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Abstract

We propose a model for stock price dynamics that explicitly incorporates random waiting times

between trades, also known as duration, and show how option prices can be calculated using this

model. We use ultra-high-frequency data for blue-chip companies to motivate a particular choice

of waiting-time distribution and then calibrate risk-neutral parameters from options data. We also

show that the convexity commonly observed in implied volatilities may be explained by the pres-

ence of duration between trades. Furthermore, we find that, ceteris paribus, implied volatility

decreases in the presence of longer durations, a result consistent with the findings of Engle (2000)

and Dufour and Engle (2000) which demonstrates the relationship between levels of activity and

volatility for stock prices. Finally, by directly employing information given by time-stamps of

trades, our approach provides a direct link between the literature on stochastic time changes and

business time (see Clark (1973)) and, at the same time, highlights the link between number and

time of arrival of transactions with implied volatility and stochastic volatility models.
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Most financial models assume that securities are continuously traded. However, in equity markets

for example, trading happens discretely at random times. In the literature there have been several ap-

proaches to directly model the times between trades also known as duration. Early models that capture

the impact of duration between trades include Diamond and Verrechia (1987) and Easley and O’Hara

(1992). The work of Easley and O’Hara establishes the link between the existence of information, the

timing of trades and the dynamics of security prices. One of their main contributions is to show that

duration between trades affects the behavior of security prices and consequently that transaction prices

are not a Markov process, as is currently assumed in many financial models.

Using ultra-high-frequency equity data, Engle (2000) studies the consequences of stochastic trade

arrival times (see also Engle and Russell (1998)). This empirical study finds evidence that both stock

returns and variances are found to be negatively influenced by long durations between trades. The

study of Dufour and Engle (2000) shows that the stochastic component of duration can explain the

relationship between short time durations, i.e. high trading activity, and both larger quote revisions and

stronger positive autocorrelations of trades.

Recent work by Aı̈t-Sahalia and Mykland (2003) focuses on the estimation of continuous-time

models and its consequences, in particular the fact that high-frequency financial data are discretely

sampled in time and that the time separating successive observations is often random. One of the

main messages emerging from their findings is that for empirical purposes, researchers using randomly

spaced data, “... should pay as much attention, if not more, to sampling randomness as they do to

sampling discreteness”.

When it comes to derivative pricing, most financial literature on discrete time models assumes that

the distribution of the waiting-time τn = Tn−Tn−1 between the nth and (n− 1)th trades, occurring at

times Tn and Tn−1 respectively, is either constant (tree models) or exponentially distributed (compound

Poisson process models). This prompts two questions. Firstly, to what extent are these assumptions

deviating from the ‘true’ distribution of durations? Secondly, how will this deviation from the ‘true’

empirical distribution impact derivative prices? The first question is not a new line of research in the

literature, but the second, despite its importance in asset pricing, has received very little attention.
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When looking at data that involves the random arrival of events, trades in our case, it is customary

to look at what is known as the survival function, which represents the probability that the waiting-time

between two consecutive trades is greater than t. This function is given by

ϒ(t) = 1−
∫ t

0
υ(u)du, (1)

where υ(t) denotes the probability density function (pdf) of the waiting times.

If we assume that the waiting-time between trades possesses an exponential distribution with pa-

rameter λ, then υ(t) = λe−λt and ϒ(t) = e−λt . Employing General Motors (GM) consolidated trades

(over the period April-June 2005) in Figure 1, as an example we show a log-log plot of empirical and

fitted exponential survival functions.1 We used 419,264 trades from all exchanges with a resulting

average duration between consecutive trades of τe
o = 5.26 seconds. The Figure also shows that the

fitted exponential survival function with parameter λ = 1/τe
o, (the dashed line), is a very poor fit when

compared to empirical data (circles).2
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Figure 1. General Motors waiting-times: empirical and exponential.

Intuitively, the rationale for rejecting the exponential survival function as a possible candidate to

model durations is its inability to capture the long durations between consecutive trades, see for exam-

ple Engle (2000), Engle and Russell (1998) and Dufour and Engle (2000). Furthermore, assuming that

the duration between consecutive trades is exponentially distributed is equivalent to assuming that the
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number of trades follows a Poisson counting process or that the intensity of arrival of trades is constant.

If this were the case, then the mean and variance of the data should be the same, a property known as

‘equidispersion’. In fact, what is commonly observed in ultra-high-frequency models is ‘overdisper-

sion’, i.e. where the variance is greater than the mean of the data, see Cameron and Trivedi (1996). For

example, in the case of GM the variance of waiting times for trades is 3.4575∗103, while the mean is

5.27.

In general, assuming a specific distribution for the duration between trades is equivalent to assuming

a particular trade arrival intensity. The seminal work of Clark (1973) argues that markets operate at

different trading rates over different periods of time. This is due to the fact that information becomes

available to traders at a varying rate. For instance, during periods when there is very little information

trading is slow, while on days when new relevant information becomes available trading pace picks

up and the price process evolves more quickly. To put it another way, markets operate on a ‘business

time’, as opposed to a calendar time, basis.3

In Clark’s work, it is argued that the trading volume is positively related to the number of intra-

day transactions and hence that the trading volume is related to the variability of price change. This

positive relationship between price changes and trading volume, without controlling for the number of

transactions, is further investigated in Epps and Epps (1976), Tauchen and Pitts (1983), Gallant, Rossi,

and Tauchen (1992) and Karpoff (1987). However, in Jones, Kaul, and Lipson (1994) it is shown

that the positive relationship between volume and volatility, measured as absolute or squared price

changes, actually reflects the positive relationship between volatility and the number of transactions.

In Jones et al it is further argued that, on average, the size of trades has virtually no incremental

information content; any information about the trading behavior of agents is almost entirely contained

in the frequency of trades during a particular interval. Finally, the finding that it is the number of trades,

rather than the volume, that generates price volatility is further supported by Ross (1989). Ross’s study

shows that, under certain assumptions, the variance of price changes is directly proportional to the

variance of the flow of information, a quantity that is better proxied by the number of transactions than

by the volume of trades (see also Andersen (1996)).

Although our approach presents several new features, it retains a strong connection to the more

mature and established literature that examines the relationship between price returns, volume and the

4



number of transactions. In this article, we concentrate on the question of how derivatives prices are

calculated when durations possess a distribution function that better reflects the observed empirical

behavior. Our contribution is threefold. Firstly, we propose a general model that explicitly incorporates

waiting times as one of the building blocks of stock price dynamics under the physical measure. In

particular, one of the key elements of our approach is to exploit the idea of time-changes by using

transaction times, given by the high-frequency time-stamps of trades, to describe the “business time”.

Secondly, we show how option prices are calculated by choosing a risk-adjusted measure. Thirdly,

based on empirical waiting-time data from blue-chip companies, we investigate a particular distribution

for duration and we employ it to calibrate risk-neutral parameters to IBM options data.

Under the risk-adjusted measure we propose the use of a survival function that can capture long

waits between trades and that nests, as a particular case, the exponential survival function. We then

calibrate our model to IBM options data and find that in the vast majority of the cases the risk-neutral

parameters of the stock dynamics responsible for modeling the duration between trades, indicate that

the risk-neutral distribution of waiting times is not exponential.

As another illustration of our model, we chose to isolate the effect of the waits by calculating

option prices with a survival function that allows for the possibility of long waits and the distribution of

stock price revisions can be either Gaussian or CGMY (see Carr, Geman, Madan, and Yor (2002)). We

observe that for different maturities the inclusion of waiting-times that are not exponentially distributed

contribute to the implied volatility observed in financial markets. In particular, when we assume that

price revisions are Gaussian, which asymptotically behaves like the classical Black-Scholes framework,

the inclusion of non-exponential waiting-times is solely responsible for the emergence of the convexity

in the volatility ‘smile’. We also observe that, ceteris paribus, implied volatility decreases when waiting

times are ‘longer’, a finding in line with those of Engle (2000) and Dufour and Engle (2000) which links

the relationship of levels of activity and volatility for stock prices.

The rest of this article is organized as follows. Section 1 proposes a general model for stock prices,

under the statistical measure, where duration between trades is random. Section 2 focuses on the

pricing of instruments such as European-style options. Section 3 justifies the selection of particular

waiting-time distributions and shows how European-style option prices may be calculated by employ-

ing widespread techniques such as those in Carr and Madan (1999). Section 4 calibrates risk-neutral
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parameters for one of our models, using IBM options data. Section 5 produces numerical examples of

how duration affects the shape and level of implied volatility. Section 6 concludes.

1. The Model: spot dynamics with duration

In this section, we propose a model which needs to satisfy three requirements. Firstly, every time a

trade occurs stock prices must undergo a stochastic price revision. Secondly, the model must be able

to explicitly incorporate the (random) duration between trades. Thirdly, the model must be capable of

pricing basic financial instruments such as European-style options and one must be able to calibrate its

risk-neutral parameters to the market.

Before presenting the model we need two more definitions: a counting process; and the hazard

function. We denote the time of the nth trade by Tn and the duration between trades by Tn−Tn−1 = τn

with continuous pdf υ(t). Hence we can write

Tn = T0 +
n

∑
i=1

τi, Tn−Tn−1 = τn, n = 1,2,3, · · · .

The counting process, which represents the number of trades over the interval [0, t], is defined by

Nt = max{n≥ 0|Tn ≤ t} .

Further, the hazard function u(t) is defined as

u(t) =− d
dt

lnϒ(t) , t ∈ R+, (2)

where the survival function ϒ(t) is that given above in equation (1). Intuitively, the hazard function

represents the probability that a trade will happen in the next small time interval divided by the length

of that time interval; i.e. the hazard function is the instantaneous intensity of a trade occurrence. Here

we assume that u(t) is strictly positive and continuous.
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Stock price revisions

To model the stock price revisions, we assume that every time there is a trade, i.e. the counting process

Nt increases by one unit, the price revision of the logarithm of the stock price X(t) = lnS(t) moves by

i.i.d. Y . More precisely, we assume that the dynamics of the observed tick-by-tick microstructure of

X(t), under the physical measure P, are described by

X(t) = X(0)+(r−D)t +
Nt

∑
i=1

Yi , (3)

where the constants r and D denote the risk-free rate and the dividend yield. Note that for technical

convenience, we consider a continuously compounded risk-free behavior with rate (r−D) instead of

capturing this deterministic trend in the jump price revisions ∑Nt
i=1Yi. At jump times (i.e. when there is

a trade) there is no price difference between these two alternatives. However, with the continuous rate

technicalities are simplified when it comes to derivatives pricing in section 2 below. We assume that

the i.i.d. spacial shocks Y , which are independent of the waiting times, possess an infinitely divisible

distribution. Given the above, the log-characteristic function of Y is given by the Lévy-Khintchine

representation

lnE
[
eiξY

]
≡Ψ(ξ) = aiξ− 1

2
σ2ξ2 +

∫

R\{0}

(
eiξl −1− iξl1|l|<1

)
W (dl). (4)

Here a ∈ R, σ ≥ 0, the truncation function l1|l|<1 ensures integrability around the origin, and Ψ(ξ) is

known as the characteristic exponent of the distribution with triplet (a,σ2,W ). For technical simplicity,

we assume that the distribution of the spacial shocks Y is given by a continuous density g(y) > 0, y∈R.

Note that if we denote by N(ω,dt,dz) = N(dt,dz) the integer valued jump measure associated with the

process ∑Nt
i=1Yi, we can rewrite the dynamics (3) as4

X(t) = X(0)+(r−D)t +
∫ t

0

∫

R0

zN(dt,dz) . (5)

In the financial literature, the two most common models of the type described in equation (3) are:

discrete time models (tree models) with deterministic, equally spaced, time steps τn; and compound

Poisson models where the τn’s are i.i.d. exponentially distributed, random variables. In the latter, X(t)
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belongs to the class of Lévy processes which have been extensively studied and applied in finance over

the recent years.

For example, a conditionally Gaussian model arises when it is assumed that price revisions in (3)

arise from a Gaussian distribution, with Y ∼ N(µ,σ2), and that the counting process Nt is a homo-

geneous Poisson process, which is equivalent to assuming that the waiting-time distribution between

trades is exponential. However, as is well known, the Gaussianity of price revisions is not supported

by empirical studies, especially over short-time periods. Most efforts to improve these models have

focused on the spacial shocks aspect, as opposed to the distribution of the waiting times τ, despite the

crucial role that these waiting times play in the distributional properties of stock prices.

A major reason why people only reluctantly depart from exponentially distributed waiting times,

is the loss of Markovianity (even if empirical studies confirm the non-Markovianity of prices). Indeed

Markovianity is important for many issues, including derivatives pricing, where expectations condi-

tioned on past market evolution have to be computed. With the exception of the exponential waiting-

time distribution, the log-stock X(t) is not Markovian for a general waiting-time distribution in model

(3). Indeed, let H(ω, t) = H(t) denote the so-called backward recurrence time (i.e. the time elapsed

since the last trade) defined by

H(t) = t−TNt , (6)

where TNt represents the last trade time before t. Then it is well known that the intensity of the counting

process Nt is given by u(H(t)), see Jacobsen (2006). Consequently, the predictable compensator of the

jump measure N(dt,dz) is the random measure

ν(ω,dt,dz) = ν(dt,dz) := u(H(t))g(z)dtdz , (7)

where u(t) is the hazard function given in (2) and g(z) the probability density of the shocks Y . From

this it follows that the process is not Markovian as long as u(t) is not constant. Intuitively, for general

hazard functions u(t), it is important to know the time elapsed since the last trade and thus the process

is not memoryless. However, if we enlarge the state space with the backward recurrence time H(t),

then we have the following result.

Theorem 1 The two-dimensional process (X(t),H(t)) is a time-homogeneous Markov process.
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This is an important property which we will use below to price options. For a proof see appendix A.

A special example is the well-known case resulting from the assumption that the waiting times τ

are exponentially distributed with parameter λ. For this particular case, the survival function is given

by ϒ(t) = e−λt and the hazard function becomes u(t) = λ; note that the hazard function is independent

of the backward recurrence time H(t). In this case the compensating measure (7) becomes ν(dt,dz) =

λg(z)dtdz, which is the compensating measure of the compound Poisson process X(t), and it is not

necessary to consider the two-dimensional process (X(t),H(t)) because X(t) already is Markovian.

Another important characteristic of our model for the price dynamics (3) is that it captures many of

the important features that relate the volume of transactions to (stochastic) volatility of returns. Note

that a direct interpretation of our model is that the market operates on an operational clock where the

instrument measuring the evolution of business time is the number of trades Nt (see Clark (1973)).

Moreover, our model also reconciles the feature that volatility is not constant over identical time inter-

vals; it is in fact stochastic. To see this last point, note that the conditional expected quadratic variation

of the log-return between time s and t is given by

E

[(∫ t

s

∫

R0

zN(dr,dz)
)2

|Fs

]
= E

[∫ t

s

∫

R0

z2 u(H(r))g(z)drdz|Fs

]
= f (H(s))

∫

R0

z2 g(z)dz

where f (H(s)) is defined by

f (H(s)) := E
[∫ t

s
u(H(r))dr|Fs

]
= E

[∫ t−s

0
u(Hh(r))dr

]

h=H(s)
.

Here, we have used the Markov property of the process H (see Appendix A), and the notation Hh de-

notes that the initial value of H at time 0 is h. In this sense, unlike models based on Lévy processes, the

conditional expected quadratic variations of log-returns are stochastic and are adapted to the backward

recurrence time H(s) (i.e. the time elapsed since the last trade). Also, the autocorrelation in the process

H then leads to autocorrelation in squared log returns.5
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2. Derivatives Pricing

One of the key requirements we have imposed on our model for stock price dynamics is that we can

price financial instruments, such as European-style options written on the underlying stock S(t). There-

fore, in the first part of this section, we discuss the possible risk-neutral dynamics exhibited by S(t)

when we assume that, under the physical measure P, the stock price follows (3). In the second part

we then proceed to discuss derivatives pricing and derive an integro-pde characterization for the price

process of European-style options in our framework. Further, under the assumption that a trade just has

happened, we derive a second price description based on Fourier transform techniques which is much

more efficient in practice both to price, and more importantly, to calibrate risk-neutral parameters.

On our stochastic basis (Ω,F ,P), let Ft be the filtration generated by the stock price S(t); note that

the same filtration is generated by the two-dimensional process (X(t),H(t)). Since S(t) is obviously

a semimartingale, theory tells us that we must specify an equivalent martingale measure (EMM) Q,

under which risk-neutral pricing of financial instruments, written on S(t), can be performed. Generally,

one of the consequences of employing asset models that capture jumps in prices is that the market is

incomplete and that there is no unique EMM under which pricing of derivatives is achieved. In fact,

there are many (possibly an infinite number of) EMMs and it is the market that selects the one EMM,

under which pricing of instruments is performed and under which arbitrage opportunities are precluded.

The vast majority of models assume that calendar time and operational time coincide, i.e. when

the calendar clock ‘evolves’ there is always a trade or the possibility to transact. In our model this

is not the case, transaction time does not always coincide with calendar time and this element alone

is an important source of market incompleteness. The work of Bossaerts, Ghysels, and Gouriétoux

(1997) analyzes, in a discrete-time setting, the consequences of modeling price dynamics on two clocks:

calendar and transaction time. The authors show that some of the simple no-arbitrage restrictions,

such as put-call-parity for European options, might fail due to the fact that portfolio rebalancing can

only occur in transaction time. This is at odds with the usual no-arbitrage results that stem from the

assumption that calendar and transaction times are the same. Moreover, Bossaerts et al also discuss

the conditions under which it is possible to price derivatives by arbitrage in highly incomplete markets

(caused by the impossibility to hedge in continuous time).
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In our model, we seek to specify a family of potential EMMs by allowing flexibility in the choice of

the pricing measure and by then employing market data to identify which EMM the market is selecting.

Importantly, when proposing the set of EMMs, we do not assume that under the pricing measure,

transaction and calendar time are the same. Therefore, focusing on the waiting-time element of the

model, the family of EMMs that we propose assumes that the market operates on a different clock

from calendar time. Thus, one way to proceed is to assume that the stock dynamics under the risk-

adjusted measure have the same structure as under the physical measure. In particular, we assume that

the number of trades will be independent from price revisions, but we allow the distribution of the

number of trades under the risk-neutral measure to differ from the distribution of the number of trades

under the physical measure.6 In addition, we also allow the distribution of the spacial shocks under the

risk-neutral measure to differ from the equivalent distribution under the physical measure.

More precisely, we assume that the market chooses from a class of EMMs whose densities with

respect to P is given by the following stochastic exponentials

dQ
dP

= exp
(∫ t

0

∫

R0

ln(φ(z)α(ω, t))N(dt,dz)−
∫ t

0

∫

R0

(φ(z)α(ω, t)−1)ν(dt,dz)
)

, (8)

where the function φ(z) and the predictable process α(ω, t) are such that (8) is a well defined P-

martingale. Further, we assume that gQ (z) = φ(z)g(z) is the density of an infinitely divisible distribution

satisfying ∫

R
(ez−1)gQ (z)dz = 0 , (9)

and that α(ω, t)u(H(t)) takes the form uQ (H(t)) for a strictly positive and continuous hazard function

uQ (t). Using Girsanov’s theorem for random measures (see Jacod and Shiryaev (2002)), the jump

measure N(dt,dz) has the Q-predictable compensator

νQ (ω,dt,dz) = νQ (dt,dz) := uQ (H(t))gQ (z)dtdz , (10)
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which has the same structure as the predictable compensator (7) under the P measure. It is straightfor-

ward to see from the structure of the Q-compensator (10) that the log-stock price

X(t) = X(0)+(r−D)t +
Nt

∑
i=1

Yi

= X(0)+(r−D)t +
∫ t

0

∫

R0

zN(dt,dz)

has the same renewal process structure under Q, as it has under P. The alteration is only a different,

but equivalent infinitely divisible distribution for the spacial shocks Y given through the density gQ (z),

which is such thatEQ[eY −1] = 0, as well as a different hazard function uQ (t) characterizing the waiting

times. Now, the discounted stock price e−(r−D)tS(t) is given by

e−(r−D)tS(t) = S(0)exp
(∫ t

0

∫

R0

zN(dt,dz)
)

.

Because of condition (9) we can rewrite e−(r−D)tS(t) as

e−(r−D)tS(t) = S(0)exp
(∫ t

0

∫

R0

zN(dt,dz)−
∫ t

0

∫

R0

(ez−1)ν2
Q (dt,dz)

)
, (11)

which is an exponential martingale underQ. Consequently, under the above conditions, (8) determines

indeed a class of EMM.

Having specified a pricing measureQ from the above defined class, we now consider pricing of in-

struments written on S(t) = exp(X(t)). Let F be a pay-off function of a European option with maturity

T written on S(t). Then the price process of this option is given as

V (t) = e−r(T−t)EQ[F(S(T ))|Ft ] 0≤ t ≤ T .

Note that considering a European option written on S(t) is equivalent to considering a European option

written on X(t) with pay-off function G = F(exp(·)). Thus, the value process of the option above can

be rewritten as

V (t) = e−r(T−t)EQ[G(X(T ))|Ft ] .
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Now, because of the time-homogeneous Markov structure of (X(t),H(t)), we can write

V (t) = e−r(T−t)EQ[G(X(T ))|X(t),H(t)] = e−r(T−t)Ex
Q[G(Xh(T − t))] |x=X(t),h=H(t) . (12)

Here, Xh(t) is the h-delayed renewal process starting in x, induced by X(t), i.e. the first waiting-time in

(3) has the distribution of (τ1−h), given τ1 > h. Furthermore, from (A2) and (A3) it follows that the

generator of the Markov process (X(t),H(t)) is given by the integro-differential operator O, defined as

follows:

O f (x,h) = (r−D)
∂
∂x

f (x,h)+
∂

∂h
f (x,h)+

∫

R0

{ f (x+ z,0)− f (x,h)}uQ (h)gQ (z)dz, (13)

for f ∈ C1,1
0 (R2). Here, C1,1

0 (R2) is the space of continuous functions, with compact support and

continuous derivatives in x and h. Then, with the usual Feynman-Kac considerations, we obtain the

following description of the price process V (t).

Theorem 2 Let F(·) be the pay-off function of a European option with maturity T written on the stock

S(t). Let the function G(·) := F(exp(·)) be the composition of F and exp, and assume that there exists

a bounded solution v(t,x,h) ∈C1,1,1([0,T ],R,R+) of the integro-pde





0 = ∂
∂t v(t,x,h)+Ov(t,x,h)

v(T,x,h) = G(x), (t,x,h) ∈ [0,T ]×R×R+.

(14)

Then, the price at time t of the European option with pay-off F(·), and maturity T , is given as

V (t) = e−r(T−t)v(t,X(t),H(t)).

Note that in the special case of an exponential waiting time distribution with parameter λ, the

generator (13) becomes

O f (x,h) = (r−D)
∂
∂x

f (x,h)+
∂

∂h
f (x,h)+

∫

R0

{ f (x+ z,0)− f (x,h)}λgQ (z)dz .

13



Thus, if a function v′(t,x) ∈C1,1([0,T ],R) solves





0 = ∂
∂t v′(t,x)+O ′v′(t,x)

v′(T,x) = G(x), (t,x) ∈ [0,T ]×R ,

(15)

where the generator O ′ is defined as

O ′ f (x) = (r−D)
∂
∂x

f (x)+
∫

R0

{ f (x+ z)− f (x)}λgQ (z)dz ,

f ∈ C1
0(R), then v(t,x,h) := v′(t,x) solves (14). Consequently, for exponentially distributed waiting

times, we obtain the usual pricing integro-pde (15) for compound Poisson processes which is indepen-

dent of h.

The integro-pde representation of the option price (14) provides a method for computing option

prices in our model. However, an alternative way to calculate prices of European-style instruments is to

use transform methods (Carr and Madan (1999), Carr and Wu (2003)). These methods are very efficient

and powerful to calibrate risk-neutral parameters from market data. Here we present the general result

which we employ below in subsection 3.1.1, when we choose a particular survival function, to calibrate

parameters to IBM options data in Section 4.

Proposition 1 Let F(·) be the pay-off function of a European option with maturity T written on the

stock S(t), and let G(·) be as in Theorem 2. Assume that q̂(ξ, t,T ), defined by

q̂(ξ, t,T ) := EQ
[
eiξ∑NT

i=Nt +1 Yi |Ft

]
, (16)

is analytic in ξ in a strip that intersects the strip where the (complex) Fourier transform of G exists. Let

ξ̂ ∈ R be such that the line [−∞+ iξ̂,∞+ iξ̂] is part of this intersection. Then the value at time t of the

option is given by

V (t) =
e−r(T−t)

2π

∫ ∞+iξ̂

−∞+iξ̂
e−iξ lnS(t)e−iξ(r−D)(T−t)q̂(−ξ, t,T )Ĝ(ξ)dξ . (17)

where the notation Ĝ(ξ) = F [G(x)] =
∫ ∞
−∞ eixξG(x)dx denotes the Fourier transform of G(·).

14



For a proof see appendix A.

We note that, depending on the assumptions regarding the waiting-time distribution v(t), and/or the

counting process Nt , expression (16) can be calculated analytically and the evaluation of European-style

option prices becomes a straightforward task.

2.1. Modeling the leverage effect

One assumption in our model is that waiting-times and spatial shocks Y are independent. However,

studies indicate that this assumption might not be supported by empirical evidence. In the literature

of time-changed Lévy process models, this phenomenon is often referred to as leverage effect, see

Barndorff-Nielsen and Shephard (2001). For example, in Carr, Geman, Madan, and Yor (2003) the

authors propose to capture the leverage effect by extending their model, based on time-changed Lévy

processes, by adding the rate of time-change to the log-stock price. One way to include the leverage

effect in our framework is to assume dependence between waiting times and spacial shocks. We as-

sume that, at time t, the probability density function of the spacial shocks g depends on the backward

recurrence time H(t). More precisely, the predictable compensator of the jump measure N(dt,dz) is

assumed to be of the form

ν(ω,dt,dz) = ν(dt,dz) := u(H(t))g(H(t);z)dtdz ,

where u(t) is the hazard function given in (2) and g(H(t);z) is the probability density function of

the shocks Y with an additional parametric dependence on the stochastic process H(t). For example,

for Gaussian spacial shocks we can assume the expected jump size to be a function f (H(t)) of the

backward recurrence time, i.e.

g(H(t);z) := ψ(ν,σ2;z) |ν=H(t) ,

where ψ(ν,σ2;z) denotes the Gaussian density with expectation ν and variance σ2.

Although in this version of the model with leverage effects it does not seem possible to calculate

the characteristic function of the log-stock price we can still we proceed as in Theorem 2 to calculate

15



derivatives prices by solving the associated integro-pde. In this case, the integro-differential operator

O takes the form

O f (x,h) = (r−D)
∂
∂x

f (x,h)+
∂
∂h

f (x,h)+
∫

R0

{ f (x+ z,0)− f (x,h)}uQ (h)gQ (h;z)dz,

for f ∈C1,1
0 (R2).7

3. Empirical survival function

In this section we look at empirical waiting-times of 23 blue-chip companies during the period April-

June 2005. Our sample of stocks includes those from Dufour and Engle (2000) that were still being

traded in 2005. All data were obtained from the TAQ database made available via WRDS.

Before proposing a model that captures the main properties of the empirical survival functions we

address the question of how to treat the relatively frequent occurrences of consecutive trades when

the duration between them is reported in the system with zero. From a practical point of view, time-

stamps for every trade are rounded to the nearest second. A direct consequence of this is that trades

that occur within the same second are recorded as if they had taken place simultaneously. On the

other hand, there are cases when one trade is broken into various batches and these too are recorded

as simultaneous trades. A common approach adopted in the literature has been to delete these trades.

For instance, in our data set of IBM trades there are 178,512 durations of zero seconds. Deleting these

observations would amount to discarding more than 28% of the 631,586 waits between trades.

Ideally, if one could discern which zero-duration trades are part of a large trade broken into batches,

then these could be deleted and the remaining zero-duration trades could be kept by assigning them a

waiting-time strictly greater than zero. From a mathematical standpoint, if we view the question of

modeling durations as modeling the number of trades occurring on a given interval, we know that

counting processes such as Poisson will assign zero probability to events where two or more trades

take place at the same time. Therefore the need to assign waiting times that occurred within a second,

but recorded as simultaneous trades, a duration strictly greater than zero. Instead of discarding all

zero-duration observations the alternative we propose is to remove only those data points where there

16



was a zero waiting-time but there was no change in the price of the trade. For example, of the 178,512

instances of zero-duration in the restricted IBM data, 103,391 could be eliminated because they were

accompanied by no change in price. The remaining 75,121 data points where price changes were

different from zero were retained and were assigned a duration strictly greater than zero.8 In Table

1, we show, for each stock, the number of data points omitted due to zero waiting times and no price

changes (column “Out”) and those included through assignment of a non-zero waiting-time (column

“In”).
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Co Out In All Trades τe
o

GE 227,431 84,404 620,370 3.96
IBM 103,391 75,121 528,195 4.27
GM 115,967 61,966 419,264 5.27
MO 63,480 34,527 364,331 5.98
PG 60,038 29,458 365,800 5.54
AMD 89,449 30,209 333,248 6.59
SLB 48,283 30,200 356,341 5.41
KO 53,113 23,066 342,880 5.61
BA 52,328 26,201 323,436 6.12
AA 47,733 19,267 298,566 6.43
FNM 39,579 22,055 296,854 6.13
FDX 3,0545 21,407 260,044 7.31
CL 23,235 9,948 201,127 8.93
FPL 16,015 10,344 188,586 9.27
CAL 22,243 5,895 164,403 10.94
CAG 14,707 7,674 167,293 10.71
T 13,892 5,249 156,005 11.58
PCO 10,159 7,640 155,465 11.56
VC 18,366 6,756 130,115 14.45
HNZ 10,552 3,242 132,931 13.19
NI 8,294 3,144 105,780 16.42
POM 2,407 2,132 69,986 24.51
GTI 3745 979 62,016 27.51

Table 1
Empirical waiting-time data. The second column, under the heading “Out”, indicates the number of data points, for
each stock, that were discarded because a zero wait was also accompanied by a zero price change. The third column,
under the heading “In”, shows the number of data points which were kept because although there was a zero wait,

price changes were not zero. The fourth column indicates therefore the number of data points used as duration
between trades in our study. Finally the fifth column is the average waiting time (in seconds) for the data set.
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3.1. Shifted-Mittag-Leffler survival function

The most conspicuous message from Figure 1 is the presence of relatively ‘long’ durations. These long

durations are impossible to capture with an exponential waiting-time distribution, and, as we shall see

below, the presence of these long waits between trades is not unique to GM. The appendix shows 22

other companies that exhibit broadly the same shaped survival function as GM. Hence, we will justify

a choice of waiting-time distribution by specifying a model that can capture the right tail of the survival

function, i.e. long waits.

The first step is to observe that the shape of the right tail of the survival function, in log-log space,

in Figure 1 closely resembles that of a straight line with a negative slope. It is straightforward to see

that this linear behavior in a log-log plot is equivalent to observing the behavior of data that is changing

with a power law. In other words the (ln-)tail of the survival function shows the behavior

lnϒ(t)∼−β ln t + lna+ · · · , as t → ∞, (18)

where β > 0 and a are constants.9 Since from (1) we obtain the pdf of the waiting times by differenti-

ating the survival function

υ(t) =− d
dt

ϒ(t),

we can use (18) to find the tail behavior of the pdf of the waiting-time distribution:

lnυ(t)∼−(β+1) ln t + ln(aβ)+ · · · , as t → ∞. (19)

Now that we are able to capture the crucial behavior of long waits via (19), or equivalently via (18),

we take the second step and justify the choice of a waiting-time distribution. We recall that we want

to be able to use our model for stock dynamics in order to price European-style options. In addition,

we would like to specify a waiting-time distribution so that expression (16) in Proposition 1 can be

performed analytically.

19



Instead of working with the tail expression of v(t) given by (19), we look at its Laplace transform.

Hence, we can write the tail of the waiting-time distribution in Laplace space as10

υ̃(s)∼ 1− (τos)β +o(sβ), for 0 < β≤ 1, (20)

where τo > 0 is a constant.

However, we are still left with the question of finding a suitable waiting-time distribution since we

have only specified the functional form of the tail to capture the long waits. Note that there are many

waiting time distributions that could exhibit a slow decay of the right tail, as shown in (20). However not

all of them will deliver mathematically tractable expressions capable of being employed by standard

pricing tools, and more importantly, will not facilitate the calibration of risk-neutral parameters to

observed vanilla option prices (see for example Carr and Madan (1999)). Hence, below we specify v(t)

for all t ≥ 0 by choosing a distribution function that allows us to calculate the characteristic function

(16).

We proceed by noting that one possible choice of υ̃(s), consistent with (20), is given by

υ̃(s) =
1

1+(τos)β , for 0 < β≤ 1. (21)

Moreover, the Laplace transform of the survival function is given by

ϒ̃ML(s) =
1− υ̃(s)

s
= τo

(τos)β−1

1+(τos)β , for 0 < β≤ 1, (22)

and by taking the inverse Laplace transform of (22), see equation (A7) in the appendix, the survival

function becomes

ϒML(t) =
∞

∑
j=0

(−1) j (t/τo)β j

Γ(β j +1)
, for 0 < β≤ 1, (23)

which is known in the literature as the Mittag-Leffler (ML), or as a generalized, exponential function.

Furthermore, we make the important observation that when β = 1 the waiting-time distribution becomes

the exponential with expected value E[τ] = τo. Hence, we can view the ML survival function as a

generalization of the exponential survival function that accommodates long waits between trades when

β < 1; something an exponential waiting-time distribution is unable to capture.
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We employ a slight modification of (23), by including a shift parameter τs in the time-domain of

the survival function. The intuition behind this trivial modification is to recognize that the time-stamps

in our data are rounded to the nearest second. Consequently the data set are left-truncated, which

therefore makes it reasonable to include a shift in the domain of the survival function to improve the

statistical fitting of the ML survival model. Figure 2 shows empirical and fitted survival functions. We

show (shifted) ML and exponential functions. As expected, the exponential function is not capable of

capturing the long waits. Moreover, Table 2 shows the results of fitting the shifted ML parameters to

all the stocks studied here and the appendix depicts the fitted distributions.

Another route to study empirical waiting times has been to restrict the data set to trading hours

between 9.30am and 4.00pm and focus only on trades via NYSE. For example, in this restricted case,

the IBM data set would consist of 331,057 trades as opposed to the 528,195 when all exchanges are

taken into account and trading before 9.30am and after 4.00pm is also considered. Moreover, previous

studies focusing on this restricted data set have found that the Weibull distribution is a good model,

however it is not capable of capturing long waits. Moreover, we point out that our main objective

is to explicitly model durations and to study their impact on option prices. Therefore, the choice of

risk-neutral survival function is what matters when measuring the impact durations have on derivatives

pricing.
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Co τo 95% CI τs 95% CI β 95% CI
GE 1.5060 (1.4717, 1.5403) 0.1103 (0.0998, 0.1208) 0.8423 (0.8293, 0.8554)
IBM 1.7391 (1.6934, 1.7849) 0.0805 (0.0662, 0.0949) 0.8185 (0.8032, 0.8338)
GM 2.0860 ( 2.0178, 2.1543) 0.0257 (0.0043, 0.0470) 0.7584 (0.7385, 0.7784)
MO 2.6705 (2.6056, 2.7354) 0.0430 (0.0204, 0.0657) 0.8143 (0.8003, 0.8282)
PG 2.8441 (2.7791, 2.9092) 0.0523 (0.0280, 0.0765) 0.8579 (0.8453, 0.8705)
AMD 3.2402 (3.1589, 3.3214) 0.0519 (0.0227, 0.0812) 0.8135 (0.7990, 0.8281)
SLB 2.5343 (2.4663, 2.6022) 0.0833 (0.0608, 0.1059) 0.8000 (0.7841, 0.8159)
KO 2.8949 (2.8278, 2.9621) 0.0747 (0.0505, 0.0990) 0.8398 (0.8266, 0.8530)
BA 2.6259 (2.5444, 2.7074) 0.0773 (0.0516, 0.1030) 0.7556 (0.7363, 0.7750)
AA 3.2311 (3.2065, 3.2556) 0.2206 (0.2179, 0.2233) 0.6452 (0.6408, 0.6497)
FNM 2.8925 (2.7935, 2.9915) 0.0647 (0.0325, 0.0969) 0.7583 (0.7371, 0.7795)
FDX 2.9691 (2.8446, 3.0937) 0.0431 (0.0056, 0.0806) 0.6847 (0.6565, 0.7128)
CL 4.5001 (4.3526, 4.6477) 0.2319 (0.2319, 0.2319) 0.7585 (0.7351, 0.7819)
FPL 4.6416 (4.4736, 4.8096) 0.2349 (0.2349, 0.2349) 0.7351 (0.7086, 0.7616)
CAL 5.2955 (5.1344, 5.4566) 0.2268 (0.2268, 0.2268) 0.7389 (0.7167, 0.7611)
CAG 5.5407 (5.3650, 5.7165) 0.2340 (0.2340, 0.2340) 0.7610 (0.7382, 0.7837)
T 6.1676 (6.0003, 6.3349) 0.2368 (0.2368, 0.2368) 0.7786 (0.7595, 0.7978)
PCO 4.5137 (4.3330 4.6944) 0.2258 (0.2258, 0.2258) 0.6039 (0.5707, 0.6372)
VC 5.8712 (5.6332, 6.1093) 0.2076 (0.2076, 0.2076) 0.6260 (0.5929, 0.6591)
HNZ 7.2854 (7.0743, 7.4964) 0.2345 (0.2345, 0.2345) 0.7791 (0.7585, 0.7997)
NI 9.0244 (8.7679, 9.2809) 0.2409 (0.2409, 0.2409) 0.7573 (0.7366, 0.7780)
POM 14.2969 (13.8032, 14.7907) 0.2439 (0.2439, 0.2439) 0.7518 (0.7262, 0.7775 )
GTI 14.7941 (14.3078, 15.2803) 0.2403 (0.2403, 0.2403) 0.7200 (0.6950, 0.7451)

Table 2
Shifted ML parameter estimates for τo, τs (in seconds) and β using ultra-high-frequency data for the trading period

April 1st through June 30th 2005.

A further feature of our model is that it is not necessarily the case that the parameter β goes to one

and that asset prices become Markovian when trading occurs more frequently. One way to see this is to

look at the expected number of trades between time s and t, s < t. Assume for simplicity that the shift

parameter is τs = 0 and that at time s a trade has just occurred, i.e. that the time elapsed since the last

trade is zero. Hence, we have that11

E [NT |Fs] =
((T − s)/τo)β

Γ(β+1)
, (24)

and it is possible to observe, for fixed β < 1, that the expected number of trades can become arbitrar-

ily large (by assuming an arbitrarily small τo) while the non-Markovianity property of the model is

preserved because β < 1.
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3.1.1. European-style options with ML survival function

If we assume that, under the risk-neutral measure, the survival function has the form (21) then the

problem of pricing European-style options (see Proposition 1) reduces to deriving (16). Furthermore,

in this particular case, calculations get simplified if we assume that a trade just happened, i.e. H(0) = 0,

and for simplicity we also assume that τs = 0. Given the high frequency of trade arrivals, assuming

H(0) = 0 is reasonable. The following Theorem shows how European-style options are priced when

the survival function of the waiting times is ML.

Theorem 3 Assume that the prerequisites from Proposition 1 hold. Additionally, assume that the sur-

vival function is ML, with τs = 0, and that H(0) = 0. Then the value of the European-style option is

given by

V (0) =
e−rT

2π

∫ ∞+iξ̂

−∞+iξ̂
e−iξ lnS(0)e−iξ(r−D)T Eβ,1

[
−

(
1− eΨ(ξ)

)
(T/τo)β

]
Ĝ(ξ)dξ . (25)

For a proof see appendix A.

Regarding the choice of ξ̂ in the integration limits in Theorem 3, we require

Eβ,1

[
−

(
1− eΨ(ξ)

)
(T/τo)β

]
to be analytic in a strip that intersects the strip where the (complex)

Fourier transform of the G(·) exists. The ML function (A6) is an entire function; therefore it is analytic

where eΨ(−ξ) is analytic. Thus, the restrictions on ξ̂ are the same as those required in the particular case

when β = 1, i.e. when pricing with Lévy processes.12 For example, if we let β = 1, we can verify that

the price of a European call option with strike K and maturity T , using (25), is given by

V (0;K,T ) =−e−rT K
2π

∫ ∞+iξ̂

−∞+iξ̂
e−iξ lnS(0)+T [−iξ(r−D)+(Ψ(−ξ)−1)τ−1

o ] Kiξ

ξ2− iξ
dξ,

for ξ̂ > 1.13
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4. Estimation of risk-neutral parameters

In this section we present results obtained from calibrating risk-neutral parameters to IBM option

prices. We obtained data on IBM American options from OptionMetrics (Ivy DB) via WRDS. The

data include the spot price, strike, maturity, dividend yield, interest rate and the Black-Scholes im-

plied volatility. The algorithm employed by OptionMetrics to calculate the risk-neutral parameters and

the sensitivities for American options is based on the Cox, Ross, and Rubinstein (1979) binomial tree

model. The interest rate used in the calculations is based on BBA Libor rates and settlement prices

of CME Eurodollar futures. For example, for a given option, the appropriate interest rate input cor-

responds to the zero-coupon rate that has maturity equal to the options expiration, and is obtained by

linearly interpolating between the two closest zero-coupon rates of the curve.14

We used the parameters from the American options to devise a new data set of European options.

We then used the algorithm employed in Carr and Wu (2003) to estimate the risk-neutral parameters of

our model by considering two cases. In the first case, we assume that price revisions possess a Gaussian

distribution and that the waiting-time survival function is the ML function. In the second case, we still

assume that the waiting-time survival function is the ML function but now suppose that price revisions

possess an FMLS distribution (Carr and Wu (2003)). Moreover, in order to compare the performance

of our model to a well known benchmark, we also calibrate the standard Black-Scholes model.

The tables in Appendix C show the results for every trading day from April 1 through May 6 2005.

In any given day we have IBM options for different strikes and for different maturities. We show the

results of the calibration for the lot of IBM options with shortest maturity (including all strikes), then

we add to these results the next lot, which includes those options with second shortest maturity, and

so on.15 For example, the first row in Table 4 shows risk-neutral parameters obtained from 6 options

(trading in April 1 2005) that expired in 10 working days (i.e. the first lot). For this lot, the resulting

implied volatility in the classical Black-Scholes model is σbs = 0.1446, the volatility of Gaussian price

revisions and the beta of the model are σ = 0.0951 and β = 0.718300 respectively, and for FMLS price

revisions α = 1.99827, σ = 0.06713 and β = 0.720381.16 In the second row, we show the results of the

calibration procedure when we take into account the options that expire between 10 and 35 working

days. For ease of presentation of the results for the volatility parameter σ we show it in an ‘annualized’
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T ≤ 20 T ≤ 40 T ≤ 60 T ≤ 80 T ≤ 100 T ≤ 120 T ≤ 140 T ≤ 160 All
Black-Scholes 0.35530 0.26448 0.25026 0.25533 0.25533 0.25325 0.25083 0.25429 0.26222

Gaussian 0.29878 0.23766 0.22370 0.21240 0.21240 0.21105 0.20228 0.19489 0.22696
FMLS 0.16171 0.13827 0.12882 0.12830 0.12830 0.12560 0.11656 0.11239 0.13406

Table 3
RMSE for lots of options with up to different expiries. For example, column 2 shows the square
root of the weighted average of the MSE shown in the table in Appendix C, for the three models,
where the weights are the number of options with expiry date less than or equal to 20 days for

every day over the period 1 April to 6 May 2005. The RMSEs in the other columns are
calculated in a similar way.

form. For example, if for a given lot of options, with different expiries and strikes, the calibrated

parameter is σ̂, the table shows

σ = σ̂

√
(T/τo)β

Γ(β+1)

with T = 1 year and τo = 2,112,780.17

Table 3 shows the performance, by looking at the RMSEs, of the models with Gaussian or FMLS

shocks where durations are captured by the ML waiting-time survival function. The table also shows

the RMSEs for the classical Black-Scholes model. Each column in the table shows (for options with

expiries up to T = {20,40,60,80,100,120,140,160,all}) the square root of the weighted average of

the MSE where the weights are the number of options that in every day of the sample expire before the

chosen threshold. An interesting observation to note is that the performance of the ‘Gaussian with ML

waiting-times’ model is always better than that of the Black-Scholes. For instance: for options with

expiries T ≤ 20, the RMSE is 0.35530 for the Black-Scholes model and is 0.29878 for the ‘Gaussian

with ML waiting-times’ model; and for the whole sample (i.e. all expiries) the RMSE is 0.26222

and 0.22696 for the Black-Scholes and the ’Gaussian with ML waiting-times’ models respectively.

Furthermore, the table also shows that for the different sets of expiry dates the RMSE for the FMLS is

always lower than that of the Gaussian and Black-Scholes models.

One of the messages implied by the results is that the effect of long durations (captured by the

parameter β) on option prices prevails across all maturities. It is interesting to note that this is true for

both the Gaussian and FMLS cases and although the βs are not the same for both models, they do not

appear to be too dissimilar for each particular day and surface we calibrate to. We interpret this as a
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good sign since, especially in the Gaussian example we study, the parameter β could be accommodating

for kurtosis of the risk-neutral distribution which, is produced by the spacial shocks, and is ‘picked up’

by the parameter β. In the next section we see how the presence of long durations (β < 1) increases the

kurtosis of the risk-neutral distribution of spot prices.

5. Numerical examples: the impact of waiting times on option prices

In the previous section, we looked at the calibration of risk-neutral parameters for models that explicitly

include waiting times between trades. Here, to gain more insight into the consequences of including

durations, we present two examples of how waiting times affect option prices. These are calculated

by choosing plausible risk-neutral parameters, so that we can focus on the effects of assuming the

ML survival function. The first example assumes that the spacial shocks are Gaussian and the second

example assumes that spacial shocks possess a CGMY distribution (see Carr, Geman, Madan, and Yor

(2002)). In all examples we assumed that τs = 0 and that τo = 1/1,200,000, (i.e. that there are, on

average, 100,000β/Γ(β+1) trades per month, see (24)).

5.1. Gaussian price revisions and ML waiting-times

Figure 3 shows implied volatility (IV) when it is assumed that spacial shocks are Gaussian with mean

zero and volatility σ = 0.3
√

τo. With this choice of volatility, and letting β = 1, the model is asymptot-

ically equivalent to assuming a Black-Scholes model with volatility σbs = 0.30. The Figure shows IV

for different waiting times by choosing β = {0.98,0.96,0.94,0.92} whilst all other parameters remain

unchanged. It is possible to see that the steeper IV becomes for out-of-the-money and in-the-money

values the further away the parameter β is from the exponential case β = 1. This is interesting since it

shows that the inclusion of waiting times that are not exponential, gives rise to the commonly observed

convexity of the IV in the Black-Scholes framework despite the fact that spacial shocks are Gaussian.18

Note that the waiting time affects the convexity of the IV in a symmetric way and does not repro-

duce smirks or skewed IVs. In our framework, market participants include a premium, over and above

the classical Black-Scholes price for out-of-the-money values, to price in the duration times between

trades.
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Another important feature of Figure 3 is the fact that the IV decreases as β decreases. For example,

when β = 0.98 and expiry is T = 20 days, IV is roughly within [0.265,0.27] whereas when β = 0.94

and T = 20, IV is in the range [0.21,0.22]. This result is not surprising, and is in line with the findings

of Engle (2000) and Dufour and Engle (2000). Indeed in our model, the market will exhibit less

activity (understood here as number of trades over a time period) and lower IV the lower β is. This

is also clear in Figure 4 where, still with Gaussian spacial shocks, we fix expiry dates and vary β =

{1,0.98,0.96,0.94,0.92} where the exponential case is included.
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Figure 3. IV across strikes for conditionally Gaussian model with waiting times for β = {0.98,0.96,0.94,0.92}. The
volatility of the zero-mean Gaussian price revisions is σ = 0.3

√
τo, and the parameters for option pricing are r = 5%, D = 0

and S0 = 100. The dash-dotted line corresponds to T = 5 days, the dotted line T = 10 days, the dashed line T = 15 days, and
the solid line T = 20 days.

5.2. CGMY price revisions and ML waiting-times

In this subsection we produce the same results as above, but we allow the distribution of price revi-

sions to exhibit fatter tails than the Gaussian distribution by choosing price revisions with a CGMY

distribution, see Carr, Geman, Madan, and Yor (2002). In our examples below, we assumed that

C = 1.8750× 10−7, Y = 1.5, G = 10, M = 20, this implies that the distribution of the spacial shocks

has negative asymmetry because G < M, and both the left and right tails of the distribution of spacial

shocks are heavier than those of a Normal distribution.
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Figure 4. IV across strikes for conditionally Gaussian model with waiting times for different days to maturity T =
{20,15,10,5} and varying β = {1,0.98,0.96,0.94,0.92}. The volatility of the zero-mean Gaussian price revisions is σ =
0.3
√

τo, and the parameters for option pricing are r = 5%, D = 0 and S0 = 100. Each panel shows how IV varies when
expiry remains fixed and β varies. The solid line represents β = 1, the dashed line corresponds to β = 0.98, the dotted line
corresponds to β = 0.96, the dash-dotted line corresponds to β = 0.94, and circles corresponds to β = 0.92.

In Figure 5 we show IVs across strikes and maturities for different waiting time distributions by

choosing β = {0.98,0.96,0.94,0.92}. In this case we observe that the IVs are more pronounced, as

well as skewed, than those observed in the Gaussian case; a finding more in line with what we observe

in the financial markets. We also observe that for out-of-the-money options the shorter the maturity

is, the steeper the IVs are. Moreover, in Figure 6 we fix the maturity of the option and show that

when we move away from the Markovian case β = 1 the convexity of the volatility smile becomes

more prominent and considerably more pronounced than those obtained with Gaussian price revisions

depicted in, for example, Figure 4.
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Figure 5. IV across strikes for conditionally CGMY model with waiting times for β = {0.98,0.96,0.94,0.92}. The dash-
dotted line corresponds to T = 5 days, the dotted line T = 10 days, the dashed line T = 15 days, and the solid line T = 20
days.
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Figure 6. IV across strikes for CGMY with waiting times for different days to maturity T = {20,15,10,5} and varying
β = {1,0.98,0.96,0.94,0.92}. Each panel shows how IV varies when expiry remains fixed and β varies. The solid line
represents β = 1, the dashed line corresponds to β = 0.98, the dotted line corresponds to β = 0.96, the dash-dotted line
corresponds to β = 0.94, and circles corresponds to β = 0.92.

6. Conclusions

Until now, the financial literature has only considered the question of how waiting-times or duration

between trades affect the dynamics of stock prices. The question of how this random duration affects

derivative prices, has not received much attention. In this article we propose a model that explicitly

incorporates these waiting-times by directly exploiting the arrival of trades in the model. Besides

capturing duration between trades, our model also captures key behavioral characteristics recorded

in the empirical literature such as the non-Markovianity of stock prices, Easley and O’Hara (1992).

Furthermore, by directly employing information given by time-stamps of trades, our approach provides

a direct link between the literature on stochastic time changes and business time (see Clark (1973))

and, at the same time, highlights the link between number and time of arrival of transactions with IV

and stochastic volatility models.

In our model we make the working assumption that waiting-times and spacial shocks are indepen-

dent. Although this assumption is not endorsed by empirical data, it allows us great flexibility in the

modeling of spacial shocks; for example it allows us to assume that price revisions have an infinitely

divisible distribution. For this general case, we are able to price European-style options by solving an
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integro-pde where the standard Lévy-based models (assuming exponentially distributed duration) are a

particular case.

We propose the use of the ML survival function as a candidate to model waiting times. One of the

main advantages is that with the ML it is straightforward to use the usual transform methods employed

in the Lévy process literature relating to finance to price options. As an example, we calibrated risk-

neutral parameters, using IBM options data, to a model with ML waits and Gaussian price revisions

and to a model with ML waits and FMLS price revisions. In both cases the effects of durations were

captured by risk-neutral βs, which were in the vast majority of cases less than one.

As another illustration of our model, we chose to isolate the effect of the waits by calculating

options prices with ML waits and Gaussian revision and with ML waits and CGMY price revisions.

We saw that for different maturities the inclusion of waiting-times that are not exponentially distributed

contribute to the IV observed in financial markets. In particular, when we assume that price revisions

are Gaussian, as described by the classical BS framework, the inclusion of waiting-times (β < 1) is

solely responsible for the emergence of the convexity in the volatility ‘smile’. Moreover, we see that

the level of activity (as the number of trades, over a given time period) is higher the larger β is. We also

observe that, ceteris paribus, IV decreases in β a finding in line with those of Engle (2000) and Dufour

and Engle (2000) which links the relationship of levels of activity and volatility for stock prices.
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Appendix A. Proofs of propositions and the ML function

Proof Theorem 1.

We show that (X(t),H(t)) is described by a stochastic differential equation (SDE), whose coefficients only

depend on the process itself. Then it is well known that (X(t),H(t)) is a time homogenous Markov process.

In between trades, the backward recurrence time H(t) defined in (6) evolves linearly in t and reverts to zero

each time there is a jump in X(t). Therefore H(t) follows the dynamics given by the SDE

dH(t) = dt−H(t−)dNt = dt−
∫

R0

H(t−)zN1(dt,dz) .

where N1(ω,dt,dz) = N1(dt,dz) denotes the integer valued random measure that represents the jump measure of

the counting process Nt . The intensity of the counting process Nt is given by u(H(t)) (see e.g. Jacobsen (2006))

where the hazard function u(t) is given by (2). We can write the predictable compensating measure of N1(dt,dz)

as

ν1(ω,dt,dz) = u(H(t))dtδ1(dz), (A1)

where δ1(dz) is the Dirac measure centered at 1.

Then it follows that the multivariate dynamics of the two-dimensional process (X(t),H(t)) is described by

(
dX(t)
dH(t)

)
=

(
r−D

1

)
dt +


1 0

0 −H(t−)




(
d ∑Nt

i=1 Yi

dN(t)

)
(A2)

=
(

r−D
1

)
dt +

∫

R2
0

(
z1

−H(t−)z2

)
N2(dt,dz1,dz2)

where N2(ω,dt,dz1,dz2)= N2(dt,dz1,dz2) denotes the jump measure of the two-dimensional process (X(t),N(t))

on R+×R2 \{0}. Since the two processes X(t) and N(t) jump at exactly the same times, but with independently

distributed jump sizes, the predictable compensator of N2(dt,dz1,dz2) is given by

ν2(ω,dt,dz1,dz2) = u(H(t))g(z1)dtdz1δ1(dz2). (A3)

Thus the two-dimensional process (X(t),H(t)) is described by SDE (A2) with Lipschitz continuous coefficients

and predictable compensator that only depend on the process (X(t),H(t)) itself (more precisely, on the second

component H(t)). Then it is well known that (X(t),H(t)) is a time-homogenous Markov process.

¥

34



Proof Proposition 1.

We will denote the Fourier transform of a function g(x) by

F [g(x)] = ĝ(ξ) =
∫ ∞

−∞
eixξg(x)dx ,

where ξ ∈ C. Hence, assuming the pay-off G(·) is such that we can invert its Fourier transform,

V (t) = e−r(T−t)EQ[G(X(T )) |Ft ]

= e−r(T−t)EQ
[

1
2π

∫ ∞+iξi

−∞+iξi

e−iξXT Ĝ(ξ)dξ |Ft

]

=
e−r(T−t)

2π

∫ ∞+iξi

−∞+iξi

e−iξ lnS(t)e−iξ(r−D)(T−t)EQ
[

eiξ∑
NT
i=Nt +1 Yi |Ft

]
Ĝ(ξ)dξ , (A4)

where EQ denotes the risk-neutral expectation operator.

¥

Proof Theorem 3.

We will denote the Laplace transform of a function f (t) by

L [ f (t)] = f̃ (s) =
∫ ∞

0
est f (t)dt .

Further, we assume H(0) = 0, i.e. a trade just happened. It will be useful to have an expression for the probability

density function P(n, t) of observing n trades during the time interval [0, t]. Using the survival function (1) the

probability that a trade does not take place before time t is given by

P(n = 1, t) =
∫ t

0
υ(s)ϒ(t− s)ds = (υ?ϒ)(t) ,

where ? denotes convolution. Then the probability of observing n trades over the interval [0, t] is given by

(υn ?ϒ)(t) and taking its Laplace transform yields

P̃(n,s) = υ̃(s)nϒ̃(s) = υ̃(s)n 1− υ̃(s)
s

. (A5)
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Therefore, from Proposition 1, we need to calculate

q̂(ξ,0,T ) = EQ
[
eiξ∑

NT
i=1 Yi

]

= EQ
[
e(NT )Ψ(ξ)

]

L {q̂(ξ,0,T )} = L
{
EQ

[
e(NT )Ψ(ξ)

]}

= L

{
∞

∑
0

P(n,T )enΨ(ξ)

}

=
∞

∑
0

L {P(n,T )}enΨ(ξ)

=
∞

∑
0

P̃(n,s)enΨ(ξ)

=
∞

∑
0

υ̃(s)n 1− υ̃(s)
s

enΨ(ξ)

=
1− υ̃(s)

s

∞

∑
0

υ̃(s)nenΨ(ξ)

=
1− υ̃(s)

s
1

1− eΨ(ξ)υ̃(s)
,

where υ̃ is given by (21). Then

q̂(−ξ,0,T ) = L−1
{

1− υ̃(s)
s

1
1− eΨ(−ξ)υ̃(s)

}

= Eβ,1

[
−

(
1− eΨ(−ξ)

)
(T/τo)β

]
, using (A7) below.

¥

The ML function

In its most general form, the two-parameter Mittag-Leffler function is given by

Eβ,γ(z) =
∞

∑
j=0

z j

Γ(β j + γ)
, β > 0, γ > 0, (A6)

and its Laplace transform, see Podlubny (1999), by

L
{

tβn+γ−1E(n)
β,γ (±atβ)

}
=

n!sβ−γ

(sβ∓a)n+1 , Re(s) > |a|1/γ, (A7)
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where E(n)
β,γ (y) = dn

dyn Eβ,γ(y). This distribution has previously been proposed in the context of financial data in

Mainardi, Raberto, Gorenflo, and Scalas (2000).
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Appendix B. Empirical and fitted Shifted-Mittag-Leffler survival func-

tion
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Appendix C. Calibration of risk-neutral parameters: IBM

Black-Scholes Gaussian Price Revisions FMLS Price Revisions
Date Days to Expiry N σbs RMSE σ β RMSE α σ β RMSE

01-Apr 10 6 0.1446 0.12140 0.0951 0.718300 0.10034 1.99827 0.06713 0.720381 0.10032
10, 35 17 0.1491 0.14639 0.1497 0.999999 0.14639 1.93180 0.08140 0.999999 0.11759
10, 35, 73 30 0.1477 0.15214 0.1448 0.976027 0.15079 1.91621 0.07435 0.963982 0.10618
10, 35, 73, 142 45 0.1498 0.17743 0.1497 1.000000 0.17742 1.89157 0.06914 0.992953 0.10723
10, 35, 73, 142, 185 74 0.1567 0.24712 0.1570 0.999996 0.24712 1.86177 0.06250 1.000000 0.16001

04-Apr 9, 34 16 0.1563 0.18016 0.1570 0.999999 0.18016 1.90989 0.07796 0.984135 0.14663
9, 34, 72 29 0.1529 0.16933 0.1462 0.947338 0.16224 1.91061 0.07354 0.920267 0.12182
9, 34, 72, 141 44 0.1537 0.18544 0.1514 0.978771 0.18397 1.88749 0.06877 0.948755 0.11744
9, 34, 72, 141, 184 73 0.1597 0.24606 0.1454 1.000000 0.24606 1.86465 0.06541 1.000000 0.15745

05-Apr 8, 33 15 0.1572 0.20434 0.1570 1.000000 0.20434 1.88950 0.07413 1.000000 0.12611
8, 33, 71 29 0.1537 0.19048 0.1364 0.961793 0.18714 1.89544 0.07053 0.932977 0.12318
8, 33, 71, 140 44 0.1544 0.19609 0.1536 0.984390 0.19533 1.88100 0.06690 0.951237 0.11161
8, 33, 71, 140, 183 74 0.1608 0.25307 0.1613 1.000000 0.25307 1.86080 0.05814 1.000000 0.15452

06-Apr 7 6 0.1459 0.27556 0.0326 0.117378 0.24506 1.88500 0.06800 0.974588 0.22364
7, 32 18 0.1585 0.22855 0.1454 1.000000 0.22854 1.88467 0.07268 1.000000 0.16242
7, 32, 70 32 0.1538 0.20704 0.1378 0.972736 0.20546 1.90052 0.07208 0.937845 0.15908
7, 32, 70, 139 49 0.1546 0.20260 0.1541 0.990995 0.20236 1.88617 0.06306 0.954191 0.13761
7, 32, 70, 139, 182 78 0.1609 0.24998 0.1613 1.000000 0.24998 1.86709 0.06541 1.000000 0.16340

07-Apr 6, 31 13 0.1610 0.21408 0.1613 1.000000 0.21408 1.87824 0.07268 1.000000 0.13080
6, 31, 69 27 0.1556 0.19003 0.1545 0.988900 0.18970 1.90214 0.07322 0.936459 0.14579
6, 31, 69, 138 42 0.1551 0.19028 0.1544 0.985119 0.18951 1.88835 0.07008 0.937595 0.12588
6, 31, 69, 138, 181 71 0.1611 0.23895 0.1613 1.000000 0.23895 1.87563 0.06871 0.997840 0.15981

08-Apr 5, 30 14 0.1742 0.13930 0.1744 1.000000 0.13930 1.94588 0.10175 1.000000 0.11079
5, 30, 68 28 0.1623 0.20799 0.1483 0.900850 0.17395 1.94092 0.08495 0.892743 0.15418
5, 30, 68, 137 43 0.1599 0.20617 0.1525 0.917617 0.17954 1.91483 0.07830 0.904480 0.13924
5, 30, 68, 137, 180 72 0.1644 0.23653 0.1631 0.980267 0.23537 1.88554 0.07354 0.964589 0.17446

11-Apr 4, 29 14 0.2017 0.41293 0.1461 0.754089 0.18112 1.95482 0.09013 0.746634 0.16867
4, 29, 67 29 0.1813 0.42280 0.1401 0.729480 0.16594 1.93149 0.08061 0.717946 0.13922
4, 29, 67, 136 45 0.1731 0.39049 0.1486 0.769292 0.19610 1.90293 0.07713 0.754112 0.15083
4, 29, 67, 136, 179 75 0.1729 0.34599 0.1627 0.840561 0.26786 1.87363 0.07401 0.823721 0.20864
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Black-Scholes Gaussian Price Revisions FMLS Price Revisions
Date Days to Expiry N σbs RMSE σ β RMSE α σ β RMSE

12-Apr 3, 28 13 0.2008 0.25103 0.1804 0.919815 0.21630 1.91042 0.09258 0.905976 0.17132
3, 28, 66 29 0.1835 0.32599 0.1567 0.839862 0.21727 1.90285 0.07945 0.821585 0.17540
3, 28, 66, 135 46 0.1835 0.32599 0.1567 0.839862 0.21727 1.88379 0.07447 0.819946 0.14963
3, 28, 66, 135, 178 76 0.1762 0.30630 0.1690 0.897703 0.26706 1.86262 0.07191 0.872714 0.19297

13-Apr 27 10 0.2096 0.16953 0.1559 0.716529 0.13426 1.92714 0.09780 0.816297 0.07761
27, 65 25 0.1897 0.28542 0.1415 0.627967 0.14072 1.92726 0.08311 0.631265 0.10060
27, 65, 134 42 0.1805 0.29148 0.1565 0.738285 0.17043 1.90569 0.08299 0.730365 0.11626
27, 65, 134, 177 72 0.1795 0.26729 0.1710 0.850863 0.22443 1.90288 0.08134 0.837758 0.16236

14-Apr 26 10 0.2250 0.24240 0.1578 0.667694 0.20749 1.90260 0.09784 0.835731 0.12398
26, 64 25 0.2005 0.34639 0.1429 0.579937 0.16601 1.92461 0.08451 0.586031 0.12399
26, 64, 133 42 0.1889 0.34845 0.1599 0.699355 0.19184 1.90220 0.08510 0.693662 0.13512
26, 64, 133, 176 72 0.1858 0.30738 0.1747 0.806823 0.23449 1.88370 0.08389 0.794803 0.16881

15-Apr 25 9 0.2334 0.09495 0.2340 1.000000 0.09495 1.98573 0.15556 0.989830 0.09103
25, 63 25 0.2198 0.18612 0.1883 0.809590 0.11980 1.96368 0.11910 0.810394 0.10748
25, 63, 132 42 0.2093 0.23323 0.1878 0.806724 0.12579 1.94344 0.11106 0.801054 0.09952
25, 63, 132, 175 72 0.2064 0.21517 0.1977 0.872084 0.16560 1.91808 0.10508 0.861568 0.12335

18-Apr 24 12 0.2376 0.37424 0.1102 0.309411 0.33296 1.79584 0.06571 0.691509 0.12503
24, 43 28 0.2254 0.32644 0.1577 0.621009 0.27300 1.82344 0.07052 0.663036 0.10927
24, 43, 62 45 0.2202 0.29667 0.1755 0.722059 0.24913 1.83441 0.07546 0.731041 0.10122
24, 43, 62, 131 62 0.2136 0.30080 0.1896 0.806386 0.24552 1.83282 0.07643 0.788706 0.09655
24, 43, 62, 131, 174 92 0.2101 0.28104 0.2002 0.872586 0.24550 1.83692 0.07889 0.846766 0.10924

19-Apr 23 9 0.2174 0.16136 0.1721 0.792012 0.14433 1.93218 0.10918 0.892435 0.09793
23, 42 22 0.2122 0.18431 0.1791 0.823310 0.15987 1.90761 0.09662 0.857251 0.08700
23, 42, 61 39 0.2114 0.17755 0.1916 0.881652 0.16245 1.89752 0.09616 0.895252 0.07924
23, 42, 61, 130 56 0.2069 0.19356 0.1936 0.890708 0.16604 1.88927 0.09234 0.880713 0.07561
23, 42, 61, 130, 173 86 0.2049 0.19220 0.1993 0.926979 0.17585 1.88065 0.09053 0.909808 0.07799

20-Apr 22 10 0.2936 0.29079 0.2151 0.729837 0.26879 1.87858 0.12246 0.893683 0.12163
22, 41 24 0.2753 0.33749 0.1931 0.637909 0.23785 1.88100 0.10203 0.664748 0.12103
22, 41, 60 41 0.2664 0.32226 0.2058 0.694919 0.22032 1.87869 0.10384 0.701882 0.10863
22, 41, 60, 129 58 0.2518 0.38465 0.2105 0.719306 0.22056 1.86959 0.10121 0.709487 0.10886
22, 41, 60, 129, 172 88 0.2375 0.40030 0.2138 0.740331 0.22797 1.85754 0.09785 0.724599 0.11778
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Black-Scholes Gaussian Price Revisions FMLS Price Revisions
Date Days to Expiry N σbs RMSE σ β RMSE α σ β RMSE

21-Apr 21 8 0.2462 0.31792 0.1557 0.611305 0.29378 1.83263 0.08648 0.908230 0.05828
21, 40 21 0.2361 0.28778 0.1839 0.747935 0.24866 1.84694 0.08301 0.779884 0.08370
21, 40, 59 38 0.2310 0.25488 0.1942 0.797014 0.21715 1.85674 0.08691 0.802607 0.08233
21, 40, 59, 128 55 0.2230 0.27027 0.1995 0.825142 0.20996 1.85291 0.08595 0.808750 0.07858
21, 40, 59, 128, 171 85 0.2176 0.26146 0.2065 0.866166 0.21460 1.84636 0.08444 0.843004 0.08862

22-Apr 20 7 0.2348 0.29362 0.1377 0.557621 0.26241 1.83170 0.07641 0.803034 0.04257
20, 39 20 0.2311 0.27635 0.1971 0.842038 0.25989 1.83001 0.07911 0.866790 0.06229
20, 39, 58 37 0.2292 0.25720 0.2067 0.882096 0.24439 1.82901 0.07950 0.883406 0.06089
20, 39, 58, 127 54 0.2214 0.27160 0.2017 0.856904 0.23100 1.82947 0.07832 0.834035 0.06693
20, 39, 58, 127, 170 84 0.2177 0.25953 0.2086 0.897403 0.23183 1.82896 0.07889 0.868423 0.08358

25-Apr 19 10 0.2360 0.47356 0.0851 0.152247 0.37182 1.77059 0.05317 0.481404 0.15181
19, 38 25 0.2312 0.34390 0.1781 0.743105 0.31217 1.82075 0.07367 0.769464 0.16106
19, 38, 57 42 0.2295 0.30081 0.1988 0.835064 0.27982 1.83093 0.07925 0.834099 0.13867
19, 38, 57, 126 59 0.2223 0.30816 0.2014 0.847767 0.26786 1.82662 0.07787 0.823936 0.12114
19, 38, 57, 126, 169 89 0.2173 0.29366 0.2071 0.878604 0.25803 1.82693 0.07810 0.848881 0.11163

26-Apr 18 6 0.2191 0.13784 0.1668 0.780005 0.10583 1.99934 0.11691 0.774004 0.10588
18, 37 18 0.2156 0.15586 0.1877 0.865566 0.13065 1.94931 0.11334 0.873660 0.10663
18, 37, 56 34 0.2167 0.15528 0.2038 0.931347 0.14720 1.93595 0.11535 0.932495 0.11544
18, 37, 56, 125 51 0.2108 0.19254 0.1963 0.892637 0.15659 1.91851 0.10449 0.881957 0.11172
18, 37, 56, 125, 168 81 0.2068 0.20188 0.1996 0.908278 0.17109 1.89700 0.09728 0.891907 0.10417

27-Apr 17 6 0.2186 0.15537 0.1489 0.712010 0.13096 1.94046 0.10199 0.817184 0.08316
17, 36 18 0.2140 0.15489 0.1846 0.860764 0.12586 1.93821 0.10781 0.867373 0.08294
17, 36, 55 34 0.2149 0.16698 0.2004 0.922940 0.15659 1.92013 0.10756 0.922640 0.10423
17, 36, 55, 124 51 0.2084 0.20164 0.1927 0.884829 0.15839 1.91177 0.10031 0.872865 0.10092
17, 36, 55, 124, 167 81 0.2045 0.20725 0.1966 0.904565 0.17217 1.89718 0.09597 0.888060 0.10041

28-Apr 16 7 0.2335 0.19751 0.1392 0.603381 0.14249 1.93240 0.09535 0.721569 0.07978
16, 35 20 0.2275 0.20405 0.1895 0.829267 0.16881 1.91423 0.10343 0.842242 0.09397
16, 35, 54 37 0.2253 0.20123 0.1996 0.866456 0.17360 1.90432 0.10254 0.867924 0.09543
16, 35, 54, 123 54 0.2179 0.23443 0.1980 0.858403 0.17515 1.89410 0.09736 0.845847 0.08714
16, 35, 54, 123, 166 84 0.2119 0.23656 0.2013 0.875442 0.18031 1.88485 0.09490 0.857824 0.08400
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Black-Scholes Gaussian Price Revisions FMLS Price Revisions
Date Days to Expiry N σbs RMSE σ β RMSE α σ β RMSE

29-Apr 15 6 0.2215 0.12008 0.1553 0.736213 0.08523 1.99999 0.11082 0.742261 0.08525
15, 34 17 0.2205 0.14083 0.2025 0.920912 0.12860 1.96331 0.12676 0.923427 0.11431
15, 34, 53 33 0.2211 0.15083 0.2118 0.951754 0.14565 1.94189 0.12128 0.949849 0.11655
15, 34, 53, 122 50 0.2151 0.18489 0.2018 0.906645 0.14983 1.93003 .111606 0.896408 0.11241
15, 34, 53, 122, 165 80 0.2105 0.19635 0.2031 0.912868 0.16180 1.91137 0.10386 0.898212 0.10610

02-May 14 5 0.2290 0.27764 0.0823 0.261493 0.15757 1.92113 0.06444 0.445254 0.08383
14, 33 18 0.2248 0.25097 0.1911 0.853769 0.22727 1.88115 0.09171 0.862769 0.11872
14, 33, 52 35 0.2226 0.22346 0.2001 0.886397 0.20390 1.88495 0.09536 0.882423 0.10679
14, 33, 52, 121 52 0.2175 0.23294 0.2022 0.896346 0.19974 1.87778 0.09249 0.878115 0.09291
14, 33, 52, 121, 164 82 0.2128 0.23619 0.2043 0.905821 0.20286 1.86820 0.08954 0.883192 0.08246

03-May 13 5 0.2200 0.15755 0.1284 0.621416 0.10695 1.95551 0.08675 0.669594 0.07296
13, 32 16 0.2152 0.16671 0.1856 0.871787 0.13568 1.93963 0.10793 0.872032 0.09189
13, 32, 51 32 0.2166 0.18103 0.2041 0.935952 0.17291 1.91551 0.10623 0.931162 0.11538
13, 32, 51, 120 49 0.2130 0.18928 0.2031 0.930869 0.17064 1.90509 0.10150 0.915566 0.10123
13, 32, 51, 120, 163 79 0.2103 0.20033 0.2046 0.940809 0.18496 1.88715 0.09475 0.921092 0.09448

04-May 12, 31 15 0.2113 0.17191 0.1948 0.931329 0.16351 1.93085 0.10751 0.918234 0.12925
12, 31, 50 32 0.2140 0.18295 0.2093 0.979913 0.18216 1.90714 0.10392 0.964360 0.12560
12, 31, 50, 119 49 0.2104 0.19264 0.2030 0.947152 0.18198 1.89506 0.09677 0.925302 0.11161
12, 31, 50, 119, 162 79 0.2080 0.20165 0.2035 0.950344 0.19090 1.88057 0.09179 0.925543 0.09917

05-May 11, 30 14 0.2137 0.20835 0.2078 0.976319 0.20751 1.91977 0.10787 0.945693 0.17370
11, 30, 49 30 0.2180 0.21121 0.2180 1.000000 0.21121 1.90003 0.10477 0.983502 0.15584
11, 30, 49, 118 47 0.2143 0.20566 0.2084 0.957260 0.19910 1.89242 0.09804 0.928399 0.13475
11, 30, 49, 118, 161 77 0.2114 0.20562 0.2074 0.953734 0.19663 1.88030 0.09330 0.923950 0.11336

06-May 10 9 0.2173 0.72244 0.0575 0.090412 0.64069 1.60222 0.02533 0.331809 0.34102
10, 29 22 0.2171 0.54819 0.1765 0.825221 0.53545 1.66691 0.03688 0.773434 0.28549
10, 29, 48 39 0.2203 0.45614 0.2038 0.922345 0.45220 1.71998 0.04793 0.858471 0.24774
10, 29, 48, 117 56 0.2153 0.41119 0.2028 0.914298 0.40001 1.74354 0.05310 0.848558 0.21435
10, 29, 48, 117, 160 86 0.2119 0.36243 0.2049 0.926622 0.35100 1.77206 0.06015 0.867371 0.18471

Table 4
IBM risk-neutral parameters April-May 2006
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Notes

1Below we discuss in detail how consolidated trades from the TAQ database were employed.

2In fact, a Kolmogorov-Smirnov test clearly rejects the hypothesis that the data came from an ex-

ponential survival function.

3The early work of Osborne (1959) already introduces the notion of number of transactions, per

unit of time, as a measure of market activity.

4In the language of counting processes the process ∑Nt
i=1Yi is called a (0-delayed) renewal process.

5In Clark (1973) price dynamics are modeled by subordinating Brownian motion to operational

time which is measured by trading volume; in Carr, Geman, Madan, and Yor (2003) the persistence

of volatility is formulated by evaluating Lévy processes at stochastic times. And in a broader sense

one may interpret stochastic volatility models as instruments that also measure the evolution of the

operational clock.

6This is equivalent to assuming that the distribution of durations under the physical and risk-neutral

measures are different.

7In the rest of the paper we will not include the leverage effect.

8We calculate this arbitrary duration strictly greater than zero in the following way. Out of all the

zero-duration trades we count how many times there were two trades within one second, three trades

within one second, etc. Then we calculate a weighted average of number of trades within one second

and assume that these occur within 0.5 second instead of deleting them from the sample. Furthermore,

for simplicity we do not alter the duration of the trade following those zero-duration trades for which

we assigned a non-negative duration.

9The constant a could be a function of the parameter β.

10To arrive at expression (20) we use the property that

L{v(t)}= L
{
−dϒ(t)

dt

}
=−sL{at−β}+ϒ(0) =−aγ(1−β)sβ +1,
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and restrict 0 < β≤ 1 to have a valid (monotonic) survival function.

11Here we use the characteristic function

E
[
eiξ∑NT

i=1 Yi |Fs

]
= Eβ,1

[
−

(
1− eΨ(ξ)

)
((T − s)/τo)β|Fs

]
,

where eΨ(ξ) is the characteristic function of Y , to calculate the expectation of the number of trades.

12There are a number of articles in the literature that use transform techniques to price and calibrate

options, see for example Carr and Wu (2003), Carr and Wu (2004).

13Note that we must require eΨ(−ξ) to be analytic in a line that intersects [−∞ + iξ̂,∞ + iξ̂] where

ξ̂ > 1.

14For further information on methodology (dividend treatment, processing of BBA Libor rates, etc.)

see http://wrds.wharton.upenn.edu and the Ivy DB File and Data Reference Manual.

15 We do not calibrate to lots where there are less than 5 options.

16For simplicity we assumed that τo remained the same under both the physical and statistical mea-

sure (see Table 2 for IBM) and that τs = 0.

17Note that τo = 4∗528,195 where 528,195 is in Table 1 for IBM under ‘All trades’ over the period

April-June 2005.

18Figure 3 does not include the case β = 1 where IV becomes 0.30 for all expiries as expected.

However, the case β = 1 can be seen in Figure 4.
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