Implementing Propensity Score Matching Estimators with STATA

Barbara Sianesi

University College London and Institute for Fiscal Studies

E-mail: barbara_s@ifs.org.uk

Prepared for

UK Stata Users Group, VII Meeting London, May 2001

POTENTIAL-OUTCOME APPROACH

Evaluating the **causal effect** of some treatment on some outcome Y experienced by units in the population of interest.

 $Y_{1i} \rightarrow$ the outcome of unit *i* if *i* were exposed to the treatment $Y_{0i} \rightarrow$ the outcome of unit *i* if *i* were not exposed to the treatment $D_i \in \{0, 1\} \rightarrow$ indicator of the treatment actually received by unit *i* $Y_i = Y_{0i} + D_i (Y_{1i} - Y_{0i}) \rightarrow$ the actually observed outcome of unit *i* $X \rightarrow$ the set of pre-treatment characteristics

CAUSAL EFFECT FOR UNIT *i*

 $Y_{1i} - Y_{0i}$

THE 'FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE'

impossible to observe the individual treatment effect

→ impossible to make causal inference without making generally untestable assumptions

Under some assumptions:

estimate the average treatment effect at the population, or at a subpopulation, level:

- average treatment effect
- average treatment effect on the untreated
- AVERAGE TREATMENT EFFECT ON THE TREATED:

$$E(Y_1 - Y_0/D=1) = E(Y_1/D=1) - E(Y_0/D=1)$$

Need to construct the counterfactual $E(Y_0 / D=1)$ – the outcome participants would have experienced, on average, had they not participated.

 $E(Y_0 / D=0)$?

In non-experimental studies:

need to adjust for confounding variables

MATCHING METHOD

1. assume that all relevant differences between the two groups are captured by their observables *X*:

$$Y_0 \perp D \mid X \tag{A1}$$

2. select from the non-treated pool a control group in which the distribution of observed variables is as similar as possible to the distribution in the treated group

For this need:

$$0 < Prob\{D=1 \mid X=x\} < 1 \quad \text{for } x \in \tilde{X}$$
 (A2)

 \Rightarrow matching has to be performed over the common support region

PROPENSITY SCORE MATCHING

$$p(x) \equiv Pr\{D=1|X=x\}$$

A1) & A2) \Rightarrow

$$Y_0 \perp D \mid p(X)$$
 for X in X

- pair to each treated individual *i* some *group* of 'comparable' non-treated individuals and then
- associate to the outcome of the treated individual *i*, y_i, the (*weighted*) outcomes of his 'neighbours' *j* in the comparison group:

$$\hat{y}_i = \sum_{j \in C^0(p_i)} w_{ij} y_j$$

where:

• $C^{0}(p_{i})$ is the set of neighbours of treated *i* in the control group

•
$$w_{ij} \in [0, 1]$$
 with $\sum_{j \in C^0(p_i)} w_{ij} = 1$

is the weight on control j in forming a comparison with treated i

Two broad groups of matching estimators

individual neighbourhood
weights

Associate to the outcome y_i of treated unit *i* a 'matched' outcome given by

1. the outcome of the most observably similar control unit \Rightarrow TRADITIONAL MATCHING ESTIMATORS:

one-to-one matching

$$C^{0}(p_{i}) = \left\{ j : |p_{i} - p_{j}| = \min_{k \in \{D=0\}} \{|p_{i} - p_{k}|\} \right\}$$

$$w_{ik} = 1(k=j)$$

2. a weighted average of the outcomes of more (possibly all) nontreated units where the weight given to non-treated unit j is in proportion to the closeness of the observables of i and j

⇒ SMOOTHED WEIGHTED MATCHING ESTIMATORS:

kernel-based matching

$$C^{0}(p_{i}) = \{D=0\}$$
 (for gaussian kernel)

$$W_{ij} \propto K\left(\frac{p_{i}-p_{j}}{h}\right)$$

$$K(.)$$

$$non-negative$$

$$symmetric$$

$$unimodal$$

$$unimodal$$

IMPLEMENTING PROPENSITY SCORE MATCHING ESTIMATORS WITH STATA

Preparing the dataset

Keep only one observation per individual

Estimate the propensity score on the X's e.g. *via* probit or logit and retrieve either the predicted probability or the index

Necessary variables:

- \checkmark the 1/0 dummy variable identifying the treated/controls
- \checkmark the predicted propensity score
- \checkmark the variable identifying the outcome to be evaluated
- ✓ [optionally: the individual identifier variable]

ONE-TO-ONE MATCHING WITH REPLACEMENT (WITHIN CALIPER)

• Nearest-neighbour matching

Treated unit *i* is matched to that non-treated unit *j* such that:

$$|p_i - p_j| = \min_{k \in \{D=0\}} \{|p_i - p_k|\}$$

• Caliper matching

For a pre-specified $\delta > 0$, treated unit *i* is matched to that non-treated unit *j* such that:

$$\delta > |p_i - p_j| = \min_{k \in \{D=0\}} \{|p_i - p_k|\}$$

If none of the non-treated units is within δ from treated unit *i*, *i* is left unmatched.

```
. psmatch treated, on(score) cal(.01)
    [id(serial)] [outcome(wage)]
```

Creates:

1) _times \rightarrow number of times used

use _times as frequency weights to identify the matched treated and the (possibly repeatedly) matched controls

2) _matchdif \rightarrow pairwise difference in score

.sum_matchdif, det for matching quality

If id(idvar) specified

3) _matchedid \rightarrow the idvar of the matched control

If outcome(outcomevar) specified:

 \rightarrow directly calculates and displays:

```
Mean wage of matched treated = 640.39
Mean wage of matched controls = 582.785
Effect = 57.605
Std err = 74.251377
Note: takes account of possibly repeated use
    of control observations but NOT of
    estimation of propensity score.
T-statistics for H0: effect=0 is .77581053
```

KERNEL-BASED MATCHING

Idea

associate to the outcome y_i of treated unit i

a matched outcome given by a kernel-weighted average of the outcome of all non-treated units,

where the weight given to non-treated unit j is in proportion to the closeness between i and j:

$$\hat{y}_i = \frac{\sum_{j \in \{D=0\}} K\left(\frac{p_i - p_j}{h}\right) y_j}{\sum_{j \in \{D=0\}} K\left(\frac{p_i - p_j}{h}\right)}$$

Control j's outcome y_j is weighted by

$$w_{ij} = \frac{K\left(\frac{p_i - p_j}{h}\right)}{\sum_{j \in \{D=0\}} K\left(\frac{p_i - p_j}{h}\right)}$$

Option smooth(outcomevar) creates:

_moutcomevar \rightarrow the matched smoothed outcomevar \hat{y}_i

Bandwidth *h* selection

a central issue in non-parametric analysis \rightarrow trade-off bias-variability

Kernel K choice

- Gaussian $K(u) \propto \exp(-u^2/2)$ uses all the non-treated units
- . psmatch treated, on(score) cal(0.06)
 smooth(wage)

Mean wage of matched treated = 642.70352
Mean wage of matched controls = 677.1453
Effect =-34.441787

- Epanechnikov $K(u) \propto (1-u^2)$ if |u| < 1 (zero otherwise) uses a moving window within the D=0 group, i.e. only those non-treated units within a fixed caliper of h from p_i : $|p_i - p_j| < h$
- . psmatch treated, on(score) cal(0.06)
 smooth(wage)epan

Common support

if not ruled out by the option nocommon, common support is imposed on the treated units:

treated units whose p is larger than the largest p in the non-treated pool are left unmatched.

```
. psmatch treated, on(score) cal(0.06)
    smooth(wage) [epan] nocommon
```

For kernel-based matching:

for each $i \in \{D=1\}$, smooth non-parametrically $E(Y|D=\mathbf{1}, P(X)=p_i) \equiv \hat{y}_i^s$

```
(to be used instead of the observed y_i)
```

. psmatch treated, on(score) cal(0.06)
 smooth(wage) [epan] [nocommon] both

In addition to

_moutcomevar \rightarrow the matched smoothed outcomevar \hat{y}_i

option both creates:

_soutcomevar \rightarrow the treated smoothed outcomevar \hat{y}_i^s

E.g.

```
. psmatch treated, on(score) cal(0.06)
    smooth(wage) both
```

Mean wage of matched treated = 642.9774
Mean wage of matched controls = 677.1453
Effect = -34.167822

MAHALANOBIS METRIC MATCHING

Replace $p_i - p_j$ above with $d(i,j) = (P_i - P_j)' \mathbf{S}^{-1} (P_i - P_j)$

where

- P_i is the (2×1) vector of scores of unit *i*
- P_j is the (2×1) vector of scores of unit j
- S is the pooled within-sample (2×2) covariance matrix of *P* based on the sub-samples of the treated and complete non-treated pool.

Useful in particular for multiple treatment framework

```
. psmatch treated, on(score1 score2) cal(.06)
  [smooth(wage)] [epan] [both] [nocommon]
```

ESSENTIAL REFERENCES

Propensity score matching

Rosenbaum, P.R. and Rubin, D.B. (1983), "The Central Role of the Propensity Score in Observational Studies for Causal Effects", *Biometrika*, 70, 1, 41-55.

Caliper matching

Cochran, W. and Rubin, D.B. (1973), "Controlling Bias in Observational Studies", *Sankyha*, 35, 417-446.

Kernel-based matching

- Heckman, J.J., Ichimura, H. and Todd, P.E. (1997), "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme", *Review of Economic Studies*, 64, 605-654.
- Heckman, J.J., Ichimura, H. and Todd, P.E. (1998), "Matching as an Econometric Evaluation Estimator", *Review of Economic Studies*, 65, 261-294.

Mahalanobis distance matching

Rubin, D.B. (1980), "Bias Reduction Using Mahalanobis-Metric Matching", *Biometrics*, 36, 293-298.