), since

a buyer is only willing to offer ph if his payoff from doing so is non–negative. Hence, ph

corresponds to a market–clearing price in a competitive equilibrium. Thus, when the lemons

problem is relatively small, i.e., when q0 is sufficiently large, the equilibrium outcome in

this dynamic decentralized market coincides with that of a static, frictionless market: trade

occurs instantaneously at a single market–clearing price. We will now show, however, that

as the lemons problem becomes more severe, equilibrium outcomes no longer resemble those

of a centralized competitive market. Instead, these outcomes appear more consistent with

models of decentralized trade with search frictions, in the sense that it takes time for buyers

and sellers to trade, and they do so at potentially different prices.

One–step equilibria

To characterize the set of 1–step equilibria, the following convention will be useful: for any

strategy profile σ, let σ+ be the strategy profile such that for all t ≥ 0, the agents’ behavior

in period t is given by their behavior in period t+ 1 under σ. In addition, for q ∈ (0, 1), let

q+ (q, vL) =
q

q + (1− q) [1− F (p`/vL)]
. (11)

By construction, q+(q, vL) is the fraction of type H sellers in the market in the next period if

this fraction is q in the current period, a positive mass of buyers offer p`, and the continuation

payoff to a type L seller in case he rejects a price offer is vL. Since vL ≤ ph, we have that

F (p`/vL) ≥ F (p`/ph) > 0, and so q+(q, vL) > q for all q ∈ (0, 1). Also note that q+(q, vL) is

strictly increasing in q if p`/vL < δ and q+(q, vL) ≡ 1 if p`/vL ≥ δ.

Consider a strategy profile σ1 such that a positive mass of buyers offer p` in t = 0 and

all buyers offer ph in t = 1. In order for σ1 to be an equilibrium, it must be that: (i) σ1
+ is

a 0–step equilibrium when the initial fraction of type H sellers is q′ = q+(q0, v
0
L); and (ii) a

positive mass of buyers find it optimal to offer p` in t = 0 when the market clears in t = 1.22

22It must also be the case that the type j sellers accept an offer of p in t = 0 if, and only if, δ ≤ (p−yj)/ph.
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Formally, the following conditions are necessary and sufficient for σ1 to be an equilibrium:

q+(q0, v
0
L) = q′ (12)

q′ ≥ q0 (13)

πBh (q0) < πB`
(
q0, δ, v

0
L, v

0
B(q′)

)
. (14)

The first condition is simply the law of motion for qt from t = 0 to t = 1. Since v0
L = ph

is a constant, the law of motion q+(q0, v
0
L) is a continuous, strictly increasing function of

q0 specifying the unique implied value of q1 in a candidate 1–step equilibrium. The second

condition follows from Proposition 1. It ensures that the fraction of type H sellers in t = 1

falls in the region of 0–step equilibria. The third condition ensures that a positive mass of

buyers find it optimal to offer p` in t = 0 when the strategy profile under play is σ1. Since

q′ ≥ q0 implies that v0
B(q′) > 0, πB` (q0, δ, v

0
L, v

0
B(q′)) is strictly increasing in δ. Thus, the

incentive of a buyer to offer p` in t = 0 when the market clears in t = 1 increases with

the buyer’s patience. As it turns out, combining (12) and (13) provides a lower bound on

the values of q0 for which a 1–step equilibrium exists, and (14) provides an upper bound.

Proposition 2 below formalizes these results.

Proposition 2. Let q1 denote the unique value of q0 satisfying (14) with equality, and define

q1 to be such that q+(q1, v0
L) = q0 if p`/v

0
L < δ and q1 = 0 otherwise. Then q1 < q0 < q1 < 1

and there exists a 1–step equilibrium if, and only if, q0 ∈ [q1, q1)∩ (0, 1). Moreover, for each

q0 ∈ [q1, q1) ∩ (0, 1), there exists a unique q′ ∈ [q0, 1] such that q′ is the value of q1 in any

1–step equilibrium when the initial fraction of type H sellers is q0.

In words, if q0 = q1, then the most patient buyer is exactly indifferent between offering

p` and ph when a positive mass of other buyers are offering p`. For any q0 > q1, the payoff to

such a buyer from immediately trading at price ph is greater than the payoff from offering p`

and not trading with positive probability, in which case the buyer trades at price ph in the

ensuing period (when the fraction of type H sellers in the market is larger). When p`/v
0
L < δ,

q1 is the unique value of q0 such that, if a positive mass of buyers offer p`, then the fraction of

This optimal behavior of sellers will be implicitly assumed throughout the analysis.
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high quality sellers in the next period is q0, the minimum value required for market clearing;

notice that q1 > 0 in this case. If even the most patient type L seller would rather accept

an offer of p` today than wait one period for an offer of ph, i.e., if p`/v
0
L ≥ δ, then q1 = 0.

The fact that q0 < q1 implies that there are both 0–step and 1–step equilibria when

q0 ∈
[
q0, q1

)
. In this region, if all other buyers are offering ph, the payoffs to trading at t = 0

and at t = 1 are the same, and so it is optimal for an individual buyer to offer ph no matter

his discount factor. However, if a positive mass of other buyers are offering p`, the market

does not clear at t = 0 and the payoff to trading at t = 1 increases (since q1 > q0), rendering

it optimal for patient buyers to offer p` and incur a chance that they trade only in the next

period. We return to this point in Section 5.

We know from above that in every 1–step equilibrium, Q1
+(q0) ≡ q+(q0, v

0
L) is the value

of q1 corresponding to each initial value q0. Moreover, for each value of q1, payoffs at t = 1

are uniquely defined, since all 0–step equilibria are outcome equivalent. Therefore, it follows

that the payoffs in a 1–step equilibrium are uniquely defined for each q0. The payoff to a

buyer in a 1–step equilibrium is

v1
B(q0) =

∫
max

{
πBh (q0), πB`

(
q0, δ, v

0
L, v

0
B(Q1

+(q0))
)}
dF (δ).

We denote the fraction of buyers that offer ph at t = 0 in a 1–step equilibrium by

ξ1(q0) =

∫
I{πBh (q) ≥ πB`

(
q, δ, v0

L, v
0
B(Q1

+(q0))
)
}dF (δ),

where I represents the indicator function. Thus, the payoff to a type L seller is

v1
L(q0) = ξ1(q0)ph + (1− ξ1(q0))

∫
max

{
p`, δv

0
L

}
dF (δ).

It turns out that ξ1 is continuous and increasing in q0, with limq0→q1 ξ1(q0) = 1, which implies

that v1
L is also continuous and increasing in q0, with limq0→q1 v1

L(q0) = v0
L. Lemma 4 in the

appendix establishes these results formally, as well as some additional properties of v1
B that

are useful in constructing 2–step equilibria. In what follows, we let v1
L(q1) = limq0→q1 v1

L(q0).

In addition, note that the payoff to a high quality seller is simply v1
H(q0) = ξ1(q0)ph +

(1− ξ1(q0))
∫
δphdF (δ). Since the behavior of type H sellers is trivial, we will not explicitly

derive their payoffs in what follows.
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Two–step equilibria

We now provide a complete characterization of 2–step equilibria. As it turns out, the process

of characterizing k–step equilibria is nearly identical for all k ≥ 2. Thus, the methodology

developed here will allow for a complete characterization of equilibria in the next subsection.

Consider a strategy profile σ2 such that a positive mass of buyers offer p` in t = 0 and

t = 1, and then all buyers offer ph in t = 2. In order for σ2 to be an equilibrium, it must

satisfy the following three necessary and sufficient conditions:

q+ (q0, v
1
L(q′)) = q′ (15)

q′ ∈
[
q1, q1

)
∩ (0, 1) (16)

πBh (q0) < πB`
(
q0, δ, v

1
L(q′), v1

B(q′)
)
. (17)

The first condition is the analog of (12); it is the law of motion for qt from t = 0 to t = 1,

conditional on a 1–step equilibrium beginning at t = 1. Unlike (12), the fraction q′ in (15)

is the solution to a fixed point problem: if the type L sellers expect continuation payoffs to

be that of a 1–step equilibrium in which the initial fraction of type H sellers is q′, then the

fraction of type L sellers who accept an offer of p` in t = 0 must be such that this conjecture

is correct. This fixed point problem does not appear in (12) since v0
L(q) is independent of q.

The second condition ensures that there exists a 1–step equilibrium at t = 1 given an initial

fraction q′ of high quality assets. The final condition ensures that a positive mass of buyers

find it optimal to offer p` in t = 0 when σ2
+ is a 1–step equilibrium.

Since v1
L(q′) ≤ v1

L(q1) = v0
L for all q′ ∈ [q1, q1)∩(0, 1), we have that p`/v

0
L ≥ δ implies that

q+(q0, v
1
L(q′)) = 1 for all q′ ∈ [q1, q1)∩ (0, 1). Thus, no 2–step equilibrium exists if pL/v

0
L ≥ δ.

Intuitively, when p`/v
0
L ≥ δ, all type L sellers with δ < δ strictly prefer to accept on offer of

p` if continuation payoffs are that of a 1–step equilibrium. Therefore, the fraction of type H

sellers in the market at t = 1 is one, and the market clears in two periods.

Suppose then that p`/v
0
L < δ. We show in the proof of Proposition 3 that (15) and (16)

imply (17). Intuitively, the incentive of the most patient buyer to choose p` in t = 0 is even

greater than his incentive to choose p` in t = 1, when the fraction of type H sellers in the
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market is q′ > q0. Hence, if the most patient buyer strictly prefers to choose p` in t = 1,

which is true by (16), then he also strictly prefers to offer p` at t = 0 and (17) is satisfied.

Therefore, (15) and (16) are necessary and sufficient conditions for a 2–step equilibrium.

Let Q2
+ : q0 7→ q′ denote the map defined by (15); in words, Q2

+(q0) is the value of q1

in a 2–step equilibrium, given q0. In the proof of Proposition 3, we show that Q2
+(q0) is a

well–defined function that is both continuous and strictly increasing in q0. Therefore, for

any q0, there is a unique value of q1 in any candidate 2–step equilibrium. These properties of

Q2
+(q0) greatly simplify the characterization of 2–step equilibria: the necessary and sufficient

conditions (15) and (16) become Q2
+(q0) ≥ q1 and Q2

+(q0) < q1. Hence, the lower bound on

q0 for which a 2–step equilibrium exists is the value of q0 such that Q2
+(q0) = q1, while the

upper bound is the value of q0 such that Q2
+(q0) = q1. The proposition below summarizes.

Proposition 3. Suppose that δ > p`/v
0
L. Let q2 be the unique solution to q+(q2, v1

L(q1)) = q1,

and define q2 to be such that q+(q2, v1
L(q1)) = q1 if p`/v

1
L(q1) < δ and q2 = 0 otherwise. Then

q2 < q1 < q2 < q1 and there exists a 2–step equilibrium if, and only if, q0 ∈ [q2, q2) ∩ (0, 1).

Moreover, for each q0 ∈ [q2, q2) ∩ (0, 1), there exists a unique q′ ∈ [q1, q1) such that q′ is the

value of q1 in any 2–step equilibrium when the initial fraction of type H sellers is q0.

Figure 2 below provides some intuition for the equilibrium characterization so far. After

deriving q0 and q1, we identified q1 as the value of q0 that would “land” exactly on q0 at

t = 1 given the law of motion Q1
+(q0). Since this law of motion is continuous and strictly

increasing in q0 (for δ > p`/v
0
L), we are assured that any q0 > q1 will “land” at q′ > q0

in a candidate 1–step equilibrium. Moving backwards, we then identified q2 and q2 as the

values of q0 that would “land” exactly on q1 and q1, respectively, given the law of motion

Q2
+(q0). Though this law of motion is slightly more complicated, the fact that it remains

continuous and strictly increasing assures us that any q0 ∈
[
q2, q2

)
will “land” within the

region of 1–step equilibrium. Finally, since v1
L(q1) = v0

L, q1 > q0, and

q+(q2, v0
L) = q1 > q0 = q+(q1, v0

L),

the fact that q2 > q1 follows immediately from the fact that q+(q0, vL) is strictly increasing

in q0 for any vL such that p`/vL < δ.

22



q0

0 1
q1 q1q2 q2

Figure 2: Deriving Bounds on Equilibrium Regions

Since Q2
+(q0) is uniquely defined, so too are payoffs in a 2–step equilibrium: the payoff

to a buyer in a 2–step equilibrium is

v2
B(q0) =

∫
max

{
πBh (q0), πB`

(
q0, δ, v

1
L(Q2

+(q0)), v1
B(Q2

+(q0))
)}
dF (δ).

If we denote the fraction of buyers that offer ph at t = 0 in a 2–step equilibrium by

ξ2(q0) =

∫
I{πBh (q) ≥ πB`

(
q, δ, v1

L(Q2
+(q0)), v1

B(Q2
+(q0))

)
}dF (δ),

then the payoff to a type L seller in a 2–step equilibrium is given by

v2
L(q0) = ξ2(q0)ph + (1− ξ2(q0))

∫
max

{
p`, δv

1
L(Q2

+(q0))
}
dF (δ).

As in the case of 1–step equilibria, it turns out that ξ2 is continuous and increasing in q0, with

limq0→q2 ξ2(q0) = ξ1(q2), so that the payoff v2
L is also continuous and increasing in q0, with

v2
L(q2) ≡ limq0→q2 v2

L(q0) = v1
L(q2). Lemma 5 in the appendix establishes these properties

formally, as well as some additional properties of v2
B and v2

L that are useful in what follows.

A Full Characterization

The characterization of k–step equilibria for k ≥ 3 proceeds by induction and follows almost

exactly the characterization of 2–step equilibria. Hence, for ease of exposition, we just sketch

the process here and leave the details for the Appendix.

Suppose there exists k ≥ 3 such that for all s ≤ k− 1, a s–step equilibrium exists if, and

only if, q0 ∈ [qs, qs) ∩ (0, 1), where qs ≤ qs−1 < qs < qs−1. Let vsL and vsB be, respectively,
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the payoff functions to type L sellers and buyers in a s–step equilibrium. The functions

vsL and vsB satisfy the properties of v2
L and v2

B described in Lemma 5 (in the Appendix); in

particular, vsL is continuous and strictly increasing in q0. As in the case of 2–step equilibria,

the necessary and sufficient conditions for the existence of a k–step equilibrium are

q+
(
q0, v

k−1
L (q′)

)
= q′, (18)

q′ ∈
[
qk−1, qk−1

)
∩ (0, 1), (19)

πBh (q0) < πB`
(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)
. (20)

Since vk−1
L is increasing in q0, p`/v

k−1
L (q′) ≥ p`/v

k−1
L (qk−1) for all q′ ∈ [qk−1, qk−1)∩ (0, 1).

Hence, p`/v
k−1
L (qk−1) ≥ δ implies that q+(q0, v

k−1
L (q′)) = 1 for all q′ ∈ [qk−1, qk−1) ∩ (0, 1), in

which case there exists no k–step equilibrium.

Suppose then that p`/v
k−1
L (qk−1) < δ. As we prove in the Appendix, given the charac-

teristics of (k − 1)–step equilibria, all the crucial features of 2–step equilibria are true for

k–step equilibria. First, (18) and (19) imply (20). Second, if we define Qk
+ : q0 7→ q′ as

the map implied by (18), then Qk
+ is continuous and strictly increasing. This implies that

a k–step equilibrium exists if, and only if, q0 ∈ [qk, qk) ∩ (0, 1), where the lower bound qk is

such that q+(qk, vk−1
L (qk−1)) = qk−1 if p`/v

k−1
L (qk−1) < δ and qk = 0 otherwise, and the upper

bound qk satisfies q+(qk, vk−1
L (qk−1)) = qk−1, where vk−1

L (qk−1) ≡ limq→qk−1 vk−1
L (q); note that

qk ≤ qk−1 and qk < qk−1 by definition. Finally, we have that qk−1 < qk.

We know from above that given q0 ∈ [qk, qk) ∩ (0, 1), Qk
+(q0) ∈ [qk−1, qk−1) ∩ (0, 1) is the

value of q1 in any k–step equilibrium when the initial fraction of type H sellers is q0. Thus,

the payoffs to buyers and type L sellers in a k–step equilibrium are well–defined and given,

respectively, by

vkB(q0) =

∫
max

{
πBh (q0), πB`

(
q0, δ, v

k−1
L (Qk

+(q0)), vk−1
B (Qk

+(q0))
)}
dF (δ), (21)

and

vkL(q0) = ξk(q0)ph + (1− ξk(q0))

∫
max

{
p`, δv

k−1
L (Qk

+(q0))
}
dF (δ), (22)

where

ξk(q0) =

∫
I{πBh (q) ≥ πB`

(
q, δ, vk−1

L (Qk
+(q0)), vk−1

B (Qk
+(q0))

)
}dF (δ)
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is the fraction of buyers who offer ph at t = 0. Crucially, vkB, vkL, and ξk have the same

properties that we establish for v2
B, v2

L and ξ2 in Lemma 5, which allows us to proceed by

induction. We begin this inductive process for k = 3, and continue as long as p`/v
k−1
L (qk−1) <

δ, which ensures qk > 0 and thus the existence of a k–step equilibrium. The following theorem

provides a full characterization of the equilibrium set.

Theorem 1. There exists 1 ≤ K < ∞ and sequences {qk}Kk=0 and {qk}Kk=0, with q0 = 1,

qK = 0, and qk ≤ qk−1 < qk < qk−1 for all k ∈ {1, . . . , K}, such that a k–step equilibrium

exists if, and only if, q0 ∈ [qk, qk)∩(0, 1). Moreover, for each q0 ∈ [qk, qk)∩(0, 1), there exists

a unique q′ ∈ [qk−1, qk−1) such that q′ = Qk
+(q0) is the value of q1 in any k–step equilibrium

when the initial fraction of type H sellers is q0.

The payoffs for buyers and type L sellers are uniquely defined in every equilibrium and

are determined recursively as follows: (i) v0
B(q0) = πBh (q0) and v0

L(q0) ≡ ph; (ii) for each

k ∈ {1, . . . , K}, vkB and vkL are given by (21) and (22), respectively.

The cutoffs {qk}K−1
k=0 and {qk}Kk=1 are defined recursively as follows: (i) q0 is the unique

value of q0 for which πBh (q0) = πB`
(
q0, δ, v

0
L, v

0
B(q0)

)
and, for each k ∈ {1, . . . , K}, qk is such

that q+(qk, vk−1
L (qk−1)) = qk−1 if p`/v

k−1
L (qk−1) < δ, and qk = 0 otherwise; (ii) q1 is the only

value of q0 for which πBh (q0) = πB`
(
q0, δ, v

0
L, v

0
B(q+(q0, v

0
L))
)

and, for each k ∈ {2, . . . , K}, qk

is such that q+(qk, vk−1
L (qk−1)) = qk−1. Finally, K = max{k : p`/v

k−1
L (qk−1) < δ}.

Theorem 1 offers a complete characterization of the equilibrium set. In particular, it

specifies a sequence of cutoffs that partition the interval (0, 1) into regions such that, for all

q0 in one such region, there exists an equilibrium in which the market takes the same number

of periods k to clear. Figure 3 below illustrates these cutoffs for the case in which uH = 1,

ph = 0.6, uL = 0.42, p` = 0.05, and F is uniformly distributed over [0, 0.5]. In addition

to plotting these cutoffs, we have also highlighted the maximum and minimum number of

periods it takes before the market clears for each q0 ∈ (0, 1).

Notice that there is a natural monotonicity to the equilibria in the above example: for any

0 < q0 < q′0 < 1, if there exists a k–step equilibrium when the initial fraction of high quality

assets is q0, then there exists a k′–step equilibrium with k′ ≤ k when the initial fraction
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Figure 3: Equilibrium Cutoffs

of high quality assets is q′0. This is true in general since qk is strictly decreasing in k by

Theorem 1, and so an increase in q0 reduces the maximum number of periods it takes for the

market to clear. Also notice that in the example, the market clears in at most four periods.

However, depending on the distribution F and parameters of the model, market clearing

can take a large number of periods when q0 is small. We show this in the Supplementary

Appendix.

5 Discussion

We now illustrate how the theory developed above can provide insight into a number of

important issues. First we study how the initial composition of assets in the market affects

the expected amount of time it takes to sell—or the illiquidity of—high quality assets. Then

we study the dynamics of trade for a given value of q0, exploring the model’s implications for

how prices, trading volume, and average quality evolve over time in this type of environment.

Establishing such a benchmark is important, as it not only allows us to understand how frozen

markets can thaw over time on their own, but also provides a framework to formally analyze

the effects of various policies intended to unfreeze such markets; we discuss one particular

policy intervention in the next section. Finally, the existence of multiple equilibria for a given

value of q0 suggests that coordination failures can exacerbate liquidity problems in dynamic,

decentralized markets with adverse selection. Since such multiplicity does not arise in several
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closely related (and well–known) environments, we end this section with a discussion of those

features of our framework that are crucial for generating these coordination failures.

Liquidity and Lemons

Here we study how the fraction of lemons in the market affects the liquidity of high quality

assets.23 An asset is typically considered liquid if it can be sold quickly and at little discount.

In many models, trade is instantaneous by construction, and thus the only measure of liq-

uidity is the difference between the actual market price and the price in some frictionless

benchmark; in these models, time is a margin that simply cannot adjust.24 In the current

model, the opposite is true: since ph is the only price that type H sellers accept, the ap-

propriate measure of liquidity for these assets is the expected amount of time it takes to

sell them. We derive this statistic below and use it to study the relationship between the

severity of the lemons problem (i.e., the value of q0) and the liquidity of high quality assets.

Consider a k–step equilibrium with initial fraction q0 ∈
[
qk, qk

)
∩ (0, 1) of high quality

assets, and define the sequence {qt}kt=1 by qt = Qk−t+1
+ (qt−1) for t ∈ {1, . . . , k}. By con-

struction, qt is the fraction of high quality assets in the market in period t. Therefore, the

probability that a type H seller trades his asset in period t ∈ {0, . . . , k} is

λk(t|q0) =

{
t−1∏
s=0

[
1− ξk−s(qs)

]}
ξk−t(qt),

where ξk(q) is the fraction of buyers who offer ph in the first period of trade in a k–step

equilibrium when the starting fraction of type H sellers is q. The expected number of

periods it takes to sell a high quality asset in the equilibrium under consideration is then

Ek
H(q0) =

k∑
t=0

λk(t|q0)t.

23Focusing on the ability to sell high quality assets is standard in this literature, going back to Akerlof

(1970). Of course, a seller can always sell a low quality asset instantaneously at price p`.
24In the finance literature, the typical measure of liquidity is the (inverse of) the bid–ask spread, which can

be generated by exogenous transaction costs (see, e.g., Amihud and Mendelson (1986) and Constantinides

(1986)), asymmetric information (see Kyle (1985) and Glosten and Milgrom (1985)), or search frictions (see

Duffie et al. (2005)), among other things. Eisfeldt (2004) provides an alternative definition, but also in a

model in which trade is instantaneous; see the discussion of this model in the Related Literature section.
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We know from the proof of Theorem 1 that, in any k–step equilibrium, both ξk(q0) and

Qk
+(q0) are increasing in q0. Hence, an increase in q0 implies an increase in the fraction of

buyers who offer ph in the first period of trade. Moreover, an increase in q0 also leads to

an increase in qt for all t ∈ {1, . . . , k}, which in turn implies an increase in the fraction of

buyers who offer ph in every period before the market clears. Taken together, these two facts

help to establish that Ek
H(q0) is a decreasing function of q0; we present a formal proof of this

result in Lemma 6 in the Appendix.

As we established earlier, for some values of q0 there exist multiple equilibria that take

a different number of periods for the market to clear. This, of course, makes comparing the

liquidity of high quality assets across different values of q0 difficult. Here we do not take a

stance on equilibrium selection and instead focus on the relationship between the minimum

expected number of periods it takes for a type H seller to sell his asset and q0. Let E(q0) be

given by

E(q0) = min
{
Ek
H(q0) : ∃ a k–step equilibrium given q0

}
.

In Lemma 7 in the Appendix we use the fact that Ek
H(q0) is decreasing in q0 to show that

E(q0) is decreasing in q0. Thus, a reduction in the initial fraction of high quality assets

reduces their liquidity in the sense that it increases the smallest expected amount of time it

takes to sell them.25

The Dynamics of Trade

We now illustrate typical market dynamics for a given value of q0. The numerical example of

Section 4 is a convenient vehicle for conveying the intuition; we choose q0 = 0.1, which falls

within the set of 3–step equilibria. The average price in period t ∈ {0, . . . , k} in a k–step

equilibrium is given by

pavgt = ξk−t(qt)ph +
[
1− ξk−t(qt)

]
p`,

25Alternatively, one could compare the liquidity of high quality assets across different values of q0 by

applying a rule that selects a particular value of k for each q0. For example, if we let kmax(q0) =

max {k : ∃ a k–step equilibrium given q0} and define Emax(q0) = E
kmax(q0)
H (q0), it is possible to show that

Emax(q0) is also decreasing in q0.
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where, as above, {qt}kt=1 is the sequence such that qt = Qk−t+1
+ (qt−1) for t ∈ {1, . . . , k}. In

figure 4 below, we plot the evolution of qt and pavgt in the example.

In the first two periods of trade, the fraction of high quality assets is sufficiently low

that all buyers offer p`. All type H sellers and patient type L sellers reject this offer, but

sufficiently impatient type L sellers accept, causing the average quality of assets in the market

to be higher in the following period. In the third period of trade, the fraction of high quality

assets is sufficiently high that some impatient buyers offer ph, increasing the average price.

Still, patient buyers continue to offer p` and (perhaps) wait for market conditions to improve.

In the fourth period of trade, all remaining buyers offer ph and the market clears. Thus,

average prices increase over time along with average quality. In the example, the price path

exhibits an S–shape: prices are persistently low in early periods, and then quickly increase

in the latter stages of trade.

INSERT FIGURE 4 HERE

Many of the features of the above example are true in general. We know from the proof

of Theorem 1 that ξk(q) ≤ ξk−1(Qk
+(q)) for any k–step equilibrium. Hence, the fraction of

buyers who offer ph increases over time, so that pavgt increases over time as well. Now note

that if

πBh (q0) ≤ (1− q0)F

(
p`

vk−1
L (q1)

)
[uL − p`],

then only low quality assets are exchanged in the first period of trade. The trade of high

quality assets remains frozen until the first period in which myopic buyers find it strictly

optimal to offer ph.

Multiplicity of Equilibria

The presence of multiple equilibria for some values of q0 suggests that liquidity problems can

be exacerbated by coordination failures. At the heart of this multiplicity is the fact that the

behavior of an individual buyer depends on the future composition of assets in the market,

which in turn is determined by the aggregate behavior of buyers.
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Identifying the ingredients of our framework that lead to multiple equilibria—that there

are many buyers, and that these buyers are forward–looking—is helpful in understanding

why such multiplicity does not typically arise in certain related environments. For example,

in models of bargaining with asymmetric information in which there is only one buyer and

one seller (see, e.g., Vincent (1989), Evans (1989), and Deneckere and Liang (2006)), clearly

there is no scope for coordination between buyers’ actions; as a result, there is typically a

unique sequential equilibrium in these models. Alternatively, in similar frameworks in which

a single seller with private information meets a sequence of buyers (see, e.g., Hörner and

Vieille (2009) and the references therein), the buyers are typically assumed to be myopic.

As a result, there is no potential for buyers to coordinate their behavior based on future

payoffs, and again the type of multiplicity that we find here does not emerge.26

6 Application: The Market for Legacy Assets

The theory developed above provides a parsimonious framework to study the role that asym-

metric information played in disrupting trade in the market for asset–backed securities during

the financial crisis that began in 2007. Since our model provides a formal treatment of how

a frozen market can thaw over time on its own, it also provides an ideal environment to

analyze how various government interventions affect this process. To illustrate this point, in

this section we assess the theoretical implications of a policy that was recently implemented

in an attempt to restore liquidity in the market for asset–backed securities. We should note

that there is nothing special per se about the policy we consider, over and above the fact

that it was actually implemented. However, as our exercise produces some surprising results,

we believe it underscores the need for explicit models to formally analyze the implications

of intervention in these types of markets.

26The two ingredients we identify are not sufficient for multiplicity. For example, in Janssen and Roy

(2002), there is a continuum of forward–looking buyers and sellers who trade in a sequence of centralized

markets in the presence of asymmetric information. However, their equilibrium requires that buyers receive

zero expected payoffs from trading at any date, thus precluding the possibility of the multiplicity we find in

our model. The two ingredients are also not necessary. Gerardi et al. (2010) show that multiple equilibria

arise in sequential bargaining with asymmetric information when the party that makes the offers is the

informed one; signalling is the source of multiplicity in their environment.
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Our model shares many features of the markets for asset–backed securities. For one,

buyers and sellers in this market negotiate bilaterally, as opposed to trading against their

budget constraint in a competitive, centralized market where the law of one price prevails.

Moreover, the market is inherently dynamic and non–stationary: there is a relatively fixed

stock of assets of a particular vintage, and the manner in which the composition of assets

remaining in the market evolves over time affects both prices and the incentive of market

participants to delay trade. Finally, many believe that the presence of asymmetric informa-

tion contributed to the illiquidity in this market. The decline of housing prices in various

parts of the country introduced considerable heterogeneity into the quality of residential

mortgage–backed securities, and many of the usual buyers of these assets did not possess the

expertise to comfortably value the assets that were being offered by financial institutions.27

As a result, both the prices and the volume of these assets being sold quickly dropped.28

The lack of liquidity in this market posed a threat to the economy at large. The Treasury

department described the “challenge of legacy assets” as follows:

One major reason [for the prolonged recession] is the problem of “legacy
assets”—both real estate loans held directly on the books of banks (“legacy
loans”) and securities backed by loan portfolios (“legacy securities”). These as-
sets create uncertainty around the balance sheets of these financial institutions,
compromising their ability to raise capital and their willingness to increase lend-
ing... As a result, a negative cycle has developed where declining asset prices
have triggered further deleveraging, which has in turn led to further price de-
clines. The excessive discounts embedded in some legacy asset prices are now
straining the capital of U.S. financial institutions, limiting their ability to lend
and increasing the cost of credit throughout the financial system.

In response to this problem, the Treasury department introduced the Public–Private Invest-

27The financial institutions that were selling these assets often had a team of analysts that had purchased

the underlying assets (e.g., mortgages), studied their properties, and worked closely with the rating agencies

to bundle them into more opaque final products. An extreme example of this asymmetric information is the

“Abacus” deal, in which Goldman Sachs created and sold collateralized debt obligations to investors while

simultaneously betting against them. In general, there are many reasons to believe that financial institutions

often have better information about the quality of their assets than potential buyers, perhaps because they

learn about the asset while they own it (as argued by Bolton et al. (2011)), or because they conduct research

about the asset in anticipation of selling it (as argued by Guerrieri and Shimer (2010)). By now, there is a

large literature on the role of asymmetric information in the financial crisis; see, e.g., Gorton (2009) and the

references therein.
28For a detailed analysis, see Krishnamurthy (2010).
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ment Program for Legacy Assets. Under this program, the government issued non–recourse

loans to private investors to assist in buying legacy assets, with a minimum fraction of the

purchase price being financed by the investor’s own equity. This program essentially subsi-

dizes the buyer’s purchase and partially insures his downside loss; if the asset turns out to be

a lemon, the buyer can default and incur only a fraction of the total loss from the purchase

(his equity investment). The Treasury department described the “merits of this approach”

as follows:

This approach is superior to the alternatives of either hoping for banks to
gradually work these assets off their books or of the government purchasing the
assets directly. Simply hoping for banks to work legacy assets off over time risks
prolonging a financial crisis, as in the case of the Japanese experience. But if the
government acts alone in directly purchasing legacy assets, taxpayers will take
on all the risk of such purchases—along with the additional risk that taxpayers
will overpay if government employees are setting the price for those assets.

In an attempt to capture this policy response, suppose now that a buyer who pays price

p for an asset can borrow (1 − γ)p from the government. For simplicity, assume the buyer

observes the quality of the asset immediately after buying it and then faces the following

choice: either pay back the loan to the government, or default on the loan and surrender

the asset. A buyer who pays price p for a type j asset repays his loan if, and only if,

uj − (1 − γ)p > 0. Thus, a buyer who receives a high quality asset always repays his loan,

as does a buyer who pays p` for a low quality asset. However, a buyer who pays ph for a

low quality asset defaults if γ ≤ 1 − uL/ph. Therefore, this policy amounts to a transfer

τ = (1− γ)ph − uL ∈ [0, ph − uL] to the buyers who pay ph for a low quality asset.

Denote the payoff to a buyer from offering ph given a transfer τ by

πBh (q0, τ) = q0(uH − ph) + (1− q0)(uL − ph + τ).

The payoff to a buyer from offering p` is still given by (9), and the characterization of the

equilibrium set proceeds in exactly the same way as in Section 4. In particular, Theorem 1

is still valid with the only difference that now, in the recursive procedure that determines

the equilibrium payoffs, the payoff to a buyer in a 0–step equilibrium is πBh (q0, τ).
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Let vkB(q0, τ) and vkL(q0, τ) be, respectively, the payoffs to buyers and type L sellers in a

k–step equilibrium when the transfer is τ . Moreover, let qk(τ) and qk(τ) be, respectively,

the lower and upper cutoffs for a k–step equilibrium as a function of τ . The cutoff q0(τ) is

the unique value of q0 such that

πBh (q0, τ) = πB`
(
q0, δ, v

0
L, v

0
B(q0, τ)

)
,

where v0
L = v0

L(q0, τ) ≡ ph. The cutoffs q1(τ) and q1(τ) are the unique values of q0 satisfying

the following two equations, respectively:

q+ (q0, v
0
L) = q0;

πB`
(
q0, δ, v

0
L, v

0
B(q+(q0, v

0
L), τ)

)
= πBh (q0, τ).

It is straightforward to show that q0(τ), q1(τ), and q1(τ) are decreasing in τ . Therefore, if

the initial fraction of high quality assets is sufficiently large, an increase in τ can decrease

the amount of time it takes for the market to clear, and thus increase market liquidity. For

example, for τ ∈ (0, ph − uL), there exists a 0–step equilibrium when q0 ∈ (q0(τ), q0(0)),

whereas the market would take at least one additional period to clear if τ = 0. Intuitively,

since the transfer τ increases the payoff from offering ph, buyers are more willing to offer the

high price given any fraction of lemons in the market.

However, the policy under consideration has a second, opposing effect. Since buyers are

more willing to offer ph when they are partially insured against buying a lemon, the average

price sellers receive in the future increases as τ grows larger. Ceteris paribus, this makes

sellers more likely to reject offers of p` in early rounds of trade, opting instead to wait for

larger payoffs later in the game. To see this, let ξ1(q0, τ) be the mass of buyers who offer ph

in the first period of trade in a 1–step equilibrium when the transfer is τ . The payoff to a

type L seller in a 1–step equilibrium is then given by

v1
L(q0, τ) = ξ1(q0, τ)ph + (1− ξ1(q0, τ))

∫
max

{
p`, δv

0
L

}
dF (δ).

Straightforward algebra shows that ξ1(q0, τ), and thus v1
L(q0, τ), are increasing in τ .

Now observe that q2(τ) satisfies

q+
(
q2(τ), v1

L(q1(τ), τ)
)

= q1(τ). (23)
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Thus, as τ increases, two opposing forces are at work. On the one hand, since q1 is decreasing

in τ , this tends to decrease q2 as well; holding v1
L constant in (23), q2 is decreasing in q1.

On the other hand, holding q1 fixed, v1
L is increasing in τ , which tends to make sellers more

likely to reject an offer of p` at t = 0. This implies a smaller increase in the fraction of high

quality assets, and hence a larger value of q2. This second effect is not present in a 1–step

equilibrium since v0
L is constant in τ , which explains why q1 is unambiguously decreasing

in τ . However, when the market is two or more periods away from market–clearing, the

second effect is active, and can even dominate the first effect. In other words, subsidizing

the purchase of assets can increase the time required for market clearing, thus making the

market less liquid. These considerations extend to k–step equilibria, with k ≥ 3.

Using the numerical example from the previous section, Table 1 below summarizes the

effect of a transfer τ that is equal to 25% of the loss from purchasing a lemon at price ph,

relative to the benchmark of τ = 0.

Policy q3 q4 q2 q3 q1 q2 q0 q1

τ = 0 0 .036 .206 .344 .379 .410 .422 .455

τ = .25(ph − uL) 0 .049 .231 .301 .340 .369 .382 .412

Table 1: Policy Analysis

One can see immediately that this policy allows markets to clear faster if the initial fraction

of high quality assets is large, but it has little effect on (and can even increase) the time to

market clearing if this fraction is small. Consider, for example, an economy with q0 = .4:

under this policy there exists an equilibrium that clears at t = 0, whereas it takes until at

least t = 1 for the market to clear in the absence of this policy. However, the opposite is true

for, say, q0 = .22: the policy increases the minimum number of periods before the market

clears from two to three. Thus, even without considering the cost of this type of intervention,

we see that its efficacy depends crucially on the underlying severity of the lemons problem.

More generally, this exercise highlights that the timing of any intervention is crucial in an

environment with forward–looking agents; a policy that increases future payoffs relative to

current payoffs will give agents the incentive to delay trade in early periods.29

29Note that there would be a second effect if we introduced speculators that were more patient than sellers;
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7 Assumptions and Market Efficiency

We make several assumptions in our model that allow for a complete analytical characteri-

zation of the equilibrium set. In this section, we discuss two important restrictions, and how

our results might change if they were relaxed. The first is the assumption that a buyer is

restricted to offer one of two exogenously specified prices, and the second is the assumption

that all agents exit the market after trading. We close the section with a discussion of market

efficiency as the time interval between trading opportunities converges to zero.

Prices

We begin with the assumption of two fixed prices. Though this restriction certainly has

implications for the dynamics of trade, we argue here that it captures the key trade–off

that buyers face when deciding on an offer. We also discuss the features of our equilibrium

characterization that are preserved when this restriction is relaxed.

Suppose buyers are free to choose any price p when matched with a seller. Also, consider

a variant of our model in which assets yield no flow dividends to a seller, but instead a type

j seller pays a cost cj for producing his asset, where 0 = cL < uL < cH < uH . This change

makes little difference in our benchmark model, but it makes the analysis less cumbersome

when we place no restrictions on prices. In particular, since agents discount the future, it is

easy to show that all sellers accept any offer p ≥ cH , so that no buyer offers more than cH in

equilibrium. In an abuse of notation, denote the payoff to a buyer from offering p = cH by

πBh (q) = q[uH − cH ] + (1− q)[uL − cH ].

Now note that a buyer never offers p ∈ (uL, cH) in equilibrium, as only type L sellers

accept such an offer, and the buyer would receive a negative payoff. Therefore, a buyer

effectively chooses between offering p = cH and a price that solves

πB` (q, δ, vL, vB) = max
p

(1− q)F
(
p

vL

)
[uL − p] +

{
q + (1− q)F

(
p

vL

)}
δvB, (24)

in this case, these agents might purchase assets early from sellers in order to take advantage of increased

prices at a later date. This is the “announcement effect” identified in Chiu and Koeppl (2009).
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where, as before, vL > 0 and vB > 0 are the continuation payoffs to type L sellers and

buyers, respectively. Further abusing notation, let p`(δ, vL, vB) denote the solution to (24);

one can easily show that this solution is independent of q. Moreover, if, for example, F is

concave, this solution is unique.30

Thus, in this environment, when a buyer contemplates an optimal price offer, he faces

the same trade-off captured in the model with two exogenous prices: either offer a high price

that is accepted by all sellers and trade immediately, or a low price that will be accepted

only by sufficiently impatient type L sellers. The crucial difference here is that the low price

is sensitive to the buyer’s discount factor, as well as the continuation payoffs of both buyers

and type L sellers. These continuation values, in turn, depend on future prices, which again

depend on future continuation payoffs. This makes it quite difficult to derive analytical

results.

Nevertheless, several crucial results from our benchmark model can be established in

this more general environment. First, one can show that the fraction of high quality assets

increases over time until the market clears (see footnote 19). As in the case with exogenous

prices, this implies that the market clears in finite time in every equilibrium. Second, using

the same argument as in Section 4, one can show that there exists q0 ∈ (0, 1) such that a

0–step equilibrium exists if, and only if, q0 ∈ [q0, 1). Then, using the revised law of motion

q+(q, vL, vB) =
q

q + (1− q)
[
1−

∫
F (p∗(q, δ, vL, vB)/vL) dF (δ)

] ,
where p∗(q, δ, vL, vB) = p`(δ, vL, vB) if πBh (q) < πB` (q, δ, vL, vB) and ph otherwise, one can

follow the recursive procedure in Section 4 to derive the necessary and sufficient conditions

for a k–step equilibrium for k ≥ 1:

q+
(
q0, v

k−1
L (q′), vk−1

B (q′)
)

= q′; (25)

q′ ∈
[
qk−1, qk−1

)
∩ (0, 1); (26)

πBh (q) < πB`
(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)
. (27)

30Note that concavity of F is not necessary for uniqueness; even without this assumption, one can show

that p`(δ, vL, vB) is unique almost everywhere (i.e., at all but a countable number of values of δ).

36



Conditions (25) to (27) are analogous to conditions (18) to (20) in our benchmark model

with two fixed prices. Crucially, the fixed point mapping described in (18) was shown to be

single–valued, continuous, and strictly increasing in q0, which greatly simplified the equilib-

rium characterization. Establishing these properties for the analogous mapping described in

(25) would allow for the same clean characterization of equilibria in this more general set-

ting. Unfortunately, though these properties appear to be satisfied in a variety of numerical

simulations, we cannot verify them analytically; since the law of motion depends explicitly

on buyers’ offers, and these offers in turn depend on future payoffs (which depend on both

q′ and future offers), the analysis quickly becomes considerably more complex.

However, if for each k ≥ 1, we simply define qk and qk by

qk = inf{q0 ∈ (0, 1) : ∃ a k–step equilibrium given q0}

qk = sup{q0 ∈ (0, 1) : ∃ a k–step equilibrium given q0},

it is possible to show that: (i) qk > 0 implies that qk+1 < qk; and (ii) qk > 0 implies that

qk+1 < qk. Thus, even in the absence of a complete characterization, there is a sense in

which a reduction in q0 increases the amount of time for markets to clear.

One–Time Entry

In order to study how markets clear on their own in the simplest possible environment, we

assume there is a fixed stock of buyers and sellers, and that these agents leave the market

after trading. In doing so, we abstract from several interesting issues. For example, one

might want to allow buyers to re–sell their asset, either because they discover it is of low

quality or because of some stochastic, exogenous taste shock (as in Chiu and Koeppl (2009)).

The effect of allowing re–sale depends crucially on the information structure.

Suppose, for instance, that agents observe the history of trade for a particular asset.31

Consider first the case in which there are no taste shocks, and so buyers who purchase a

31This is possible in many markets, either because there are relatively few agents in the market (as in

some markets for very specific financial assets), or because there exists a technology that keeps track of such

histories (such as Carfax, in the used car market).

37



high quality asset have no reason to re–sell it. In this case, agents are able to infer that a

particular asset is being re–sold precisely because it is low quality, leaving no expected gains

from trade. Thus, buyers who purchase a lemon have no incentive to attempt to re–sell it

even if this is feasible. Consider now the case in which there are taste shocks, so that the

decision to re–sell an asset does not signal it as being of low quality. While the analysis in

this case would certainly be more complicated, we conjecture that allowing re–sale makes

markets less liquid than they are in the baseline model. Intuitively, since buyers may need

to re–sell a high quality asset that they purchase, they should be less willing to offer ph to

begin with (because of adverse selection in the re–sale market), thus decreasing the liquidity

of these assets.

In addition to allowing buyers to re–enter the market, one might also want to consider

what would happen if new sellers could generate assets at some cost and enter the market

over time. Again, the consequences of this extension depend heavily on assumptions about

the properties of an asset that are observable. For instance, if an asset’s date of creation or

“vintage” is observable, one could imagine a constant inflow of new vintages at every date,

where the trading dynamics of each vintage resembles those of the single vintage we consider

in our baseline model. Alternatively, if vintages are not observable, an entry condition

could be used to endogenously determine the composition of high and low quality assets

in the market. In fact, we think the question of asset generation is extremely important—

particularly in the context of policy analysis—and our model is ideally situated to address

this issue. This is the focus of current work.

Market Efficiency

Much of the literature on sequential bargaining and trade in dynamic, decentralized markets

focuses on whether equilibrium outcomes become efficient as trading frictions vanish, i.e.,

as the time interval between two consecutive trading opportunities converges to zero. We

know that when adverse selection is present, real inefficiencies can persist as trading frictions

vanish; see Janssen and Roy (2002), Deneckere and Liang (2006), and Hörner and Vieille

(2009). Given the assumption of exogenous prices, our framework is not ideally suited to
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address this question, though. Indeed, since we require that δ(uH−ph) ≤ uL−p`, we cannot

consider the limit as δ converges to one (and F (δ) converges to zero for all δ < δ) unless we

either drop the assumption that uH−ph > uL−p` or allow ph and p` to change as δ increases.

The assumption that uH − ph > uL − p` was not necessary for our analysis, though. In the

Supplementary Appendix we show that if uH − ph ≤ uL − p`, then under mild assumptions

about the distribution of discount factors, the amount of time it takes for the market to clear

does not converge to zero as trading frictions vanish.32

8 Conclusion

This paper provides a theory of how markets suffering from adverse selection can recover

over time on their own. Sellers with low quality assets exit the market relatively more

quickly than those with high quality assets, causing the average quality of assets in the

market to increase over time. Eventually, all assets are exchanged. The model delivers sharp

predictions about how long this process takes, or the extent to which the market is illiquid,

as well as the behavior of prices over time. Interestingly, we find multiple equilibria, which

suggests that there is scope for coordination failures in dynamic, decentralized markets with

adverse selection. We argue that this model serves as a useful benchmark for understanding

how exogenous events or interventions will affect the speed with which markets recover. We

provide a specific example from the recent financial crisis, and show how accounting for

dynamic considerations can shed light on potentially harmful, unintended effects of policies

aimed at restoring liquidity in frozen markets. Natural extensions include allowing sellers

the choice of what type of asset to generate and when to enter the market, allowing buyers

to acquire costly information about an asset’s quality, and introducing aggregate uncertainty

and learning. These are left for future work.

32More generally, if we allow endogenous prices as in Subsection 7, then an argument very similar to

the one in the Appendix shows that under the same assumptions on the distribution of discount factors,

the amount of time it takes for the market to clear is bounded away from zero as the time between two

consecutive trading opportunities goes to zero.
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Appendix A: Omitted Proofs and Intermediate Results

Proof of Lemma 3

Let σ∗ be an equilibrium and assume, toward a contradiction, that T (σ∗) =∞. First notice

that there exists q∗ ∈ (0, 1) such that

q∗[uH − ph] + (1− q∗)[uL − ph] = uL − p`. (28)

Since δ[uH−ph] ≤ uL−p`, the right side of (28) is an upper bound for the payoff a buyer can

obtain if he offers p`. Hence, if the fraction of type H sellers in the market is above q∗, then

all buyers offer ph and the market clears. Consequently, for all t ≥ 0, qt is bounded above

by q∗, and so is the limit of the sequence {qt}∞t=0. Now observe that since V L
t (σ∗) ≤ ph, we

have that F (p`/V
L
t (σ∗)) ≥ F (p`/ph) for all t ≥ 1. Thus, the law of motion (8) implies that

qt ≥
q0

q0 + (1− q0)[1− F (p`/ph)]t
.

However, the right side of the above equation converges to one, a contradiction. �

Proof of Proposition 1

Let η0(q0, δ) = πBh (q0)− πB` (q, δ, v0
L, v

0
B(q0)). Note that

η0(q0, δ) = (1− δ)v0
B(q0)− (1− q0)F

(
p`
ph

)[
uL − p` − δv0

B(q0)
]
.

Since vB(q) ≤ uH − ph and uL − p` ≥ δ[uH − ph], we then have that

∂η0

∂q0

(q, δ) = (1− δ)[uH − uL] + F

(
p`
ph

)
[uL − p` − δv0

B(q)] + (1− q)F
(
p`
ph

)
δ[uH − uL] > 0.

Now observe that η0(0) < 0 < η0(1) and η0 is continuous. So, there exists a unique q0 ∈ (0, 1)

such that η0(q0, δ) ≥ 0 if, and only if, q0 ≥ q0. Moreover, η(q0, δ) = 0 implies that

v0
B(q0)

[
1− δ + (1− q0)F

(
p`
ph

)
δ

]
= (1− q0)F

(
p`
ph

)
[uL − p`]

when q0 = q0, and so vB(q0) > 0. Thus, σ0 is an equilibrium if, and only if, q0 ∈ [q0, 1).

Suppose now q0 < q0 and consider a strategy profile σ̃0 with the necessary property that

all buyers offer ph in t = 0. One alternative for a buyer is to offer ph in every period regardless
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of his discount factor. Let p̃ denote this strategy. It must be that V B
t (σ̃0) ≥ V B

t (p̃|σ̃0) for

all t ≥ 0 if σ̃0 is to be an equilibrium. Now observe that if the probability of trade in each

period is α ∈ (0, 1), then

V B
t (p̃|σ̃0, α) =

∞∑
τ=1

α(1− α)τ−1(E[δ])τ−1v0
B(qαt+τ−1)

for all t ≥ 0, where qαt+τ−1 is the fraction of type H sellers in the market in period t+ τ − 1.

It is easy to see that the sequence {qαt }∞t=0 is non–decreasing. Hence,

V B
t (p̃|σ̃0, α) ≥

∞∑
τ=1

α(1− α)τ−1(E[δ])τ−1v0
B(q0),

which implies that V B
t (p̃|σ̃0) ≥ v0

B(q0). Thus, σ̃0 is an equilibrium only if V B
1 (σ̃0) ≥ v0

B(q0).

However, since V L
1 (σ̃0) ≤ ph and q0 < q0 implies that η0(q0) < 0, we have that

πB`
(
q0, δ, V

L
1 (σ̃0), V B

1 (σ̃0)
)
≥ πB`

(
q0, δ, v

0
L, v

0
B(q0)

)
> πBh (q0)

for all q0 < q0. Therefore, there exists δ′ < δ such that it can not be optimal for a buyer

with discount factor in (δ′, δ] to offer ph at t = 0, so that the market clearing immediately

cannot be an equilibrium outcome. �

Proof of Proposition 2

Recall that q+(q, v0
L) is strictly increasing in q when p`/v

0
L < δ and that q+(q, v0

L) ≡ 1

otherwise. From this it is immediate to see that there exists q1 < q0 such that q+(q0, v
0
L) ≥ q0

if, and only if, q0 ∈ [q1, 1]. Note that q1 = 0 if p`/v
0
L ≥ δ and q1 is such that q+(q1, v0

L) = q0

otherwise. Now let η1(q0, δ) = πBh (q0)−πB` (q0, δ, v
0
L, v

0
B [q+(q0, v

0
L)]). Straightforward algebra

shows that

∂η1

∂q0

(q, δ) = F

(
p`
ph

){
uL − p` − δv0

B[q+(q, ph)]
}

+(uH − uL)

{
1− δ

{
q + (1− q)

[
1− F

(
p`
ph

)]}
∂q+

∂q

}
.

Thus, since uL − p` ≥ δ[uH − ph] and{
q + (1− q)

[
1− F

(
p`
ph

)]}
∂q+

∂q
= 1− qF (p`/ph)

q + (1− q) [1− F (p`/ph)]
< 1,
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we can then conclude that η1 is strictly increasing in q0 regardless of the value of p`/ph. Since

η1(0, δ) < 0 < η1(1, δ) and η1 is continuous in q0, there exists a unique q1 ∈ (0, 1) such that

η1(q0, δ) < 0 if, and only if q0 ∈ [0, q1). Hence, πBh (q0) < πB`
(
q0, δ, v

0
L, v

0
B [q+(q0, v

0
L)]
)

if, and

only if q0 ∈ [0, q1). Next, observe that since v0
B[q+(q0, ph)] > v0

B(q0) for all q0 ∈ (0, 1),

πB`
(
q0, δ, v0

L, v
0
B[q+(q0, ph)]

)
> πB`

(
q0, δ, v0

L, v
0
B(q0)

)
= πBh (q0).

Thus, η1(q0, δ) < 0, from which we obtain that q1 > q0. �

Lemma 4 and Proof

Lemma 4. The payoff v1
B is continuous in q0 and v1

B(q′0)− v1
B(q0) ≤ (q′0 − q0)[uH − uL] for

all q′0 > q0. The fraction ξ1 is continuous and increasing in q0, with limq0→q1 ξ1(q0) = 1. The

payoff v1
L is continuous and increasing in q0, with limq0→q1 v1

L(q0) = v0
L.

Proof: Note that q+(q0, v
0
L) continuous in q0 implies that v1

B(q0) is also continuous in q0.

We now prove that v1
B(q′0)− v1

B(q0) ≤ (q′0 − q0)[uH − uL] for all q′0 > q0. First, note that

πB`
(
q, δ, vL, π

B
h [q+(q, vL)]

)
= δπBh (q) + (1− q)F

(
p`
vL

)
[uL − p` − δ(uL − ph)] (29)

for all q ∈ (0, 1) and δ ∈ [0, δ]. This fact is useful in what follows. Now let

v1
B(q0, δ) = πB`

(
q0, δ, v

0
L, v

0
B(Q1

+(q0))
)

+ max{η1(q0, δ), 0}.

Since v1
B(q0) =

∫
v1
B(q0, δ)dF (δ), we are done if we show that q′0 > q0 implies that

v1
B(q′0, δ)− v1

B(q0, δ) ≤ (q′0 − q0)[uH − uL] (30)

regardless of δ. We know from the proof of Proposition 2 that η1 is strictly increasing in

q0. Since η1(0, δ) < 0 < η1(0, δ) for all δ ∈ [0, δ], for each δ ∈ [0, δ] there exists a unique

q∗ = q∗(δ) ∈ (0, 1) such that η1(q∗, δ) ≥ 0 if, and only if, q ≥ q∗; note that q∗(δ) = q1. Now

let q′0 > q0. Since

v1
B(q′0, δ)− v1

B(q0, δ) ≤ v1
B(q′0, δ)− πBh (q0),

we have that (30) holds if q′0 > q∗. Suppose then that q′0 ≤ q∗. In this case, by (29),

v1
B(q′0, δ)− v1

B(q0, δ) = δ[πBh (q′0)− πhB(q0)] + (q0 − q′0)F

(
p`
v0
L

)
[uL − p` − δ(uL − ph)],
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from which the desired result follows given that the second term on the right side of the

above equation is negative.

Next, we prove that ξ1(q0) is continuous and increasing in q0, with limq0→q1 ξ1(q0) = 1.

Given that πB`
(
q0, δ, v

0
L, v

0
B(Q1

+(q0))
)

is strictly increasing in δ, η1 is strictly decreasing in δ.

Let δ1(q0), with q0 ∈ [q1, q1) ∩ (0, q1), be such that: (i) δ1(q0) = 0 if η1(q0, δ
1(q0)) = 0; and

(ii) η1(q0, δ
1(q0)) = 0 if η1(q0, 0) > 0. Since η1(q1, δ) = 0 and η1 is strictly increasing in q,

δ1(q0) is uniquely defined. By construction, δ1 is the cutoff discount factor below which a

buyer finds it optimal to offer ph in t = 0. Hence, the probability ξ1(q0) that a buyer offers

ph in t = 0 is equal to F (δ1(q0)). Given that η1 is jointly continuous, a standard argument

shows that δ1 depends continuously on q0. Moreover, the cutoff δ1(q0) is strictly increasing

in q0 if η1(q0, 0) > 0, as η1 is strictly increasing in q. The desired result follows from the fact

that F is continuous and strictly increasing and limq0→q1 δ1(q1) = δ (as η1(q1, δ) = 0).

To finish the proof, note that the continuity of ξ1(q0) and the fact that limq0→q1 ξ1(q0) = 1

imply that v1
L(q0) is continuous in q0, with limq0→q1 v0

L(q0) = ph = v0
L. �

Proof of Proposition 3

We first show that (15) and (16) imply (17), so that the first two conditions completely

determine the range of values of q0 for which there exists a 2–step equilibrium. Suppose that

q′ ∈
[
q1, q1

)
∩ (0, 1). In order to prove that (17) is satisfied, it is sufficient to show

πBh (q′)− πBh (q0) ≥ πB`
(
q′, δ, v0

L, v
0
B[q+(q′, v0

L)]
)
− πB`

(
q0, δ, v

1
L(q′), v1

B(q′)
)

(31)

for all δ ∈ [0, δ]. Condition (31) implies that, no matter his discount factor, the incentive of

a buyer to choose p` in t = 0 is even greater than his incentive to choose p` in t = 1, when

the fraction of type H sellers in the market is q′ > q0. First, note from (29) that

πB`
(
q′, δ, v0

L, v
0
B[q+(q′, v0

L)]
)

= δπBh (q′) + (1− q′)F
(
p`
v0
L

)[
uL − p` − δ(uL − ph)

]
.

Second, since v1
B(q′) ≥ πBh (q′), we have

πB`
(
q0, δ, v

1
L(q′), v1

B(q′)
)
≥ πB`

(
q0, δ, v

1
L(q′), πBh (q′)

)
= δπBh (q0) + (1− q0)F

(
p`

v1
L(q′)

)[
uL − p` − δ(uL − ph)

]
;
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the second equality follows from (15) and (29). Therefore,

πB`
(
q′, δ, v0

L, v
0
B[q+(q′, v0

L)]
)
− πB`

(
q0, δ, v

1
L(q′), v1

B(q′)
)

≤ δ
[
πBh (q′)− πBh (q0)

]
+

[
(1− q′)F

(
p`
v0
L

)
− (1− q0)F

(
p`

v1
L(q′)

)] [
uL − p` − δ(uL − ph)

]
.

Since v0
L > v1

L(q′) for all q′ ∈
[
q1, q1

)
∩ (0, 1), uL < ph, and q′ > q0, the second term on the

right side of the above inequality is negative, which confirms (31).

We now show that there exists a 2–step equilibrium if, and only if, q0 ∈ [q2, q2) ∩ (0, 1).

First note that since q1 < 1, (15) and (16) can be satisfied only if the denominator of

q+(q0, v
1
L(q0)) =

q0

q0 + (1− q0)[1− F (p`/v1
L(q′))]

is greater than q0, i.e., only if p`/v
1
L(q′) < δ. Now observe that if p`/v

1
L(q′) < δ, then

q−(q′) =
q′ [1− F (p`/v

1
L(q′))]

1− q′F (p`/v1
L(q′))

belongs to the interval (0, 1) and is such that q+(q−(q′), v1
L(q′)) = q′. Thus, (15) is satisfied

for q′ ∈ [q1, q1) ∩ (0, 1) if, and only if, p`/v
1
L(q′) < δ. Moreover, it is immediate to see that

q−(q′) is the only possible value of q0 for which (15) and (16) can hold.

Since v1
L(q′) is increasing in q′, p`/v

1
L(q̃) < δ implies that p`/v

1
L(q′) < δ for all q′ > q̃.

Then let q̃1 be such that q̃1 = 0 if p`/v
1
L(q1) < δ and q̃1 = sup{q′ ∈ [q1, q1) : p`/v

1
L(q′) = δ}

if p`/v
1
L(q1) ≥ δ; note that q̃1 is well–defined since p`/v

1
L(q1) = p`/v

0
L < δ. By construction,

there exists q0 ∈ (0, 1) such that (15) and (16) are satisfied if, and only if, q′ ∈ [q1, q1)∩(q̃1, 1),

in which case q0 = q−(q′). Given that F and v1
L are continuous, it is easy to see that q− is

continuous. Moreover, since v1
L is increasing in q′, the map q− is also strictly increasing in q′.

Thus, q− is invertible and its inverse Q2
+ : [q1, q1)∩ (q̃1, 1)→ (0, 1) is continuous and strictly

increasing. By construction, we have that: (i) when p`/v
1
L(q1) < δ, a 2–step equilibrium

exists if, and only if, Q2
+(q0) ∈ [q1, q1)∩ (0, 1); (ii) when p`/v

1
L(q1) ≥ δ, a 2–step equilibrium

exists if, and only if, Q2
+(q0) ∈ (q̃1, q1). We are done if we show that limq′→q̃1 q−(q′) = 0

when p`/v
1
L(q̃) ≥ δ. This follows from the fact that limq′→q̃1 F (p`/v

1
L(q′)) = 1. �
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Lemma 5 and Proof

Lemma 5. The payoff v2
B is continuous in q0 and v2

B(q′0)− v2
B(q0) ≤ (q′0 − q0)[uH − uL] for

all q′0 > q0. The fraction ξ2 is continuous and increasing in q0, with limq0→q2 ξ2(q0) = ξ1(q2).

The payoff v2
L is continuous and increasing in q0, with v2

L(q2) ≡ limq0→q2 v2
L(q0) = v1

L(q2) and

v2
L(q0) ≤ v1

L(Q2
+(q0)) for all q0.

Proof: We start by showing that η2(q0, δ) = πBh (q0) − πB`
(
q0, δ, v

1
L(Q2

+(q0)), v1
B(Q2

+(q0))
)

is

strictly increasing in q0; this is important for what follows. Let q′0 > q0 and note that

πB`
(
q′0, δ, v

1
L(Q2

+(q′0)), v1
B(Q2

+(q′0))
)
− πB`

(
q0, δ, v

1
L(Q2

+(q0)), v1
B(Q2

+(q0))
)

=

{
q′0 + (1− q′0)

[
1− F

(
p`

v1
L(Q2

+(q′0))

)]}
δ
[
v1
B(Q2

+(q′0))− v1
B(Q2

+(q0))
]

+
[
δv1

B(Q2
+(q0))− (uL − p`)

]{
(1− q0)F

(
p`

v1
L(Q2

+(q0))

)
− (1− q′0)F

(
p`

v1
L(Q2

+(q′0))

)}
≤

{
q′0 + (1− q′0)

[
1− F

(
p`

v1
L(Q2

+(q′0))

)]}
δ
[
Q+

2 (q′0)−Q+
2 (q0)

]
(uH − uL)

≤ δ(q′0 − q0)(uH − uL); (32)

the first inequality follows from Lemma 4 and the fact that Q2
+(q0) is increasing in q0. Hence,

η2(q′0, δ)− η2(q0, δ) ≥ (1− δ)(q′0 − q0)(uH − uL) > 0, which proves the desired result.

We first establish the properties of v1
B. Since Q2

+ is continuous in q0, the continuity of v2
B

follows from the continuity of v1
B and v1

L. We now prove that if q′0 > q0, then v2
B(q′0)−v2

B(q0) ≤

(q′0 − q0)[uH − uL]. For this, let

v2
B(q0, δ) = πB`

(
q0, δv

1
L(Q2

+(q0)), v1
B(Q2

+(q0))
)

+ max{η2(q0, δ), 0},

As in the proof of Lemma 4, we know that for each δ ∈ [0, δ], there exists a unique q∗ =

q∗(δ) ∈ (0, 1) such that η2(q0, δ) ≥ 0 if, and only if, q0 ≥ q∗; by construction, q∗(δ) = q2.

Then let q′0 > q0. The same argument as in the proof of Lemma 4 shows that

v2
B(q0, δ)− v2

B(q0, δ) ≤ (q′0 − q0)[uH − uL]

if q′0 > q∗. Suppose then that q′0 ≤ q∗. In this case, the above inequality follows from (32),

and the desired result holds from the fact that v2
B(q0) =

∫
v2
B(q0, δ)dF (δ).
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Now, we establish the properties of ξ2. Since η2 is strictly increasing in q0 and strictly

decreasing in δ, an argument similar to the one used in the proof of Proposition 2 shows that

for each q0 ∈ [q2, q2) ∩ (0, 1), there is a unique δ2 = δ2(q0) ∈ [0, δ), which is continuous and

increasing in q0, such that η2(q0, δ) ≥ 0 if, and only if δ ≤ δ2(q0). Thus, ξ2(q0) = F (δ2(q0))

is continuous and increasing in q0. Now notice that limq0↑q2 ξ2(q2) = ξ1(q2), given that

lim
q0↑q2

η2(q0, δ) = πBh (q2)− πB` (q2, δ, v1
L(q1), v1

B(q1))

= πBh (q2)− πB` (q2, δ, v0
L, v

0
B[q+(q2, v0

L)]) = η1(q2, δ).

For the properties of v2
L, first notice that Q2

+ and v1
L continuous in q0 imply that v2

L is

also continuous in q0. Moreover,

lim
q0↑q2

v2
L(q0) = ξ1(q2)ph + (1− ξ1(q2))

∫
max

{
p`, δv

0
L

}
dF (δ) = v1

L(q1).

To finish, note that v1
L(q) ≤ v0

L[q+(q, v0
L)] = v0

L implies that

v2
L(q0) ≤ ξ2(q0)ph + (1− ξ2(q0))

∫
max{pL, δv0

L}dF (δ).

Moreover, by (31), we have that ξ2(q0) ≤ ξ1(Q2
+(q0)). From this, it is immediate to see that

v2
L(q0) ≤ v1

L(Q2
+(q0)) for all q0. �

Proof of Theorem 1

We proceed by induction. Suppose there exists k ≥ 3 and sequences of cutoffs {qs}k−1
s=0 and

{qs}k−1
s=0 such that:

(A1) q0 = 1 and qs ≤ qs−1 < qs < qs−1 for all s ∈ {1, . . . , k − 1};

(A2) for each s ∈ {0, . . . , k − 1}, a s–step equilibrium exists if, and only if, q0 ∈ [qs, qs−1) ∩

(0, 1).

Moreover, suppose that for each s ∈ {0, . . . , k − 1}, there exist functions vsB(q0) and vsL(q0),

and a map Qs
+(q0), such that:

(A3) Qs
+(q0) is the value of q1 in any s–step equilibrium when the initial fraction of type H

sellers is q0;
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(A4) given q0 ∈ [qs, qs)∩(0, 1), the payoffs to buyers and type L sellers in a s–step equilibrium

are vsB(q0) and vsL(q0), respectively;

(A5) for all s ∈ {2, . . . , k − 1}, if q′ = Qs
+(q0), then

ηs−1(q′, δ) = πBh (q′)− πB`
(
q′, δ, vs−2

L (Qs−1
+ (q′)), vs−2

B (Qs−1
+ (q′))

)
≥ ηs(q0, δ) = πBh (q0)− πB`

(
q0, δ, v

s−1
L (q′), vs−1

B (q′)
)

(33)

for all q0 ∈ [qs, qs) and δ ∈ [0, δ];

(A6) vsB is continuous in q0 and such that vsB(q′0)−vsB(q0) ≤ (q′0−q0)[uH−uL] for all q′0 > q0;

(A7) vsL is continuous and increasing in q0, with vsL(qs) ≡ limq0→qs v
s
L(q0) = vs−1

L (qs) and

vsL(q0) ≤ vs−1
L (Qs

+(q0) for all q0.

Finally, suppose that:

(A8) for each s ∈ {1, . . . , k − 1}, qs = 0 if, and only if, p`/v
s−1
L (qs−1) ≥ δ.

Note that the payoffs vsB(q0) and vsL(q0) must be such that

vsB(q0) =

∫
max{πBh (q0), πB`

(
q0, δ, v

s−1
L (Qs

+(q0)), vs−1
B (Qs

+(q0))
)
}dF (δ)

and

vsL(q0) = ξs(q0) + (1− ξs(q0))

∫
max{p`, δvs−1

L (Qs
+(q0))}dF (δ),

where ξs(q0) =
∫
I{ηs(q0, δ) > 0}dF (δ) is the mass of buyers who offer ph in the first period

of trade in a s–step equilibrium when the initial fraction of type H sellers is q0.

Conditions (A1) to (A8) are true when k = 3 by Propositions 1 to 3 and Lemmas 4 and 5

(equation (33) reduces to (31) when s = 2). In what follows we show that p`/v
k−1
L (qk−1) < δ

implies that there exist cutoffs qk and qk, payoff functions vkB(q0) and vkL(q0), and a map

Qk
+(q0) such that (A1) to (A8) are also satisfied when s = k.

We know from the main text that conditions (18) to (20) are necessary and sufficient

for a k–step equilibrium to exist. We first show that (18) and (19) imply (20), so that the
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first two conditions are necessary and sufficient for a k–step equilibrium to exist. For this,

suppose that q′ = q+(q0, v
k−1
L (q′)) and q′ ∈ [qk−1, qk−1) ∩ (0, 1), and let

ηk(q0, δ) = πBh (q0)− πB` (q0, δ, v
k−1
L (q′), vk−1

B (q′)).

Note that

πB`
(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)

= (1− q0)F

(
p`

vk−1
L (q′)

)
[uL − p`] + δ

{
q0 + (1− q0)

[
1− F

(
p`

vk−1
L (q′)

)]}
πBh (q′)

+ δ

{
q0 + (1− q0)

[
1− F

(
p`

vk−1
L (q′)

)]} [
vk−1
B (q′)− πBh (q′)

]
= δπBh (q0) + (1− q0)F

(
p`

vk−1
L (q′)

)
[uL − p` − δ(uL − ph)]

+ δ

{
q0 + (1− q0)

[
1− F

(
p`

vk−1
L (q′)

)]} [
vk−1
B (q′)− πBh (q′)

]
,

where the last equality follows from (29). Similarly, one can show that if q′′ = Qk−1
+ (q′), then

πB`
(
q′, δ, vk−2

L (q′′), vk−2
B (q′′)

)
= δπBh (q′) + (1− q′)F

(
p`

vk−2
L (q′′)

)
[uL − p` − δ(uL − ph)]

+ δ

{
q′ + (1− q′)

[
1− F

(
p`

vk−2
L (q′′)

)]} [
vk−2
B (q′′)− πBh (q′′)

]
.

Now observe that

vk−1
B (q′)− πBh (q′) =

∫
max{0, πBh (q′)− πB` (q′, δ, vk−2

L (q′′), vk−2
B (q′′))}dF (δ)

≥
∫

max{0, πBh (q′′)− πB`
(
q′′, δ, vk−3

L (Qk−2
+ (q′′)), vk−2

B (Q2
+(q′′))

)
}dF (δ)

= vk−2
B (q′′)− πBh (q′′),

where the inequality follows from (33). Therefore,

πB`
(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)
− πB`

(
q′, δ, vk−2

L (q′′), vk−2
B (q′′)

)
≥ δ

[
πBh (q0)− πBh (q′)

]
+ λ

[
(1− q0)F

(
p`

vk−1
L (q′)

)
− (1− q′)F

(
p`

vk−2
L (q′′)

)]
,

where λ =
{
uL − p` − δ(uL − ph)− δ

[
vk−1
B (q′′)− πBh (q′′)

]}
. Given that vk−1

L (q′) < vk−2
L (q′′)

by (A6), q′ ≥ q0, and λ > 0 (as δvk−1
B (q′′) ≤ δ[uH − ph]), we can then conclude that

πB`
(
q′, δ, vk−2

L (q′′), vk−2
B (q′′)

)
− πB`

(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)
< πBh (q′)− πBh (q0).

48



Consequently, ηk−1(q′, δ) ≥ ηk(q0, δ) for all δ ∈ [0, δ]. In particular, since ηk−1(q′, δ) ≤ 0 for

all q′ ∈ [qk−1, qk−1)∩ (0, 1), we have that ηk(q0, δ) ≤ 0 as well, so that (20) is indeed satisfied.

Suppose now that p`/v
k−1
L (qk−1) < δ and define the cutoffs qk and qk to be such that: (i)

q+(qk, vk−1
L (qk−1)) = qk−1 if p`/v

k−1
L (qk−1) < δ and qk = 0 otherwise; (ii) q+(qk, vk−1

L (qk−1)) =

qk−1. It is immediate to see 0 < qk < qk−1. Since qk−1 = 0 if, and only if, p`/v
k−2
L (qk−2) ≥ δ

(by (A8)) and vk−1
L (qk−1) ≤ vk−2

L (qk−2) (by (A6)), we have that qk ≤ qk−1. Now note that if

qk−1 = 0, then (trivially) qk > qk−1. Suppose then that qk−1 > 0. Given that qk−1 > qk−2,

we have that vk−1
L (qk−1) = vk−2

L (qk−1) ≥ vk−2
L (qk−2). Thus,

q+(qk, vk−2
L (qk−2)) ≥ q+(qk, vk−1

L (qk−1)) = qk−1 > qk−2 = q+(qk−1, vk−2
L (qk−2)),

from which we obtain that qk > qk−1; recall that q+(q, vL) is strictly increasing in q when

p`/vL < δ. Finally, the same argument used in the proof of Proposition 3—just replace the

superscripts “1” and “2” with “k − 1” and “k,” respectively—shows that: (i) there exists a

k–step equilibrium if, and only if, q0 ∈ [qk, qk)∩ (0, 1); (ii) for each q0 ∈ [qk, qk)∩ (0, 1), there

exists a unique q′ = Qk
+(q0) ∈ [qk−1, qk−1)∩ (0, 1) such that q′ is the value of q1 in any k–step

equilibrium when the initial fraction of type H sellers is q0; (iii) the map Qk
+ is continuous

and strictly increasing. Thus, (A1), (A2), (A3), (A5), and (A8) are valid for s = k.

To finish the induction step, let vkB and vkL be given by (21) and (22), respectively, where

ξk(q0) =
∫
I{ηk(q0, δ) ≥ 0}dF (δ). By construction, for each q0 ∈ [qk, qk) ∩ (0, 1), vkB(q0) and

vkL(q0) are, respectively, the payoffs to buyers and type L sellers in a k–step equilibrium (so

that (A4) holds when s = k), and ξk(q0) is the fraction of buyers who offer ph in the first

period of trade in a k–step equilibrium. The same argument used in the proof of Lemma 5

shows that ξk(q0) is increasing in q0 and that (A6) and (A7) hold when s = k; once more

just replace the superscripts “1” and “2” with “k − 1” and “k,” respectively.

The induction process described above continues until k is such that p`/v
k
L(qk) ≥ δ,

if such a k exists. We conclude the proof by showing that such a k indeed exists, so that

K = max{k : p`/v
k−1
L (qk−1) < δ}. Suppose not. In this case, there exists a strictly decreasing

sequence {qk}∞k=0 such that if q0 < qk, then there exists a s–step equilibrium with s ≥ k when

the initial fraction of type H sellers in the market is q0. Since the market clears in a finite
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number of periods in any equilibrium, it must then be that limk→∞ q
k = 0. In particular,

there exists k0 ∈ N such that πBh (qk) < 0 for all k ≥ k0. This implies that ξk−1(qk) = 0 for all

k ≥ k0; not even a myopic buyer finds it optimal to offer ph when the expected payoff from

doing so is negative. Therefore, limk→∞ v
k
L(qk) = limk→∞ v

k−1
L (qk) = p`, a contradiction. �

Lemmas 6 and 7 and Proofs

Lemma 6. Ek
H(q0) is decreasing in q0 for all k ∈ {0, . . . , K}.

Proof: For each q0 ∈ [qk, qk) ∩ (0, 1), let Λk
q0

: {0, . . . , k} → [0, 1] be the c.d.f. given by

Λk
q0

(s) =
s∑
r=0

λk(s|q0).

By construction, Λk
q0

(s) is the probability that a type H seller trades his asset on or before

period s ∈ {0, . . . , k} in a k–step equilibrium when the initial fraction of high quality assets

is q0. A straightforward induction argument shows that

Λk(s|q0) = 1−
s∏
r=0

[
1− ξk−r(qr)

]
;

recall that {qt}kt=1 is the sequence such that qt = Qk−t+1
+ (qt−1). We know from the main text

that an increase in q0 increases ξk−r(qr) for all r ∈ {0, . . . , k}. Thus, q0 < q′0 in [qk, qk)∩(0, 1)

implies that Λk
q′0

(s) ≥ Λk
q0

(s) for all s ∈ {0, . . . , k}, in which case Λk
q0

dominates Λk
q′0

in the

first–order stochastic sense; the desired result follows from this. �

Lemma 7. E(q0) is decreasing in q0.

Proof: Let q0, q
′
0 ∈ (0, 1) be such that q0 < q′0. By construction, there exist k1, k2 ∈

{0, . . . , K} such that E(q0) = Ek1
H (q0) and E(q′0) = Ek2

H (q′0).

(i) Suppose that k2 ≥ k1. In this case, there exists a k1–step at q′0. Indeed, if q′0 ≥ qk1 , then

q′0 ≥ qk2 , which implies that no k2–step equilibrium exists at q′0, a contradiction. Moreover,

if q′0 < qk1 , then q0 < qk1 , in which case no k1–step equilibrium exists at q0, a contradiction

as well. By Lemma 6, we then have that E(q′0) ≤ Ek1
H (q′0) ≤ Ek1

H (q0) = E(q0);

(ii) Suppose now that k2 < k1 and let k′ be the greatest value of k such that a k–step

equilibrium exists at q′0. Note that k′ ≥ k2 and qk
′+1 ≤ q0. Moreover, note that if k′ ≥ k1,
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then E(q′0) ≤ Ek1
H (q′0) ≤ Ek1

H (q0) = E(q0). Suppose then that k′ < k1. We know from the

proof of Theorem 1 that limq0→qk ξ
k(q0) = ξk−1(qk) for all k ∈ {1, . . . , K}, from which it is

easy to see that limq0→qk E
k
H(q0) = Ek−1

H (qk) for all k ∈ {1, . . . , K}. Hence, using Lemma 6

one more time, we have that

E(q0) ≥ lim
q0→qk1

Ek1
H (q0) ≥ Ek1−1

H (qk1) ≥ · · · ≥ Ek′

H (qk
′+1) ≥ Ek′

H (q′0) ≥ E(q′0),

which establishes the desired result. �

Appendix B: Supplemental Material (Online Appendix)

Section 2: Constructing Payoffs

Here we show how to derive payoffs using our refinement. We make use of the following

result, the proof of which we omit; uniform continuity is crucial for the limit to exist.

Lemma 8. If f : (0, 1)→ R is bounded and uniformly continuous, then limx→1 f(x) exists.

Fix a strategy profile σ and let a = {ajt} be a strategy for a type j seller. For each n ≥ 0

and α ∈ (0, 1), define the sequence {V j
t,n(a|σ, α)}n+1

t=0 of payoffs recursively as follows. Let

V j
n+1,n(a|σ, α) = cj and for each t ≤ n, let

V j
t,n(a|σ, α) = (1− α)

∫ [
yj + δV j

t+1,n(a|σ, α)
]
dF (δ)

+ α
∑

p∈{p`,ph}

ξt(p|σ)

∫ {
ajt(δ, p)p+

[
1− ajt(δ, p)

] [
yj + δV j

t+1,n(a|σ, α)
]}
dF (δ),

where ξt(p|σ) is the fraction of buyers who offer p in period t; ξt(p|σ) is the probability that

a buyer who can trade in period t draws a discount factor δ with pt(δ) = p. By construction,

given σ, V j
t,n(a|σ, α) is the expected lifetime payoff to a type j seller who is in the market

in period t ≤ n + 1 following strategy a when the market stops operating in period n. The

payoff V j
t (a|σ, α) is the limit limn→∞ V

j
t,n(a|σ, α); it is easy to see that {V j

t,n(a|σ, α)} is an

increasing, and thus convergent, sequence.

Now let σ̂ be the strategy profile that differs from σ only in that buyers offer ph in every

period t no matter their discount factor. It is immediate to see that V j
t (a|σ, α) ≤ V j

t (a|σ̂, α)
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for all t ≥ 0 and α ∈ (0, 1). Moreover, since ph ≥ yH + δph by (4), if the behavior of buyers

is given by σ̂, then the optimal decision for a seller is to accept ph immediately. Therefore,

V j
t (a|σ̂, α) ≤ ph, and thus V j

t (a|σ, α) ≤ ph, for all t ≥ 0 and α ∈ (0, 1).

To finish, for each t ≤ n, let λtn(t|σ, a, α) be the probability that a type j seller in the

market in period t following strategy a stays in the market until period n+1 when the other

agents behave according to σ. Since V j
n+1(a|σ, α) ≤ ph, we have that for all t ≤ n,

V j
t,n(a|σ, α) ≤ V j

t (a|σ, α) ≤ V j
t,n(a|σ, α) + λjn(t|σ, a, α)E[δ]n+1−t [ph − V j

n+1,n(a|σ, α)
]
.

Hence, for each t ≥ 0, V j
t,n(a|σ, α) converges to V j

t (a|σ, α) uniformly in α. It is straightfor-

ward to see that if V j
t+1,n(a|σ, α) is uniformly continuous in α for α ∈ (0, 1), then V j

t+1,n(a|σ, α)

also is. Given that V j
n+1,n(a|σ, α) is (trivially) uniformly continuous in α, we can then con-

clude (since uniform continuity is preserved by uniform convergence) that for all t ≥ 0,

V j
t (a|σ, α) is uniformly continuous in α for α ∈ (0, 1). Consequently, since V j

t (a|σ, α) is

bounded above by ph, the limit limα→1 V
j
t (a|σ, α) is well–defined for all t ≥ 0.

For any strategy p for a buyer, the payoffs V B
t (p|σ, α), with t ≥ 0 and α ∈ (0, 1), can

be computed in a similar way and the same argument as above shows that V B
t (p|σ, α) is

bounded (by uH−ph) and uniformly continuous in α, in which case limα→1 V
B
t (p|σ, α) exists.

Section 4: Time to Market Clearing

Let q∗ be such that πBh (q∗) = 0. Clearly q0 > q∗ regardless of F , as the payoff from offering

p` is positive, and so no buyer offers ph when q ≤ q∗. Suppose then that q0 < q∗ and let

N ≥ 1 be the value of k such that

δ
N
ph > p` ≥ δ

N+1
ph. (34)

Now define {vkL}Nk=0 to be the sequence such that v0
L = ph and vkL =

∫
max{p`, δvk−1

L }dF (δ)

for all k ∈ {1, . . . , N}. By construction, the payoff to sellers in a k–step equilibrium is

bounded below by vkL. Since vkL is decreasing in k, the fraction of high quality assets in the

market after N periods of trade is bounded above by

qmax,N =
q0

q0 + (1− q0)[1− F (p`/v
N−1
L )]N

.
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Thus, the market takes at least N periods to clear if qmax,N ≤ q∗, which holds if[
1− F

(
p`

vN−1
L

)]N
>
q0(1− q∗)
(1− q0)q∗

. (35)

Note that the right side of (35) is smaller than one since q0 < q∗. Finally, given that

vN−1
L ≥ δ

N−1
ph, we have that F (p`/v

N−1
L ) converges to zero as F (p`/δ

N−1
ph) converges to

zero, in which case the left side of (35) converges to one. Therefore, if the distribution F puts

sufficient mass on discount factors close enough to δ, the market takes at least N periods

to clear when q0 < q∗. It is easy to see that there are values of the model’s parameters for

which N can be very large.

Section 7: Market Efficiency as Time Between Trades Vanishes

In order to study market efficiency as trading frictions vanish, it is convenient to embed our

framework in a continuous time environment. Suppose now that time runs continuously and

the market opens for trade every ∆ > 0 units of time, i.e., the market opens in t = 0,∆, 2∆,

and so on. The agents’ discount rate r in each time interval between two consecutive trading

opportunities is a draw from a c.d.f. G with support [r,+∞), where r > 0 and the draws

are independent across agents and over time. Thus, the c.d.f. F∆ describing the distribution

of the agents’ discount factors in each period has support [0, δ], where δ = δ(∆) = e−r∆ < 1,

and is such that F∆(δ) = 1 − G(− ln δ/∆). Note that lim∆→0 δ = 1 and that for all δ < 1,

lim∆→0 F∆(δ) = 0. Thus, the agents become infinitely patient in the limit as the time interval

between two consecutive trading periods goes to zero.

Let q0 < q∗ and define T∆ to be the number of trading periods it takes for the market to

clear; recall that q∗ is the unique value of q such that πBh (q) = 0. Note that an option for

a type L seller is to reject any offer he receives until the period in which the market clears.

Thus, a lower bound for his payoff is vL = E[e−rT∆∆]ph. Now assume that χ = vL/p` > 1

(which is true if T∆∆ is small enough) and define N∆ to be such that

G

(
lnχ

∆

)N∆

=
q0(1− q∗)
(1− q0)q∗

= γ(q0);

here we implicitly assume that lnχ > r∆, which is satisfied if ∆ is small enough. Since an
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upper bound for the fraction of high quality assets in the market after N periods of trade is

q(N) =
q0

q0 + (1− q0)[1− F∆(p`/vL)]N
=

q0

q0 + (1− q0)[G(lnχ/∆)]N
,

and no buyer offers ph if the fraction of type H sellers in the market is smaller than q∗, a

necessary condition for the market to clear after T∆ periods of trade is that

q(T∆) ≥ q∗ ⇔ γ(q0) ≥ G

(
lnχ

∆

)T∆

.

Since G(lnχ/∆) ∈ (0, 1), we can then conclude that T∆ ≥ N∆. Therefore,

T∆∆ ≥ N∆∆ =
ln(γ(q0))∆

ln(G(lnχ/∆))
(36)

Suppose now that G has a density g and observe, by L’Hospital’s rule, that

ln(γ(q0))∆

ln(G(lnχ/∆))
∝ − ln(γ(q0))

lnχ
· ∆2

g(lnχ/∆)

when ∆ ≈ 0. Thus, if g(r) = O(1/rk) with k ≥ 2 when r →∞, we have that

ln(γ(q0))∆

ln(G(lnχ/∆))
∝ − ln(γ(q0))(lnχ)k−1∆2−k

when ∆ ≈ 0. Suppose then, by contradiction, that lim∆→0 T∆∆ = 0. Since χ > 1 implies that

− ln(γ(q0)) lnχ > 0, we can then conclude from (36) that lim∆→0 T∆∆ > 0, a contradiction.

The assumption that g(r) = O(1/rk) with k ≥ 2 when r → ∞ is fairly mild. In fact, a

necessary condition for
∫∞
r
g(r)dr to be finite is that g(r) converges to zero faster than 1/r

as r →∞, i.e., the density g is such that g(r) = O(1/rk) with k > 1 as r →∞.
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Figure 4: The Dynamics of Trade
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