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Commonality in Misvaluation, Equity Financing,

and the Cross Section of Stock Returns

Behavioral theories suggest that investor misperceptions and market mispricing will be cor-
related across firms. This paper uses equity financing to identify comovement in returns and
commonality in misvaluation. A zero-investment portfolio (UMO, Undervalued Minus Overvalued)
built from repurchase and new issue stocks captures excess comovement in general stock returns
relative to a set of multi-factor models. Adding UMO to the 3-factors makes the alphas insignificant
for portfolios with extreme size and book-to-market, or based on M&A, convertible bond issuance,
and dividend initiation, resumption, and omission. The loadings on UMO incrementally predict
the cross-section of returns on portfolios as well as individual stocks. Further evidence is consistent

with the UMO loading proxying for the common component of a stock’s misvaluation.



Introduction

Several recent behavioral models predict commonality in the misvaluation of firms. In some models,
such commonality occurs because investors use past values of aggregate stock market indices as
reference points (see, e.g., Barberis, Huang, and Santos (2001), Barberis and Huang (2001)). In
the style investing approach of Barberis and Shleifer (2003), commonality in misvaluation arises
when investors irrationally become enamored or disillusioned with publicly observable stock char-
acteristics, inducing positive comovement among stocks with similar characteristics and negative
comovement in stocks with dissimilar characteristics. In the overconfidence approach of Daniel,
Hirshleifer, and Subrahmanyam (2001), investors misinterpret what they perceive to be private
information about the genuine economic factors influencing firms’ profits. Thus, sets of stocks with
similar loadings move together as information about factors arrives, is misinterpreted, and is later
corrected.

From a behavioral perspective, characteristics such as book-to-market can reflect either firm-
specific mispricing or misvaluation of systematic economic factors. Thus, evidence that stock
characteristics such as size, book-to-market, or momentum predict the cross section of future returns
does not resolve whether there is systematic or merely firm-specific mispricing.!

Some theoretical arguments suggest that most mispricing will be idiosyncratic, but others sug-
gest that common mispricing is more important. If investors devote less resources to the study of
an idiosyncratic payoff component than to a common one such as the market as a whole, then we
expect to see more mispricing in obscure, idiosyncratic corners of the market.? On the other hand,
in the model of Daniel, Hirshleifer, and Subrahmanyam (2001), in frictionless markets idiosyncratic
mispricing can be arbitraged away with low risk through the use of hedge portfolios, and it is the
mispricing of common factors that remains. Style investors and overconfident investors may trade

in ways that cause either idiosyncratic or common mispricing.3

'Fama and French (1993) establish the book-to-market and size effects are associated with common factors, and
suggest a rational risk explanation. Carhart (1997) links the momentum effect to common factors. An additional
literature refines, tests, and in some cases disputes the risk premium interpretation of the 3- or 4-factors model (e.g.,
Daniel and Titman (1997), Griffin and Lemmon (2002), and Hou, Peng, and Xiong (2007)).

2There is evidence that some anomalies are stronger within the idiosyncratic component of returns (Grundy and
Martin (2001), Hou, Peng, and Xiong (2007)).

3Investors do seem to think that they can acquire private information about aggregate factors, as evidenced by
the active industry selling macroeconomic forecasts, and the demand for industry and market earnings forecasts by
stock analysts. Investors speculate based upon opposing beliefs in macroeconomic markets such as CPI futures. More
generally, there are market timers who place bets against each other based on their beliefs about market aggregates,



So on prior grounds, a case can be made for either idiosyncratic or systematic mispricing. It is
therefore useful to test whether or not mispriced stocks comove, and whether measures of sensitivity
to factor mispricing can be used to predict the cross section of stock returns.

Equity financing and payout decisions provide a way to attack these questions. Theoretical
and empirical research suggest that corporate managers undertake financing decisions to take ad-
vantage of both firm-specific and common misvaluation. Theoretical models suggest that issuing
or repurchasing shares to take advantage of inefficient stock mispricing can benefit a firm’s ex-
isting shareholders, and can cause such activity to predict future returns (Stein (1996), Daniel,
Hirshleifer, and Subrahmanyam (1998)). Empirically, evidence from equity financing and long-run
returns suggests that firms tend to issue equity when their shares are overvalued, and to buy back
equity when their shares are undervalued (Loughran and Ritter (1995), Ikenberry, Lakonishok, and
Vermaelen (1995)).# Furthermore, the aggregate share of equity issuance in new issues is one of
the stronger known predictors of future aggregate market returns (Baker and Wurgler (2000)).

Building upon this work, in this paper we use equity financing activities to identify common-
ality in misvaluation, or what we call factor mispricing, and test whether sensitivities to common
movements in misvaluation predict the cross-section of asset returns. We define a misvaluation
factor (or mispricing factor) as any statistical common factor in stock returns that is substantially
correlated with the mispricing of individual stocks. Commonality in misvaluation can occur when
investors misinterpret signals about a fundamental economic factor, or when there are shifts in
investor sentiment about firm characteristics or ‘styles’.

If firms undertake new issues or repurchases to exploit mispricing, such events should reflect
information possessed by managers about stock mispricing (above and beyond other observable
characteristics such as equity book-to-market). Therefore, we will argue that issue and repurchase
firms should have extreme sensitivities to mispricing factors. Regardless of whether the comovement
in misvaluation arises from misvaluation of fundamentals, or from style-based sentiment, new issue
and repurchase stocks are predicted to comove (even after controlling for familiar factors such
as HML). We can therefore construct a misvaluation factor by going long on repurchase stocks

and short on the new issue stocks. This misvaluation factor is predicted to have a nonnegligible

and investors who look for industry plays such as oil or bio-tech stocks.
4Section 1.3 discusses evidence of long-run risk-adjusted underperformance after new issues and overperformance
after repurchases.



positive variance, even after controlling for the market or other well-known factors. We call this
misvaluation factor UMO (Undervalued Minus Overvalued).

We further hypothesize that the loadings of general firms (not just those firms that have recently
engaged in issuance or repurchase activities) on UMO are proxies for systematic underpricing, and

> This hypothesis implies that firms’ financing

therefore will positively predict future returns.
decisions contain information for predicting returns that has not hitherto been exploited.

To see why UMO loadings are proxies for systematic mispricing, consider for example an oil
price factor that affects firms’ cash flows, and suppose that investors irrationally expect oil prices
to be low. Repurchasers will tend to be firms that are undervalued, which occurs if their profits
are positively sensitive to oil prices (e.g., a solar power product vendor), whereas equity issuers will
tend to be firms that are overvalued because their profits are negatively sensitive to oil prices (e.g.,
an airline). Furthermore, firms whose profits are hurt by low oil prices will load positively on UMO
since UMO is long on firms that do poorly when oil prices are low. Similarly, firms that benefit
from low oil prices will load negatively on UMO.

Alternatively, common mispricing can be caused by shifts in investor sentiment associated with
different investment styles (rather than misperceptions of signals about fundamental factors). For
example, suppose that investors become enamored with high-tech firms. Then repurchases will be
common among undervalued low-tech firms, and new issues among high-tech firms. Low-tech firms
in general will tend to load positively on UMO because their returns are more highly correlated
with the low-tech firms that are engaging in repurchase than with the high-tech firms that are
engaging in new issue.

Both lines of reasoning—based on investor misvaluation of fundamental factors, or on shifts
in sentiment toward investment styles—imply that a firm that loads positively on the mispricing
factor, UMO, will on average be undervalued. As a result, loadings on the mispricing factor will
positively predict high subsequent returns as information about future fundamentals resolves.

Of course there are rational reasons for equity financing other than exploiting temporary stock
misvaluation. For example, if investment is rationally undertaken in response to low project risk,

then high investment will be associated with low subsequent returns. We address rational alterna-

®Daniel, Hirshleifer, and Subrahmanyam (2005) provide a model in which loadings on factor portfolios constructed
from price-based characteristics such as book-to-market are proxies for misvaluation.



tive hypotheses by controlling for a set of benchmark factors, including the Fama French factors,
the momentum factor, the leverage factor (Ferguson and Shockley 2003), the investment factor
(Lyandres, Sun, and Zhang 2008), as well as industry effects in our tests.5

We show that UMO contains commonality in stock returns beyond that implied by above
benchmark factors. First, we examine whether UMO returns can be explained by these benchmark
factors. As a well-diversified portfolio, the R? from regressing UMO on the benchmark factors
should be close to 1 unless it captures a distinct incremental source of commonality. In other
words, the variance of the residual in such a regression should be substantially greater than that
associated with long-short portfolios with randomly-selected stocks. We find that it is indeed the
case. In addition, we find that general securities, such as the 25 size and book-to-market portfolios,
share return excess comovement with UMO controlling for the benchmark factors.

We provide four types of evidence that UMO can be used to achieve high returns and predict
the returns of general stocks. First, in regressions of UMO on a set of benchmark factors, UMO
delivers significant abnormal returns of 6-10% per annum. Second, UMO also produces a higher
Sharpe ratio than each of the benchmark factors but the investment factor. It increases the Sharpe
ratio of the ez post tangency portfolio by over 50% relative to the Fama-French factors.” MacKinlay
(1995) argues that the returns provided by the Fama French factors are too large to make sense
from a rational asset pricing perspective; the higher Sharpe ratio produced by UMO presents an
even greater challenge.

Second, a well-known anomaly is that the 3 or 4-factor models price four corner portfolios with
extreme size and book-to-market equity very poorly. We find that adding UMO into standard
time-series asset pricing regressions on the 3 or the 4 factors substantially reduces these well-known
pricing errors. While the investment or the leverage factor mildly reduces the pricing errors of one
or two of the corner portfolios, adding UMO to the 3 or 4 factor models makes the pricing errors
of the four corner (not only small growth or large value, but also small value and large growth)
portfolios insignificant. In general, including UMO in almost all of the factor models (where other

possible factors are included or omitted) causes a failure to reject the null that all 25 size and

5We also consider in Section A of the Appendix other controls as robustness checks, including the macro economic
factors suggested by Eckbo, Masulis, and Norli (2000) and Fama-French factors purged of new issue firms (see, e.g.,
Loughran and Ritter (2000)).

"This Sharpe ratio represents the maximum Sharpe ratio achievable by investing in these factors.



book-to-market portfolios are properly priced.

Third, prior literature has shown anomalous price drift following a set of selective corporate
events in a similar spirit to equity issuances and repurchases; managers take actions to exploit stock
market mispricing in order to benefit existing shareholders. Such events include, for example, merg-
ers & acquisition (Loughran and Vijh 1997), convertible bond issuance (Lee and Loughran 1998),
dividend initiation, resumption, and omission, (Michaely, Thaler, and Womack 1995; Boehme and
Sorescu 2002). We show that adding UMO to the 3-factors essentially eliminates the abnormal
return associated with M&A (from —0.36% per month to 0.05%), and convertible bond issuance
(from —0.39% to —0.03%), and significantly reduces that associated with dividend initiation and
resumption (from 0.24% to 0.16%) and dividend omission (from —0.28% to —0.21%). All statistical
significance of these intercepts in a 3-factor model vanishes once UMO is included.

Fourth, at both the portfolio and the firm levels, assets with higher UMO loadings on average
earn higher subsequent returns. At the portfolio level, we estimate UMO loadings from previous
5-year monthly returns. At the firm level, we obtain UMO loadings from two approaches that
account for the transitory nature of firm-level mispricing. In one, we estimate UMO loadings from
daily returns of individual stocks over a relatively short period, e.g., 3 to 12 months. In the other,
we assign stocks the loadings of portfolios that are matched by relevant firm characteristics that are
potentially related to mispricing, including size, book-to-market, and the composite share issuance
measure (Daniel and Titman (2006)).

In the above portfolio approaches, UMO loadings predict the cross-section of portfolio returns
after controlling for the loadings on the benchmark factors, with an estimated UMO premium of
about 5%-10% per annum. At the firm level, UMO loadings have incremental power to predict
returns after controlling for size, book-to-market equity, past short-run and long-run returns, indus-
try dummies, and the 3-factor loadings. This evidence is consistent with the proposition that the
equity financing decisions of managers contain information about the common component of stock
mispricing, above and beyond firm characteristics such as size and book-to-market equity. Fur-
thermore, neither the UMO loadings nor the issuance/repurchase characteristic variable, proxied
by the composite share issuance measure (Daniel and Titman (2006)), subsumes the power of the
other to forecast stock returns. This finding is consistent with behavioral theories that imply that

covariances and characteristics will in general both have incremental power to predict stock returns



(Daniel, Hirshleifer, and Subrahmanyam (2005)). An alternative possibility is that characteristics
are proxies for measurement errors in the loadings.

In addition to these four kinds of evidence that the information contained in new issues and
repurchases helps predict the returns of other stocks, we also provide evidence that security load-
ings on the UMO factor are much less stable than the loadings on several well-known proposed
fundamental factors. UMO loadings are much less stable than the loadings on the 3 factors, and
have a period of stability much shorter than the period usually presumed (3-5 years) in standard
asset pricing tests for fundamental risk. Following Fama and French (1992), we estimate the pre-
ranking UMO loadings for individual stocks using 3-5 years of monthly returns and the post ranking
loadings from portfolios constructed based on pre-ranking loadings. We find that, UMO loadings
are much more likely to flip signs than loadings on the 3 factors, and that sorting stocks based on
pre-ranking UMO loadings create little dispersion in the post-ranking period.

In a behavioral setting, loadings on the mispricing factor, UMOQO, are proxies for systematic
underpricing. Overreactions to factor signals cause fundamental factors to become overpriced at
certain times and underpriced at others, while shifts in investor sentiment lead investment styles
to become ‘hot’ or ’cold’ over time. As a result, individual stocks that load on the mispriced
fundamental factors or style factors will inherit the factor under- and overpricing accordingly. Since
UMO is constructed to be long on underpriced factors and short on overpriced ones, UMO loadings
of individual stocks will shift signs to reflect the shifts in factor or style mispricing. Therefore, we
expect UMO loadings to be unstable (see the discussion in Section IIL.5).

This paper contributes to the growing strand of literature on market inefficiency as a possible
source of stock return comovement (Lee, Shleifer, and Thaler (1991), Barberis, Shleifer, and Wur-
gler (2005), Goetzmann and Massa (2005), Barber, Odean, and Zhu (2007), Baker and Wurgler
(2006, 2007), Brown, Goetzmann, Hiraki, Shiraishi, and Watanabe (2008), Boyer (2008), and Hir-
shleifer and Jiang (2009)). Alternatives are possible to our choice of financing decisions to identify
commonality in misvaluation, such as valuation-based characteristics such as size or book-to-market
(Daniel, Hirshleifer, and Subrahmanyam (2001)) or discretionary accruals (e.g., Teoh, Welch, and
Wong (1998), Polk and Sapienza (2009)). A difference is that the decision to issue or repurchase
equity, under existing behavioral theories, reflects the beliefs of management about whether the

stock is mispriced; it therefore provides an overall measure of mispricing based on information not



otherwise detectable to the econometrician. Furthermore, using this proxy we can still control for
book-to-market or HML loadings to filter away as the effects of growth opportunities as much as

possible.

I Motivation and Hypotheses

I.1 Rational Factor Pricing Models

In rational factor pricing models such as the intertemporal CAPM, in the cross section expected
returns of different stocks increase linearly with the stocks’ loadings on return factors. Only factor
covariance is ‘priced,” so after controlling for factor loadings no other publicly available information
can be used to predict returns. Furthermore, the size of expected returns must be commensurate
with risk and the degree of risk aversion. For example, at the aggregate level the excess return
on the market is determined by its volatility and by investor risk aversion; the apparent failure of
this prediction is the equity premium puzzle (Mehra and Prescott (1985)). Similarly, in the cross
section, Hansen and Jagannathan (1997) bounds limit the magnitude of Sharpe ratios on stocks in
relation to the variability of intertemporal marginal utilities of substitution, where such variation
in marginal utilities is driven by the interaction of risk with risk aversion.

There are several possible reasons why priced risk in a rational asset pricing model may be re-
lated to equity financing. First, as discussed in the introduction, equity issuance decreases leverage,
which should reduce factor loadings and premia (e.g., Eckbo, Masulis, and Norli (2000)). Also, an
implication of this argument is that shifts in leverage changes should explain the returns of new
issue firms. Similarly, commonality in return predictability associated with financing should be
explained by leverage effects.

Second, a shift in a firm’s loadings which decrease its risk premium/discount rate should cause
it to increase planned investment (Berk, Green, and Naik 1999). This implies greater need to issue
equity to fund investment, so we expect issuers to have lower risk premia. Of course, the proceeds of
new issues are not always invested. So an implication of this argument is that the ability of equity
issuance to predict returns should be explained by investment. Similarly, comovement among firms
involved with financing transactions should derive from comovement among firms with unusual

investment levels (Lyandres, Sun, and Zhang 2008). Furthermore, the ability of a financing factor



to explain the cross section of returns should be largely subsumed by an investment factor.

In summary, rational factor pricing provides three main predictions for the cross-section of
returns: that expected returns increase linearly with factor loadings; that after controlling for
factor loadings, expected returns do not vary with any other publicly observable variables, and
that the magnitude of the premium for factor risk is not too large relative to the size of the
risk. More specific versions of rational factor pricing suggest further possible implications: that
the ability of financing decisions to predict returns should be explained by leverage effects, or by

investment effects.

1.2 Behavioral Models

We contrast the rational factor pricing predictions of the preceding subsection with behavioral
hypotheses based upon the style investing model of Barberis and Shleifer (2003) and the overcon-
fidence model of Daniel, Hirshleifer, and Subrahmanyam (2001).® In the model of Barberis and
Shleifer (2003), stocks comove with two factors, a market factor, which captures market-wide cash
flows, and a style factor, which represents commonality in sentiment for styles of stocks (such as
size, value versus growth, or high-tech versus low-tech). Investors shift between styles based on past
relative performance between style funds. Accordingly, the demand for different kinds of stocks
varies according to their sensitivity to different style factors and to past style performance. Stocks
whose styles have performed well become overpriced, leading eventually to low returns. Therefore,
this model predicts that common shifts in investor style investing cause commonality in mispricing.

In the model of Daniel, Hirshleifer, and Subrahmanyam (2001), overconfident investors over-
estimate signal precision and, accordingly, overreact to private signals about payoffs of economic
factors, which creates mispricing of factor payoffs and of all securities whose cash flows are derived
from these factors. In equilibrium, securities that load heavily on mispriced factors will be more
misvalued. Thus, systematic mispricing results from investors’ biased interpretation of factor cash
flow information and reflects overreaction to cash flow news about fundamental factors.

Both behavioral models imply ezcess return comovement among securities, which we define as

8Several other models also imply non-fundamental commonality in asset price movements. For instance, the
prospect theory model of Barberis, Huang, and Santos (2001) suggests that stocks comove when investors’ risk
attitudes shift in response to market returns. The model of Kyle and Xiong (2001) implies common shifts in asset
prices due to the simultaneous liquidation of multiple assets by convergence traders, after wealth shocks.



comovement in stock returns that deviates (either positively or negatively) from the fundamentals-
based comovement that would exist in an efficient market based upon common fundamental influ-
ences. Systematic mispricing can be correlated with fundamental cash flow factors, but does not

have to be.

1.3 Equity Financing

A motivation for our tests is past evidence suggesting that the post-event long-run performance of
new issues and repurchases reflect correction of mispricing as opposed to changes in rational risk
premia. There is much evidence that managers tend to issue equity to exploit equity overpricing for
the interests of existing shareholders. For example, Loughran and Ritter (1995, 2000) and Spiess and
Affleck-Graves (1995) find that firms that engage in IPOs and SEOs on average underperform for
three to five years subsequent to the issue.’ Consistent with the market timing theory, Graham and
Harvey (2001) find that a majority of CFOs say that stock mispricing is an important motive to issue
equity. Similarly, Lakonishok and Vermaelen (1990) and Ikenberry, Lakonishok, and Vermaelen
(1995) show that firms tend to repurchase equity when they perceive undervaluation and repurchase
firms on average overperform in the subsequent three years.

Furthermore, there is evidence that the underperformance associated with new issue firms is
shared by other firms with similar characteristics (Li and Zhao 2006). It is also shown that aggregate
equity issuance is correlated with market valuations and can forecast aggregate returns (e.g., Ritter
(1984), Loughran, Ritter, and Rydqvist (1994), Baker and Wurgler (2000), and Lowry (2003)).
These findings are consistent with equity issuance responding to sector- or market-wide mispricing.

The preponderance of evidence supports misvaluation rather than risk as an explanation for
the new issues puzzle (e.g., Loughran and Ritter (2000)). Jegadeesh (2000) documents that the
stock market reacts unfavorably to earnings announcements subsequent to new issues, consistent
with expectational errors (assuming that betas are not exceptionally low on earnings announcement
dates). A rational risk-based explanation for the new issues puzzle seems to require that recent

issuers have unusually low risk. However, it has not so far been established that new issue firms

9Brav, Geczy, and Gompers (2000) conclude that a modified 3-factor benchmark based on AMEX and NASDAQ
stocks captures post-IPO but not post-SEO underperformance. Loughran and Ritter (2000) argue that conclusions
for post-IPO performance are sensitive to details of the data selection criteria.



are a good hedge for aggregate consumption.'®

Finally, a few recent studies show that firm-level measures of corporate equity financing are
negatively related to subsequent stock returns in the post-1970 period (e.g., Daniel and Titman
(2006), Pontiff and Woodgate (2008)). These studies, however, do not test whether equity financing
is associated with systematic mispricing. Hirshleifer and Jiang (2009) test for shifts in comovement
of firms that engage in equity financing with previous equity issuers or repurchasers. Our paper
differs in focusing on the level of comovement of general stocks with equity-financing firms to show
that return covariance with respect to a factor based on equity financing events forecasts portfolio

and firm-level stock returns.

1.4 Hypotheses

We focus our hypotheses on the predictions of behavioral models, with the predictions of rational
factor pricing as the key alternative. Existing behavioral models predict that either misperception of
signals about fundamental factors, or investor sentiment about styles can create common mispricing
of many assets, and that firms make financing decisions in response to the systematic (as well as
the firm-specific) component of their mispricing. As a result, we argue that a security’s loading
on common movements in mispricing measures the degree to which it inherits general mispricing,
so that loadings on the mispricing factor should positively predict security returns. If firms often
undertake financing decisions in response to mispricing (including common mispricing), then new
issue and repurchase firms will tend to load heavily on mispricing factors. Therefore, to identify
commonality in misvaluation empirically, we can make use of corporate financing events such as
equity issuances and repurchases.

Specifically, a misvaluation factor (UMO) that is long on repurchase stocks (Undervalued) and
short on new issue stocks (Overvalued) should capture comovement associated with mispricing. In
testing for commonality in misvaluation, there is a question of what measures of risk to control
for, since there are now many factor models in the literature. There is a tradeoff, because it is
desirable to control for rational risk effects as much as possible, but there is a danger that factor

pricing control is actually a proxy for misvaluation. (In the context of the Fama and French 3-

%Tndeed, Ritter and Welch (2002) estimate a market beta of 1.73 for an equal-weighted portfolio of IPOs. Intuitively
it seems likely that IPO firms, which consist largely of growth opportunities, would be highly sensitive to other factors
as well. This does not, however, rule out the possibility that a risk-based explanation exists.

10



factor model, see Daniel and Titman (1997). In the context of the investment factor, Polk and
Sapienza (2009) suggests that investment is related to mispricing.) There is no perfect solution,
but for reported tests we focus on the most commonly used 3-factor model (Fama and French
1993), and those augmented by the momentum factor (Carhart 1997), the leverage factor (Ferguson
and Shockley 2003), or the investment factor (Lyandres, Sun, and Zhang 2008), and call them the
‘benchmark factors’ hereafter. Our robustness checks in Section A of the Appendix further consider
the macroeconomic factors of Eckbo, Masulis, and Norli (2000), and the 3-factors purged of new
issues of Loughran and Ritter (2000).t

Based on the abovementioned behavioral models, we formulate the following testable hypotheses
about UMO. Section B of the Appendix formally derives these predictions in a model based on
the approach of Daniel, Hirshleifer, and Subrahmanyam (2001).!2 These hypotheses, however, are
intuitive and would apply in other behavioral modeling specifications as well.

We now lay out several empirical predictions and discuss the justification for each in turn.

Prediction 1: UMO will have non-negligible positive variance, and in a time-series regression
of the misvaluation factor UMO on benchmark factors, the variance of the residual terms will be

substantially above that of randomly generated long-short portfolios.

In general, if we randomly form a zero-investment portfolio with many securities that is well-
diversified on both the long and short side, the loadings on underlying factors will on average be
close to zero, and idiosyncratic risk diversifies as well, so that portfolio return variance is close to
zero. Prediction 1 asserts that forming a long-short portfolio based upon firms’ financing decisions
causes loading on some underlying factor(s), resulting in substantial positive variance.'?

Prediction 1 further asserts that financing decisions identify a factor that is not explained by
the benchmark factors, i.e., that the existing factors will provide an R? substantially less than one

in explaining its variability, so that there is substantial variation in UMO that cannot be explained

by the benchmark factors. To have a reference against which to identify excess comovement, we

1Gection A of the Appendix provides evidence of additional robustness checks.

12Section B of the Appendix shows that the intuitive hypothesis development we provide can be supported by
formal analysis.

13Prediction 1 with the three or four factors as right hand side variables is not a mere rephrasing of the well-known
fact that the three and four factor models do not price the returns on new issue and repurchase portfolios. That
well-known fact is a statement about the relation of portfolio mean returns to the loadings on the three or four factors.
Prediction 1 is a statement about the variation in realized returns that these factor models are unable to explain.

11



compare the variance of the residuals from regressing UMO on a set of benchmark factors with that
from regressing a long-short (also equal-weighted) portfolios of randomly selected stocks, where the
number of stocks is the same as those on both sides of UMO.

Under the behavioral approach, UMO captures the spread in subsequent returns between cur-
rently underpriced versus overpriced firms. Models of inefficient markets such as those of DeLong,
Shleifer, Summers, and Waldmann (1990), Daniel, Hirshleifer, and Subrahmanyam (2001), and
Barberis and Shleifer (2003) imply that variation in UMO cannot be fully explained by funda-
mental cash flow factors, because there are common fluctuations in prices owing to sentiment or

investor misperceptions of private information signals.'

Prediction 2: General stocks will have return comovement with UMO, even after controlling for

the benchmark factors.

While fundamental factors move returns, the UMO misvaluation factor will incrementally move
returns since the effects of overconfidence or sentiment are imperfectly correlated with fundamentals.
If there is commonality in mispricing, we expect mispricing to be shared by stocks (including
those not involved with recent financing and payout activities) that load on the same mispriced
fundamental factors, or that possess mispriced style characteristics. In either case, such stocks
will have return comovement on the misvaluation factor, UMO, even after controlling for proxies
for possible fundamental factors, which, in our tests, include the Fama French factors, and the
momentum, investment and leverage factors. Furthermore, those stocks that load in a similar way
to repurchase stocks will positively comove with UMO, while those that load in a way similar to
new issue stocks will negatively comove with UMO.

For instance, in the example discussed in the introduction, when investors irrationally believe
that the oil price will be low, airlines will be overpriced and tend to issue while the solar product
vendor underpriced and repurchase. Accordingly, firms that benefit from low oil prices will load

negatively on UMO and those that are hurt will load positively on UMO.

Prediction 3:

4There has been debate about whether the size and the book-to-market factors are proxies for risk or mispricing.
If they reflect mispricing, they may capture part of the irrational fluctuations in stock returns that UMO is designed
to capture. Nevertheless, it is interesting to verify whether UMO captures commonality beyond that captured by
other well-known factors. There is reason to hope so since managers’ information is not limited to the firm’s size and
book-to-market.
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a. In time series regressions, adding a UMO factor will reduce the pricing errors of the models
based on benchmark factors on general stocks or stocks with selective corporate events.

b. The loadings on UMO will forecast the cross section of stock returns.

c. If there is firm-specific as well as common misvaluation, then the issuance/repurchase charac-

teristic will have incremental ability to predict returns after controlling for the UMO loading.

Under our prediction that UMO captures common mispricing incrementally to factors such
as SMB, HML, and the momentum factor (MOM), adding a UMO factor to the models with
benchmark factors reduces the pricing errors in time-series regressions.'® Such prediction applies not
only to general stocks as represented by the 25 size-BM portfolios, but also to portfolios consisting
of stocks with recent selective corporate events that can occur to exploit market mispricing.

Since there is a large literature documenting the long-term drift following selective corporate
events, we focus on a few notable examples that have been interpreted as reflecting equity over- or
underpricing, have been found to generate 3-5 years abnormal performance, and have a relatively
large set of observations over a long period of time.'® Thus, we examine the returns to acquirers in
M&A transactions (Loughran and Vijh 1997), to issuers of convertible bonds (Lee and Loughran
1998), and to firms that experience dividend initiation, resumption, or omission (Michaely, Thaler,
and Womack 1995; Boehme and Sorescu 2002). The first two and dividend omission have been
found to produce long-term underperformance, and dividend initiation/resumption to long-term
overperformance. If such abnormal performance is partly caused by systematic mispricing, we
expect that adding UMO will subsume at least part of the abnormal returns.

Furthermore, we hypothesize that securities’ loadings on UMO measure the degree of under-
pricing deriving from common factors (membership in misvalued sectors, or style effects). In other
words, a positive loading identifies the influence on the stock price of either underpriced funda-
mental factors, or of underpriced style characteristics. When such underpricing is subsequently
corrected, securities with larger UMO loadings will earn greater returns. (The detailed argument
for why a stock’s loading on UMO is a proxy for the common component of the stock’s mispricing

was provided in the introduction.) Stocks that load positively on UMO will behave like repurchase

5Even under a behavioral setting, we do not, however, expect the UMO factor to reduce alphas to zero, because
the model pricing errors in general reflect firm-specific mispricing, not just the systematic mispricing captured by
UMO.

1630me other possible types of selective events, such as stock splits, cause only a short-term (up to 12 months)
drift; others, such as spinoffs, have relatively small sample sizes.
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firms and outperform while those loaded negatively on UMO will behavior like new issue firms and
will underperform. Thus, the loadings on a factor that is based on new issues and repurchases
can be exploited to forecast returns on general stocks including those that have not recently been
involved in equity financing transactions.

So long as new issuance or repurchase is associated with firm-specific mispricing, not just com-
mon mispricing, the amount of issuance or repurchase should be able to predict returns even after
controlling for the degree to which the firm partakes of common mispricing. We therefore predict
that the issuance/repurchase variable of Daniel and Titman (2006) will predict returns even after
controlling for the UMO loading.'”

In the sections that follow we test these predictions, and provide further evidence regarding
the alternative explanation that UMO is a priced fundamental risk factor. The main results are
presented using the 3-factors, augmented by the momentum, investment, or the leverage factor
as the benchmark factors. The robustness checks that involve alternative benchmark factors are

presented in Section A of the Appendix.

II Data

Our sample includes common stocks traded on NYSE, AMEX, and NASDAQ over the period
January 1970 to December 2005. We also exclude utilities and financials since mispricing is more
constrained among regulated industries. Stock returns and other trading information are from the
Center for Research in Security Prices (CRSP). Accounting information is from COMPUSTAT
from 1971 to 2005. Daily and monthly return series for the market factor (MKT), the size factor
(SMB), and the book-to-market factor (HML), the momentum factor (MOM), and the risk-free
rates are from Kenneth French’s website. The investment factor (INV) is defined as the return
of low investment firms minus that of high investment firms.!®* The leverage factor (LEV) is the
return of high leveraged firms minus that of low leverage firms.'® The details of constructing the

two factors are described in Table 2.

"We do not derive this prediction formally. Daniel, Hirshleifer, and Subrahmanyam (2005) provide a model with
an analogous prediction about book-to-market and HML loadings.

18We use the monthly return series of the investment factor provided by Evgeny Lyandres.

190ur findings are similar if we use the leverage factor returns provided by Michael Ferguson that are available up
to 2001.
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The sample firms that conduct M&A deals are from Thomson Financial’s SDC database from
19812005 since reliable information about M&A only starts from 1981. We include only completed
deals and exclude cross-border deals, deals associated with bankruptcy, and joint ventures. The
convertible bond issuer sample is also from SDC over the period 1970-2005. We exclude unit
offerings. The sample of firms with dividend initiation and resumption are constructed based on
CRSP dividend payment information from 1970-2005. Following Michaely, Thaler, and Womack
(1995), we define dividend initiation as the first cash dividend payment for a firm that has traded for
at least 24 months. We define the dividend omission date as the expected regular dividend payment
date (month) with no payout announcement. Regular dividend payments are defined as at least
six consecutive quarterly cash payments, at least three consecutive semi-annual cash payments, or
at least two consecutive annual cash payments. Following Boehme and Sorescu (2002), we define
dividend resumption as the first cash dividend paid by a firm following a hiatus in payments ranging
from 33 to 180 months. The annual number of events is displayed in Section E of the Appendix. We
exclude all financials and utilities to make it comparable to UMO. But our results are insensitive

to this criterion.

II.1 Main Sample

Among the sample firms, we identify 7965 initial public offering (IPO) and 6833 seasoned equity
offering (SEO) from the SDC Global New Issues dataset among our sample firms, which are cross-
checked with the data provided by Jay Ritter. The annual number of firms is reported in Table
1. For SEOs, we exclude unit offerings and pure secondary Offerings. Multiple issues made by the

same firm within one year are treated as one single event.

—INSERT TABLE 1 HERE—

Also shown in Table 1, we identify 34,582 firms in our sample with equity repurchases (RP) from
COMPUSTAT annual statements, in which the occurrence of RP is defined as a positive difference
between the total expenditure on the purchase of common and preferred stocks (Compustat item
115) and the reduction in the value of preferred stock (Compustat item 56).

Our results are in general robust to different data sources or sample selection criteria. For

instance, the main findings are similar if we identify IPO events as the first appearance in CRSP,
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if we obtain repurchase events (both open market and tender offer repurchases) from SDC, or if we
restrict in primary offerings in SEOs. The rationale for the robustness, in our approach, is that if
equity financing events identify systematic mispricing shared by general stocks, then these factors
should be identifiable using any representative sample of new issues and repurchases. Therefore, as
long as we obtain a well-diversified UMO portfolio, the comovement of general stocks with respect

to UMO should be relatively insensitive to the number of firms included in UMO.

11.2 Key Variables

At the end of June of each year, we include firms with IPOs or SEOs in the past 24 months but
not with repurchases (RPs) in the two most recent fiscal years with the fiscal year end as of last
December in the portfolio ‘O’ (Overpriced). We include firms with RPs in the two most recent
fiscal years with the fiscal year end as of last December but not with IPOs or SEOs in the past 24
months in the portfolio ‘U’ (Undervalued). We require a gap of at least six months between the
fiscal year end and the time of portfolio formation to ensure that repurchases by then are public
information. Since prior literature shows that the long run abnormal performance of new issues
and repurchases are concentrated in the first three years after events (e.g., Loughran and Ritter
(1995), Ikenberry, Lakonishok, and Vermaelen (1995)), we select firms based on events that have
occurred in the preceding 2 years so that the event portfolio returns cover the period from one
to three years following the event. Finally, stocks with both equity issuance and repurchases or
neither are included in portfolio ‘N’ (neutral).

The three equal-weighted portfolios are held from July of year t to June of year ¢t + 1, and
rebalanced. Following Fama and French (1993), we form a zero-investment portfolio ‘UMO’ (Un-
dervaluation Minus Overvaluation), which is long on U and short on O, to capture the possible
commonality in misvaluation.?’

As discussed in introduction, the industry/sector-wide fundamental shocks (e.g., Hou (2007))

can influence UMO but are not captured by the 4 factors. Therefore, we also form a sector-neutral

20Tt is known that new issues tend to be small growth firms and repurchasers tend to be large value firms. When
constructing UMO, however, we did not control for size and book-to-market. This is because behavioral theories
suggest that these characteristics reflect stock mispricing, and that equal weighting the returns across size or book-
to-market groups can reduce the power to detect mispricing of new issues/repurchases (Loughran and Ritter (2000)).
Instead, our tests perform a horse race between UMO and the size and book-to-market factors. We find that the
power of UMO to explain returns is not subsumed by the size or the book-to-market effect.
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‘UMO  sgc’ that accounts for the sector effect. Specifically, we compute the equal-weighted returns
among new issues separately within each of the five sectors, based on the Fama-French 5 industry
classifications. Then we define the equal-weighted five sector returns as returns on O ggc. Similar
procedures are used for U ggc. Finally, UMO | ggc returns are the difference between U ggc and
O, sgc- By giving each sector’s new issues or repurchases the same weight, we minimize the sector

influence on UMO | ggc.2!

—INSERT TABLE 2 HERE—

Table 2 reports the summary statistics of the event portfolios, UMO, and the other well-known
factor portfolios. Since quarterly accounting information is available from 1971, the portfolio U
starts from July of 1972, which limits our factor UMO to the period July of 1972 through December
of 2005. As shown in Table 1, the average number of firms in July of each year is 615 for O and
1147 in U, showing that UMO contains a sizable number of stocks.??

Consistent with the previous literature, during our sample period, repurchase stocks (U) on
average outperform neutral (N) stocks while neutral stocks (IN) on average outperform new issue
stocks (O). UMO offers an average return 0.94% per month, or over 11% per year while UMO | sgc
0.88% per month. The two are highly correlated, with a coefficient of 0.93 as shown in Panel B.
Panel B also shows that UMO has strong correlations with MKT, SMB, HML, and LEV. In our
subsequent tests, we estimate loadings on UMO by controlling for these factors.

UMO and UMO | ggc provide Sharpe ratios 0.25 and 0.29, respectively, which are greater than
those of MKT (0.11), SMB (0.05), HML (0.16), MOM (0.21), and LEV (0.14), but smaller than INV
(0.36). In Panel C, we report the summary statistics of the ex post tangency portfolio calculated
following MacKinlay (1995). The tangency portfolio generates the highest Sharpe ratio by optimally
combining the subset of factors. It is shown that adding UMO to the 3 factors increases the

maximum Sharpe ratio from 0.27 to 0.41, adding UMO to the 3 factors plus the momentum factor

21By forcing the equal weight on sectors, however, we also reduce the sector-wide mispricing captured by UMO.
Thus, we expect UMO | sgc to contain less common mispricing than UMO.

22 Although firms stay in O or U for a two-year period, the number of firms in O or U is less than twice the number
of new issue (IPO+SEO) or repurchase firms. This is due to at least three effects. First, some IPO firms conduct
SEOs in the subsequent two-year period after IPOs and thus are counted in O as one stock. Second, multiple SEOs
(repurchases) in a two-year period by one firm are counted in O (U) as one stock. Third, some new issue firms also
have repurchases during a two-year window and thus do not enter O or U.
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increases this Sharpe ratio from 0.37 to 0.44, adding UMO to the 3 factors plus the investment
factor from 0.50 to 0.55, and adding UMO to the 3 factors plus the leverage factor from 0.27 to
0.42. The highest Sharpe ratio (0.55) is achieved by combining the 3 factors with both LEV and
UMO. Neither the momentum nor the leverage factor has incremental contribution to improve the
maximum Sharpe ratio. Overall, the results suggest that UMO is an important contributor to high

Sharpe ratios.

III Empirical Tests

In this section, we test whether, as hypothesized, UMO captures commonality in returns and help

predict the cross section of returns.

III.1 UMO and Other Factors

Prediction 1 asserts that UMO is a source of comovement in returns. Specifically, despite being
a zero-investment portfolio, it is predicted to have a non-negligible variance, even after regressing
on the benchmark factors. Thus, the variance of the residual terms from regressing UMO on
the benchmark factors is predicted to be greater than that would be ordinarily be observed with
equal-weighted long-short portfolios with randomly selected stocks.

In our tests, portfolios with randomly selected stocks are formed at the end of each June by
randomly-selecting the equal number of stocks as that in portfolio U in the long side and as that
in portfolio O in the short side. Then we calculate the equal-weighted long-short portfolio returns.
We regress the randomly-selected portfolio on a set of benchmark factors and compute the variance
of the residual terms. This exercise is repeated 1000 times to generate a variance of the residual
terms to compare the variance of residuals associated with UMO for the given set of benchmark
factors.

Consistent with Prediction 1, we find R?s on the order of roughly 50-60%, and the variances of

the residual terms are about 4.1-5.6, which are statistically significantly greater than that based
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on randomly selected portfolios:

UMO = 0.73 — 0.18 MKT — 0. 22 SMB + 0.67 HML R? =59% o2(e) = 5.635;
(6.47)  (—4.66) (—4.34) (8.11) [0.958,1.483]

UMO = 0.54 — 0.15 MKT — 0. 2 SMB + 0.71 HML + (.18 MOM R?=63% o?%(e) = 5.070;
(4.11)  (-4.43) (—4.93) (9-12) (2.92) 0.949,1.477
[0.949,1.477]

UMO = 0.52 — 0.14 MKT — 0.22 SMB + 0.66 HML + 0.32 INV R?=61% o?(e) = 5.380;
(4.18)  (=3.77) (—4.78) (8.57) (3.08) [0.950,1.477]

UMO = 0.73 — 0.21 MKT — 0.20 SMB + 0.35 HML + 0.33 LEV R?=63% o%(e) = 4.109,
(6.85)  (—5.81) (=3.71) (4.04) (3.60) [0.952,1.479]

where the robust Newey-West (Newey and West (1987)) ¢-statistics of the coefficients are reported
in parentheses, o2(e) is the variance of the residual terms with the 1% confidence interval of the
residual terms reported in square brackets based on randomly selected portfolios.

The positive alphas show that UMO offers abnormally high returns that are not fully explained
by the set of benchmark factors. This evidence confirms the findings of previous research that
documents significant long-run overperformance associated with repurchases and underperformance
associated with new issues. The mainly low R?s and high residual variances suggest that new issue
and repurchase stocks share incremental commonality above and beyond the comovement implied
by the benchmark factors. This is consistent with UMO capturing common misvaluation factors.
However, it is also consistent with the possibility that markets are efficient and that the commonality
comes from fundamental sources not captured by the 4 factors.

As will be discussed further in Section 1.1, it is possible that the returns on firms with financing
events are related to a common factor in growth/investment opportunities. This is to large extent is
controlled for by HML. However, to further test for this possibility, in Section A of the Appendix,
we consider other sets of benchmark factors, including, the Fama-French factors purged of new
issues (e.g., Loughran and Ritter (2000)), and the macroeconomic factors of Eckbo, Masulis, and
Norli (2000). Even after controlling for models containing these additional factors, the R? of UMO
is still below 65%, significantly lower than the simulated R?s based on random, long-only portfolios

over the same sample period.

I11.2 Return Comovement

Prediction 2 pertains to the incremental return comovement of general stocks with UMO. We

predict such comovement based upon the fact that at any given time overpriced or underpriced
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general stocks should load on some of the same mispriced fundamental factors that new issues and
repurchase stocks load upon, and the fact that mispriced general stocks should share some of the
same style characteristics causes mispricing in new issue and repurchase stocks.

In the example discussed in the introduction, when investors irrationally believe that the oil
price will be low, airlines will be overpriced and tend to issue while the solar product vendor will
be underpriced and will tend to repurchase. Accordingly, firms that benefit from low oil prices will
load negatively and those that are hurt will load positively on UMO. However, if investor sentiment
shifts to an irrational belief that the oil price will be high, new issue and repurchase firms will flip, so
do the loadings of other firms on UMO. That is, UMO loadings of individual stocks are transitory.
Similarly, as sentiment shifts, different styles will be associated with over/underpricing and new
issue versus repurchase, so the loadings of stocks with different styles on UMO will be transitory.23
Over a long time series, if overpricing and underpricing occur about equally often, we expect
individual stocks to have loadings on UMO that are close to zero.

In contrast, we expect portfolios formed based on mispricing measures to have stable loadings
on UMO-—positive among underpriced stocks and negative among overpriced stocks. When such
portfolios are periodically rebalanced, stocks enter or exit the portfolios according to their degree
of mispricing to ensure the stable loadings of the portfolios on UMO. Therefore, to test for return
comovement with UMO, we perform tests on portfolios which we rebalance based upon firm char-
acteristics that are potentially related to mispricing, such as size, book-to-market, and and the
composite issuance variable of Daniel and Titman (2006) (which we describe in detail later). These
portfolios are rebalanced once every year to make sure each continues to include similar levels of
the characteristics, implying similar degrees of under- or overpricing, and therefore similar loadings
on UMO over time.

Specifically, we regress value-weighted monthly returns on each of the 25 size-BM portfolios
on UMO together with the benchmark factors and test whether UMO loadings ((3,) are jointly

different from zero.

—INSERT TABLE 3 HERE——

23This prediction is not driven by investors regarding issuance and repurchase as styles, it is driven by firms
responding with issuance or repurchase to underpricing or overpricing that is induced by sentiment shifts between
other styles such as size or value versus growth.
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Table 3 reports the UMO loadings and associated Newey-West t-statistics of the 25 size-BM
portfolios. Results based on UMO | ggc are similar unless otherwise mentioned. Controlling for the
benchmark factors, small growth and large value firms tend to load negatively on UMO while small
value and large growth firms tend to load positively on UMO. In other words, UMO loadings do not
line up monotonically with either size or BM. This evidence indicates that UMO loadings capture
different aspects of expected returns from HML and SMB loadings. Most of the 25 UMO loadings
are statistically significant. The patterns are similar with respect to different sets of benchmark
factors. All F-tests strongly reject the null that all UMO loadings are jointly equal to zero.

In unreported analyses, we find similar patterns using other sets of portfolios that are sorted
based on size, book-to-market (BM), and the composite issuance measure (IR) (Daniel and Titman
(2006)), where IR is defined as

ME,_
R 1 = 10g<MEttﬁlo> —r(t—60,t —1),

where ME is the market equity with the subscripts referring to the month, r(¢ — 60,¢ — 1) is the
stock return in the previous 60 months from month ¢ — 60 through ¢ — 1, adjusted for stock splits
and stock dividends. IR captures the part of the growth of the market value that is not attributed
to stock returns, i.e., which is due instead to new issue, repurchase, and other activities that affect
market value.?* Thus, consistent with Prediction 2, the results show that general stocks tend to

comove with UMO beyond that implied by the benchmark factor models.

I11.3 Pricing the 25 Size and Book-to-Market Portfolios

If UMO captures common variation in mispricing, Prediction 3.a asserts that UMO will reduce the
pricing errors of the standard asset pricing models in time-series regressions. Thus, we examine the
alphas before and after adding UMO to the benchmark factor models in pricing the 25 size-BM

portfolios.
—INSERT TABLE 4 HERE——

The alphas and corresponding t-statistics are reported in Table 4. When the 3-factor model is

used, all but a few portfolios are properly priced, as indicated by the fact that a majority of alphas

24Pontiff and Woodgate (2008) provide an alternative measure designed to capture corporate financing activities.
For brevity, we only use IR in this paper.
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indistinguishable from zero. This is not surprising since SMB and HML are designed to capture
return commonality in the size-BM portfolios.

However, there are significant pricing errors among the four corner portfolios, positive for the
small-value and large-growth portfolios, and negative for the small-growth and large-value portfo-
lios. Adding the momentum factor, the investment factor, or the leverage factor slightly reduces
the pricing errors of one or two corner portfolios, but the F-statistics that test whether all alphas
are jointly equal to zero remain significantly at the 5% or 1% levels. Interestingly, the signs of the
pricing errors of the four corner portfolios correspond to the signs of their UMO loadings reported
in Table 3, suggesting that UMO is a possible missing common factor for returns on these portfolios.

Indeed, when UMO is additionally included, these pricing errors are substantially reduced and
become mostly insignificant. After adding UMO to four sets of benchmark factors (the 3-factor,
the 3 factors plus MOM, INV, or LEV), the alphas of the four corner portfolios shrink towards
zero and become statistically insignificant in all but one case. Furthermore, the F-statistics for the
joint test of whether the alphas are all zero are reduced to 1.82, 1.47, 1.00 and 1.67, respectively,
with the first significant at the 10% level and the other three insignificant. In other words, the null
hypothesis that all alphas are jointly equal to zero is generally no longer rejected. Overall, this
evidence indicates that UMO is important for pricing general stocks, including stocks with extreme
size and book-to-market equity. This evidence suggests that the anomalous returns on the corner

portfolios results from commonality in mispricing that is captured by the UMO factor.

1I1.4 The Pricing of Portfolios Based upon Selective Corporate Events

We now test whether UMO helps capture mispricing of stocks with recent selective corporate events.
Based on the criteria discussed earlier, we focus on M&A, convertible bond issuance, dividend
initiation /resumption, and omission. For these four types of events, we form three equal-weighted
portfolios that include firms that have undertaken the corresponding type of activity in the most
recent 36 months. The event portfolios capture the long-run performance of event firms from month
t+1 to t+36. Prediction 3.a asserts that UMO will help to reduce the abnormal returns associated

with these portfolios relative to conventional factor models.

—INSERT TABLE 5 HERE——
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We run time-series regressions of the event portfolio excess returns first on either the 3 factors,
or on both the 3 factors and UMO. The results are reported in Table 5. It is evident that UMO
makes the significant alphas in the 3-factor model insignificant. For M&A, the alpha changes
from —0.38 to 0.04, which is essentially identical to zero. For convertible bond issuers, the alpha
changes from —0.39 to —0.03, which is also essentially identical to zero. For dividend initiation
and resumption, the alpha decreases from 0.24 to 0.16, a 30% drop, and for dividend omission, the
alpha drops by 25%. All alphas switch from statistically significant to insignificant. These findings
support the idea that, like equity financing, these selective corporate events, occur in response to

common mispricing across firms.

III.5 UMO Loadings and the Cross Section of Portfolio Returns

Having established the ability of UMO to reduce pricing errors in time-series regressions, we now
exploit the information in UMO loadings to predict the cross section of future portfolio returns, our
Prediction 3.b. As discussed previously, behavioral models predict that UMO loadings are proxies
for systematic undervaluation, and therefore will predict higher excess returns.

Also, UMO loadings for individual stocks tend to be unstable over time. Intuitively, different
style or economic factors can be over- and underpriced at different times, and accordingly a positive
loading on certain style or economic factors can imply over- and undervaluation at different times.?
UMO is always long on the underpricing factors and short on the overpricing factors. Thus, we
expect individual stocks, while having fairly persistent loadings on the style or economic factors,
to have unstable loadings on UMO.

In contrast with individual stocks, portfolios that are formed based on possible mispricing
proxies such as book-to-market are expected to have much more stable UMO loadings over time.
Thus, we run a Fama-MacBeth regression with the 25 size-BM portfolios, and test whether UMO
carries a significant positive premium, in which the UMO loadings of the 25 portfolios are estimated

within an annually-updated rolling 5-year window on the benchmark factors together with UMO.

The mean premia and Newey-West t-statistics are reported in Table 6.

—INSERT TABLE 6 HERE——

25Section B of the Appendix contains a proof for this assertion (see Proposition 3).

23



Table 6 shows that the premium of UMO is always positive, economically and statistically
significant, regardless of the specifications of the model. For instance, the average premium of UMO,
in regression (1), is 0.57% per month (¢ = 2.54) with controls for MKT, 0.80% per month (¢ = 3.47)
in regression (3) with controls for the 3 factors, and 0.81% per month (¢ = 3.63) in regression (6)
with controls for the 4 factors. Similar results are obtained after additionally controlling for INV
or LEV. Replacing UMO with UMO | ggc in regression (4) makes little difference: yielding an
estimated premium of 0.75% per month (¢ = 3.77).

Lewellen, Nagel, and Shanken (2008) and Daniel and Titman (2008) show that a proposed
factor that is correlated (even weakly) with SMB and HML can spuriously price the 25 size-BM
portfolios in the cross section. To address this possibility, in Section A of the Appendix, we use the
orthogonalized UMOs (that are orthogonalized to the 3- or 4-factors) to estimate UMO loadings
and then add these loadings in the Fama-MacBeth regressions to examine their incremental return
predictive power. The results remain unchanged.

Similar results also obtain for the 25 BM-IR portfolios, the 25 BM portfolios, the 100 size-BM
portfolios, or the 25 IR portfolios. For each set of them, we all find that high UMO loadings on

average positively forecast future portfolio returns. For brevity, these results are not reported here.

II1.6 UMO Loadings and the Cross Section of Individual Stock Returns

Behavioral theories suggest that UMO loadings should forecast not only the returns on portfolios
(formed by sorting on potential mispricing proxies) but also on individual stocks. Stocks with
higher sensitivity to UMO should partake of greater systematic misvaluation and have stronger
return reversal when mispricing is corrected.

As discussed previously in Section II1.5 estimating UMO loadings on individual stocks is chal-
lenging due to the (theoretically predicted) instability of these loadings.?® We therefore adopt two

different approaches to estimate UMO loadings.

26The higher stability of the loadings on the Fama-French factors suggests that these loadings do not solely reflect
sensitivity to mispriced factors. The greater the extent to which a set of loadings capture relatively persistent
fundamental risks as well as mispriced factors, the more stable we expect these loadings to be. Thus, the relative
instability of our UMO loadings suggest that UMO is a purer proxies for misvaluation than the Fama/French factors.
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I11.6.1 Conditional UMO Loadings Estimated from Daily Returns over Short Win-
dows

In the first approach, we estimate UMO loadings from daily returns over a short period, an approach
also used in previous studies (e.g., Lewellen and Nagel (2006)). In our context, loadings are unstable
because misvaluation is temporary, and over a sufficiently long horizon should on average vanish.
Specifically, we estimate firm-level UMO loadings using at least 100 daily returns over the most
recent 12-month period on UMO together with the 3 factors. We call the estimated UMO loading

the pre-formation loading, denoted as 35 .27

—INSERT TABLE 7 HERE——

After obtaining 3% ¢, we sort stocks based on 35 ¢ into deciles and calculate both the equal-

weighted decile returns in the following month. As shown in Table 7, the decile returns tend to

increase with 35, ¢. The return differentials between the highest and the lowest (5°

deciles is
0.75% per month (¢t = 2.64), or 9% per annum. The alphas from the CAPM and the 3 factor
model remain sizable and statistically significant. After excluding firms in UMO, also shown in
Table 7, we observe results that are equally strong. Overall, the results show an economically and

statistically significant premium on UMO at the firm level, even among those firms that are not

recently involved in equity financing or repurchase.

I11.6.2 Conditional UMO Loadings Estimated from Characteristics Portfolios

The advantage of the first approach is that it obtains firm-level UMO loadings directly from in-
dividual stock returns. This method, however, is known to generate relatively imprecise loadings
since firm-level loadings tend to be more subject to regression-to-the-mean, which in our context
means a greater tendency to reverse out. Thus, it is difficult to assess whether UMO loadings add
incremental predictive power relative to existing firm-level return predictors.

To obtain more precise UMO loadings, in the second approach, we employ a modified version
of the estimation procedure by Fama and French (1992), known as the portfolio shrinkage method.

However, instead of estimating unconditional UMO loadings using past 3-5 year firm-level returns as

2"Shortening the estimation period to 3 months yields similar results.
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in Fama and French (1992), we estimate conditional security UMO loadings from annually-balanced
portfolios sorted by mispricing proxies. Again, this is because mispricing tends to be temporary
and reverses out during a period of 3-5 years.

In this procedure, we first sort all stocks into 100 portfolios according to two of the firm char-
acteristics that proxy for misvaluation, involving firm size (ME) of the most recent June, BM as of
the most recent December, and IR calculated based on market equity and stock returns from month
t — 60 through t — 1. By sorting stocks based on firm mispricing proxies, we create dispersion in
the sensitivities to UMO. We then estimate the UMO loadings for each of the 100 equal-weighted
portfolios using at least 36-month returns, from July of 1972 through month ¢t — 1, in a time-series
regression with controls for the 4 factors. Finally, each individual stock assumes the portfolio
loading according to which portfolio it belongs in month ¢ — 1.

We denote these conditional UMO loadings as B™© and use these loadings to forecast stock
returns in month ¢ with controls for a set of standard predictors, which include logarithmic firm
size, LOG(ME), logarithmic book-to-market, LOG(BM), past one month return, (¢t — 1), past
returns from month ¢ — 12 to ¢t — 2, r(t — 12,¢ — 2), past returns from month ¢ — 36 to ¢ — 13,
r(t — 36,t — 13), industry dummies based on the Fama-French 49 industry classifications, and the
3-factor loadings.?® The past return measures are expressed at a monthly basis. The estimated
coefficients are averaged across time and reported in Table 8. A positive average coefficient of
UMO loading will indicate that high UMO loading stocks tend to earn higher returns on top of the

controls.

—INSERT TABLE 8 HERE——

BIMO are all

Consistent with Prediction 3.b, as shown in Table 8, the average coefficients of
positive and statistically significant, regardless of the firm characteristics that are used to sort
stocks. For instance, with the full cross section of stock returns, after controlling for the other firm
characteristics, the coefficient of FYMO that is estimated from ME and IR sorted portfolios is 0.27%
per month (¢ = 4.69). The coefficient of VMO is 0.16% per month (¢t = 2.87) when BM and IR are

used to sort portfolios, and 0.14% per month (¢ = 3.02) when ME and BM are used.

28The predictors are designed to capture the size effect, the book-to-market effect, the short-term return contrarian
effect, the momentum effect, the long-term reversal effect, the industry effects, and systematic risks.
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In Panel B, we report results after excluding stocks used to form UMO of the current year.
The results change little. Therefore, our evidence shows that stocks that load heavily on UMO on
average earn higher returns, even after controlling for the standard predictors of the cross section
of stock returns. This predictive ability of UMO loadings applies not only to firms involved in
equity financing events, but to those that have not recently been engaged in either new issues or

repurchases.

II1.7 Characteristics versus Covariances

In order to distinguish risk versus mispricing more sharply as explanations for the return predictabil-
ity, following Daniel and Titman (1997), Davis, Fama, and French (2000), and Daniel, Titman, and
Wei (2001), we run a horse race between covariance and characteristics associated with equity
financing as return predictors. Specifically, we test whether or not the conditional UMO loading
BYMO dominates the composite issuance variable IR in explaining the cross section of stock returns.
Under traditional rational factor pricing, stock returns should be determined solely by covariance,
not characteristics. In contrast, Daniel, Hirshleifer, and Subrahmanyam (2005) describe a behav-
ioral setting with no risk premia, in which both characteristics and covariances have incremental
predictive power to predict returns.?’

To test between the predictions of alternative theories, in Regression (5) of Table 8, we report
the Fama-MacBeth regression results that include both the characteristic variable IR and the
covariance variable YMO | as well as five standard controls used previously.?? We find that both IR

and BYMO have significant coefficients in the expected directions: negative for IR and positive for

BYMO " Thus, YMO does not fully subsume the predictive power of IR. This opposes the prediction

2%In their model, when both factor and firm-specific cash flow components are mispriced, characteristics are proxies
for both factor mispricing and mispricing of firm-specific (idiosyncratic) cash flow components; loadings on a price-
characteristic-based factor portfolio (such as HML) are proxies for factor mispricing. In a cross-sectional regression of
returns on both characteristics and covariances, the coefficient on the characteristic implicitly forces the coefficients
on the factor mispricing and the idiosyncratic mispricing to be the same. When factor mispricing is stronger than
firm-specific mispricing, loadings pick up the difference and therefore are positive incremental return predictors.
Daniel, Hirshleifer, and Subrahmanyam (2005) consider characteristics and characteristics-based factors formed on
the basis of market price rather than on the basis of managerial actions such as issuance and repurchase, but a similar
intuition applies.

30The UMO loadings used in Regression (5) are estimated from portfolios sorted based on firm size and IR. Among
the sorting combinations used in Table 8 the loadings estimated based on ME-IR portfolios have the largest dispersion
and carry a larger premium than those based upon other combinations of characteristics. This suggests that the ME-
IR portfolios are likely to provide the most accurate estimates of the UMO loadings. To maximize the power in our
tests in Regression (5), we use those loadings as UMO conditional loadings.
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of rational pricing of UMO. Of course, as always with characteristics versus covariance tests, the
possibility of measurement error of covariances raises the possibility that more accurately estimated
covariances would predict returns more effectively.

In regression (10), we estimate the Fama-MacBeth regressions as in specification (5) except that
we exclude the new issue and repurchase stocks in UMO. The results remain similar. Therefore,
our findings show that both covariance and characteristics based on equity issuance and repur-
chases contain some distinct incremental information for predicting future returns. This finding
opposes rational factor pricing theories, which predict that only covariances matter. It supports
the hypothesis that UMO loadings contain information about firms’ systematic mispricing.

An alternative explanation for these findings is that markets are efficient, but that UMO is a
poor proxy for the underlying factor that drives the returns on new issue and repurchase stocks.
However, if so, then the unobserved risk factor must have a large risk premium to explain both
the high Sharpe ratio of UMO, and the incremental ability of the characteristic to predict returns.
As discussed earlier, the Sharpe ratio of UMO is about 2 1/2 times as large as that of the market
portfolio, and is considerably higher than that of HML. The high Sharpe ratio of the market (the
equity premium puzzle) is already viewed as a challenge to rational asset pricing; MacKinlay (1995)
describes the Sharpe ratio achievable with the Fama French factors as a further challenge. UMO
sharpens the challenge in two ways. First, its Sharpe ratio exceeds those of the Fama French
and momentum factors. Second, the evidence that characteristics have incremental power beyond
covariances to predict returns implies that an even higher Sharpe ratio than that of UMO can be
achieved by combining UMO with IR characteristic-based portfolios.

A different possibility is that UMO is the correct risk factor, but that loadings are estimated
with noise, causing them to predict returns imperfectly. Such noise can derive from limited sample

size or from time variation in loadings. We do not rule out this possibility.

II1.8 Are UMO Loading Stable?

Finally, we examine whether UMO loadings are fairly stable over periods of 3 to 5 years. The
presumption for a pure mispricing factor is that the loadings are unstable over the typical fre-
quency at which mispricing appears and corrects, i.e., as a stock shifts between being over- versus

underpriced. In contrast, for a rational priced factor there is no presumption that loadings will be
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so unstable. The usual presumption for tests of rational asset pricing has been stability of loadings
for periods of 3-5 years.

To estimate the systematic risk of stocks, it is common practice to estimate loadings on a
fundamental risk factor (such as the market) by sorting stocks based on pre-ranking loadings that
are estimated from the previous 3 to 5 years (Fama and MacBeth (1973), Ferson and Harvey (1991),
and Fama and French (1992)). The presumption underlying this practice is that firm fundamentals
evolve gradually, so that a firm’s sensitivity to cash flow factors usually does not change dramatically
during a relatively short period of time.

Under the hypothesis that securities have fairly stable loadings on fundamental economic risks,
pre-ranking loadings should be highly positively correlated with post-ranking loadings. Thus, sort-
ing firms by pre-ranking loadings should create large dispersion in post-ranking loadings. In con-
trast, if UMO loadings reflect mispricing, they are likely to be unstable over periods as long as
5 years. Therefore pre-ranking loadings should be very poor proxies for misvaluation, and should
have little power to predict post-ranking loadings. Additionally, sorting firms based on pre-ranking

loadings should create little dispersion of post-ranking loadings.

UMO
bpre

Following Fama and French (1992), we estimate UMO pre-ranking loadings ( ) by regressing

individual stock monthly returns from the previous 36 to 60 months on UMO together with the

UMO
bpre

FF 3 factors, and sort stocks into 100 portfolios based on their . Using the full sample equal-

UMO

weighted returns of the 100 portfolios, we estimate the post-ranking UMO loadings (byes) in a

multi-factor regression for each portfolio. We report the average bgrlgo and the estimated bgé\é[to for
the 100 portfolios in Table 9.

Our preliminary analyses show that the average loadings on MKT and SMB are positive while
those on HML and UMO close to zero. To facilitate the comparison across different factors, we
subtract the means from the pre- and post-ranking loadings. For pre-ranking loadings, the monthly
mean loadings are used. Since the loadings are demeaned, we expect a reasonable number of
portfolios with moderate loadings to flip signs simply due to the changes in the means (or simply
random errors in estimation). Thus, we focus on the 50 extreme loadings portfolios which include
the top and the bottom 25. If firms have relatively persistent sensitivity to UMO as a stable risk

factor, we expect these loadings to retain their signs during the post-formation period. In contrast,

if UMO is a mispricing factor, the extreme loadings can change rapidly, and even flip signs. Our
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results support the latter prediction.

—INSERT TABLE 9 AND FIGURE 1 HERE——

In Panel A of Table 9, we report the average demeaned pre-ranking loadings of the 100 UMO
loading portfolios and in Panel B, we report the demeaned post-ranking portfolio loadings. Not
surprisingly are the top 25 portfolio pre-ranking loadings positive and the bottom 25 negative.

Contrary to the hypothesis that factor loadings are persistent for substantial periods, 6 out of the

UMO»

50 extreme portfolios switch the signs of their by,

s in the subsequent one year, shown in Panel
B and summarized in Panel C. This finding is not driven solely by new issues or repurchase stocks;
after excluding the firms in UMO, we still observe 10 out of the 50 extreme portfolios switching
signs from pre-ranking to post-ranking periods.

These numbers are substantially greater than those associated with MKT, SMB and HML
when we use the same method to estimate market beta and loadings on SMB and HML. Reported
in Panel C, there are no MKT and HML loading portfolios and only one SMB loading portfolio
among the extreme 50 have opposite comovement with their corresponding factor before and after
31

the portfolio formation.

Overall, there are a total of 38 out of 100 UMO loading portfolios with essentially zero post-

UMO»
pre

In contrast, by applying the same method to MKT, SMB, and HML, we find that none of the market

UMO:s, 32

ranking loadings, suggesting that sorting stocks based on b post S+

s creates little dispersion in b
beta and SMB loading portfolios, and only 10 HML loading portfolios, carry post-ranking loadings
that are insignificantly different from zero.3® These patterns are also evidenced in Figure 1, which

plots the pre- and post-ranking loadings associated with UMO and the 3 factors.

31The inferences remain similar if we use raw, rather than demeaned, loadings. In addition, as shown in Table 9,
most of the sign-flipping comes from stocks with positive pre-ranking loadings. These stocks comove positively with
repurchase stocks, whose overperformance tends to be concentrated in the first 3 years (Ikenberry, Lakonishok, and
Vermaelen (1995)). In contrast, stocks with negative post-ranking loadings, which comove positively with new issue
stocks, appear to maintain the sign of their loadings, which, however, tend to shrink toward to zero. This pattern
is consistent with prior findings that new issue stocks tend to underperform for 3-5 years (e.g., Loughran and Ritter
(1995) and Ritter (2003)).

32If we exclude firms in UMO of the current year, there are 33 portfolios that have post-ranking UMO loadings
indistinguishable from zero.

331t is possible that more pre-ranking UMO loadings are close to zero than are the pre-ranking MKT, SMB, or
HML loadings. If so, this would only reinforce the point that loadings on UMO are not stable over periods as long
as o years.
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The cross-sectional correlations between pre- and post-ranking loadings again indicate that
UMO loadings are much less persistent than those on MKT, SMB, and HML. This correlation is
between 0.93 to 0.97 for the 3 factors but merely 0.56 for UMO. The substantially lower correlation
in pre- and post-ranking UMO loadings is consistent with our findings that UMO loadings tend to
flip signs and are unstable over periods of several years.

Taken together, our evidence suggests that UMO loadings shift too rapidly to be captured
by long-window estimates. This seems to be at odds with the view that firms’ fundamental and
exposure to systematic risk are persistent and evolve gradually. Thus, we conclude that the sensi-
tivities of stock returns to UMO have much lower persistence than the loadings on other proposed

fundamental risk factors in previous literature.

IV Conclusion

Behavioral approaches to asset pricing imply that there is common misvaluation across firms, and
that there is systematic comovement associated with firms that are similarly misvalued. This study
documents that, over the period 1972-2005, returns on issuing and repurchasing firms can be used
to identify commonality in returns, and provides evidence suggesting that this return commonality
derives from commonality in misvaluation.

Existing research has proposed that firms undertake equity issues in response to overpricing
and repurchase in response to underpricing. These selective events seem to reflect stock mispricing
perceived by managers that is not fully captured by firm characteristics such as book-to-market
equity. Building upon this literature, our evidence indicates that there is comovement in returns
associated with financing events, and that firms that engage in similar events subsequently move
together more. However, this comovement is not unique to firms that that are involved with these
transactions—it is shared by general firms that load upon our financing factor, and firms that
engage in other selective corporate events such as M&A, convertible debt issuance, or dividend
initiation/resumption and omission.

We also show that UMO helps to reduce pricing errors associated with extreme size-BM port-
folios and stocks recently involved in the other selective corporate events, and that UMO loadings

are useful predictors of the cross section of portfolio and stock returns. Although it is hard to rule
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out rational factor pricing explanations conclusively, taken together, we view this evidence as most
supportive of commonality in misvaluation that can be identified by means of financing events.
However, we do not attempt to test possible explanations based upon market frictions. Although
our evidence casts some doubt upon UMO as a fundamental risk factor in a frictionless market,
it is possible that market frictions such as illiquidity make it hard to realize the high Sharpe ra-
tios achievable based upon financing-based portfolios. If this is the explanation, then markets are

inefficient, but investors may be rational.
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Table 2: Summary statistics of event and factor portfolios

Panel A reports the summary statistics of the event portfolios and the factor portfolio percentage returns from
July 1972 through December 2005. The event portfolios U, N, O are defined in Table 1. UMO (Underpricing
Minus Overpricing) is the misvaluation factor that is long on U and short on O. MKT is the return of the
value-weighted CRSP index in excess of the one-month T-bill rate. SMB is the size factor. HML is the
book-to-market factor. MOM is the momentum factor. INV is the investment factor. It is defined as the
return on the 30% firms with the lowest investment-to-asset ratios minus that on the highest 30% firms,
controlling for size and book-to-market. LEV is the leverage factor. It is defined as the return on the 30%
firms with the highest book debt-to-market equity ratios minus that on the lowest 30% firms, controlling for
the size in the end of the most recent June. UMO | sg¢ controls for the sector influences in UMO by taking
the average returns of new issues and repurchases within each of the five sectors before taking the mean
returns across the five sectors. The five sectors are defined based on Fama-French 5 industry classifications.
The Sharpe ratio (SR) for U, N, and O is the ratio of mean monthly returns in excess of the one-month
riskfree rate divided by return standard deviation; for the factor portfolios, is the ratio of the mean monthly
returns over return standard deviation. The variables ME (in millions) and BM are the average monthly
market value and book-to-market equity of firms included in U, N, and O. Panel B reports the correlations
among the factor portfolios. Panel C reports the summary statistics of the ex post tangency portfolio, which
delivers the maximum Sharpe ratios by optimally combining the factors. The portfolio weights are calculated
as (/V=lu)=1V=1u, where ¢ is a kx1 vector of ones, V is the covariance matrix of the factor returns, and
w1 is the mean factor returns.

Panel A: Portfolio returns

Mean Stdev  t-stat SR ME BM
U 1.58 5.65 5.60 0.19 1,564 1.01
N 1.38 6.79 4.06 0.13 538 0.94
(0] 0.63 8.14 1.56 0.02 489 0.53
UMO 0.94 3.73 5.08 0.25
UMO | skc 0.88 2.99 5.88 0.29
MKT 0.49 4.59 2.13 0.11
SMB 0.18 3.30 1.09 0.05
HML 0.51 3.10 3.29 0.16
MOM 0.88 4.27 4.13 0.21
INV 0.60 1.68 7.21 0.36
LEV 0.54 3.70 2.90 0.14

Panel B: Correlation matrix of factor mimicking portfolios

UMO UMO,;sg¢c MKT SMB HML MOM INV
UMOJ_IND 0.93

MKT —0.52 —0.48

SMB —0.42 —0.37 0.26

HML 0.71 0.66 —0.46 —0.30

MOM 0.15 0.12 —-0.07 0.02 -0.11

INV 0.33 0.30 -0.34 -0.14 0.19 0.27
LEV 0.67 0.60 —-0.28 —0.28 0.78 —0.26 0.06
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Table 2: Summary statistics of event and factor portfolios

Panel C: Ex post tangency portfolio

Portfolio Weights Tangency Portfolio
MKT SMB HML MOM INV LEV UMO Mean Std SR
0.28 0.15  0.56 0.45 1.66 0.27
0.22 0.10 0.43 0.24 0.56 1.50 0.37
0.17 0.07  0.19 0.57 0.54 1.08 0.50
0.28 0.16  0.54 0.02 045 1.66 0.27
0.27 0.21  0.02 0.50 0.65 1.58 0.41
0.24 0.16  0.11 0.14 0.35 0.66 1.47 0.44
0.18 0.11  0.05 0.47 0.20 0.60 1.10 0.55
0.28 0.20  0.15 —0.16 0.53 0.66 1.57 0.42
0.18 0.10  0.07 0.056 043 0.17 0.60 1.09 0.55
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Table 3: Comovement of the 25 size and book-to-market portfolios with UMO

This table reports the estimated UMO loadings of the 25 size-BM portfolios from July 1972 through December
2005. The dependent variables are the value-weighted 25 portfolio excess returns. The UMO loadings (5,,)
are estimated from time-series regressions of portfolio excess returns on UMO after controlling for the Fama-
French 3 factors (FF3), the 3 factors plus the momentum factor (FF3+MOM), or plus the investment factor
(FF34INV), or plus the leverage factor (FF3+LEV). Robust Newey-West (1987) ¢-statistics for the UMO
loadings are reported in the right panel. F-stat tests whether the 25 3,’s are jointly equal to zero. The
corresponding p-values are reported.

Panel A: Controls: FF3

Bu t-stat
BM BM

Size L 2 3 4 H Size L 2 3 4 H
S —0.44 —0.13 0.07 0.10 0.05 S —6.76 —2.86 1.88 2.45 0.87
2 —-0.11 0.06 0.10 0.11 0.01 2 —2.18 1.06 2.47 3.71 0.23
3 —0.08 0.09 0.07 0.11  —-0.02 3 —2.53 2.21 1.63 1.89 —0.31
4 0.01 0.12 0.12 0.05 0.02 4 0.36 1.91 2.06 0.92 0.47
B 0.11 0.12 0.00 -0.07 —-0.20 B 5.08 3.32 0.05 —1.83 —2.46
F-stat 11.52 p-value 0.0001

Panel B: Controls: FF3+MOM
Size L 2 3 4 H Size L 2 3 4 H
S —0.46 —0.14 0.07 0.11 0.08 S —-7.23 —-3.36 1.93 2.88 1.76
2 —0.08 0.09 0.13 0.13 0.02 2 —1.44 1.68 3.08 3.88 0.50
3 —0.06 0.13 0.11 0.14 0.03 3 —1.52 2.75 2.37 2.59 0.53
4 0.02 0.16 0.17 0.09 0.06 4 0.46 2.35 2.69 1.61 1.20
B 0.14 0.13 —-0.02 -0.04 -0.19 B 5.25 3.26 —-0.27 -—-1.07 —2.30
F-stat 18.62 p-value 0.0001

Panel C: Controls: FF3+INV
Size L 2 3 4 H Size L 2 3 4 H
S —-0.47 —-0.15 0.07 0.09 0.05 S —7.48 —3.66 1.80 2.33 0.89
2 -0.10 0.08 0.12 0.12 0.01 2 -1.93 1.58 2.84 4.39 0.39
3 —0.08 0.12 0.10 0.12 —-0.01 3 —2.17 2.90 2.13 2.18 —-0.11
4 0.00 0.15 0.13 0.05 0.03 4 0.10 2.33 2.29 0.84 0.53
B 0.11 0.13 0.02 -0.06 —0.21 B 4.71 3.48 0.40 -—-1.39 —2.64
F-stat 18.08 p-value 0.0001

Panel D: Controls: FF3+LEV
Size L 2 3 4 H Size L 2 3 4 H
S —-0.37 —0.10 0.06 0.09 0.02 S —-4.95 —1.99 1.62 2.17 0.28
2 —0.11 0.01 0.06 0.07 —-0.02 2 —2.20 0.21 1.32 2.18 —0.69
3 —0.09 0.05 0.02 0.08 —0.05 3 —2.85 1.12 0.43 1.37  —0.89
4 0.03 0.08 0.07 0.05 0.00 4 0.62 1.25 1.26 0.91 0.08
B 0.08 0.09 0.00 -0.09 -0.21 B 3.11 2.35 0.00 —-2.08 —2.73
F-stat 6.97 p-value 0.0001

39



Table 4: Alphas of the 25 size and book-to-market portfolios

This table reports the alphas, or abnormal returns, from regressing the excess returns of the 25 size-BM
portfolios on multiple factors from July 1972 through December 2005. The dependent variables are the
value-weighted 25 portfolio excess returns in percent. The independent variables are a set of common factors
that include the Fama-French 3 factors (FF3), the 3 factors plus the momentum factor (FF3+MOM), or plus
the investment factor (FF34+INV), or plus the leverage factor (FF3+LEV). The left panels report the alphas
(in percent) and the right panels report the robust Newey-West (1987) t-statistics of the alphas. F-stat tests
whether the 25 intercepts are jointly equal to zero. The corresponding p-value is bootstrapped and refers to
the probability that an F value drawn from the bootstrapped distribution under the null that all alphas are
zero is greater than the empirical estimate.

Qpps t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H
S —0.51 0.08 0.12 0.24 0.15 S —4.03 0.88 1.82 3.22 1.98
2 —-0.21 —-0.12 0.03 0.10 —-0.07 2 —2.46 —1.55 0.48 1.26 —0.99
3 -0.04 -0.03 -0.10 -0.07 0.01 3 —-0.54 —-0.38 —-1.24 —-0.93 0.12
4 0.13 -0.15 -0.05 -0.02 -0.11 4 1.41 -1.52 —-054 —-0.26 -—1.11
B 0.17 0.06 —-0.02 -—-0.12 -0.24 B 2.54 0.75 —-0.21 -—-1.64 -—-2.14
F-stat 2.88 p-value 0.01

Qpp3+UMO t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H
S —0.19 0.16 0.07 0.16 0.05 S —1.50 2.00 1.02 2.05 0.59
2 -0.12 -0.14 -0.02 0.05 —0.08 2 —146 —-1.84 —-0.24 0.66 —1.13
3 0.02 -0.09 -0.13 -0.18 -0.01 3 022 -1.07 -1.62 —-192 —-0.13
4 0.12 -0.19 -0.11 -0.09 -0.11 4 1.36 —-1.87 —-1.12 —-0.96 —1.08
B 0.11 -0.01 -0.05 -0.06 —0.10 B 1.56 -0.09 —-049 —-0.80 —0.96
F-stat 1.82 p-value 0.08

App34Mom t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H
S —0.46 0.09 0.10 0.23 0.19 S —3.28 1.06 1.44 3.07 2.42
2 —-0.14 —0.06 0.06 0.11  —-0.06 2 —-1.71  —-0.85 0.93 1.50 —0.76
3 0.02 0.01 —-0.05 —0.03 0.10 3 0.19 0.12 —-0.59 —0.32 0.99
4 0.13 —-0.10 0.02 0.03 —0.05 4 1.48 —1.05 0.23 0.36 —0.52
B 0.19 0.06 —-0.05 -—-0.06 —-0.19 B 2.76 085 —0.55 —-0.81 —1.65
F-stat 2.29 p-value 0.02

AFpF34MOM+UMO t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H

S —-0.21 0.16 0.06 0.17 0.15 S —1.61 2.00 0.85 2.13 1.66
2 -0.09 -0.12 -0.01 0.04 —0.07 2 -1.13 -1.50 -0.11 0.54 —-0.91
3 0.06 —-0.06 -0.11 -0.11 0.08 3 0.63 —-0.64 —-1.24 —-1.02 0.77
4 0.12 -0.19 -0.07 -0.01 —-0.08 4 1.37 -18 —-0.70 —-0.14 —-0.79
B 0.11 -0.01 -0.04 -0.04 —0.09 B 1.70 -0.10 -0.41 -045 -0.73

F-stat 1.47 p-value 0.17
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Table 4: Alphas of the 25 size and book-to-market portfolios: Cont’d

Opps LNV t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H
S —0.55 0.01 0.08 0.18 0.14 S —4.37 0.13 1.13 2.58 1.79
2 —0.14 —-0.01 0.07 0.14 —-0.05 2 —-1.71 —-0.07 1.04 2.02 -0.69
3 0.01 0.07 -0.01 —0.02 0.07 3 0.09 0.84 —-0.19 —-0.28 0.60
4 0.09 —-0.05 0.01 -0.05 —0.09 4 0.99 —0.47 0.13 —-0.55 —0.86
B 0.12 0.08 0.06 —-0.03 —0.26 B 1.72 0.95 0.54 —-0.38 —2.29
F-stat 1.88 p-value 0.05

Qpp3 L INV+UMO t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H
S —0.31 0.09 0.05 0.14 0.11 S —2.42 1.10 0.61 1.75 1.24
2 —0.09 —-0.05 0.01 0.07 —-0.06 2 —1.12 —-0.68 0.14 1.05 —-0.79
3 0.05 0.01 -0.07 —0.09 0.07 3 0.60 0.12 —-0.80 —0.93 0.59
4 0.08 -0.12 —-0.06 -0.07 —-0.11 4 094 —-1.20 -0.63 —-0.75 —0.99
B 0.07 0.02 0.05 0.00 -0.15 B 0.91 0.18 0.41 —-0.02 —1.26
F-stat 1.00 p-value 0.49

Qpp3iLEV t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H
S —0.51 0.08 0.12 0.24 0.14 S —4.81 0.98 1.80 3.24 2.02
2 —-0.21 —-0.12 0.03 0.09 -0.07 2 —2.46 —1.65 0.46 1.28 —1.02
3 —-0.04 -0.04 -0.10 -0.07 0.01 3 —0.54 —-0.44 —1.41 -0.97 0.10
4 0.13 -0.16 —-0.05 -0.02 -0.11 4 144 —-1.62 -0.59 -0.26 —1.11
B 0.17 0.06 —-0.02 —-0.12 -0.24 B 2.59 0.74 —-0.21 -1.65 -—-2.15
F-stat 3.01 p-value 0.01

App34 LEV+UMO t-stat

BM BM
Size L 2 3 4 H Size L 2 3 4 H
S —0.24 0.16 0.07 0.17 0.13 S —2.00 1.92 1.05 2.21 1.52
2 —-0.12 —-0.13 -0.01 0.04 —-0.06 2 —1.58 —-1.80 —-0.20 0.56 —0.81
3 0.03 -0.07 -0.12 -0.13 0.05 3 0.35 —0.84 —1.47 -—-1.41 0.47
4 0.11 -0.21 -0.10 -0.06 —0.11 4 1.25 —-2.07 -1.06 -0.64 —1.10
B 0.11 -0.01 -0.02 -0.06 —0.09 B 1.62 -0.07 -0.19 -0.79 —-0.87
F-stat 1.67 p-value 0.11




Table 5: Alphas of event portfolios based on M&A, convertible bond issuance, dividend initiation
and resumption

This table reports results of time-series regressions of the excess returns of four event portfolios on the
Fama-French 3 factors with and without UMO. In Panel A, the dependent variable is the monthly excess
returns of acquirers in M&A deals in the most recent 36 months from 1980-2005. In Panel B, the dependent
variable is the monthly excess returns of firms that issue convertible bonds in the most recent 36 months
from 1972-2005. In Panel C, the dependent variable is the monthly excess returns of firms that initiate or
resume cash dividend payments from 1972-2005. In Panel D, the dependent variable is the monthly excess
returns of firms with omissions of regular or irregular quarterly, semi-annual, or annual dividend payouts.
In all panels, the event portfolios include event stocks from month ¢ + 1 through ¢ + 36, where t refers to
the effective date in M&A in Panel A, the bond issuing date in Panel B, the dividend payment date in
Panel C, and the dividend omission date (the expected payment date with omission based on regular payout
frequency) in Panel D. In all panels, equal-weighted portfolio returns are used. Robust Newey-West (1987)
t-statistics are reported in italics.

Panel A: M&A
Intercept MKT SMB HML UMO Adj. R?
(1) —0.38 1.20 0.70  —0.05 88%

—2.83 24.18 6.86 —0.60
(2) 0.04 1.07 0.56 0.29 —-0.51 91%
0.27 24.91  6.50 3.86 —4.95

Panel B: Convertible Debt
Intercept MKT SMB HML UMO Adj. R?

(3) —039 131 067 —0.12 84%
—2.46  24.08 593 —1.28
(4)  —0.03 122 056 021 —049  86%

—0.18 2941 518 1.91 —4.3}

Panel C: Dividend Initiation and Resumption
Intercept MKT SMB HML UMO Adj. R?
(5) 0.24 1.01 0.90 0.37 89%
2.40 27.34 10.27  5.57

(6) 0.16 1.03 0.93 0.29 0.11 89%
1.45 28.05  9.80 3.47 1.64

Panel D: Dividend Omission

Intercept MKT SMB HML UMO Ave. R2

(7) —0.28 1.09 1.00 0.76 84%
—2.39 25.36  9.21 8.01
(8) —0.21 1.07 0.97 082 —-0.10 84%

—1.29 22.93  8.91 7.03  —0.82
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Table 6: Fama-MacBeth regressions at the portfolio level

This table reports the Fama-MacBeth regression results using the 25 size and book-to-market portfolios from
July 1972 through December 2005. The dependent variable is the value-weighted monthly excess returns
(in percent) of the 25 portfolios. The independent variables are the loadings on a set of common factors,
including MKT, HML, SMB, UMO, UMOggc, MOM, INV, and LEV, which are all defined in Table 2.
Monthly portfolio returns from July of year ¢ through June of year ¢ + 1 are regressed on portfolio factor
loadings that are estimated from a multi-factor time-series regression from July of year ¢t — 5 through June of
year t. The time-series averages of the cross-sectional coefficients, which measure the estimated percentage
premium, are reported, below which are the associated robust Newey-West (1987) t-statistics in italics. The
ave. R?s are the time-series averages of the monthly adjusted R-squares across the full sample period.

MKT SMB HML UMO  Ave. R?
(1) 011 0.57 37%
0.27 2.54
(2) —085 020 041 46%
347  1.23 2.16
(3) —0.65 025 0.39 0.80 50%
—2.18 1.55 2.11 3.47
MKT SMB HML UMO, sgc  Ave. R?
(1)  —068 024 040 0.75 49%
—2.27 146 2.14 3.77
MKT SMB HML MOM  UMO  Ave. R?
(5) —0.74 021 041 —029 7%
—248 120 2.1} —1.08
(6) —056 024 039 —0.29 0.81 51%

—-1.93 1.46 2.10 —0.99 3.68

MKT SMB HML INV UMO Ave. R?

(7) —0.71 024 040 0.02 48%
250 1.39 210  0.14

(8)  —063 025 039 0.6 0.71 51%
—2.20 149 210  0.41 3.13
MKT SMB HML LEV UMO  Ave. R?

(9) —060 024 038 0093 49%
—1.96 142 2.04 3.85

(10) —058 026 038 0.77 0.73 51%
—1.85 1.5 202  2.96 3.29
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Table 7: Deciles based on UMO loadings estimated from past 12-month daily returns

This table reports the average monthly percentage decile returns sorted based on pre-formation conditional
UMO loadings, £P*°, from July 1973 through December 2005. The sorting variable GP*°, for each stock, is
the coefficient 3, on UMO in the following regression with at least 100 daily stock returns from month ¢ — 12
tot—1:

R—r; =+ BuMKT + 8,SMB + 8,HML + 8,UMO + e.

At the end of month ¢ — 1, stocks are sorted based on SE™ into deciles and the equal-weighted decile returns
of month ¢ are reported. The portfolio H—L is long on the highest 5*¢ decile and short on the lowest 5P*¢
decile. The variable acapym is the intercept from the regression of the full sample monthly H—L returns
on MKT. The variable apps is the intercept from a similar regression but controlling for the FF 3 factors.
The reported pre-formation UMO loading (8P*°) is averaged across stocks included in each decile and then
averaged across months. Columns 2-3 use all firms and the last two columns exclude firms in UMO of the
current year. Robust Newey-West (1987) t-statistics are reported in italics.

All sample firms Excl. UMO firms
4Pr¢ Rank grre RET ohre RET
L —2.37 1.09 —2.42 1.25
2 —1.12 1.32 —1.15 1.43
3 —0.67 1.40 —0.70 1.43
4 —0.38 1.44 —-0.41 1.51
5 —0.16 1.41 —0.18 1.46
6 0.02 1.51 0.01 1.48
7 0.21 1.52 0.21 1.57
8 0.43 1.48 0.44 1.44
9 0.75 1.54 0.78 1.56
H 1.76 1.84 1.83 1.96
H-L 4.13 0.75 4.25 0.70
t(H-L) 2.64 2.73
QCAPM 0.97 0.89
t(acapm) 3.58 3.56
QFF3 0.52 0.53
t(appg) 2.82 246
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Table 9: Comparison of demeaned pre- and post-ranking UMO loadings

This table reports the average demeaned pre and post-ranking UMO loadings for the 100 pre-ranking loading sorted
portfolios. At the end of June of each year, individual stocks’ excess percentage returns over the previous 60 months
(each stock is required to have at least 36 out of 60 monthly returns) are regressed on MKT, SMB, HML, and UMO
to obtain the pre-ranking UMO loadings (b5 ©). The estimated (b5 C) are used to sort all stocks into 100 portfolios.
The 100 portfolios are held from July of year ¢ through June of year t + 1. The equal-weight monthly percentage
returns are computed. Finally, for each of the 100 portfolios, the full sample post-ranking UMO loadings (bgévslto)
are estimated using a multifactor time-series regression that includes MKT, SMB, HML, and UMO. The demeaned
b}fjﬁ‘o is the deviation of individual stocks’ pre-ranking loadings from the mean loading of all available stocks in a
given month. The demeaned bgé\gto is the deviation of portfolios’ post-ranking loadings from their mean. The average
demeaned bgﬁfo and bggﬁf’ are reported for the 100 portfolios in Panels A and B. The same procedure is used to
estimate the demeaned market beta, SMB loadings, and HML loadings from the Fama-French 3 factor model. UMO
(All) refers to the results using all available firms while UMO (Excl. U & O) refers to the results that exclude firms
in UMO. Post-ranking loadings that are significant at the 5% level are in bold font. The Spearman rank correlations

between the average demeaned portfolio pre- and post-ranking loadings are reported in italics.

Panel A: Average demeaned pre-ranking loadings bg}go
Pre-Ranking 0 1 2 3 4 5 6 7 8 9
0+ —6.96 —-434 356 —3.12 277 —2.52 -232 -214 -199 —1.86
10+ —-1.75 —1.63 —1.53 —1.44 —1.35 —1.27 —1.20 —-1.13 —1.06 —0.99
20+ -094 —-088 —-0.83 —-0.78 —-0.73 —0.68 —-0.64 —0.59 —0.55 —0.50
30+ -046 —-042 -039 —-035 —-0.32 —0.28 -0.25 —-0.21 —-0.18 —0.15
404 -0.12 —-0.09 —-0.06 —0.03 0.00 0.03 0.06 0.09 0.11 0.14
50+ 0.17 0.19 0.22 0.25 0.28 0.31 0.33 0.36 0.39 0.41
60+ 0.44 0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69
70+ 0.72 0.75 0.79 0.82 0.85 0.89 0.92 0.96 0.99 1.03
80+ 1.07 1.11 1.15 1.20 1.25 1.30 1.35 1.41 1.48 1.55
90+ 1.63 1.71 1.81 1.92 2.05 2.21 2.43 2.74 3.24 5.03
Panel B: Demeaned post-ranking loadings bgé\gto
Pre-Ranking 0 1 2 3 4 5 6 7 8 9
0+ -1.31 -0.85 -0.55 -0.83 -0.68 -0.45 -0.67 -0.36 —-0.46 —0.39
10+ -0.12 -043 -0.51 -0.29 -0.22 -0.24 -0.05 -0.12 -0.20 0.11
20+ —-0.14 —-0.05 0.12 0.00 -0.12 0.02 0.03 —0.06 0.03 0.21
30+ —0.04 0.10 0.06 0.01 -0.03 -0.01 0.14 0.28 0.07 0.11
40+ 0.14 0.11 0.24 0.09 0.00 0.07 0.09 0.11 0.23 —0.03
50+ 0.03 0.14 0.26 0.21 0.26 0.23 0.14 0.35 0.11 0.12
60+ 0.07 0.09 0.15 0.20 0.16 0.20 0.27 0.30 0.21 0.38
70+ 0.13 0.25 0.09 0.17 0.28 0.12 0.21 0.04 0.22 0.29
80+ 0.13 0.31 0.02 0.35 0.17 0.28 —0.01 0.18 0.20 0.20
90+ 0.05 0.25 0.11 0.08 0.08 0.03 0.02 -0.37 —-0.46 —0.45

Panel C: Comparison of pre- and post-ranking loadings
UMO UMO  MKT SMB HML

All Excl. All All All
U& O
Portfolios with demeaned loadings that flip signs
Out of all 100 22 26 6 8 10
Out of the 50 (the top and bottom 25) 6 10 0 1 0
Post-ranking loadings indistinguishable from zero 38 33 0 0 10
Correlation of pre- and post-ranking demeaned loadings 0.56 0.48 0.97 0.93 0.93
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Appendix

Section A of this appendix shows that the main results of this paper hold for alternative benchmark
multi-factor models and orthogonalized misvaluation factors. Section B shows that the intuitive
hypothesis development of the main text can be supported by formal analysis. Sections C and D
provide supplementary proof to the model in Section B. Section E reports the sample of selective

corporate events.

A. Robustness of main results: Alternative benchmark factors
and orthogonalized misvaluation factor

This section shows that our main results hold after controlling for alternative benchmark factors,
including the size and book-to-market factors purged of new issues of Loughran and Ritter (2000)
and the macro economic factors of Eckbo, Masulis, and Norli (2000). We also show that our main
results remain if we orthogonalize UMO to the 3- or 4-factors before adding it to the Fama-MacBeth
regressions. This is to address the possible concern that UMO can spuriously price the 25 size-BM
portfolios in the cross section if it is simply correlated with SMB and HML (Lewellen, Nagel, and
Shanken 2008; Daniel and Titman 2008).

Loughran and Ritter (2000) suggest to replace the Fama-French size and book-to-market fac-
tors with the purged factors for more accurate assessment of the long-term performance of equity
financing firms. Specifically, the purged size and book-to-market factors exclude new issue firms in
the prior five years. We obtain the purged Fama-French factor returns (SMB, and HML,,) from
Jay Ritter from 1970-2003.

Eckbo, Masulis, and Norli (2000) suggest that equity financing changes firms’ leverage, thus
altering their exposure to macroeconomic factors and leading to long-run abnormal returns relative
to standard models. The six macro economic variables are constructed similar to Eckbo, Masulis,
and Norli (2000) based on the St. Louis Fed Economic Data (FRED) and CRSP data. The
market factor (MKT) is the excess return on the CRSP value-weighted market portfolio. The term
premium (TERM) is defined as the yield spread between the 10-year and 1-year treasury constant
maturity bonds. The default spread (DEF) is defined as the yield spread between Moody’s seasoned
Baa and Aaa corporate bonds.! The TBILL spread (TBsp) is defined as the spread between the

90-day and the 30-day TBill rates, expressed at a monthly level. The percentage change in real

'Our data differs from Eckbo, Masulis, and Norli (2000) in that we use the yield spread, not the bond return
spread, due to data availability. Also, we measure the term premium between the 10-year and 1-year Treasury bonds,
not between the 20-year and 1-year, due to a break in this series from January 1987 through September 1993.
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per capita consumption of nondurable goods is denoted as ARPC. The unanticipated inflation
(UI) is estimated using a model for expected inflation that regresses real returns (returns of 30-day
TBills less inflation) on a constant and 12 of its lagged values. Similar to Eckbo et al., we form
factor mimicking portfolios for the five economic factors (except for MKT) through regressions of
the Fama-French 25 size-BM portfolios on these factors. In our tests, we use the factor mimicking
portfolio returns as these factors.?

The orthogonalized UMO factors (UMO, 3 and UMO | 4) are defined as the sum of the intercept
and residuals from regressing of UMO on the 3- or 4-factors. By construction, UMO, 3 and UMO 4
have zero correlation with the 3 or 4-factors. If the orthogonalized factors remain significant in the
Fama-MacBeth regressions of the 25 size-BM portfolios, we can safely conclude that the pricing
power of the UMO is not due to correlations with SMB or HML.

Table A-2 presents the results of the time-series regressions of UMO on these two alternative
sets of benchmark factors. The results show that the variation of UMO cannot be fully explained
by these benchmark factors. Regressing UMO on the benchmark factors in time series regressions
yields R-squares of 53% to 64%. The variance of the regression residuals is way above the right end
of 1% confidence interval based on long-short portfolios with randomly-selected stocks, suggesting
significant amount of UMO variation that is independent of the benchmark factors. The intercept
remains economically and statistically significant, suggesting abnormal returns exist in UMO rela-
tive to these benchmark factors. Therefore, UMO contains incremental commonality in returns of
equity financing firms beyond that captured by these existing factors.

Table A-3 presents the Fama-MacBeth regression results using the 25 size-BM portfolios. In
Panel A, we add UMO 3 and UMO |4 to the 3- or 4-factors in the Fama-MacBeth regression.
Both UMO factors continue to be priced cross-sectionally. The portfolio loadings on UMO_ 3
and UMO 4 are significantly correlated with future portfolio returns. Panel B shows that, after
controlling for the two alternative sets of benchmark factors, UMO loadings remain significant. In
other words, assets’ exposure to these new benchmark factors do not fully account for the positive
premium associated with high UMO loadings. We see no visible reduction in the magnitude of
coefficients for these alternative specifications. Taken together, the results suggest that existing

rational explanations for equity financing do not fully account for the variation and pricing power

2Following Eckbo et al. (2000), to construct these factor mimicking portfolios, we first regress each of the 25
size-BM portfolios on the six factors separately to estimate the slope coefficient matrix B (25x6). Then we calculate
the weights (w) on the mimicking portfolios as w = (B'V"'B) !B’V ™! where V is the (25x25) covariance matrix of
error terms for these regressions. For each factor, the return series are the sum of the products of the corresponding
weights of the factor on the corresponding 25 portfolios.
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of UMO.

B. A model with commonality in misvaluation

In this section, we present a behavioral model built upon that of Daniel, Hirshleifer, and Subrah-
manyam (2001) to formally derive the empirical predictions in Section 2.This model shows how
equity financing helps identify factor-related mispricing and why loadings on the misvaluation fac-
tor UMO is positively related to expected returns. In Subsection 1, we briefly review the settings
and the relevant results of the DHS (2001) model. In Subsection 2 we extend the analysis to obtain
empirical predictions about equity financing and excess comovement of stocks with respect to a
misvaluation factor. Though this model is based on investor overconfidence, similar qualitative
conclusions could be derived from the setting of the style investing model of Barberis and Shleifer

(2003).
1 The Daniel, Hirshleifer, and Subrahmanyam (2001) model

In the model of Daniel, Hirshleifer, and Subrahmanyam (2001), a set of identical risk-averse indi-
viduals are each endowed with shares of N + K risky securities and a risk-free consumption claim

with terminal (date 2) payoff of 1. The prior distribution of security payoffs at date 2 is:

K
0; = 0; + Zﬁikfk + €, (A-1)
=1

where (i is the loading of the ith security on the kth factors, fi is the realization of the kth
factor, and ¢; is the ith residual, and where factors are nomralized such that. E[fi] =0, E[f?] = 1,
E[fifi] = 0 for all j # k, Ele;] = 0, E[e; fx]=0 for all i,k. The values of §; and 3, are common
knowledge, but the realizations of f; and ¢; are not revealed until date 2.

At date 1, a subset of individuals receives signals about the K factors and N residuals. The

noisy signals about the payoff of the kth factor portfolio and ith residual portfolio take the form

3£:fk+€£ and  s{ =€ + €.

The precisions (the inverse of variance) of the signals noise terms e£ and ef are denoted as V,ff

and VZRE, respectively. However, since investors are overconfident about their private signals, they
mistakenly think the precisions are higher (C' for overconfident), chf > V,ff , and VZ-C > VZ-RE.
For each security, a proportion of investors ¢;, i = 1,2, ..., N + K receives noisy private signals

about the payoff of the common risk factors and idiosyncratic risks. Since individuals are over-

confident about the private signals, the equilibrium price of individual security reflects both the
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covariance risk with the market portfolio and the mispricing component due to the overreaction to

private signals,

K
Py =0; — afi + (1 +w) S5+ Bi(1+wi)S], (A-2)
k=1
K
ER[R) = afins — wiSE = Buw] S, (A-3)
k=1

foralli=1,..., N + K, where

cov(R;, Ryy)
M — ’ =F 9
Bint var(Rar) “ [F]
Ni— AR
Si = A'si, Wizi)\Rlv
A R
Ai:%, )\fziﬁ = A >R and
173 v; 173 v,

vt = gl + (1 — i)l

and where S; and S,J; are the posterior expected payoffs of the factor ¢ and residual k conditional
on signals about the factor and residual payoff, respectively. E[R)/] is the rational expected return
on an adjusted market portfolio.

Equation (A-3) describes the equilibrium return. The first term is the product of market
beta and the unconditional expected market returns, reflecting the compensation for undertaking
systematic risk. The second term is the mispricing component due to the overreaction to the
residual signal. The last term is the mispricing component due to the overreaction to the factor
signals. The overconfidence parameters, w{ and w,{ , are positive if there are overconfident and
rational investors.? For each risk factor k, there is a corresponding mispricing term w,{ S}; induced

by overconfidence, measured by w£ , about the factor signal S,{ A

2 A model of factor mispricing, new issues, and repurchases

In this subsection we generalize the DHS approach to allow for new issues and repurchases, in order
to derive implications about how to identify factor misvaluation using new issue and repurchase

portfolios.

3The overconfidence parameters are negative if there is underconfidence, and zero if the investors are on average
rational.

4Since overconfidence parameters w’s are not necessarily the same across all factors, the linear combination of
the terms for the mispriced factors are not perfect correlated with the market portfolio. The overall mispricing of a
security is the sum of the mispricing of factor and residual payoffs.
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2.1 Management’s assessment of mispricing

We now examine management’s assessment of the extent of mispricing, and how this affects new
issue and repurchase policy. Let the price of security ¢ that would apply if all investors are rational
be PiR, and let the equilibrium price in the model conditional on the signals be P;. The mispricing
magnitude, 7;, the difference between the actual price and the rational price, is determined by the

mispricing components,

K
PR =0; — afi + S5+ Z @'lcS]{ (A-4)
k=1
K
k=1

Apart from the assumptions of the DHS model, we now assume that managers are fully rational.
In other words, managers can correctly perceive the misvaluation about firm payoffs.> We also
assume that managers act in the interest of existing shareholders and that exploiting misvaluation
is the sole motive for equity issuances or repurchases.

In addition, we assume that there is a fixed cost associated with equity issuance or repurchases,
which can vary across firms. The fixed cost could, for example, take the form of underwriting
fees, the negative market reaction to share issuance, or the positive market reaction to share
repurchase. It implies a threshold for exploiting overpricing through new issue, or underpricing
through repurchase. Let us denote the issuance threshold for overpricing as 1} and the repurchase
threshold for underpricing as 7 (7} > 0 and 1 < 0). For firm 4, market timing of overvaluation

(equity issuance) takes place when
K
mi =P — Pl' = w55 + Zﬁikw;{Sf: > 1,
k=1
and market timing of undervaluation (equity repurchase) takes place when
K
=P — P = wiS{+ ) Sawi S <n.
k=1

Given a favorable signal about factor k (i.e. S,’: > 0), when investors are overconfident about

factor k (i.e. wg > 0), factor k is overpriced and so is security i that has a positive loading on

® An alternative approach would be to assume that managers receive different signals from outsiders. Their signals
are more precise about the factor payoff and the residual payoff. For example, managers may have more precise
information about the sales or earnings of their firms than outsiders. Both sales and earnings contain information
about aggregate market and individual firms. Under this assumption, even if some or all managers were overconfident,
they might still be able to recognize mispricing of their firms.
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Table A-1: The Relation between Stocks’ Misvaluation with Factor Signals and Factor Loadings

Factor Signal S
_l’_ —
Overpricing  Underpricing
Underpricing  Overpricing

Factor Loading S

factor k (B > 0). In other words, factor underpricing generates underpricing of firms that load
positively on this factor, and overpricing of those that load negatively. Therefore, a given factor
mispricing can produce both overpriced and underpriced firms (see Table A-1). An extreme factor
signal and/or a high level of overconfidence can produce both large underpricing and overpricing of
different securities. Thus, mispricing is more dispersed across firms when factor mispricing is large.
Of course, even if all loadings on the factor are positive, so long as the loadings are unequal factor

misvaluation induces different degrees of misvaluation in different securities.

2.2 Excess return comovement

Given an observed equity issue or repurchase, two different inferences are possible: that the security
price overreacted to the firm-specific signal, or that the security loads heavily on currently mispriced

factors. Only the second case, however, generates comovement of the stock with the UMO factor.

Proposition 1. Conditional on B;pr and B, the ex ante covariance between any two securities is

the sum of the covariances through the market portfolio and through the mispriced factors,

K
cov(R;, Rj) = BimBjm var(Ryr) + Zﬂikﬂjk var(wgS}:) for all ¢ #j.
k=1

The first term is the covariance through the market portfolio, and the second term is the
covariance through mispriced factors. The above covariance implies that, after controlling for the
covariance through the market (or more generally through a given set of standard factors such as
the Fama/French factors), two securities’ excess comovement is due to the covariation induced by

the common misvaluation.

2.3 A Zero-Investment Portfolio that Captures Common Misvaluation

Since misvaluation of firm-specific payoff does not generate covariances among securities, without
loss of generality we now assume that there are no private signals about firm-specific payoffs for all

securities, s; = 0 for all 7. Under this assumption, the level of mispricing then depends on three
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components: the factor signal realization S’l{ , the overconfidence parameter wg and the factor load-
ing B;r. Given the the factor signals and overconfidence parameters, to generate a large mispricing
a firm needs to load heavily on mispriced factors. Therefore, firms with market timing events will
tend to have extreme loadings on the mispriced factors.

In the spirit of Fama and French (1993), we form a zero-investment portfolio to capture the
common misvaluation. Consider the two portfolios O and U, where O consists of K, firms that
issue equity, and U consists of K, firms that repurchase shares. The expected returns of the
two portfolios, conditional on the signals, can be written as (where the set of securities I1, I are

mutually exclusive):

K
ER[Ro) = aBr,m — Z ﬂKokw,’:S,f (A-6)
k=1
K
ERRy) = aBr,m — ZﬁKukWI{S]{, (A-7)
k=1
where
| K | K
BroM = 7 Birt, Brok = 7+ > Ba (A-8)
% i=l,ieh ®i=l,ieh
1 & 1 K
Br.m = 7 Pivs  Brue = 7 > Bik- (A-9)
Y i=1,icl, U i=1,icl,

According to Fama and French (1993), the zero-investment portfolio that goes long on stocks
with high loadings on the mispriced factors and short on stocks with low loadings should be largely
free from other factor risks. In other words, we can assume that the average (s are equal for the

two portfolios, i.e., Bk, v = Br,m-°

Proposition 2. If there are no private signals about residual cash flow components, then the zero-
investment portfolio, UMO, that invests one dollar in the portfolio U and sells one dollar in the
portfolio O has the conditional expected return

K

ER[RUM()] = Z(_/BUMO,kW}{S]D >0,
k=1

where Bunyiok = Bruk — BKok-

SEmpirically, it is possible that average betas of the two groups of stocks are not equal. Thus, UMO that is long
on U and short on O will contain a component of the market returns. In this case, we can estimate the UMO loadings
in a regression that includes both UMO and the market factor. In Appendix Section C., we show that the estimated
UMO loadings from a multifactor regression are equal to the true UMO loadings.
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When factor mispricing is corrected, UMO earns positive expected returns. Hence, given pos-
itive signals about factor payoffs, Biar0,1 should be positive. In contrast, given negative signals,

Bumo,k should be negative.
2.4 The correlation of security returns with UMO

Each security’s comovement with UMO can be measured by its loadings with respect to UMO. We

characterize these loadings as follows.

Proposition 3. Conditional on the security fundamental loadings (the B ’s), the loadings on UMO

in the regression R; = a + b ymoRumo + €; are

cov(Ri, Runmo) _ S K| BixBusiox var(wl S])
var(Rywmo) Zszl ﬁ?]Mo’k var(w{;S{:)

bi,UMO = (A—lO)

If we assume the overconfidence parameters are the same across different factors, i.e., w,{ = w,{,,

and that the variance of the factors are the same, i.e., UCL?“(S]]:) = Uar(Sf:,) for k # k', then the

estimated ( is

K .
S 2= BixBurion (A1)

K 2
Py Bomok

In the simplest case, only one dimension of risk, K = 1, exists, the estimated loading can be written

as
Bi

Bumo

bz’,UMO = (A—12)

Equation (A-11) shows that firms that load heavily on UMO, on average, tend to load heavily
in the common factors. Equation (A-12) implies that, empirically, the UMO loading of individual
stocks can be very unstable. For example, suppose that the factor is the price of oil, and that
investors at one time overconfidently forecast high oil prices, and at a later time overconfidently
forecast low oil prices. Then Gy o will firstly be positive and later become negative. Accordingly, a
car company that benefits from low oil prices will first be undervalued and load positively on UMO,
and later will be overvalued and load negatively on UMO. Thus, depending on the realization of
the signals, the UMO loadings can vary and even frequently flip signs.

When there are multiple factors UMO loadings can flip even if the mispricing of factors does
not actually reverse (from under- to overpricing or vice versa). Intuitively, suppose that a stock
loads positively on the oil factor but negatively on a new economy factor. Then it should load
positively on UMO when an oil factor is underpriced but negatively on UMO when, instead, the

new economy factor underpriced. This reinforces the point that we do not expect a given stock to
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have a consistently high or low UMO loading, or even a consistent sign of its UMO loading over

long periods of time.

2.5 The cross section of stock returns

Proposition 4. If there are K > 1 risk factors, the overconfidence parameters are the same across
different factors, i.e., w,{ = w,{, for all k # k', the variance of the risk factors are the same,
i.e., var(S};) = var(SI{/) for all k # k', and the cross-security dispersion in factor loadings is the
same across factors, var(Bix) = var(Bix) for all k # k', then in the cross-sectional regression

R; = Mo + Avmobiumo + ui, the estimated premium Ayao, which is the expected return on the

zero-investment portfolio UMO, is positive,

K
Aumo = —ZﬁUMo,kw,fS}:>0.
k=1

The proof is in Appendix Section D..

Propositions 3 and 4 show that high UMO loadings should be positively correlated with high
stock returns. UMO loadings capture the mispricing derived from factor overreaction. The greater
the loading, the larger the inherited factor underpricing. Therefore, when subsequent conclusive
factor arrives, factor mispricing is corrected and stocks that partake more factor underpricing earn

higher returns.

C. Proof of footnote 6 in Appendix Section B.

We describe how even when the average market betas in portfolios O and U are not equal, so that
UMO is correlated with MKT, we can still estimate a UMO loading that captures the covariance
with respect to the mispricing factor conditional on the market by running a multi-factor regression
on both UMO and MKT.

In the portfolio O and U, if the market loadings, Sk, n and Bk, v, are correlated with the factor
loadings, Ok r and Sk, k, the portfolio UMO is not a pure proxy for mispricing. By longing one

dollar of U and shorting one dollar of O, we obtain the following return

K
ER[Rymo)] = BumomE(Ru) — Z BuroswlSI,
=1

where Buno.m = Br,,m — Br,,m and Bunor = Br,k — BK, k-
To estimate the factor loadings on UMO after controlling for the market return, we can run

a time-series regression R; = a + byunmoRumo + bi Ry Let the vector X = [Ryao, Rar) and
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define
ZXY = [COU(RUMO7 Rl)a CO'U(RM, RZ)]

Further, let X x x denote the variance-covariance matrix of the vector X. Then the OLS estimator

of b; ymo, bi v can be written as
[biun0s bint) = Sy x Sxy-

Let us denote var(Rps) = Vas. The covariances and variances required to calculate ¥xx and

ZXY are

cov(Ryaro, Rur) = Bumo,m Vi,
K

cov(Rumo, Ri) = BimBumo,mVam + Z BiBusiox var(w!l ST,
o

cov(Ryr, R;) = BinBunromVar-

The coefficient b; 7p0 can be calculated as

var(Ryr) cov(Runio, Ri) — cov(Runo, Rar) cov(Ryr, R;)
var(Ryno) var(Ryr) — cov?(Rynao, Rar)
_ 25:1 BikBumok Uar(w’J:S]{)

K
D k1 5(2]Mo,k ”W(WI{SI{)

Hence, after controlling for the market portfolio, the time-series regression still generates the same

biumo =

coefficient as in Proposition 3. Q.E.D.

D. Proof of Proposition 4

We will now prove that under mild regularity conditions the estimated UMO premium from a
cross-sectional regression is equal to the expected return on UMO. Therefore, higher UMO loadings
should be associated with higher expected stock returns.

We have shown when there are no private signals about the residual payoff, the expected return

of security ¢ and mispricing factor loading b; ;7370 are, respectively,

K
B[R] = afiw — ) Bixwl ST,
k=1
R, R K 5 ! gl
and b yyo = cov(Ri, Runpo) _ D k=1 BikBuno k var(wjSi)
i, var(Ryuaro) S BE o var(wl SI)
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Therefore, the covariance and variance are
B Zszl ﬁUMo,kw,J:S,{ var(w,’;S}{) var(Bix)
K
D k=1 ﬂtszo,k var(w,’:Sf:)
K
D ket ﬂIQJMo,K”W2(W£5;{) var(Bi)

2
K
> ket 5(2JMo,k UW(WJ{SJ{)}

cov(R;, biumo) =

)

and  var(b,upmo) =

The regression R; = Ao + Aumobiumo + u; estimates the coefficient

SN Buatow] SE var(w]ST) var(Bix) Sy B3 a0 var(wSE)

Y ﬂIQJMO,KvaTQ(WIJ;Sl]:) var(Bix,)

AUMO = —

If var(w,{S,{) = var(w,{,SlJ:,) and var(B;x) = var(By) for k # k', the above coefficient can be
simplified as Apyo = — Zszl ﬁUMo,kw,{S,{. Q.E.D.

E. Sample of Selective Corporate Events

In Table A-4, we report the annual number of events of four types: M&A, convertible bond issuance,

dividend initiation/resumption, and dividend omission.
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Table A-2: Time-series regression of UMO on benchmark factors

Panel A reports the time series regression results of UMO on alternative benchmark factors from July 1972
through December 2005 (2003 when the purged size and book-to-market factors are used). The dependent
variable is the percentage returns of UMO that is long the repurchase firms and short the new issue firms.
The market factor (MKT) refers to the excess returns of CRSP value-weighted portfolio. The purged size
factor, SMBp, and book-to-market factor, HML,, exclude firms that are involved in equity issuance during
the prior five years. TERM is the term premium factor mimicking portfolio. DEF is the default premium
factor mimicking portfolio. TBSP is the T-Bill spread factor mimicking portfolio. ARPC is the change in
consumption of nondurable goods factor mimicking portfolio. Ul is the unexpected inflation factor mimicking
portfolio. Robust Newey-West ¢-statistics of the intercepts and independent variables are reported in italics.
o?(e) is the variance of the residual terms with the 1% confidence interval of the residual terms reported in

square brackets based on long-short portfolios with randomly selected stocks.

Intercept MKT SMB, HML, R? a?(e)

(1) 0.91 —-0.22 -0.24 0.71 53% 6.844
6.89  —52, —425 7.04 [0.954, 1.517]

Intercept MKT TERM DEF TBSP ARPC Ul  R? a?(e)

(2) 0.50 —0.43 0.15 0.18 —4.49 —12.79 0.20 64% 4.967
4.54 —8.58 6.45 2.25 =851 —1.95 0.99 [0.937, 1.455]
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Table A-3: Fama-MacBeth regression at the portfolio level

This table reports the Fama-MacBeth regression results using the 25 size and book-to-market portfolios
from July 1972 through December 2005 (2004 when the purged size and book-to-market factors are used).
The 4-factors, MKT, SMB, HML, and MOM are the market, size, book-to-market, and momentum factors.
Other factors are defined in Table A-2. The dependent variable is percentage monthly returns of the 25 size
and book-to-market portfolios from July of year ¢ through June of year ¢ + 1. The independent variables are
factor loadings that are estimated from a multi-factor time-series regression using monthly excess returns
from July of year ¢t — 5 through June of year ¢t. The time-series averages of the cross-sectional coefficients,
which measure the estimated percentage premium, are reported, below which are the associated robust
Newey-West (1987) t-statistics in italics. The ave. R2s are the time-series averages of the monthly adjusted

R-squares across the full sample period.

Panel A: Alternative benchmark factors

UMO MKT SMB, HML, Ave. R?
(1) 0.85 —0.80 0.34 0.25 50%
3.56 —-2.53 2.07 1.51
UMO MKT TERM DEF TBSP ARPC Ul Ave. R?
(2) 0.92 —0.51 1.19 —-0.19 —0.02 0.00 —0.01 55%
4.17 —1.92 3.07 —-1.15 —-0.68 1.73 —0.14
Panel B: Orthogonalized UMO
UMO,3 MKT SMB HML Ave. R?
(3) 0.47 —0.65 0.25 0.39 50%
3.26 —2.29 1.48 2.10
UMO,4 MKT SMB HML MOM Ave. R?
(4) 0.55 —0.56 0.24 0.39 -0.29 51%
3.96 —1.93 1.46 2.10 —0.99
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Table A-4: Annual Number of Selective Corporate Events

This table reports the annual number of events of mergers & acquisitions (M&A) during 1981-2005, con-
vertible bond issuance, dividend initiation/resumption, and dividend omission during 1972-2005. Dividend
initiation as the first cash dividend payment for a firm that has traded for at least 24 months. Dividend
resumption is defined as the first cash dividend paid by a firm following a hiatus in payments ranging from 33
to 180 months. Dividend omission is defined as omission of at least six consecutive quarterly cash payments,
at least three consecutive semi-annual cash payments, or at least two consecutive annual cash payments.

year M&A  Convertible Bonds Dividend InitiationResumption Dividend Omission

1972 - 27 31 116
1973 - 30 78 74
1974 - 6 89 96
1975 - 11 179 190
1976 - 18 190 124
1977 - 10 176 134
1978 - 12 112 162
1979 - 11 68 166
1980 - 71 50 212
1981 236 58 32 159
1982 427 51 35 246
1983 622 87 26 172
1984 644 45 48 136
1985 185 88 38 158
1986 172 156 36 202
1987 203 126 53 154
1988 185 29 72 153
1989 213 50 76 124
1990 222 25 66 139
1991 254 42 37 162
1992 382 43 50 109
1993 433 65 37 126
1994 536 19 45 84
1995 638 18 57 112
1996 767 37 41 90
1997 775 31 35 79
1998 855 16 33 82
1999 731 22 31 116
2000 776 26 28 127
2001 485 31 21 133
2002 299 7 23 92
2003 267 11 119 54
2004 351 12 96 30
2005 384 5 65 52
Sum 11042 1171 1250 3303
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