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GLLAMM and gllamml 2

e GLLAMM is a modelling framework most fully elaborated in the book

Skrondal, A. and Rabe-Hesketh, S. (2004).  Generalized Latent Variable
Modeling: Multilevel, Longitudinal and Structural Equation Models. Chapman
& Hall/CRC Press. Boca Raton, FL.

e gllamm is a software implementation that is capable of fitting very many
of the models with the GLLAMM framework.

- Rabe-Hesketh, S., Pickles, A. and Taylor, C. (2000). sg129: Generalized linear
latent and mixed models. Stata Technical Bulletin 53, 47-57.

- Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2002). Reliable estimation of gen-

eralized linear mixed models using adaptive quadrature. The Stata Journal 2, 1-21.

e gllamm now consists of a model fitting program, and post-estimation and
simulation programs gllapred and gllasim.

e gllamm and gllamm manual, datasets and other information are available
from www. gllamm.org



GLLAMM and gllamml

What do GLLAMM and gllamm let you do?

GLLAMM helps you to understand and gllamm allows you to analyse the effects
of covariates and the structure of covariance (multivariate normal and discrete

mixture) among sets of measures that may be of different kinds (continuous,
count, nominal, ordered, ranked, censored)



GLLAMM and gllamml

This includes for any response type:

variance components (including frailty models)

random coefficient and growth curve models

factor analysis

structural equation models

latent class models

selection models

non-ignorable non-response

multilevel versions of the above



GLLAMM and gllamml

This generality is gained at some expense.

Speed: for any 'standard’ analysis a specialist program will run more quickly.

Speed is improving as the result of the efforts of StataCorp, the gllamm
team (Sophia Rabe-Hesketh, Andrew Pickles and Anders Skrondal) and as
computers improve.

Model set-up: some more complex models can require careful prior data ma-
nipulation. The writing of wrapper programs that do this for you for par-
ticular model types is in progress.



Generalized linear mixed modelsI

We can add random effects into any GLM

e Clustered or ‘two-level’ data: level-1 units i nested in level-2 clusters j

— Repeated measurements on patients

— Twins in families

e Unobserved between-cluster covariates (or unobserved heterogeneity)
— Dependence between units 75 and 7’j in the same cluster j

e Include a cluster-specific random intercept 7; in the linear predictor

vij = X583 + nj

cluster j

cluster j

O

unit ¢

Note:

1= frames indicate ‘level’

1= () encloses latent variables
i [ ] surrounds observed var.

IF" — represents a regression
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Random coefficient models in GLLAI\/II\/II

e One covariate multiplies each latent variable,

e e.g. Latent growth curve model for individuals j (level 2) observed at times
tij: 1= 1, T,y (Ievel 1)

2)

Linear predictor: v;; = 31 + Bati; + n; + 773)%‘

J

B1, B2:  mean intercept and slope

ng), ng): random deviations of unit-specific intercepts

and slopes from their means



Generalized random coeff. model in GLLAMMSI

L M,
v = XD A
(=2 m=1

For identification, )\gl)l =1

e Fixed part: x'3 as usual

e Random part:

— nf,lL) is mth latent variable at level [, m=1,--- . M;, | =2,---,L

Can be a factor or a random coefficient

()

— 7\ are variables and A" are parameters

g m

— Unless regressions for the latent variables are specified, latent variables
at different levels are independent whereas latent variables at the same
level may be dependent



gllamm syntax for estimating GLI\/II\/IsI :

gllamm [varlist] [if exp] [in mnge] . i(varlist) [ nrf(numlist)
eqs(eqnames) offset(varname) family(family) link(link) eform

nip(numlist) adapt from(matriz) --- ]
i(wvarlist) L — 1 variables identifying the hierarchical, nested clusters, from level 2 to L, e.g.,
i(pupil class school).

nrf(numlist) L — 1 numbers specifying the numbers of latent variables )/, at each level.

eqs(egnames) M = > M; equations for the zgfz)/)\%) multiplying each latent variable. Con-
stants must be explicitly included in the equation definition.

family(family), 1ink(link) and eform as for glm.
offset(varname) variable in fixed part with regression coefficient set to 1.

nip(numlist) numbers of quadrature points for each latent variable (total M), a single number
meaning that all values are the same.

adapt adaptive quadrature will be used.

from(matriz) passes starting values to gllamm — use skip if matrix contains extra parameters
and copy if column and equation names not right.



Syntax examples: linear predictorI

e Two-level growth curve model (occasions in subjects)

Linear predictor: Vij = 61+ ﬁgti]‘ + 778) + T]g)tu

gen cons=1

eq int: cons

eq slope: time

gllamm y time, i(subject) nrf(2) eqs(int slope) ...

e Three-level growth curve model (occasions in subjects in centres)

. . P 2 3 3
Linear predictor: v, = 01 + Batiji + 7753‘3{ + Uéjagtz’jk + 775/{) + ﬁék)tijk

gllamm y time, i(subject centre) nrf(2 2) /*
*/ eqs(int slope int slope) ...

10
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gllapred syntax for prediction

gllapred warname [ if exp] [ in mnge] [ xb u linpred mu

marginal us(varname) outcome(#) above(#)

xb fixed part of linear predictor returned in varname.

u posterior means and standard deviations of latent variables returned in varnameml,
varnamesl, varnamem?2, etc.

ustd same as u but divided by approximate sampling standard deviation.
linpred linear predictor (with posterior means of latent variables) returned in varname.

mu mean response E[g~1(v)] returned in varname. By default expectation w.r.t.
posterior distribution.
marginal marginal or population average mean (expectation w.r.t. prior distribution).

us(varname) expectation conditional on latent variables being equal to the values in var-
namel, varname2, etc.

outcome(#) with mlogit link, probability that the response equals #.
above(#) with ordinal links, probability that response exceeds #.
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gllasim syntax for simulation I

gllasim wvarname [ if ewp] [ in range] [, u  us(varname)
from(matriz)

By default, responses are simulated for the model just estimated and returned
in varname.

u latent variables are simulated and returned in varnamepl, varnamep2, etc.

us(varname) response variables are simulated for latent variables equal to
varnamel, varname2, etc.

from(matriz) causes responses/latent variables to be simulated from the model
just estimated in gllamm but with parameter values in matrix.



Growth and trajectory models:

treatment of depression
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Postnatal depression example

The data look like

use depress7.dta, clear

list, clean

[

350.
351.
352.
353.
354.
355.
356.

O WO NOOU P> WN -

subj

NNMNNRFR, PR R PP

59
60
60
60
60
61
61

<
-
2]
Py
ct

N, OO O WN - O

P O WNFORFRO

Placebo
Placebo
Placebo
Placebo
Placebo
Placebo
Placebo
Placebo
Placebo
Placebo

Estrogen
Estrogen
Estrogen
Estrogen
Estrogen
Estrogen
Estrogen
Estrogen

patch
patch
patch
patch
patch
patch
patch
patch

group
group
group
group
group
group
group
group
group
group
group

group
group
group
group
group
group
group
group

dep
18
17
18
15
17
14
15
27
26
23

17
15
22

12
15
26
24
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Postnatal depression exampIeI

sort group subj visit
twoway (connected dep visit, connect(ascending)), by(group)

Flacebo group Estrogen patch group

dep

Graphs by Treatment group



Depression example: growth curve modeII

Response at time ¢ of individual ¢, y;;, is given by:

yie= a+pt + i + €it
fixed part random occasion
effects specific error

where

Mit = Ui + Ugit

and (uy;, ug;) ~ bivariate normal.

16

In the standard growth curve model the random effects for slope and intercept

are allowed to be correlated.



m Bivariate random effects model
gen con=1
eq int: con
eq slope: visit

Postnatal depression example

xi: gllamm dep i.group*visit, i(subj) nrf(2) egs(int slope) adapt

number of level 1 units = 356
number of level 2 units = 61

Condition Number = 28.96942
gllamm model
log likelihood = -1041.133

dep Coef.  Std. Err. z P>|z| [95% Conf. Intervall
_Igroup_1 -1.653089 1.035749 -1.60 0.110 -3.683121 .3769425
visit -1.526425 .2091052 -7.30 0.000 -1.936264 -1.116587
_IgroXvisi~1 -.5464383 .2660811 -2.05 0.040 -1.067948  -.0249289
_cons 19.2888 .7769387 24.83 0.000 17.76603 20.81157

Variance at level 1

14.4725 (1.2985379)

Variances and covariances of random effects

**klevel 2 (subj)

var(1): 8.9642528 (2.9576111)
cov(2,1): .38745363 (.54299217) cor(2,1): .25252183

var(2): .26261984 (.16961806)

17
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Postnatal depression example

Compare random intercept model with random coefficient model by using Likelihood Ratio
Test

Model 1: random intercept model

xi: gllamm dep i.group*visit, i(subj) adapt
. log likelihood = -1045.7117

estimates store modell /* store estimates in modell */
Model 2: Random coefficient model

xi: gllamm dep i.group*visit, i(subj) nrf(2) eqs(int slope) adapt
. log likelihood = -1041.133

Likelihood ratio test:

lrtest modell . /* compare modell with current */
(log-likelihoods of null models cannot be compared)
likelihood-ratio test LR chi2(2) = 9.16
(Assumption: modell nested in .) Prob > chi2 = 0.0103

Note:

1= | ikelihood ratio test not valid since null hypothesis on boundary of parameter space

1= Snijders and Bosker (1999) and others suggest dividing p-value by 2



Postnatal depression example 19

e Obtaining estimates of the random effects for
individual deviations for intercepts and slopes
gllapred u, u

twoway (scatter uml um2)

e Obtaining estimates of individual predicted
values (trajectories)

gllapred pred, mu
sort subj visit
twoway (connected pred visit, msymbol(smcircle)

*/ connect (ascending))

o

urm1

=

pred

urn2

wisit
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bmatrix option In gllamml

bmatrix(matriz) specifies a matrix B of regression coefficients for the
dependence of the latent variables on other latent variables. The matrix

must be upper diagonal and have number of rows and columns equal to
the total number of random effects.



Depression example by using bmatriXI

An alternative setup is to let one of the random effects be regressed upon the other:

m = 0m+PBm+a
n2 = 0m +0n2 + (o

where (1 and (2 are uncorrelated.

constraint 1 [subl_2_1]_cons=0
matrix b=(0,1 \ 0,0)

xi: gllamm dep i.group*visit, i(subj) nrf(2) nip(8) eqs(int slope) /*
*/ bmatrix(b) nocorrel adapt

21



Depression example by using bmatrix| =
Output

log likelihood = -1041.133021837493

Coef.  Std. Err. z P>|z| [957% Conf. Intervall

_Igroup_1 -1.653089 1.035749 -1.60 0.110 -3.68312 .3769416

visit -1.526425 .2091052 -7.30 0.000 -1.936264 -1.116587

_IgroXvisi~1 -.5464382 .2660812 -2.05 0.040 -1.067948 -.0249287

_cons 19.2888 .7769384 24.83 0.000 17.76603 20.81157

Variance at level 1

14.472499 (1.2985371)

Variances and covariances of random effects

*x*xlevel 2 (subj)
var(1): 8.392612 (4.101821)
cov(2,1): 0 (0) cor(2,1): O
var(2): .26262034 (.16961689)

B-matrix:

B(1,2): 1.4753391 (2.6476786)

1= This gives the same likelihood, fixed effects estimates. The variance of the slope is 0.2626
as before, but the variance of the intercept is now given by Var(¢i) + b*Var(é) =
8.3926 + 1.4753%  0.2626 = 8.964 (the same value as before).



Latent trajectory models I 2

Response at time ¢ of individual 7, y;, is given by a growth model:

yit=  a+0t + map + eit
fixed part random occasion
effects specific error

The n;¢'s are represented by discrete trajectory classes ¢ with probability m.:

(nit | €) = e1c + eact,

where

e1c Is the trajectory origin or intercept for class ¢

eac is the trajectory slope for class ¢

Prevalence of trajectory class c is 7

c c
Zwkelk‘ =0 and Zwk‘e% =0



Latent trajectory models I 21

We will hereafter consider three models:

Model 1: unconditional trajectory classes and unconditional class probabilities

Model 2: unconditional trajectory classes and conditional class probabilities

1= We allow probability ;. that subject i belongs to latent class ¢ to depend on covariates
x; through a multinomial logit model. For example, if we consider just one covariate x;:

~exp(Y0e + V1eTi)
= — :
> k=1 exp(Yor + Y1k7i)

Tic

where the o 's and the 1 's are parameters.

Model 3: conditional trajectory classes and unconditional class probabilities:
Yit = a + B + Prit + nie + e

1= Covariate effects included in fixed part of the model

1 (Classes now represent groups having accounted for covariate differences
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Postnatal depression example

w |atent trajectory model (1): unconditional trajectory classes and unconditional class prob-
abilities
gen cons=1
eq int: comns
eq slope: visit
gllamm dep visit, i(subj) nrf(2) eq(int slope) ip(f) trace nip(2)

dep Coef. Std. Err. z P>|z]| [95% Conf. Intervall
visit -1.898491 .1363647 -13.92 0.000 -2.165761 -1.631221
_cons 18.38703 .4981955 36.91 0.000 17.41058 19.36347

Variance at level 1

19.139691 (1.4643147)

Probabilities and locations of random effects

**xlevel 2 (subj)

locl: -1.9586, 2.933
var(1): 5.7444392

loc2: -.31928, .47814
cov(2,1): .9364582
var(2): .15266137

prob: 0.5996, 0.4004

log odds parameters
class 1
_cons: .40381744 (.31445191)
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Postnatal depression example

Now assign women to classes and look at what distinguishes one class from another.

preserve
gllapred prob, p

gen class=cond(probl>prob2,1,2)

label define classl 1 "classl" 2 "class2"

label values class classl

sort class subj visit

twoway (connected dep visit, msymbol(smcircle) connect(ascending)), by(class group)

class1, Placebo group class1, Estrogen patch group

classZ, Estrogen patch group

Graphs by class and Treatment group



Postnatal depression example

Test for association of class assignment with treatment:

tab class group if visit == 0, chi2

Treatment group
class | Placebo g Estrogen Total
classi 11 27 38
class2 16 7 23
Total 27 34 61
Pearson chi2(1) = 9.5815 Pr = 0.002

restore

15 Note: we reject the null hypothesis that class and group are independent.

27
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Postnatal depression example

Let's model treatment differences in latent class probabilities directly.
m Latent trajectory model (2): unconditional trajectory classes and conditional class probabil-
ities
eq clprob: group
gllamm dep visit, i(subj) nrf(2) eq(int slope) peqgs(clprob) ip(f) trace nip(2)

dep Coef.  Std. Err. z P>|z| [95% Conf. Intervall
visit -1.639986 .176207 -9.31 0.000 -1.985345 -1.294626
_cons 19.66 .6530511 30.10 0.000 18.38004 20.93996

Variance at level 1

19.192753 (1.4748225)

Probabilities and locations of random effects

**xlevel 2 (subj)

locl: -3.1888, 1.6681
var(1): 5.3192671

loc2: -.54866, .28701
cov(2,1): .91522481
var(2): .15747215

prob: 0.3435, 0.6565

log odds parameters

class 1

group: 2.1258399 (.70207624) I treatment effect on class assignment
_cons: -.64795694 (.46781989)
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Postnatal depression example

m Latent trajectory model (3): conditional trajectory classes and unconditional class probabil-
ities
gen gpvisit=group*visit

gllamm dep visit gpvisit, i(subj) nrf(2) eq(int slope) ip(f) trace nip(2)

dep Coef.  Std. Err. z P>|z| [95% Conf. Intervall
visit -1.424514 .1655199 -8.61 0.000 -1.748927 -1.100101
gpvisit -.7501039 .1692819 -4.43 0.000 -1.08189 -.4183175
_cons 18.36341 .4986261 36.83 0.000 17.38612 19.3407

Variance at level 1

18.927176 (1.4531254)

Probabilities and locations of random effects

**xlevel 2 (subj)

locl: -3.0379, 1.9312
var(1): 5.8667044

loc2: -.31252, .19867
cov(2,1): .60354323
var(2): .06209013

prob: 0.3886, 0.6114

log odds parameters
class 1
_cons: -.45301726 (.32825506)
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Postnatal depression example

Posterior probabilities:

gllapred prob, p

gen class=cond(probl>prob2,1,2)

label define classl 1 "classl" 2 "class2"
label values class classl

sort class subj visit

twoway (connected dep visit, msymbol(smcircle) connect(ascending)), /*
*/ by(class) ysize(8) xsize(20)

classi class2

Grapis byclass
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Postnatal depression example

twoway (connected dep visit, msymbol(smcircle) connect(ascending)), /*
x/ by(class group)

class1, Flacebo group class1, Estrogen patch group

dep
30 10 20 30
1

20

10

Graphs by class and Treatment group
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Postnatal depression example

Test for association of class assignment with treatment:

tab class group if visit == 0, chi2

Treatment group
class | Placebo g Estrogen Total
classl 9 14 23
class2 18 20 38
Total 27 34 61
Pearson chi2(1) = 0.3941 Pr = 0.530

1= Note: As expected, we accept the null hypothesis of independence since the treatment
effect has already been accounted for in the fixed part and the latent classes relate to
variation around the fixed part.



Instrumental variables

and CACE estimation
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Trials that go WrongI

e In many trials treatment assignment does not fully determine treatment
exposure. Non-compliance results in other factors also influencing exposure.

e It cannot be assumed that those other factors are not selective. In other
words some aspects of exposure may be associated with confounders.

e Nonetheless can exploit random assignment as an instrumental variable,
to identify part of the variation in exposure that is uncorrelated with con-
founders.
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The ODIN triaII

e Psychological treatment for depression in primary care.
e Eight centres throughout Europe.

e Participants (N=427) allocated to receive psychological treatment or
treatment as usual.

e Only about half of those patients allocated to treatment actually take up
the offer.

e Loss to follow-up is associated with non-compliance.



The ODIN trial

Compliance rates vary across Centres — from 40 to 74%

Treatment Group Control

C NC
1 Eire 6 (40%) 9 23
2 Spain 12 (63%) 7 11
3 Finland 17 (74%) 6 24
4 Finland 20 (71%) 8 22
5 Norway 22 (52%) 20 25
6 Norway 17 (47%) 19 25
7 UK 19 (40%) 28 37
8 UK 15 (58%) 11 24
TOTAL (427): 128 (54%) 108 191

1 Compliance or non-compliance cannot be observed in the control group



ODIN (6-month outcome data)

Follow-up rates depend on Compliance and on Centre

Centre No. Observations (%)
C NC Control

1 6 (100%) 2 (22%) 12 (52%)
2 12 (100%) 3 (43%) 7 (64%)
3 17 (100%) 2 (33%) 17 (71%)
4 18 (90%) 6 (75%) 20 (91%)
5 20 (91%) 11 (55%) 17 (68%)
6 17 (100%) 15 (79%) 18 (72%)
7 15 (79%) 16 (57%) 31 (84%)
8 13 (87%) 4 (36%) 18 (75%)
TOTAL: 118 (92%) 59 (55%) 140 (73%)



Treatment Group
Non-Compliers

Compliers
Controls

TOTAL

ODIN data

No.
at baseline

108
128

191

427

(ignoring Centre effects)

No. (%)

at 6 months

59 (55%)
118 (92%)

140 (73%)

317

BDI
mean

13.22
13.32

15.16

38
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IV modelling with gllamml

Endogenous treatment as a factor model:

D causes Y, with unmeasured confounder U

and instrumental variable R

Y

Z Y

D
NN
R

U is a random effect/latent variable with factor loading A.



The ODIN study] ’

R is the randomization indicator (rgroup: 0,1).

The data:

D is the number of sessions of psychotherapy attended (sessions: from 0 to 8).
Y is the BDI score at 6 months (bdi6).

U (the unmeasured confounder) is a random effect; it's a latent variable with loading A.

Remember that there are missing outcome data (assumed to be ignorable)

Model:

bdi6 = a+ (0 sessions+U +¢
sessions = g+ rgroup+ AU + 46

where corr(d,e) = 0.

Using the two-stage ATR method (Nagelekerke et al.) produces 3= —0.496 (s.e. 0.312).



Preparing the ODIN data

summarize
Variable | Obs Mean Std. Dev. Min Max
|
rgroup i 427 .5526932 .4977989 0 1
sessions | 427 2.058548 2.890626 0 8
bdi6 | 317 14.11356 10.13733 0 46
id | 427 214 123.4085 1 427
list id rgroup sessions bdi6 in 1/10, clean
id rgroup sessions bdi6
1. 1 1 3 .
2. 2 1 5 0
3. 3 1 6
4. 4 0 0
5. 5 0 0
6. 6 1 0 .
7. 7 1 2 40
8. 8 0 0 18
9. 9 0 0 5
10. 10 1 6 7



Preparing the ODIN data (continued)

gen respl=bdi6
gen resp2=sessions

reshape long resp, i(id) j(type)

(note: j =1 2)

Data wide -> long
Number of obs. 427 > 854
Number of variables 6 > 6
j variable (2 values) -> type
xij variables:
respl resp2 -> resp
tab type, gen(d)

type Freq. Percent Cum.

1 427 50.00 50.00

427 50.00 100.00

Total 854 100.00

42
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Preparing the ODIN data (continued)

list id rgroup type dl d2 resp in 1/20, clean

rgroup  type di d2 resp

id

10.
11.
12.
13.
14.
15.
16.
1

40

18

7.
18.
19.
20.

10
10
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Preparing the ODIN data (continued)

gen dl_sessions=dl*sessions
gen d2_rgroup=d2*rgroup
eq fac: dil d2

gllamm resp dl_sessions dl d2 d2_rgroup, nocons i(id) /*
*x/ family(gauss gauss) link(identity identity) fv(type) /*
*x/ lv(type) eq(fac) adapt nip(15) trace



The gllamm commandI )
eq fac: dl d2

gllamm resp dl_sessions dl d2 d2_rgroup, nocons i(id) family(gauss gauss) /*
*/ link(identity identity) fv(type) lv(type) eq(fac) adapt nip(15) trace

Explanation:
The fixed effects are d1, d1 sessions, d2, and d2 rgroup. The random effect (U) is fac
loading from d1 and d2 (the binary indicators for Y and D, respectively).

nocons suppresses the intercept term
(represented, instead, by the effects for d1 and d2)

i(id) identifies the participants (level 2 units)
family(gauss gauss) probability distributions for the two outcomes
link(identity identity) link functions for the two outcomes

fv(type) variable whose values indicate which family applies to

which observation

lv(type) variable whose values indicate which link function applies
to which observation

eq(fac) equation for the latent variable

adapt nip(15) specification for adaptive quadrature



number of level 1 units
number of level 2 units

744
427

gllamm model
log likelihood = -2127.6743

The gllamm output (final part only)

resp Coef.  Std. Err. z P>|z| [95% Conf. Intervall
dl_sessions -.4958635 .3112457 -1.59 0.111 -1.105894 .1141668
di 15.15714 .8550292 17.73  0.000 13.48132 16.83297

d2 2.44e-09 .1602771 0.00 1.000 -.3141374 .3141374
d2_rgroup 3.724576 .2155904 17.28 0.000 3.302027 4.147126

Variance at level 1

4.853494 (.34316457)

Variances and covariances of random effects

*xxlevel 2 (id)
var(1): 97.779296 (8.3379229)

loadings for random effect 1
di: 1 (fixed)
d2: .02329433 (.02173818)

46
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gllamm with binary endogenous
treatment effects

eq fac: dl d2

gllamm resp dl_treat dl1 d2 d2_rgroup, nocons i(id) family(gauss binom) /*
*/ link(identity probit) fv(type) lv(type) eq(fac) adapt nip(15) trace
Differences from the previous run:
e Replace d1 sessions with corresponding d1 treat
e family(gauss binom)

e link (identity probit)



Binary endogenous treatment model:
gllamm output

744

number of level 1 units
number of level 2 units = 427

log likelihood = -1344.6925

resp Coef.  Std. Err. z P>|z| [95% Conf. Intervall
dl_treat -4.259795  2.458733 -1.73 0.083 -9.078823 .5592327
d1i 15.36503 .9200239 16.70  0.000 13.56182 17.16824

d2 -16.97098 419.7303 -0.04 0.968 -839.6273 805.6854
d2_rgroup 17.13592 419.732 0.04 0.967 -805.5237 839.7955

Variance at level 1

89.246447 (133.98532)

Variances and covariances of random effects

**xxlevel 2 (id)
var(1): 15.143656 (134.2019)

loadings for random effect 1
di: 1 (fixed)
d2: .31621095 (4.8864784)



Generalised |V factor modelI

|
X ﬁ ~ Y
y 1
Yz «
A
R T X D
f

with a model for Y from the GLM family

E(Yj | Dj,x;,Uj) = g7 (aDj + Baj + Uj)
and similarly for D

E(Dj | Rj,j,Uj) = g5 (vaRj + vaj + AUj)

where g1 and g, ! are inverse link functions.
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Estimation for non-identity link functionsl

For g, and g, identity links we have a standard instrumental variable model
for the treatment effect a. While incorrect choice of g, does not lead to
inconsistent estimates of the treatment effect «, this is not the case for
incorrect choice of gy; see e.g. Ten Have et al. (2003).

Estimation of models with non-identity links is more complicated. The Stata
routine gllamm allows an estimation of these models for any appropriate choice
of the link function by the explicit integration over the distribution of U using
Gaussian, adaptive or non-parametric methods.



o1

Physician advice and drinking exampIeI

Kenkel and Terza (2001) analysed 2467 currently drinking males with hypertension.

Data description

e Data from the 1990 National Health Interview Survey.
e Count of alcohol units in last 2 weeks.

e Three dummy explanatory variables:
race (0 = non-black, 1 = black)
educ (high education; 0 if < 12 years, 1 if > 12 years)
advice (told by physician to drink less; 0 = no, 1 = yes )
e There is no randomization to receive advice — instead three IV's are selected on theoretical
grounds, i.e.
hlthins (covered by health insurance; 0 = no, 1 = yes)
regmed (registered source of medical care; 0 = no, 1 = yes)

heart (heart condition; 0 = no, 1 = yes)



Physician

advice and drinking example

Overdisp. Endog.
Poisson Poisson Probit Treatment

Parameter Est (SE) Est (SE) Est (SE) Est (SE)
Fixed part

Drinking model

« [advice] 0.47 (0.01) 0.59 (0.08) —2.42 (0.23)

Bo [cons] 2.65 (0.01) 1.43 (0.06) 2.32 (0.09)

B1 [hieduc] —0.18 (0.01) 0.02 (0.07) —0.29 (0.10)

B2 [black] —0.31 (0.02) —0.29 (0.11) 0.20 (0.11)

Advice model

Yo [cons] —0.48 (0.08) —1.13 (0.16)

~1 [hieduc] —0.25 (0.06) —0.40 (0.10)

2 [black] 0.30 (0.08) 0.60 (0.15)

v3 [hlthins] —0.27 (0.07) —0.33 (0.10)

4 [regmed] 0.18 (0.07) 0.39 (0.10)

5 [heart] 0.17 (0.08) 0.51 (0.11)
Random part

Variance

) 2.90 (0.11) 2.50 (0.69)

Loading

A 1.43 (0.15)
Log likelihood —32939.15 —8857.85 —1419.90 —10254.02
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CACE: Complier Average Causal EffectI

Two Types of Patient

1. Complier — Accepts allocation
i Can be identified (C) in the Treatment Group, but hidden or latent in
the Controls
2. Non-Complier — Would never receive therapy, whatever the allocation

1= Can be identified (NC) in the Treatment Group, but hidden or latent
in the Controls



o4

CACE Estimation I

Assumption 1: Randomization

Randomization ensures that, on average, the proportions of Compliers and
Non-Compliers are the same in the two arms of the trial.

Therefore these proportions can be estimated from the observed proportions in
the Treatment Group.



CACE Estimation I

Assumption 2: Exclusion Restriction

For Non-Compliers, the outcome is the same in the two arms of the trial.

That is, the offer of treatment, in itself, does not influence outcome.

%)
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CACE Estimation I

Assumption 3: Ignorable Missing Data Mechanism
Data Missing At Random (MAR) - i.e. Ignorable

Given observed Compliance Status (Complier, Non-Complier or Control),
outcome is independent of whether it is actually observed or not.



Complier Average Causal EfFectI T

Randomized to Treatment Randomized to Control
|
Treatment Treatment Treatment | Treatment
taken not taken not taken : not taken
|
|
compliers non-compliers compliers ' non-compliers
|
|
|
Hic Hin Hoc : Hon
| CACE |

e CACE is treatment effect for compliers
0c = [11e — Hoc,

i1 and ppe. mean outcomes of compliers in treatment and control groups

e Exclusion restriction: mean outcome same among non-compliers in both groups

Hin = Hon



Path diagram for
CACE latent class model

rgroup

b

> bdi6

bdi0

comply |*

centre

rgroup

class

b

» hdi6

>< bdi0
Latent compliance é .

centre

b: in class 1 (non-compliers) this path is fixed at 0

in class 2 (compliers) this path is free

a8



Outcome model I

e ; is dummy for being randomized to treatment versus control
e c; is dummy for compliers versus non-compliers

e Model for outcome if compliance were known for everyone:
yj = Bo+ Prei(L = 1)) + Bacyrs + €5,

— c; observed only if r;=1, i.e. in third term

— ¢; in second term never observed: discrete latent variable
n; = €1, e, where e; =1, e = 0:

Depression model: y; = By + 5in;(1 — rj) + Pacjr; + €5

— CACE:
:uln::uOn:ﬁ% MOc:ﬁO—i_ﬁla ,ulc:ﬁo_i_ﬁQ

— 50252 - 51
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Compliance model I

e Probability of being complier same in treatment and control groups (due
to randomisation)

Pr(cj=1|r;=1) =Pr(¢;=1|r; =0) =Pr(n;=e1) =m

e Without covariates for compliance

Compliance model: logit[Pr(c;=1)] = o = logit(m)



CACE in gllamm (continued)

Response model: Vij = 50di1 + ﬁlnj(l — Tj)dﬂ + ﬁQCjTjdﬂ + Qdig

Structural model: logit[m ]| = o.

e Interactions and equations:

gen c_r_dl = ckxrx*dl /* cjridip */
gen nr_dl = (1-r)*dil /x (1 —rj)di */
eq load: nr_dl /x for [1(1—rj)dj */

e Constraints:

cons def 1 [z2_1_1]nr_d1 =1 /¥ e = 1 %/
cons def 2 [z2_1_2]nr_dl =0 /¥ eg = 0 *x/
cons def 3 [p2_1]_cons = [y]d2 /* constraint for p */

e gllamm command:

gllamm y d1 c_r_dl d2, i(id) eqgs(load) 1l(ident logit) /*
x/ f(gauss binom) 1lv(var) fv(var) ip(fn) nip(2) /*
*/ constr(1/3) frload(1l) nocons /* (1 is ‘freed’ by frload(1l) */
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eq load: nr_d1l

cons def 1 [z2_1_1]nr_di=1
cons def 2 [z2_1_2]nr_di=0
cons def 3 [p2_1]_cons=[y]d2

gllamm y d1 c_r_dl 42, i(id)
x/ lv(var) fv(var) ip(fn)

number of level 1 units = 553
number of level 2 units = 376
log likelihood = -1344.824804098342

gllamm command line and part output
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eqs(load) 1(ident logit) f(gauss binom) /*

nip(2) const(1/3) frload(1l) nocons

Coef. Std. Err. z P>zl [95% Conf. Intervall

d1l 13.07684 1.282891 10.19 0.000 10.56242 15.59126
c_r_dl .2451937 1.578327 0.16 0.877 -2.848271 3.338659
d2 .1664994 .1311042 1.27 0.204 -.09046 .4234588




Probabilities and locations of random effects

**xxlevel 2 (id)
locl: 1, O
var(1l): .24827535

loadings for random effect 1
nr_dl: 3.9636215 (2.8651214)
prob: 0.5415, 0.4585

lincom [ylc_r_di-[id1_11]nr_d1

(1) [ylc_r_dl - [id1_11]lnr_d1 = 0O

ODIN CACE Estimate

assuming MAR (no covariates)
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y Coef. Std. Err. z P>|z|

[95% Conf. Intervall

(¢D) -3.718428  2.151174 -1.73 0.084

-7.934651 .4977952




gllamm MAR setup with covariatesI o

eq p: ¢l c2 c3 c4 c6 c7 c8 bdil
eq load: nr_d1l

cons def 1 [z2_1_1]nr_di=1

cons def 2 [z2_1_2]nr_d1=0

cons def 3 [p2_1]_cons=[y]d2
cons def 4 [p2_1]cl=[ylcl_d2
cons def 5 [p2_1]c2=[ylc2_d2
cons def 6 [p2_1]c3=[y]lc3_d2
cons def 7 [p2_1]c4=[ylc4_d2
cons def 8 [p2_1]c6=[y]lc6_d2
cons def 9 [p2_1]c7=[ylc7_d2

cons def 10 [p2_1]c8=[y]lc8_d2
cons def 11 [p2_1]bdi0=0

gllamm y d1 c_r_dl d2 /*
x/ c1_dl c2_d1 c3_d1 c4_dl c6_d1l c7_dl c8_dl bdi0_d1/*
x/ c1_d2 ¢2_d2 c3_d2 c4_d2 c6_d2 c7_d2 c8_d2 bdi0_d2 ,/*
x/ 1(id) eqs(load) peqs(p) 1l(ident logit) f(gauss binom) 1lv(var) /*
x/ fv(var) ip(fn) nip(2) const(1/11) frload(1l) from(a) skip nocons

lincom [ylc_r_di-[id1_11]nr_d1



assuming MAR (no covariates)

ODIN CACE Estimate

Coef. Std. Err. z P>|z]| [95% Conf. Intervall

d1l .1421738 1.863593 0.08 0.939 -3.510401 3.794748
c_r_dil 1.633098 1.222449 1.34 0.182 -.7628577 4.029053
d2 -.2732483 .4660384 -0.59 0.558 -1.186667 .6401702
cl_d1l -4.908202 2.239007 -2.19 0.028 -9.296575 -.5198285
c2_d1 -4.246159 2.133657 -1.99 0.047 -8.42805 -.0642679
c3_d1l -2.941429 1.893257 -1.55 0.120 -6.652146 .7692869
c4_d1 -5.314535 1.759019 -3.02 0.003 -8.76215 -1.86692
c6_d1l 4.058566 1.66644 2.44 0.015 .7924048 7.324728
c7_d1l 4.606668 1.623953 2.84 0.005 1.423778 7.789558
c8_d1l 1.544861 1.889072 0.82 0.413 -2.157652 5.247374
bdiO_d1 .5235755 .0601072 8.71 0.000 .4057676 .6413833
cl_d2 -.5903473 .5953044 -0.99 0.321 -1.757123 .5764279
c2_d2 .6116215 .5606669 1.09 0.275 -.4872655 1.710509
c3_d2 1.09433 .5549307 1.97 0.049 .006686 2.181974
c4_d2 .8314038 .5139704 1.62 0.106 -.1759596 1.838767
c6_d2 -.2037023 . 444397 -0.46 0.647 -1.074704 .6672999
c7_d2 -.3702143 .4211024 -0.88 0.379 -1.19556 .4551312
c8_d2 .1340363 .4932205 0.27 0.786 -.8326582 1.100731
bdi0_d2 .0140192 .0160298 0.87 0.382 -.0173987 .0454371
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Probabilities and locations of random effects

CACE Estimate (cont'd)

**xxlevel 2 (id)

locl: 1, O
var(1): .24539092
loadings for random effect 1
nr_dl: 6.8980394 (2.0763784)

prob: 0.4321, 0.5679

log odds parameters

class 1

cl: -.59034731 (.59530442)
c2: .61162153 (.56066694)
c3: 1.0943302 (.55493073)
c4: .83140379 (.51397035)
c6: -.20370229 (.44439705)
c7: -.37021427 (.42110239)
c8: .13403632 (.49322054)
bdi0: .01401919 (.01602984)
_cons: -.27324832 (.46603843)

lincom [ylc_r_dl - [id1_1l]lnr_d1

(1) [yle_r_dl - [id1_11lnr_d1 = 0

y Coef. Std. Err. z P>|z| [95% Conf.

Intervall]

1) -5.264942 1.646564 -3.20 0.001 -8.492148

-2.037736
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CACE Estimation I

Alternative Assumption 3: Latent Ignorability

Given both Treatment Arm (Z=0 or 1) and Compliance Status (Complier,
Non-Complier), outcome is independent of whether it is actually observed or
missing.

The 'Latent’ in 'Latent Ignorability’ comes from the fact that we cannot observe
compliance status completely.
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CACE Estimation I

Alternative Assumption 2: Compound Exclusion Restriction

For Non-Compliers, the drop-out rate is the same in the two arms of the trial.

That is, the offer of treatment, in itself, does not influence loss to follow-up.

For Non-Compliers, the outcome is the same in the two arms of the trial.

That is, the offer of treatment, in itself, does not influence outcome.



CACE model with latent ignorable |

bdio
s centre

rgroup

bdi0

s

rgroup

/ cenire
T /

b, c: in class 1 (non-compliers) this path is fixed at 0
in class 2 (compliers) this path is free
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gllamm setup for CACE estimate
assuming LI (no covariates)

*lAddition of factor loading from latent
eq load: nr_dl nr_d3 *lcompliance class to missingess indicator

cons def 1 [z2_1_1]nr_di=1
cons def 2 [z2_1_2]nr_d1=0
cons def 3 [p2_1]_cons=[yld2

gllamm y d1 c_r_dl d2 d3 c_r_d3, i(id) egs(load) 1l(iden logit logit) /*
*x/f (gauss binom binom) lv(var) fv(var) ip(fn) nip(2) const(1/3) /*
*x/ frload(1) nocons



ODIN CACE Estimate

assuming LI (no covariates)

number of level 1 units = 980
number of level 2 units = 427
log likelihood = -1565.20793100089

Coef. Std. Err. z P>zl [95% Conf. Interval]

d1 13.16542 1.284933 10.25 0.000 10.647 15.68384
c_r_dil .156616 1.58229 0.10 0.921 -2.944615 3.257847
d2 .1687961 .1307435 1.29 0.197 -.0874565 .4250486

d3 .1877536 .1934712 0.97 0.332 -.1914431 .5669502
c_r_d3 2.280347 .3819762 5.97 0.000 1.531687 3.029006




ODIN CACE Estimate

assuming LI (no covariates)

Probabilities and locations of random effects

*xxlevel 2 (id)
locil: 1, O
var(1): .24822767

loadings for random effect 1
nr_dl: 3.0631954 (2.3352733)
nr_d3: 1.902311 (.88119373)

prob: 0.5421, 0.4579

lincom [ylc_r_dl - [id1_1l]lnr_d1

(1) [ylc_r_dl - [id1_1llnr_d1 = 0

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

1) -2.906579 1.72964 -1.68 0.093 -6.296611 .4834523
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