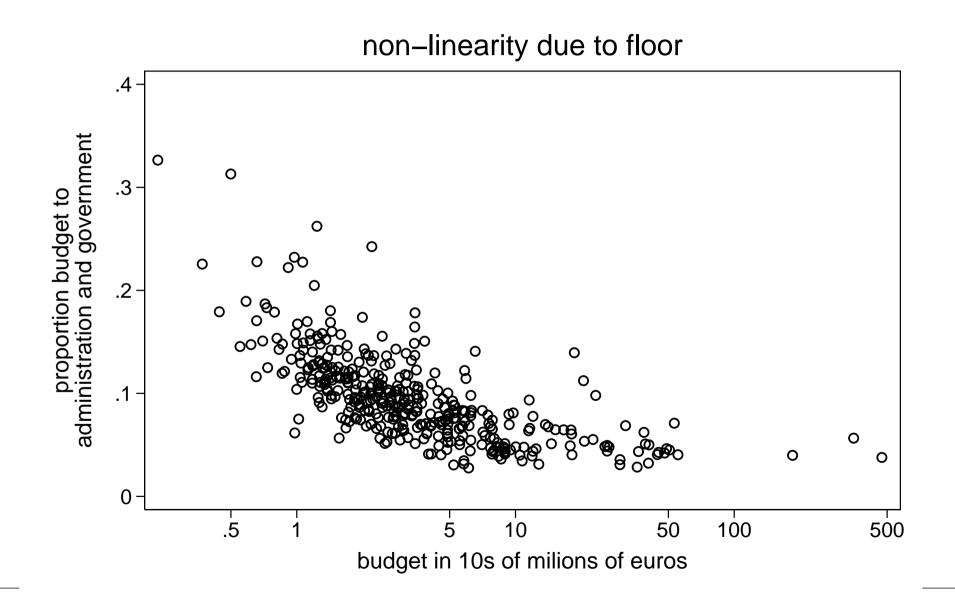
Proportions as dependent variable

Maarten L. Buis

Vrije Universiteit Amsterdam Department of Social Research Methodology http://home.fsw.vu.nl/m.buis

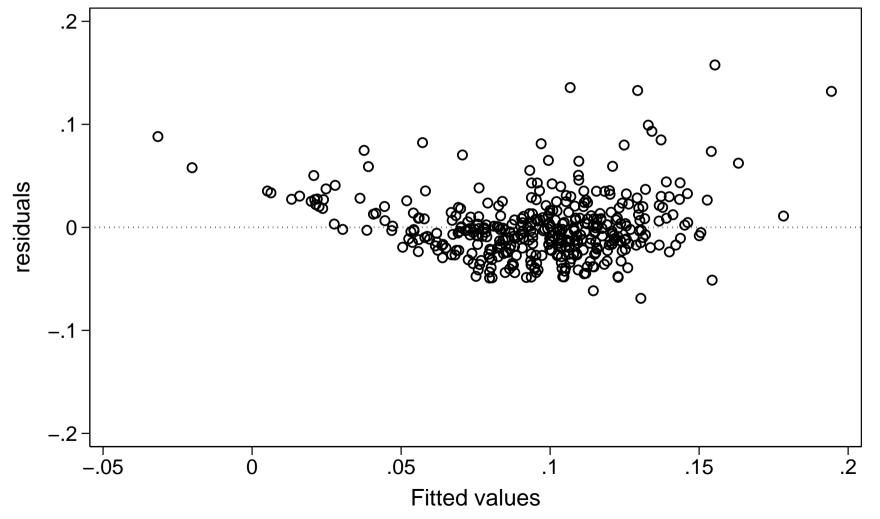
Outline

- Problems with using regress for proportions as dependent variable
- Methods for dealing with a single proportion
- Methods for dealing with multiple proportions
- Caveat: Ecological Fallacy


Example

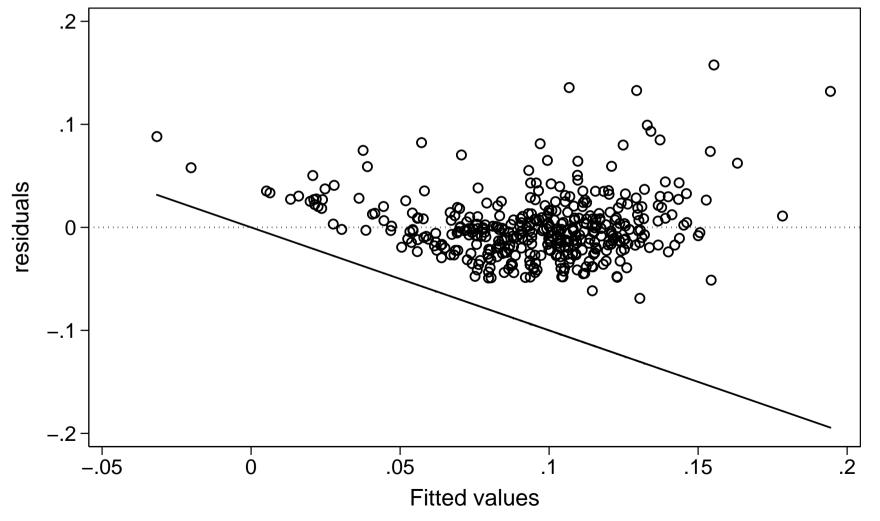
- Explaining proportion of Dutch city budgets spent on administration and government with:
 - Size of budget (natural logarithm of budget in 10s of millions euros)
 - Average house price (in 100,000s of euros)
 - Population density (in 1000s of persons per square km)
 - Political orientation of city government (either no left parties in city government, left parties are a minority in city government, or left parties are a majority in city government)

OLS results


h	0.0
D	Se
-0.030	(0.002)
0.013	(0.004)
0.008	(0.002)
-0.001	(0.005)
-0.007	(0.004)
0.109	(0.008)
0.499	
	0.013 0.008 -0.001 -0.007 0.109

Non linear effects due to floor

Residuals versus fitted values



Floor

observed = fitted + residual $observed \ge 0 (and \le 1)$ $fitted + residual \ge 0$ $residual \ge -fitted$

Residuals versus fitted values

Problems with regress

- Impossible predictions.
- Non-normal errors.
- Heteroscedasticity.
- Non-linear effects.

Outline

- Problems with using regress for proportions as dependent variable
- Methods for dealing with a single proportion
- Methods for dealing with multiple proportions
- Caveat: Ecological Fallacy

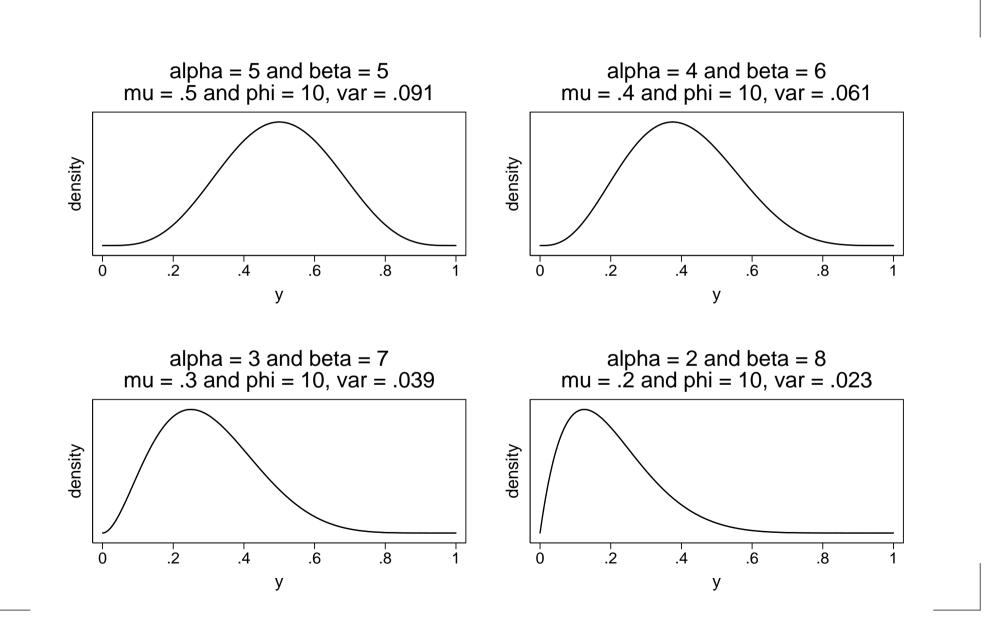
A solution: betafit

- Assumes that the proportion follows a beta distribution.
- The beta distribution is bounded between 0 and 1 (but does not include either 0 or 1).
- The beta distribution models heteroscedasticity in such a way that the variance is largest when the average proportion is near 0.5.

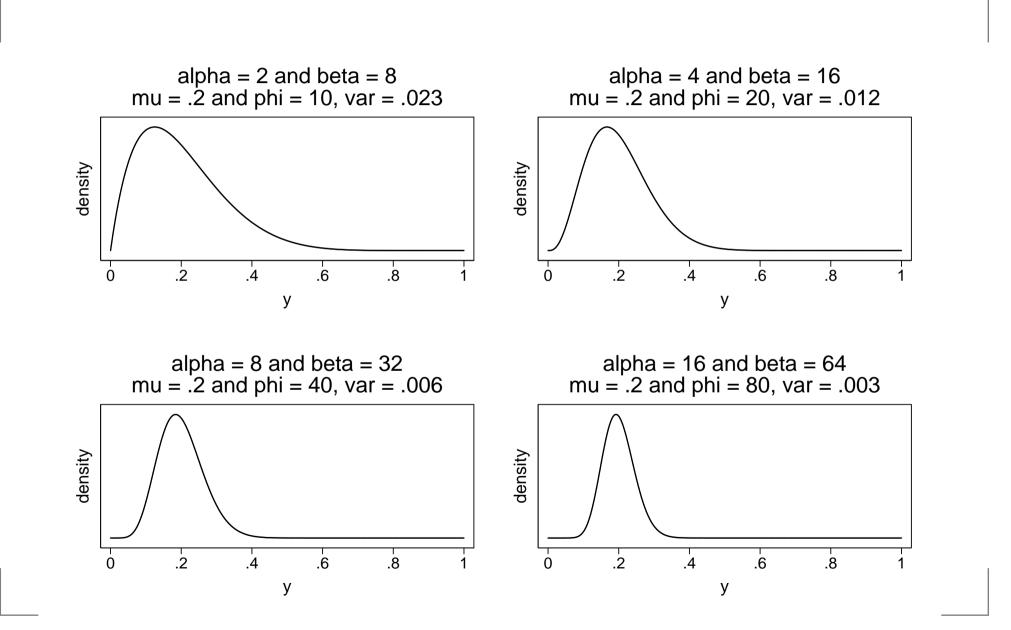
Two parameterizations

- the conventional parametrization with two shape parameters (α and β)
 - Corresponds to the formulas of the beta distribution in textbooks.
 - Does not correspond to conventions of Generalized Linear Models where one models how the mean of the distribution of the dependent variable changes as the explanatory variables change.
- ³ the alternative parametrization with one location and one scale parameter (μ and ϕ)
 - Does not correspond to textbook formulas of the beta distribution but does correspond to the GLM convention.

Two parameterizations


conventional parametrization

$$f(y|\alpha,\beta) \propto y^{\alpha-1}(y-1)^{\beta-1}$$
$$E(y) = \frac{\alpha}{\alpha+\beta}$$
$$Var(y) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$


alternative parametrization

$$f(y|\mu,\phi) \propto y^{\mu\phi-1}(y-1)^{(1-\mu)\phi-1}$$
$$E(y) = \mu$$
$$Var(y) = \mu(1-\mu)\frac{1}{1+\phi}$$

different μ fixed ϕ

different ϕ fixed μ

Modeling the mean

We allow different cities to have different µs depending on their values of the explanatory variables.

$$\mathbf{a} \quad \mu_i = f(b_0 + b_1 x_{1i} + b_2 x_{2i} \cdots)$$

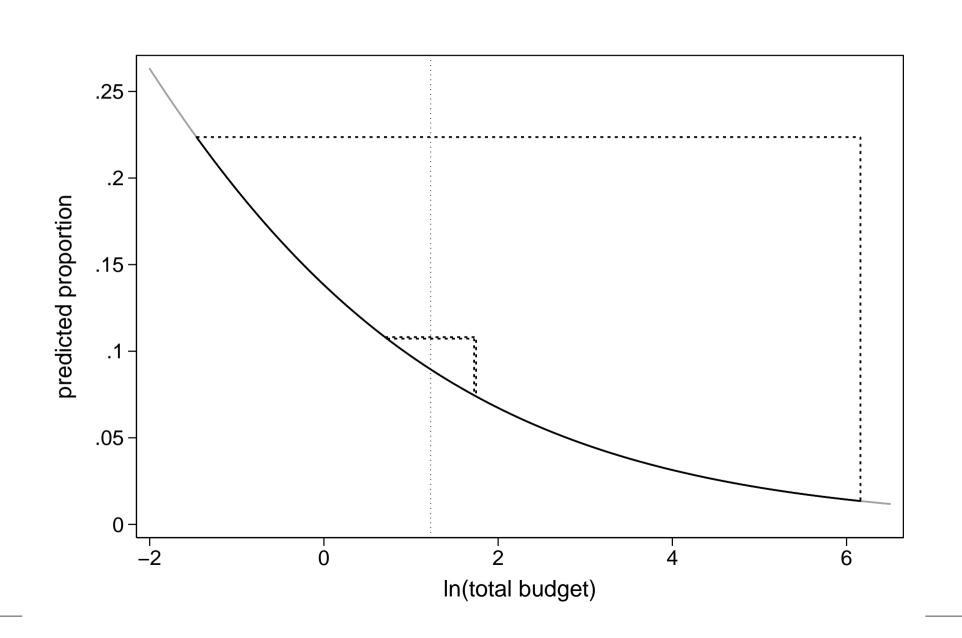
The logistic transformation is used to ensure μ_i remains between 0 and 1.

$$\mathbf{D} \quad \mu_i = \frac{e^{b_0 + b_1 x_{1i} + b_2 x_{2i} \cdots}}{1 + e^{b_0 + b_1 x_{1i} + b_2 x_{2i} \cdots}}$$

which is the same as:

$$\ln(\frac{\mu}{1-\mu}) = b_0 + b_1 x_{1i} + b_2 x_{2i} \cdots$$

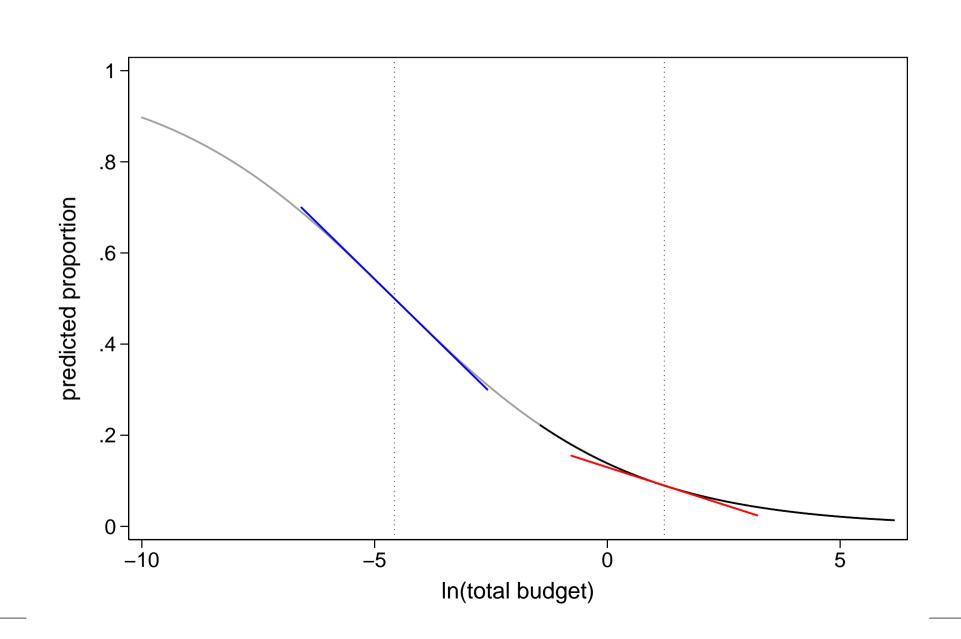
output of betafit


. betafit gov, mu(lntot houseval popdens noleft minorityleft) nolog

ML fit of beta	a (mu, phi	_)		r of ol chi2(5		394 473.19
Log likelihood	d = 887.9	97456	Prob	> chi2	=	0.0000
	I				[959	CI]
lntot	3999	.0227	-17.58	0.000	4445	3553
houseval	.1138	.0385	2.96	0.003	.0384	.1892
popdens	.0830	.0216	3.85	0.000	.0408	.1253
noleft	.0185	.0445	0.42	0.677	0686	.1057
minorityleft	0080	.0450	-0.18	0.859	0962	.0802
_cons	-2.0545	.0707	-29.06	0.000	-2.1931	-1.9160
/ln_phi	4.7968	.0715	67.13	0.000	4.6568	4.9368
phi	121.1	8.6545			105.3	139.3

interpretation using dbetafit

. dbetafit , at(noleft 0 minorityleft 0)							
discrete	Min:	> Max	+-S	D/2	+-1	_/2	
change	coef.	se	coef.	se	coef.	se	
houseval popdens	2116 .0291 .0447 .0015	.0122 .0105 .0133 .0037	0344 .0037 .0063	.002 .0013	033 .0093	.0019 .0032 .0018	


discrete changes in Intot

marginal effects

Marginal	MFX	at x	Μ	lax MFX
Effects	coef.	se	coef	. se
	+			
lntot	0328	.0019	1	.0057
houseval	.0093	.0032	.0284	.0096
popdens	.0068	.0018	.0208	.0054

marginal effects of Intot

Fractional logit

- Although the implied variance in betafit makes sense, it is still an assumption and some think it is too restrictive.
- The fractional logit has been proposed as an alternative by Papke and Wooldridge (1996).
- Fractional logit can handle proportions of exactly 0 or 1, unlike betafit.
- This model can be estimated by typing: glm varlist, family(binomial) link(logit) robust.
- Marginal effects like those from dbetafit can be obtained with mfx, predict(mu).

Does it matter?

	OLS		beta	afit	glm	
	dy/dx	se	dy/sx	se	dy/dx	se
Intot	0296	.0027	0328	.0019	0330	.0026
houseval	.0135	.0051	.0093	.0032	.0105	.0036
popdens	.0078	.0019	.0068	.0018	.0071	.0018
noleft*	0010	.0056	.0015	.0037	.0008	.0046
minorityleft*	0065	.0047	0007	.0037	0019	.0042

* dy/dx is for discrete change of dummy variable from 0 to 1

Outline

- Problems with using regress for proportions as dependent variable
- Methods for dealing with a single proportion
- Methods for dealing with multiple proportions
- Caveat: Ecological Fallacy

Multiple proportions

Cities also spent money on other categories:

- Safety (which includes public health, fire department, and the police department)
- Education (mostly primary and secondary schools)
- recreation (which includes sport facilities and culture)
- social (which includes social work and some social security benefits)
- urbanplanning (which includes roads and houses)

Multiple proportions

- The proportions spent on each category should remain between 0 and 1, and
- the proportions should add up to 1.
- The proportions could be modeled with separate betafit models.
- This would ensure the first condition is met, *but*
- it would ignore the second condition.

A solution: dirifit

- Assumes that the proportions follow a Dirichlet distribution.
- The Dirichlet distribution is the multivariate generalization of the beta distribution.
- It ensures that the proportions remain between 0 and 1, and that they add up to 1.

Two parameterizations

- the conventional parametrization with one shape parameters for each proportion ($\alpha_1, \alpha_2, \ldots, \alpha_k$)
 - Corresponds to the formulas of the Dirichlet distribution in textbooks.
 - Does not correspond to conventions of Generalized Linear Models where one models how the mean of the distribution of the dependent variable changes as the explanatory variables change.
- the alternative parametrization with on location location parameter for each proportion and one scale parameter (μ_1 , μ_2 , ..., μ_k , and ϕ)
 - Does not correspond to textbook formulas of the Dirichlet distribution but does correspond to the GLM convention.
 - One location parameter is redundant:

 $\mu_1 = 1 - (\mu_2 + \mu_3 + \ldots + \mu_k).$

Modeling the mean

- We allow different cities to have different μ_j s depending on their values of the explanatory variables.
- The multinomial logistic transformation is used to ensure the µ_js remain between 0 and 1 and add up to 1.

output of dirifit

. dirifit gov-urban, mu(lntot houseval popdens noleft minorityleft) nolog

	Coef.	se	 Z	P> z	[95%	CI]
+ mu2						
lntot	.1445	.0406	3.56	0.000	.0649	.2240
houseval	0518	.0718	-0.72	0.471	1924	.0889
popdens	0700	.0390	-1.79	0.073	1465	.0065
noleft	.0817	.0827	0.99	0.323	0805	.2439
minorityleft	.1043	.0826	1.26	0.207	0577	.2662
_cons	.5274	.1318	4.00	0.000	.2690	.7858
iu3						
lntot	.4123	.0423	9.74	0.000	.3293	.4952
<snip></snip>						
phi	45.01	1.407			42.33	47.85
 mu2 = safety	mu4	l = recre	eation	 mu6 = urł	oanplannin	
mu3 = educatio	n mu5	5 = socia	al	base out	come = gov	roportions as depe

Marginal effects obtained with ddirifit

	governing	safety	education	recreation	social	urban
	0 0	,				planning
Intot	0320*	0314*	.0115*	0067*	.0265*	.0321*
houseval	.0132*	.0143*	0321*	.0065	0496*	.0477*
popdens	.0074*	.0009	0067	.0002	.0072	0090*
noleft [†]	.0006	.0161*	0266*	.0048	0168	.0219*
minorityleft [†]	0019	.0154	0164*	.0085	0105	.0049

[†] discrete change of dummy variable from 0 to 1

* significant at 5% level

Variance and covariance of y in dirifit

- The variance of y_i is $\mu_i(1-\mu_i)\frac{1}{1+\phi}$
- The covariance of y_i and y_j implicit in diritit is $-\mu_i \mu_j \frac{1}{1+\phi}$
- It depends on the means in a similar fashion as the multinomial distribution, and on a precision parameter \u03c6.
- Covariance is forced to be negative. This makes sense in that there is less room for other categories if the fraction in one category increases.

Variance Covariance structure too restrictive?

- Though the implied variances and covariances make sense, they do not have to be true.
- Alternatives have been proposed for cases where this structure is violated.
- For dirifit a multivariate normal model for logit transformed dependent variables has been proposed by Aitcheson (2003).

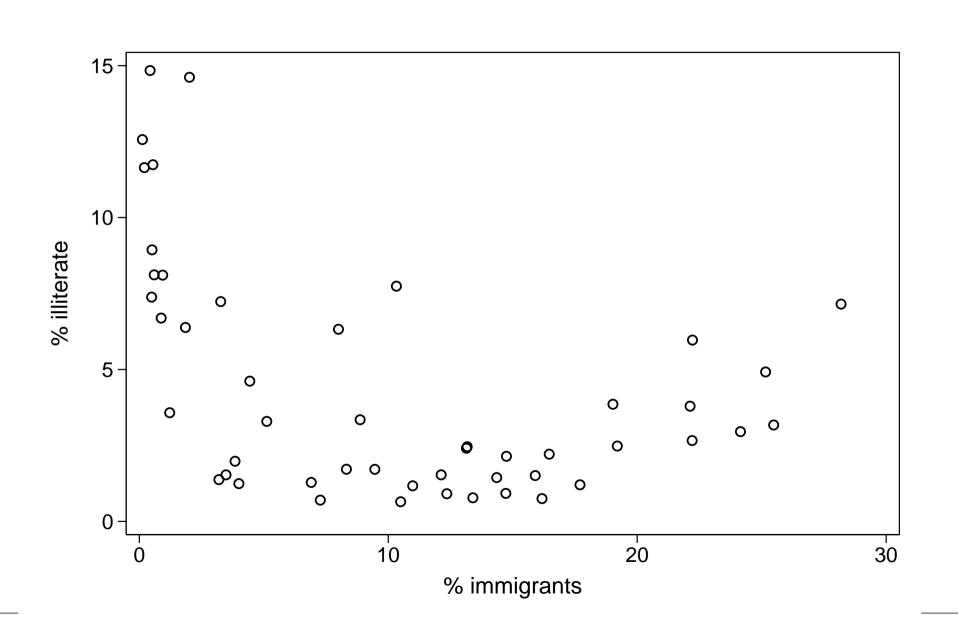
Variance Covariance structure too restrictive?

```
This model can be estimated by typing:
gen logity1 = logit(y1)
gen logity2 = logit(y2)
.
.
gen logityk = logit(yk)
```

mvreg logity1 - logityk = indepvars, corr

Outline

- Problems with using regress for proportions as dependent variable
- Methods for dealing with a single proportion
- Methods for dealing with multiple proportions
- Caveat: Ecological Fallacy


Ecological Fallacy

- Sometimes one wants to study behavior of individuals but one only has information on a aggregate level.
- This aggregate information is often in the form of proportions.
- One might be tempted to use the methods discussed previously to analyze this data.
- Example from Robinson (1950): Relationship between immigrant status and literacy in the 1930 US census.

Individual level analysis

	illiterate						
immigrant	literate	illiterate	Total				
native born	96.72	3.28	100.00				
foreign born	90.75	9.25	100.00				
Total	95.87	4.13	100.00				

State level analysis

Ecological Fallacy

- Aggregate level relationships can be completely different from individual level relationships.
- If it is remotely possible to use individual level data, do so!
- If that is not possible start reading up on Ecological Inference. A good place to start is Gary King (1997)
- Ecol package from Department of Political Science, Aarhus University, Denmark: http://www.ps.au.dk/stata/

Summary (1)

- The constraint that a proportion must remain between 0 and 1 causes problems with regress.
- betafit is one possible solution.
- Multiple proportions have the additional constraint that they must add up to 1.
- dirifit is one possible solution.

Summary (2)

- Both betafit and dirifit make assumptions about the variance (covariance) structure of the dependent variable that does make sense but that some find too restrictive.
- Fractional logit and multivariate regression have been proposed as alternatives.
- None of these techniques are appropriate for studying individual behavior from aggregate data.

References

Aitcheson, John. 2003. The Statistical Analysis of Compositional Data. Blackburn Press.

King, Gary. 1997. A solution to the Ecological Inference Problem, Reconstructing Individual Behavior from Aggregate Data. Princeton University Press.

Papke, Leslie E. and Jeffrey M. Wooldridge. 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(k) Plan Participation Rates." *Journal of Applied Econometrics* 11(6):619–632.

Robinson, W.S. 1950. "Ecological Correlations and the Behavior of Individuals." *Amercian Sociological Review* 15(3):351–357.