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Abstract 
 
The elasticity of substitution between capital and labor features prominently in several areas 
of economic research.  However, a consensus estimate remains elusive.  We develop an 
estimation strategy that filters panel data in an original way and avoids several pitfalls - 
difficult-to-specify dynamics, transitory time-series variation, and positively sloped supply 
schedules - inherent in investment equations that can bias the estimated elasticity.  Results are 
based on an extensive panel containing 1,860 manufacturing and non-manufacturing firms.  
Our model generates a precisely estimated elasticity of approximately 0.40.  The method 
developed here may prove useful in estimating other structural parameters from panel 
datasets. 
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That Elusive Elasticity: 
A Long-Panel Approach To Estimating 

The Capital-Labor Substitution Elasticity 
 

I.  Introduction 
 Estimating the elasticity of substitution between capital and labor has been 
an important topic on the quantitative research agenda for decades.  This elasticity, 
σ, features prominently in several areas of economic research.   The validity of 
various growth theories depends on the value of σ.   Policymakers frequently alter 
price incentives for capital accumulation, and σ is a key element determining 
policy effectiveness and the resulting welfare changes.  Although this elasticity has 
been the subject of an enormous number of empirical studies, a consensus estimate 
remains elusive.   
 

The range of estimated values for σ corresponds to an equally wide range of 
implications for growth models.  Values of σ near or below unity cast doubt on the 
validity of the Solow growth model as conventionally formulated.  Mankiw (1995, 
p. 287) presents a formula for computing the impact of σ on the difference in rates 
of return on capital between rich and poor countries implied by the Solow model.  
When σ = 4.0, the implied rate of return difference is only 3 percentage points.1  
However, as σ is lowered to 1.0 or 0.5, the implied differences become implausibly 
large, rising to 32 and 100 percentage points, respectively.  In the Solow growth 
model, Klump and Preissler (2000) show that the substitution elasticity is 
negatively related to the speed of convergence toward the steady-state (if the 
economy has overaccumulated capital) and positively related to steady-state per 
capita output.2  If σ exceeds unity, long-run growth is possible even without any 
technological progress (Pitchford, 1960; Barro and Sala-i-Martin, 1995).  
Acemoglu (2001) shows that the relative contributions of technological change and 
factor accumulation in accounting for long-run growth depend on σ,  which has 
further implications for the importance of biased technological change and the 
movement of factor shares.3    
                                           
1 These computations are based on the assumptions of a 10 percent return in the rich country and 
a capital elasticity in production of 2/3.   
2 However, the latter result is not robust; in a Diamond overlapping generations model, 
Miyagiwa and Papageorgiou (2003) show that σ and steady-state  per capita output are 
negatively related (provided σ is sufficiently large).   
3 Furthermore, in the original article introducing the CES production function, Arrow, Chenery, 
Minhas, and Solow (1961) note that the impact of factor endowments on international trade and 
the variation of relative income shares depend on the value of this elasticity. 



  
   

 

2

 
The substitution elasticity is also essential for evaluating the impact of tax 

policies.  In a simplified version of the Ballard, Fullerton, Shoven, and Whalley 
(1985) computational general equilibrium (CGE) model, the change in welfare 
from equalizing capital tax rates across industries is 70 percent larger when the 
elasticity rises from 0.50 to 1.00.  Similarly, Engen, Gravelle, and Smetters (1997, 
Table 5) show that¸ when the income tax is replaced by a consumption tax, the 
increase in steady-state net output is 79 percent higher when the elasticity of 0.50 
is replaced by a value of unity.  Results from the two-country model of Roeger, 
Veld, and Woehrmann (2000) are also sensitive to whether the elasticity is 0.50 or 
1.00; a one percentage point cut in one country’s corporate tax rate leads to a 70 
percent larger increase in combined consumption with the larger elasticity.  Fox 
and Fullerton (1991) find that, in CGE models, estimated welfare gains from tax 
initiatives depend much more on this elasticity than on the complex features and 
detailed disaggregation found in many simulation models.  Starting with the 
seminal analysis of Harberger (1959, 1962), the substitution elasticity between 
capital and labor, equivalent to the user cost elasticity of capital under a CES 
production technology, is central to assessing policy impacts.  

 
Despite the substantial research energies devoted to estimating this 

elasticity, a consensus value remains elusive.4  For example, in the Joint 
Committee On Taxation's (1997, Table 6) study of nine different tax models, 
elasticities range from 0.20 to 1.00.  The wide range of estimated elasticities 
reported in the literature may be attributed to a common source.  Most econometric 
studies rely on quarterly or annual time-series variation in investment data to 
identify the elasticity.  Three biases may result that weigh more or less heavily in 
different studies.  First, the specification of an investment equation requires 
assumptions about dynamics.  While economic theory is highly informative about 
the determinants of the demand for the stock of capital, it is relatively silent about 
the demand for the flow of investment.  Misspecified dynamics can bias estimates 
of the elasticity (Summers, 1988).  Of particular importance are the nature of 
adjustment costs and the role of financing constraints, which have received a great 
deal of attention in recent years and whose effects on investment spending remain 
controversial.5  Second, coefficient estimates from investment regressions may be 
                                           
4 See Chirinko (1993), Hassett and Hubbard (1997), and Mairesse, Hall, and Mulkay (1999) for 
surveys of the empirical literature. 
5 Regarding adjustment costs, see the surveys by Hamermesh and Pfann (1996) and Caballero 
(1999).  Regarding financing constraints, see the survey by Hubbard (1998) and the controversy 
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biased if the time-series variation of investment spending largely reflects 
adjustments to transitory shocks and firms respond less to transitory than 
permanent variation because of adjustment costs.  An elasticity estimated with 
time-series data at quarterly or annual frequencies will tend to be lower than the 
"true" long-run elasticity.6  Third, if the supply curve of  investment is upward 
sloping, as is more likely in the short to medium-run, studies incorrectly 
maintaining a perfectly elastic supply schedule will tend to understate demand 
elasticities (Goolsbee, 1998).7  While the misspecification of dynamics has an 
indeterminate effect, the estimated elasticity will be biased toward zero by 
transitory time-series variation and positively sloped supply schedules.   

 
These potential problems all stem from a common source -- the use of 

investment data as the measure of capital formation.  We avoid these problems by 
developing an approach that relies directly on capital stock data and exploits in an 
original way the substantial information available from panel data.  We focus on 
the first-order condition relating the long-run desired capital stock (K*) to the long-
run desired values of output (Y*) and the user cost (C*).  This specification 
underlies virtually all investment studies since Jorgenson's (1963) path-breaking 
work on the neoclassical model of capital accumulation and can be represented as 
follows: 
 
(1) K*  =  G[Y*, C*].          
                         +     - 
The difficulty with estimating (1) is that the desired values are not readily 
observable.  We use panel data, long in the time dimension, to estimate the 
variables in (1) as time-averages within firms.  With empirical counterparts to K*, 
Y*, and C* defined, it is straightforward to estimate G[.].  To account for firm 
effects and productivity shocks, we specify equation (1) in growth rates.  Our 
econometric model regresses the growth rate of the capital stock on the growth 
rates of the user cost and output across firms.  Cross-sectional variation provides 
identification.  This relatively simple, yet fully rigorous, approach estimates 

                                                                                                                                        
in Kaplan and Zingales (1997, 2000) and the reply by Fazzari, Hubbard, and Petersen (2000).  
Chirinko, Fazzari, and Meyer (1999) show that excluding cash flow (a variable typically 
included to capture financing constraints) from an investment equation using annual data biases 
upward the estimated user cost elasticity.   
6 This point has been noted by, among others, Eisner (1967), Lucas (1969), Berndt (1976), 
Shapiro (1986b), and Kiyotaki and West (1996).   
7 This conclusion has been challenged by Hassett and Hubbard (1998) and Whelan (1999).   
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technology parameters immune to the biases discussed above.   
 

Our study proceeds as follows.  Section II introduces the estimation strategy.  
The econometric equation is derived from the firm’s profit-maximization problem, 
and long-run values of the variables entering the regression equation are measured 
as time-averages.  Our estimation strategy accounts for a variety of productivity 
shocks, omitted variables, and firm fixed effects, and uses panel data in a way that 
differs substantially from prior panel studies.  We demonstrate with spectral 
analysis how our estimator places relatively more weight on low frequency 
movements than the traditional investment model.  Section III discusses the panel 
dataset containing, 1,860 firms for the period 1972 to 1991, and the construction of 
the variables.  Section IV presents our OLS and IV results.  Both techniques yield 
similar estimates of the substitution elasticity of approximately 0.40.  This estimate 
is higher than the elasticity of 0.25 reported by Chirinko, Fazzari, and Meyer 
(1999) based on the same dataset but using an investment model.  Thus, the three 
problems affecting investment equations -- difficult-to-specify dynamics, transitory 
time-series variation, and positively sloped supply schedules -- impart a discernible 
bias toward zero.  Nonetheless, the elasticity remains far from unity, the value 
defining the frequently used Cobb-Douglas production function and determining 
the cut-off at which tax incentives become cost effective (in a static sense).  
Section IV also assesses the importance of measurement error, offers an alternative 
interpretation of our estimator in terms of a low-pass filter, examines the sensitivity 
of the estimates to various subsets of the sample, and compares our approach to 
related work with panel data.  Section V offers a summary and conclusions.  

 
 

II.  Estimation Strategy 
 Our econometric model follows directly from the behavior of a firm that 
maximizes its discounted flow of profits over an infinite horizon.  We analyze the 
firm’s choices in long-run equilibrium, thus eliminating the need to model 
adjustment costs, delivery lags, vintage effects, and expectations.  Under these 
assumptions, the firm always produces its long-run desired level of output with its 
long-run desired mix of inputs.  The critical consequence is that the firm's dynamic 
optimization problem is transformed into a static problem.  To determine the firm's 
demand for capital, we need only calculate the marginal product of capital 
evaluated at the long-run levels of inputs and output.   
 
 We assume that production possibilities are described by the following CES 
technology, 
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(2) Y*

f,t  =  {ω(K*
f,t

[(σ−1)/σ]) + (1-ω)(X*
f,t

[(σ−1)/σ])}[ησ/(σ−1)] Uf,t , 
 
where Y*

f,t is long-run desired real output for firm f at time t, K*
f,t is the long-run 

desired real capital stock, X*
f,t is the long-run desired level of all other factors of 

production, and Uf,t represents a stochastic productivity shock.8  An attractive 
feature of the CES technology is that it depends on only three parameters 
characterizing returns to scale (η), the distribution of factor returns (ω) and, of 
particular importance for this study, substitution possibilities between the factors of 
production (σ).  The CES function is strongly separable, and it can be expanded to 
include many additional factors of production (e.g., intangible capital) without 
affecting the estimating equation derived below.  This feature gives the CES 
specification an important advantage relative to other technologies that allow for a 
more general pattern of substitution possibilities (e.g., the translog, minflex-
Laurent).  Our approach does not require price and quantity data on the other 
factors of production (with limited availability and reliability at the firm level) to 
recover the key parameter of interest.  
 
 Differentiating (2) with respect to capital, we obtain the following relation 
for the marginal product of capital (∂Y*

f,t / ∂K*
f,t), 

 
(3) ∂Y*

f,t / ∂K*
f,t  =  (ηω) Y*

f,t
[1+(1−σ)/ση] K*

f,t
−[1/σ] Uf,t

[(σ−1)/ση] .   
 
Profit-maximization implies that this marginal product of capital equals the 
Jorgensonian user cost of capital (C*

f,t), which combines interest, depreciation, and 
tax rates with relative prices (an exact specification of the user cost is deferred to 
Section III).  Setting ∂Y*

f,t / ∂K*
f,t  equal to C*

f,t and rearranging (3), we obtain the 
following expression for the long-run desired capital stock, 
 
(4) K*

f,t  =  Ψ C*
f,t

[α] Y*
f,t

[β] Uf,t
[ζ] , 

  
Ψ  =  (ηω)σ , 
α  =  −σ, 
β  =  (ση+1−σ) / η,    
ζ  =  (σ−1)/η. 

Note that, with a CES production function, the user cost elasticity of capital is 
                                           
8 The limiting value of (2) as σ −> 1 is the Cobb-Douglas production function under the 
additional assumption that η=1. 
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equivalent to the substitution elasticity between capital and other inputs (multiplied 
by minus one). 
 
 The central difficulty with estimating (4) is the that the long-run values are 
not observed.  Most previous research addresses this problem by differencing the 
log of (4) to obtain an equation for investment.  As discussed in the Introduction, 
however, this approach relies on the modeling challenges associated with 
investment data, and may therefore generate biased estimates.  To avoid these 
potential problems, we measure the capital stock directly and then estimate the 
long-run desired levels of capital, output, and the user cost as time averages over 
several years.  We refer to the years over which an average is computed as an 
interval.  As shown in Figure 1 for a representative variable Wf,t (Wf,t = {Kf,t, Yf,t, 
Cf,t}), we divide our sample into three intervals indexed by a τ subscript, τ = 0,1,2.  
The intervals are 1972-1977 (τ=0), 1978-1984 (τ=1), and 1985-1991 (τ=2).  We 
assume that W*

f,t equals Wf,τ, where the latter is the mean of Wf,t over an interval.  
As we will discuss below, the τ=1 and τ=2 intervals are used for parameter 
estimation; the τ=0 interval is used only to form instruments and define 
classifications that split the sample.   
 
 With the variables in (4) defined in terms of the τ=1 and τ=2 intervals, we 
take logs, and obtain the following equation,  
 
(5) kf,τ  =  α cf,τ  +  β yf,τ  +  ψ  -  uf,τ,     τ = 1,2. 
 
  kf,τ  =  ln[Kf,τ] = ln[K*

f,t], 
  cf,τ  =  ln[Cf,τ] = ln[C*

f,t], 
  yf,τ  =  ln[Yf,τ] = ln[Y*

f,t], 
  ψ     =  ln[Ψ], 
 
where uf,τ is an error term that follows directly from the technology and represents 
productivity shocks.  We model productivity shocks as follows, 
 
(6) uf,τ =  ζ [vf  + vi + wτ + wi,τ + wf,τ]. 
 
The productivity shock is decomposed into firm-specific (vf) and industry-specific 
(vi) components, as well as components that vary over the τ intervals, wτ, wi,τ and 
wf,τ.  With this error structure, estimates can be obtained by differencing (5) and (6) 
between the τ intervals, 
 



  
   

 

7

ΣWf,τ = 0 = 
1977

t = 1972

Wf,t / 6

τ = 0 τ = 1 τ = 2 

1972 • • • •1977/1978 1984/1985 1991t → 

Wf,t

Wf,τ = 0 

Wf,τ = 1

Wf,τ = 2 

Figure 1:  The τ-Interval Definition 

ΣWf,τ = 1 = 
1984

t = 1978

Wf,t / 7

ΣWf,τ = 2= 
1991

t = 1985

Wf,t / 7
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(7) ∆kf,τ  =  α ∆cf,τ  +  β ∆yf,τ  +  ∆ψ  -  ∆uf,τ, 
 
 ∆kf   =  -σ ∆cf   +  β ∆yf   -  γ  -  λi  -  ∆wf. 
 

σ   =  −α,  
  η   =  (1−σ) / (β−σ), 
  γ   =  ζ ∆wτ, 
  λi  =  ζ ∆wi,τ, 
  ∆wf  =  ∆wf,τ. 
 
Because there are only two intervals, first-differencing eliminates the temporal 
dimension to the model, and τ subscripts have been omitted in the final equation.  
Consequently, the parameters are estimated in a cross-section regression.  Fixed 
firm and industry effects are eliminated by differencing, and fixed interval effects 
(notably, biased technical change) are captured by the constant (γ).  Industry 
effects that vary across intervals are captured by industry dummies (λi).   
 

Equation (7) is the basis for our estimation; it relates long-run growth in the 
capital stock to long-run growth in the user cost and output across firms.  Cross-
sectional variation in the data identifies the parameters.  Of course, the capital and 
output growth variables have cross-sectional variation.  The user cost consists of 
three multiplicative terms—the relative price of capital to output, tax adjustments, 
and the opportunity cost of holding depreciating capital.  The growth in the relative 
price and tax terms vary substantially across firms because of differences in the 
asset composition of firms' capital stock.  For example, the relative price of capital 
for industries that use high-tech equipment declines more than the relative price for 
low-tech industries.  This variation allows us to estimate the parameter of central 
interest in this study, the elasticity of the capital stock with respect to its user costs, 
σ.  Additionally, we can recover the returns to scale elasticity, η, as a non-linear 
combination of the estimated σ and β parameters.  
 
 In contrast with prior studies that use investment data, our estimation 
strategy emphasizes low frequency variation.  We estimate the long-run values of 
the regression variables by taking averages over several years (intervals), and then 
difference the data to control for a variety of firm and industry effects.  This 
"interval-difference estimator" contrasts with the standard investment regression 
derived by differencing untransformed annual data, which we refer to as "the year-
difference estimator."  Because it averages over several years, the interval-
difference estimator places substantially more weight on the lower frequencies in 
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the data.  To see this point more rigorously, it is instructive to interpret both 
estimators in the frequency domain.  The spectra for the interval-difference and 
year-difference estimators are plotted in Figure 2.  These spectra are normalized so 
that the area under each curve equals unity, and they should be interpreted relative 
to each other for any arbitrary input series.9  Figure 2 clearly demonstrates that the 
lower frequencies receive much more weight for the interval-difference estimator 
(Ι(ω)) relative to the year-difference estimator (Y(ω)).  Thus our interval-difference 
estimator emphasizes low frequency variation that will lead to better estimates      
of σ. 
 

Figure 2:  Normalized Spectra For The Interval-Difference (I(w)) 
And Year-Difference (Y(w)) Estimators
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9 We rely on the fundamental result from spectral analysis that the spectrum of a transformed 
series (the interval-difference or year-difference series) is the product of the spectrum of the 
input series (e.g., the capital/output ratio) and a nonnegative scalar that depends on the 
frequency, ω.  Following the development in Sargent (1979, Chapter XI) and using a first-order 
approximation for the log of a variable, the scalars for the interval-difference (Ι(ω)) and year-
difference (Y(ω)) series are as follows:  
I(ω) = (1/7)2 * (1 - COS(7ω)) * 2 * (1 - COS(2*4*ω)) / (1 - COS(ω)) (for an interval of seven 
years) and Y(ω) = 2 *  (1 - COS(ω)) for ω ε [0,π].  These are the functions plotted in figure 2. 
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 Consistency of the OLS parameter estimates depends on the relation 
between the stochastic element, ∆wf, and the regressors, especially ∆yf. This 
correlation is not likely to be a problem for two reasons.  First, ∆wf is that part of 
the productivity shock that remains after accounting for all fixed and industry 
effects.  Major technological changes (e.g. telecommunications, computing, the 
internet) are likely to have their largest effects on all firms (captured by γ) or on all 
firms in an industry (captured by λi) with only a small residual impact that is firm 
specific.  Second, only part of the productivity shock enters the error term.  As 
noted by Shapiro (1986a), including output in a factor demand equation can 
completely absorb the productivity shock.  When the elasticity of substitution is 
unity, ζ equals zero, and ufτ vanishes (cf. equations (4) and (6)).  When σ deviates 
from unity, the impact of the productivity shock is nonetheless diminished by ζ  
(provided returns to scale are not decreasing too sharply).  Despite these arguments 
that OLS estimates will not be appreciably affected by ∆wf, we present two 
alternative estimates that are robust to simultaneity.  First, we impose constant 
returns to scale (η=1 implying β=1).  Thus, ∆yf, the variable most likely to be 
correlated with ∆wf, no longer appears as a regressor.  Second, we present IV 
estimates and Hausman tests using the variables in the τ=0 interval as instruments.  
This procedure accounts for possible endogeneity between the error term and the 
∆yf and ∆cf regressors. 
 
  This econometric model is robust to four potentially important distortions.  
First, the parameter estimates are robust to trending variables.  See Appendix A for 
formal consideration of this issue and the role played by differencing in 
eliminating firm-specific trends.  Second, the estimates are unlikely to be 
influenced by additional factors that may affect the specification of the production 
function or the first-order conditions.  For example, the estimating equation is 
robust to including additional factors of production.  Markups that vary across 
firms are captured by a firm-specific fixed effect eliminated by differencing.  
Moreover, the information processing revolution may have led to biased technical 
change over the past 20 years.  In terms of the CES technology, biased technical 
change is represented by temporal variation in ω and, like wτ, will be reflected in 
the constant.  Third, studies implementing the Jorgensonian framework have often 
been criticized for failing to distinguish between desired output and actual output 
(e.g., Coen, 1969; Hall, 1995).  By using time-averages in the econometric 
equation, we recognize this important distinction.  Fourth, the estimates are 
unlikely to be affected by measurement error in the capital stock.  Classic 
measurement error will be part of the error term, and hence innocuous.  A plausible 
situation where measurement error may be systematic arises when an increase in 
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the pace of technological change effectively increases the depreciation of fixed 
capital through obsolescence, an effect not captured in our fixed depreciation rate 
assumption.  However, an increase in depreciation rates would lead to a systematic 
overstatement of capital in τ=2, and would be captured by the constant.  If omitted 
variables or measurement error are both firm-specific and interval-varying, 
consistent estimation becomes an issue.  In this case, the IV estimates in Section 
IV.E, coupled with the measurement error analysis in Section IV.C, provide a 
useful safeguard to check the parameter estimates.  
 

In sum, the estimation strategy developed here collapses the time dimension 
of firm panel data by defining three intervals and then time-averaging the data 
within an interval.  The first interval is used to form instruments or sort variables 
into contrasting classes.  The second and third intervals are used for estimation.  
Identification is provided by the cross-firm variation in capital, output, and user 
cost growth.  A variety of productivity shocks, omitted variables, and fixed firm 
effects are accounted for by estimated parameters or differencing.  Production 
function parameters are thus estimated in a cross-section of time-averaged, 
differenced firm data.  This econometric model does not solve the estimation 
problems inherent with investment models – difficult-to-specify dynamics, 
transitory time-series variation, and positively sloped supply schedules – that may 
bias estimates of the elasticity.  Instead, our approach avoids these problems by 
exploiting panel data with a method that emphasizes low-frequency variation and 
estimating directly the first-order condition for capital.10 

 
 

III.  The Panel Dataset 
 Our estimation method requires a panel dataset that is long in both the cross-
section and time-series dimensions and that contains cross-sectional variation in 
the user cost that is key for identification.  We link data sources from the 
Compustat Industrial Database maintained by Standard and Poors (containing 
financial statement data) and Data Resources, Inc. (DRI, containing user cost and 
industry data).  In this section, we discuss the construction of the variables used for 

                                           
10 Of course, this approach requires the construction of an empirical measure of the capital stock 
which is not readily available in accounting data.  This task is challenging as indicated by our 
capital stock measurement algorithm described in appendix B.  It may also introduce 
measurement error, as we address in section IV.C.  For this reason, among others, we view our 
approach as complementary to studies that estimate the user cost elasticity from investment 
equations with investment data that may be obtained directly from accounting statements. 
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regression estimates of equation (7), for instruments, and for sorting firms into 
contrasting classes.  
 
 For the user costs (C), we have data for 26 different capital assets (24 types 
of equipment and two types of structures).  The basis for these user costs, from 
Hall and Jorgenson (1967) and modified by DRI, is: 
 
(8) Ci,j,t  =  [pI

j,t / pY
i,t] [(1 - mj,t - zj,t) / (1-txt)] [rt + δj] 

 
where pI

j,t is the asset-specific purchase price for asset j at time t, pY
i,t is the 

industry i output price at time t, δj is the asset-specific economic depreciation rate, 
and txt is the income tax rate.  The investment tax credit (mj,t) and the discounted 
value of tax depreciation allowances (zj,t) also vary across assets.  The financial 
cost of capital (rt) is a weighted average of the cost of equity (the dividend-price 
ratio for Standard & Poor’s Composite Stock Price Index plus an expected long-
run growth rate of 2.4 percent, with a weight of 0.67) and the cost of debt (average 
yield on new issues of high-grade corporate bonds adjusted to a AAA basis, with a 
weight of 0.33).  The nominal cost of debt is reduced by its tax deductibility and 
the expected inflation rate, defined as a weighted average of past GDP deflator 
growth rates.  User costs for two- and three-digit industries are a weighted average 
of the asset user costs.  The weights are the proportion of total capital in an 
industry accounted for by each of the 26 assets.11  This information is then merged 
with the firm-level Compustat data using each firm’s S.I.C. code.12   
 
 Measurement of the capital stock (K) is important for our study.  Compustat 
does not provide an acceptable measure of the capital stock because book values of 
net plant and equipment likely understate current replacement values in periods of 
inflation.  In addition, accounting depreciation rules may not accurately reflect 
economic depreciation.  

                                           
11 These weights are from the Bureau of Economic Analysis capital flow tables and reflect asset 
usage by establishment.  The Compustat data reflect ownership by company.  The combination 
of industry aggregate data for the user cost and firm data for investment and other items may 
induce measurement error because some firms operate in a variety of industries.  To the extent 
that such measurement error is constant within firms, however, it will be captured in firm fixed 
effects.   
12 We average the quarterly DRI user cost data at the firm level to obtain an annual user cost that 
corresponds to the Compustat data.  The averages account for differences in firms' fiscal years, 
and therefore introduces some firm-level heterogeneity into the user cost data.  
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 We measure the current replacement value of capital with a three-step, 
iterative algorithm.13  First, choose a seed value.  We use the book value of net 
plant and equipment from the firm's first observation in Compustat.14  The nominal 
seed value is deflated by a weighted average of investment goods price deflators, 
where the weights are determined by the specific capital asset mix of each industry.  
These are the same weights employed in the user cost computation described 
above.  Second, subtract capital lost to (geometric) depreciation.  The firm’s 
depreciation rate is the weighted average of the rates for individual assets from 
DRI.  Thus, there is a consistency between the depreciation rates used in 
constructing the capital stock and user cost data.  Third, add in new investment.  In 
most cases, this step simply adds the deflated value of the Compustat capital 
expenditures variable.  The deflator is the weighted average of each industry's 
investment goods price deflators.  At the micro level, however, we must take into 
account that a firm's capital stock may rise or decline due to acquisitions or 
divestitures that are not included in the capital expenditure variable.  If the data 
indicate a significant acquisition or divestiture, we use accounting identities to 
calculate the impact of this activity on the capital stock.  Details of the capital stock 
calculation appear in Appendix B.  
 
 Output (Y) is gross sales during the year reduced by cash discounts, trade 
discounts, and returned sales or allowances to customers.  Sales will differ from 
output by the change in finished goods inventories.  While this difference may be 

                                           
13 This conceptual approach has been used for firm-level panel data at least since Salinger and 
Summers (1983). 
14 Because the book value of net plant will usually be less than the replacement cost when there 
is inflation, the use of net plant as a seed in 1972 distorts the measurement of the replacement 
cost of capital.  This distortion, however, is unlikely to affect the estimated parameters for three 
reasons.  First, the distortion will disappear as new investment is added to the capital stock at 
current replacement value and old capital is depreciated.  The early part (τ=0) of our sample is 
used only for instruments.  The effect of the seed value on the regression data, therefore, is 
attenuated because the capital series consist largely of new investment expenditures by  the τ=1 
and τ=2 periods.  Based on the average depreciation rate of 14.8 percent, only 32.6 percent of the 
1972 seed value will remain at the beginning of the estimation period in 1978.  Second, a 
proportionate distortion of the seed value relative to the “true” replacement cost across firms is 
eliminated by our econometric procedure that takes logs and then first differences the capital 
stock data that enter the regressions.  Third, any remaining random measurement error in the 
capital stock affects the dependent variable only and, therefore, it does not bias coefficient  
estimates, though it would raise standard errors.   
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non-trivial in the short-run, it will have very little impact on the long-run averages 
used in our estimation.  Nominal sales figures from Compustat are deflated by 
industry-specific output price indexes from DRI. 
 
 For some of the results that follow, we sort the data into contrasting sub-
samples depending on whether a classifying variable averaged over the τ=0 pre-
estimation period (1972-1977) is above or below its median.  Three variables are 
used as classifiers:  the cash flow-capital ratio (CF/K), the size of the capital stock 
(K), and the Brainard-Tobin Q.  Cash flow is income after taxes plus non-cash 
expenses, primarily depreciation and amortization.  The numerator of Q is the 
market value of equity plus the book value of debt less the book value of 
inventories.  The denominator is the replacement value of the capital stock measure 
discussed above.     
 
 To protect against results driven by a small number of extreme observations, 
we exclude observations in the one-percent upper and lower tails from the 
distributions of the firm-specific variables.15  Firms included in the data set must 
have some observations for each variable in all three of the τ intervals.  Our final 
data set contains 1,860 firms from all sectors of the economy.  

 
 

IV.  Empirical Results 
A.  Cross-Sectional Variation in Growth Rates  
 The data for estimating the parameters in equation (7) consist of the growth 
in model variables between the τ=1 and τ=2 intervals that enter directly into the 
econometric model.  While equation (7) is estimated with a cross-section of firms, 
the value of each firm observation is based on temporal variation between 
intervals.  Statistics for the interval growth rates appear in the top panel of table 1.  
It is clear from the large coefficient of variation statistics for the growth in capital, 
output, and the user cost (2.3, 2.4, and 2.7, respectively) that there are substantial 
differences across firms in the regression variables.  It is not surprising that capital 
and output growth differ across firms, but the heterogeneity in the user cost growth 
is remarkable relative to most other studies.  We rely on this heterogeneity to 

                                           
15 We checked the robustness of our results when we deleted both the one-half-percent and two-
percent tails.  The effect on the results was negligible.  Because the user cost is computed from 
stable industry and aggregate data, we did not delete data in the tails of the user cost variable 
distribution. 
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identify σ in this section.16 
 
B.  OLS Estimates 
 Ordinary least squares estimates of the structural parameters from equation 
(7) appear in table 2.  The focus of our study is on σ.  In column 1, our benchmark 
estimate of σ is 0.367 with a standard error of 0.067.  The null hypothesis that the 
elasticity is zero can be strongly rejected at any conventional level of significance.  
It is also clear, however, that our estimate of σ is much smaller than unity, the 
value implied by the Cobb-Douglas production function and often assumed in 
applied work.   
 
 As shown by equation (7), the estimated returns to scale elasticity (η) is a 
function of the regression coefficients on the growth in both output (β) and the user 
cost (-σ).  The OLS estimate of the returns to scale elasticity, η, is 1.135 also with 
a small standard error.17  With our estimated parameter values, the primary reason 
that the estimated returns to scale elasticity modestly exceeds one is that the 
coefficient of output growth in our capital growth regression is somewhat less than 
unity (β=0.925). As shown in equation (7), an estimated β in the neighborhood of 
unity generates results for η close to constant returns for any admissible value of σ.  
It is interesting to note that the effect of output is much stronger here than in panel 
data studies using investment data (cf. Chirinko, Fazzari, and Meyer, 1999).  We 
believe the reason for these more plausible results is that, unlike typical investment 
equations, our estimation method captures long-run, permanent changes in output, 
and is not affected by the transitory variation that may unduly influence investment 
regressions with annual or quarterly data.  

 

                                           
16 To provide a sense of the information in the data, summary statistics for the levels of the 
regression variables within each interval (which do not directly enter the econometric 
specification) are presented in the bottom three panels of table 1.  The capital and output 
statistics are in millions of 1987 dollars.  
17 The returns to scale elasticity is recovered from the estimated coefficients with the following 
formula:  η = (1−σ) / (β−σ) when β > σ.  The variance of η depends in a complicated way on the 
variances and covariances of the estimated σ and β.  We use an approximate formula based on a 
second-order Taylor series expansion of η about the estimated values of σ and β: 
  V[η] = {V[σ] (1−β)2 + V[β] (1−σ)2 - 2 C[σ,β] (1−β) (1−σ)} / (β−σ)4, where V[.] and C[.] are 
the variance and covariance operators, respectively.   
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Table 1 – Summary Statistics 
 
1. Percentage Change Between Interval τ = 1 and τ = 2 

Statistic Capital Output User Cost 
Mean 36.4 27.5 -6.9 
Median 16.9 14.6 -11.8 
Standard Deviation 81.9 66.2 18.7 
Coefficient of Variation 2.3 2.4 2.7 

2. Levels in Interval τ = 0  

Statistic Capital Output User Cost 
Mean 320.8 948.1 0.282 
Median 33.1 161.7 0.291 
Standard Deviation 848.7 2562.0 0.056 
Coefficient of Variation 2.6 2.7 0.2 

3. Levels in Interval τ = 1  

Statistic Capital Output User Cost 
Mean 434.2 1169.5 0.242 
Median 50.7 211.9 0.246 
Standard Deviation 1141.3 3180.5 0.046 
Coefficient of Variation 2.6 2.7 0.2 

4. Levels in Interval τ = 2  

Statistic Capital Output User Cost 
Mean 529.2 1404.2 0.219 
Median 62.3 253.7 0.218 
Standard Deviation 1410.1 4237.4 0.028 
Coefficient of Variation 2.7 3.0 0.1 
Note:  The statistics are derived from a sample of 1,860 firms constructed from 
Compustat and DRI sources as described in section III of the text.  The standard 
deviations represent cross-sectional differences arising from firm heterogeneity in 
percentage changes across the τ=1 and τ=2 intervals (panel 1) and from firm 
heterogeneity in levels within an interval (panels 2, 3, and 4).  Level statistics for 
capital and output are in millions of 1987 dollars. 
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Table 2 – Ordinary Least Squares Estimates 
 

 Unconstrained Regressions Constrained Regressions 

 Benchmark  
Model 

Model with 
Two-Digit SIC 

Dummies 
η = 1 σ = 1 and 

η = 1 

Unconstrained
Regression  

with Low-Pass
Filter 

σ 0.367 
(0.067) 

0.440 
(0.293) 

0.372 
(0.067) 1.0 0.352 

(0.057) 

η 1.135 
(0.042) 

1.152 
(0.102) 1.0 1.0 1.368 

(0.070) 

β 0.925 
(0.019) 

0.926 
(0.019) 1.0 1.0 0.825 

(0.019) 

γ 
0.084 

(0.014) 
-0.055 
(0.114) 

0.063 
(0.013) 

0.020 
(0.013) 

0.100 
(0.016) 

R2 0.564 0.593 0.560 0.540 0.494 

 
Note:  Estimates of equation (7) with firm-level panel data as described in sections II and III.  
Standard errors appear in parentheses.  The parameters are σ (the capital-labor substitution or 
user cost elasticity), η (the returns to scale elasticity), β (the regression coefficient on output 
growth) and γ (the intercept).  See section IV.B for the formula used to compute η and its 
standard error.   
 

 
The second column of table 2 presents results from including two-digit 

industry dummies in the benchmark regression (the λi terms in equation 7).  These  
dummies control for industry-level productivity shocks between intervals τ=1 and τ=2 or, 
more generally, any industry-specific effects.  The structural parameter estimates do not 
change much when the dummies are included.  The σ estimate rises from 0.367 to 0.440, 
and η is virtually identical.  The standard error of σ, however, rises by a factor of more 
than four.  The σ estimate is therefore much less precise with industry dummies in the 
model.  For this reason and given the modest change in σ, the remaining regressions in 
table 2 exclude the industry dummies. 

 
As discussed in Section II, the most likely source of correlation between the 
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error term and the independent variables in these OLS regressions comes from the 
correlation between firm-specific productivity shocks embedded in the error term 
and firm output growth.  This potential simultaneity problem can be avoided by 
imposing constant returns to scale (η=1 implying β=1), an assumption that 
removes output growth as a regressor.  The third column of table 2 presents a 
regression with the output growth coefficient constrained to unity.  The σ estimate 
changes only trivially when constant returns to scale are imposed (from 0.367 to 
0.372).18  These result supports our contention that σ is consistently estimated by 
OLS in our framework.    

 
The final column of table 2 presents estimates based on the assumption of a 

Cobb-Douglas production function, which is defined by a unitary elasticity of 
substitution (σ=1) and constant returns to scale (η=1).  Not surprisingly given the 
prior results for σ and η, the restrictions associated with the Cobb-Douglas are 
easily rejected at the one-percent level relative to the unconstrained model in the 
first column.   
 
C.  Measurement Error 
 What role might measurement error play in biasing the estimated σ 
downward and away from a unitary elasticity (as emphasized recently for 
investment models by Goolsbee, 2000)?  We consider three sources of 
measurement error.   
  
 First, measurement error introduced in the construction of the capital stock 
will have a modest effect on the estimates because the capital stock enters as the 
dependent variable.  In situations where measurement error in the dependent 
variable takes the classic form or is fixed for a given firm, industry, or interval, the 
elasticity estimates will be unaffected. 
 
 Second, measurement error in the independent variables may arise for 
various reasons and can have direct and indirect effects on the estimated σ.  To 
assess the direct effects, assume that the true value of this elasticity is unity.  If the 
OLS estimate is inconsistent because ∆cf is afflicted with classic measurement 
error, the variance of this measurement error would have to account for at least 60 

                                           
18 While the R2 decreases trivially from 0.564 (column 1) to 0.560 (column 3), the constraint of 
constant returns to scale is rejected at the one-percent level, a result driven by the large number 
of observations used in estimation.  
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percent of the variance in the observed ∆cf.19  This seems highly implausible, 
especially since the estimator accounts for measurement error arising from fixed 
firm, industry, and interval effects by differencing.  An indirect effect could result 
from measurement error in the other independent variable.  If ∆yf is measured with 
error, we can use the formula proposed by Rao (1973) and an auxiliary regression 
of ∆yf on ∆cf to assess the extent of bias on σ.  Making the rather extreme 
assumption that one-half of the variance of ∆yf is measurement error, we obtain the 
somewhat surprising result that the estimated σ is biased upward toward unity.  
However, the bias is a trivial 0.043.20   
  
 Third, the assumption that the long-run values of K and Y appearing in the 
model of Section II are measured as time-averages over a τ interval may not be 
valid because of various short-run frictions.  For example, irreversibility 
constraints or asymmetric adjustment costs suggest the possibility that the average 
values of K and Y might differ from their long-run values in a frictionless model.  
As shown in Appendix C, these short-run frictions introduce measurement error 
into K and Y.  The effects of measurement error on σ have been analyzed above.  
Measurement error can adversely affect the reported results but, with our 
estimation strategy, it does not appear to be quantitatively important.     
 
D.  An Alternative Interpretation 
 The interval-difference estimator that generated the results in Table 2 
consists of two steps:  1) average the data over non-overlapping intervals of years 
and 2) first difference the log of the averaged data across intervals.  The first part 
of our estimation strategy can be interpreted in terms of a low-pass filter (LPF) 
defined in the frequency domain.21  A LPF allows frequencies lower than some 

                                           
19 The asymptotic bias on the estimated σ is given by the following formula:  (σ#-σ’) = 
(VAR[ξf]/VAR[∆cf]) σ#, where σ’ and σ# are the estimated and true values of σ, respectively, 
and ξf is the measurement error.  If σ# =1, then the variance ratio must be at least equal to 0.60 
given an OLS estimate of σ’=0.40.   
20 The bias on the estimated σ is (σ#-σ’) = -((β b∆y ,∆c) / (1-R2

∆y, ∆c)) (VAR[ξf] / VAR[∆yf]), 
where σ’ and σ# are the estimated and true values of σ, respectively, β is from equation (7), 
b∆y,∆c is the coefficient on ∆cf, R2

∆y, ∆c the correlation coefficient from the auxiliary regression of 
∆yf on ∆cf and a constant, and ξf is the measurement error.  We assume that one-half of the 
variance in the output variable is measurement error; hence, VAR[ξf] / VAR[∆yf] = 0.50.  We 
further assume that β equals its estimated value under IV of 1.402.  From the auxiliary 
regression, b∆y,∆c = 0.061 and R2

∆y,∆c = 0.0003; hence, (σ#-σ’) = -0.043.   
21 We thank Julio Rotemberg for suggesting this interpretation of our estimator.   
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critical frequency, ω#, to pass through to the transformed series, but excludes 
frequencies higher than ω#.  Baxter and King (1999, Section II.B) present the 
formulas that translate restrictions from the frequency domain into the time 
domain.  For an input series x(t) and an interval of seven years, the LPF for a 
critical value ω# (LPF[ω#]) produces the following transformed series (x#(t)),  
 
                                   3 
(9a)  x#(t)  =   Σ    a(h) L(h) x(t),     
                                 h=-3 
 
(9b)   a(0)  =  ω# / π  +  θ,    
 
 
(9c)  a(h)  =  sin(h*ω#) / (h*π)  +  θ,   h=±1, ±2, ±3  
 
                                         3 
(9d)  θ  =   (1 -   Σ    a(h))  / 7,    
                                      h=-3 
 
where L(h) is a polynomial in the lag operator and θ normalizes the variance to be 
unity at the 0th frequency.   
  
 The estimator used for the results presented thus far can be interpreted as a 
limiting case of LPF[ω#].  With ω# at its lower bound of zero, all of the a(h) 
coefficients are initially zero by (9b) and (9c).  The value of θ becomes 1/7, and 
equal weight is given to each observation in the interval.  Stationarity is not an 
issue because the second step of the interval-difference estimator involves a first-
difference.  The use of the lower bound for ω# is consistent with our objective to 
emphasize long-run variation. 
  
 As a robustness check on our empirical results, we experiment with an 
alternative assumption about the frequencies allowed to pass through to the 
transformed data.  We assume that frequencies with periods greater than or equal to 
seven years define the long-run.  Based on the relation between period and 
frequency, this implies ω# = 0.8976.  We replace equal weights of 0.1429 (one 
seventh) in our basic estimator with the weights implied by (9b) and (9c) for ω# = 
0.8976:  a(h=-3) = a(h=3) = 0.0194,  a(h=-2) = a(h=2) = 0.1286, a(h=-1) = a(h=1) 
= 0.2223, and a(h=0) = 0.2594.  The results are presented in the fifth column of 
Table 2, and the estimate of σ is 0.352 (with a standard error of 0.057), which is 
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very close to the estimate obtained when the long-run was defined in terms of ω# = 
0.  Thus, estimates of σ are robust to definitions of the long-run, and subsequent 
results are based on our assumption that ω# = 0. 
 
E.  IV Estimates 
 The OLS estimates of equation (7) are consistent under the assumption that 
the error term is independent of both output and user cost growth.  As discussed in 
Section II and suggested by the results with the constant returns model in Section 
IV.B, these are reasonable assumptions with our estimation method.  Nonetheless, 
we present instrumental variables estimates in table 3 to explore the robustness of 
our OLS results.  The instruments are constructed from data in the τ=0 interval.  
The instrument list includes the user cost (Ci,τ=0), capital stock (Ki,τ=0), the output-
capital ratio ((Y/K)i,τ=0), and the cash flow-capital ratio ((CF/K)i,τ=0).  In addition, 
we included the annualized growth rates of capital, output, cash flow, accounts 
receivable, and cash and cash equivalents defined over the τ=0 interval.  

 
The benchmark IV estimate of σ in the first column of table 3, 0.390 is 

almost identical to the benchmark OLS estimate from table 2 of 0.367.  Not 
surprisingly, the standard error rises with IV, but we can still strongly reject both 
the hypotheses that σ equals zero or unity.  Unfortunately, the IV estimates of η are 
not as reasonable.  Because of the large coefficient on output growth (β), the point 
estimate of the returns to scale elasticity (η) is 0.603.  The standard error of η is 
much larger with IV than with OLS, but the IV estimate still rejects constant 
returns to scale in favor of decreasing returns.  However, we do not consider this 
result reliable because of our inability to find good instruments for output growth.   

 
The partial R2 statistic developed by Shea (1997) provides quantitative 

confirmation of this interpretation.  This statistic measures the relevance of 
instruments for each estimated coefficient after removing the explanatory power 
used in instrumenting other regressors.  The partial R2 for β is 0.040, dramatically 
lower than the partial R2 of 0.515 for σ.22 

 
 
 
 
 

                                           
22 The partial R2 statistic is preferable to the more common first-stage R2 as discussed by Shea 
(1997).   
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Table 3 – Instrumental Variables Estimates 
 

 Unconstrained Regressions Constrained Regressions 

 Benchmark  
Model 

Model with Two-
Digit SIC Dummies η = 1 σ = 1 and η = 1 

σ 0.390 
(0.108) 

0.373 
(0.286) 

0.434 
(0.093) 1.0 

η 0.603 
(0.074) 

0.633 
(0.120) 1.0 1.0 

β 1.402 
(0.110) 

1.364 
(0.118) 1.0 1.0 

γ 
-0.049 
(0.034) 

-0.324 
(0.134) 

0.059 
(0.014) 

0.020 
(0.013) 

 
Note:  Estimates of equation (7) with firm-level panel data as described in section III.  Standard 
errors appear in parentheses.  The parameters are σ (the capital-labor substitution or user cost 
elasticity), η (the returns to scale elasticity), β (the regression coefficient on output growth), and 
γ (the intercept). The instrument list is defined in section IV.C.  In the second column, the 
industry dummies are instrumented by themselves.  See section IV.B for the formula used to 
compute η and its standard error.  

 
 
  
To pursue this issue one step further, we re-estimate the model with IV 

imposing constant returns to scale (η=1).  Under this assumption, β=1, and we no 
longer need to instrument output growth.  The results appear in the third column of 
table 2.  The IV estimate of σ is only modestly affected by imposing constant 
returns.  The elasticity estimate rises to 0.434 from 0.390, a change much smaller 
than one standard error.  This result demonstrates that, even if the IV estimate of 
returns to scale is unreliable due to the lack of relevant instruments for output 
growth, this difficulty does not “contaminate” conclusions about σ, which is the 
primary focus of our study. 

 
The second column of table 3 presents IV estimates with two-digit industry 

dummies.  This specification accounts for industry-level productivity shocks 
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between the τ=1 and τ=2 periods (cf. equation (7)).  The point estimate of σ hardly 
changes from the benchmark value (0.373 versus 0.390).  As was the case for the 
OLS estimates with industry dummies, however, the standard error of σ rises 
dramatically, almost by a factor of three.23  

  
 As a final test of the validity of the OLS estimates, we performed Hausman 

tests on the σ parameters.  The Hausman statistics are asymptotically distributed 
χ2(1) under the null hypothesis that the OLS estimates are consistent.  For the 
benchmark model, the test statistic is 0.07 and for the constant returns to scale 
model it is 0.92.24 Both test statistics are far below the 90 percent critical value for 
the χ2(1) distribution of 2.71.  These tests support the validity of the OLS estimates 
of σ.  Taken together, the unconstrained OLS and IV estimates strongly suggest 
that σ is approximately 0.40.   

 
F. Split-Sample Estimates 

 Table 4 explores our results further by assessing the stability of structural 
parameter estimates in several sub-samples chosen to address issues that have 
arisen with empirical investment models.  In each sub-sample, we expect σ to 
remain similar to its value in the full sample results.  All estimates are with the 
benchmark model.  The first panel presents results with the sample split by the 
ratio of cash flow to the capital stock.  In investment regressions using annual data, 
Chirinko, Fazzari, and Meyer (1999) found that including cash flow had a 
significant effect on the estimated σ.  We interpreted that finding in the context of 
the extensive literature on finance constraints and firms' investment spending.  The 
approach here, however, emphasizes the long-run impact of the user cost on the 
capital stock.  We therefore expect financial constraints to be less important.  The 
first panel of table 3 presents results from data split according to the pre-sample 
median cash flow-capital ratio.  If financial constraints were important at the 
horizon relevant for our estimation, we would expect the estimated σ to be 
significantly different across high and low cash flow firms that differ by their 
inadequate access to finance.  There is little evidence of such an effect in our data.  
The OLS point estimate of σ is somewhat larger for the high cash flow firms than 

                                           
23 Because of collinearity, it was not useful to include industry dummies in the model as both 
regressors and instruments.  In the second column of table 2, the instrument set for output and 
user cost growth is the same as for the other IV regressions; the industry dummies are 
instrumented by themselves. 
24 The Hausman test is not defined for the model that includes industry dummies because the 
standard error of the IV estimate is slightly smaller than the standard error of the OLS estimate. 
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for low cash flow firms, but the difference is less than two standard errors.  Similar 
results hold for the IV regressions except that σ is relatively larger for the low cash 
flow firms.  The formal test statistics (θ’s) for the equality of the σ’s from the two 
sub-samples have p-values greater than 0.35, easily sustaining the null hypothesis 
of equal σ’s.25  
 
 Our second sort is by size, defined by the median average capital stock in the 
pre-sample period (τ=0).  The technologies utilized by firms may vary 
systematically by size, and the technology parameters estimated here may change 
accordingly.  Moreover, size is frequently used to identify firms that may be 
finance constrained.  External finance may be relatively costly for smaller firms 
because they are not able to bear the substantial fixed costs of obtaining external 
funding or they lack visibility in external capital markets.  Relative to the results in 
table 2, the OLS point estimates of σ are higher for small firms and lower for large 
firms. With IV, the point estimates have the reverse pattern, and both are lower 
than the comparable estimate of 0.390 based on the full sample (table 3).  None of 
these differences is statistically significant.   

 
Finally, we split the data at the median value of the Brainard-Tobin Q variable to 
address how sensitive our estimation strategy is to investment dynamics and 
shocks.  Firms with high values of Q are presumably further from their long-run 
equilibrium capital stock for, among other reasons, favorable demand or 
productivity shocks.  Therefore, if our estimation method did not adequately 
account for investment dynamics  or shocks, we might expect a difference in the 
estimated σ’s across the high-Q and low-Q sub-samples.  In table 4, the elasticities 
are virtually identical in the OLS results across the Q sub-samples.  The low-Q 
firms have a modestly higher elasticity than the high-Q firms in the IV regression, 
but the difference is not statistically significant.  This result provides additional 
support for the way our estimation method addresses problems with complicated 
investment dynamics, avoiding these difficult specification issues by focusing 
directly on the long-run growth of the capital stock.  

                                           
25 The null hypothesis that σ’ = σ” (where the ’ and ” refer to estimates based on the low and 
high sub-samples, respectively) is evaluated by θ in the following auxiliary equation based on 
equation (7):  ∆kf   =  -σ ∆cf  - θ ∆cf * If +  β’ ∆yf * If  + β” ∆yf  * (1-If) - γ’ * If  - γ” * (1-If) - 
∆wf.,  where If  is an indicator variable equal to 1 for the low sub-sample and 0 for the high sub-
sample and θ  = σ’ - σ” and is distributed asymptotic t under the null hypothesis that σ’ = σ”.  In 
the IV regressions, each individual instrument, zf, appears twice in the instrument list as follows, 
zf * If  and  zf * (1-If). 
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Table 4 – Ordinary Least Squares And Instrumental Variable  
         Estimates:  Various Sample Splits    
 

 Split by Cash Flow-Capital Ratio Split by Capital Stock Size Split by Tobin-Brainard Q 

 OLS IV OLS IV OLS IV 

 Low 
CF/K 

High 
CF/K 

Low 
CF/Kl 

High 
CF/K 

Low 
Capital 

High 
Capital 

Low 
Capital 

High 
Capital 

Low 
Q 

High  
Q 

Low 
Q 

High 
Q 

σ 0.278 
(0.075) 

0.407 
(0.127) 

0.364 
(0.102) 

0.317 
(0.198) 

0.435 
(0.139) 

0.294 
(0.066) 

0.226 
(0.226) 

0.363
(0.094) 

0.320 
(0.076) 

0.349 
(0.114) 

0.448 
(0.110) 

0.290 
(0.163) 

η 1.308 
(0.071) 

1.019 
(0.049) 

0.989  
(0.197) 

0.673 
(0.128) 

1.042 
(0.056) 

1.284 
(0.064) 

0.646 
(0.104) 

0.782
(0.120) 

1.214 
(0.061) 

1.046 
(0.054) 

0.736 
(0.169) 

0.688 
(0.162) 

β 0.830 
(0.025) 

0.989 
(0.028) 

1.007 
(0.128) 

1.331 
(0.178) 

0.977 
(0.029) 

0.844 
(0.024) 

1.424 
(0.172) 

1.177
(0.120) 

0.880 
(0.025) 

0.972 
(0.032) 

1.198 
(0.168) 

1.322 
(0.234) 

γ 
0.040 

(0.017) 
0.125 

(0.024) 
 0.000  
(0.031) 

 0.014  
(0.066) 

0.105 
(0.026) 

0.064 
(0.016) 

-0.016 
(0.058) 

-0.019 
(0.033) 

0.057 
(0.016) 

0.107 
(0.027) 

-0.006 
(0.034) 

-0.018
(0.090) 

θ -0.129 
(0.144) 

0.047 
(0.214) 

0.141 
(0.144) 

-0.137 
(0.226) 

-0.029 
(0.137) 

0.158 
(0.197) 

R2 0.541 0.575   0.556 0.582   0.631 0.562   

 
 
Note:  Estimates of equation (7) with firm-level panel data as described in sections 
II and III.  Standard errors appear in parentheses.  The parameters are σ (the 
capital-labor substitution or user cost elasticity), η (the returns to scale elasticity), 
β (the regression coefficient on output growth), and γ (the intercept). The 
instrument list is defined in section IV.E.  See section IV.B for the formula used to 
compute η and its standard error.  Sample splits are based on the median value of 
the classifying variable in the τ=0 (1972-1977) interval.  θ is the coefficient 
measuring the difference between the σ’s for the contrasting classes, and is 
distributed asymptotic t under the null hypothesis of equality.  See section IV.F for 
further details about this statistic.     
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G.  Comparison to Other Approaches 
 Prior studies estimating σ (the substitution or user cost elasticity) can be set 
into three categories.  Most previous research has been based on time-series data at 
the aggregate or industry levels.  Prominent examples of this work are the 
exchanges between Hall and Jorgenson (1967, 1969, 1971) and Eisner and Nadiri 
(1968, 1970), Eisner (1969, 1970), and Coen (1969).  Hall and Jorgenson’s initial 
work was based on a Cobb-Douglas production function, and hence σ equals 1.00 
by assumption.  Eisner and Nadiri estimated σ freely, and reported that the 
responsiveness of capital to its user cost was 0.16.  This gap has not been closed by 
subsequent research.  Several important concerns, however, have been raised about 
elasticities estimated from aggregate data suggesting that such estimates may be 
biased downward due to problems with firm heterogeneity, simultaneity, 
measurement error, and capital market frictions.   
 
 These issues were difficult to address with aggregate data because of the 
limited amount of variation, and a more recent set of studies has exploited the 
substantial information in panel data.  While some of these concerns can be 
addressed, these studies usually remove firm effects by differencing; thus, 
transitory time-series variation heavily influences the estimated elasticity.  A recent 
example is Chirinko, Fazzari, and Meyer (1999), who find an elasticity of 0.25 for 
a panel of firms.  A similar elasticity is reported by Goolsbee (2000), who analyzes 
a panel of equipment assets.  Cummins and Hassett (1992) and Cummins, Hassett, 
and Hubbard (1994, 1996) develop a novel approach, focusing on those years in 
which there are sizeable tax policy changes to mitigate concerns about endogeneity 
and measurement error.  In these studies, cross-section variation is key and they 
report a substantial response of investment to the user cost.  Nonetheless, based on 
some auxiliary assumptions, the implied capital elasticity for U.S. firm data in 
Cummins, Hassett, and Hubbard (1994) is somewhat lower than that obtained by 
Chirinko, Fazzari, and Meyer.26  These studies use investment data, and the biases 
associated with investment models mentioned above may be important.    
 
 A third class of studies focuses on long-run relations between the capital 
stock and its determinants.  To mitigate the distorting effects of complex dynamics, 
Caballero (1994) exploits the innovative idea that the elasticity can be estimated in 
a cointegrating equation that includes the capital/output ratio and the user cost.  
Because cointegration is an asymptotic property, this estimate can be biased 
downward in finite samples.  Using aggregate quarterly data for equipment 
                                           
26 See Chirinko, Fazzari, and Meyer (1999, section 5) for further details. 
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spending and the Stock-Watson (1993) correction to adjust the estimates for the 
effects of transitory variation, Caballero obtains a range of elasticity estimates, 
from 0.40 to 0.93, depending on the number of lags used in the correction.  Also 
exploiting cointegration properties, Mairesse, Hall, and Mulkay (1999) and 
Harhoff and Ramb (2001) estimate error correction models (ECM) containing the 
long-run relation between the capital stock and its determinants and the percentage 
changes in these variables to capture short-run dynamics.  Firm-level data and 
fixed effects are used in both studies.  The parameters are imprecisely estimated, a 
result that may be due to estimating both long-run and short-run parameters in the 
ECM with data that have substantial transitory time-series variation.  Kiyotaki and 
West (1996) specify a model that includes deviations of the desired from the actual 
capital stock, and estimate desired capital in terms of a future projection from a 
two-step VAR procedure.  With quarterly aggregate data for Japan, they find that 
the short-run and long-run user cost elasticities are 0.05 and 0.07, respectively.  
The authors attribute these very small responses to transitory variation in the user 
cost series as represented by a pronounced tendency for mean reversion.  
Caballero, Engel, and Haltiwanger (1995) estimate a model similar to Caballero 
(1994) with plant-level equipment spending.  They obtain a range of elasticities 
across two-digit industries from 0.01 to 2.00, with an unweighted average of 
approximately unity.  If we assume that the structures elasticity is one-third as 
large as that for equipment (per the results of Cummins and Hassett, 1992), then 
the overall elasticity is approximately 0.70. 
 
  The elasticity estimates of Caballero, Engel, and Haltiwanger and those 
presented in this paper are both based on a panel, but are not directly comparable 
for a variety of reasons, including the use of plant-level vs. firm-level data, the 
specification of the long-run determinants of the capital stock, and the manner in 
which the problem of capital stock dynamics is addressed.  The Caballero, Engel, 
and Haltiwanger estimates are based on a cointegrating relation that emphasizes the 
time dimension of the panel, and deviations from long-run values are accounted for 
with the Stock-Watson correction.  By contrast, our approach uses the time 
dimension of panel data to measure long-run variables in each interval, and then 
estimates the elasticity from the cross-section dimension of the panel.  Given these 
differences, it is not surprising that we obtain different results.   
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V.  Summary and Conclusions 
The substitution elasticity between capital and labor (equivalent to the 

elasticity of business capital to its user cost) has been the focus of much research 
attention over the past 40 years.  Among other issues, this parameter is central in 
assessing the validity of alternative models of long-run growth and translating the 
effects of tax policy into real outcomes.  Prior work has relied in almost all cases 
on time-series variation in investment data at the aggregate, industry, or firm level 
to estimate this elasticity.  This paper offers a different approach.  The estimation 
strategy developed here classifies the time periods into three intervals and then 
averages the firm-level panel data within each interval.  The data are differenced 
across intervals, and production function parameters are estimated in a cross-
section of time-averaged, differenced firm data.  Our approach accounts for a 
variety of productivity shocks, omitted variables, and firm effects.  This 
econometric model does not solve the estimation problems inherent with 
investment models -- difficult-to-specify dynamics, transitory time-series variation, 
and positively sloped supply schedules -- that may bias estimates of the 
substitution/user cost elasticity.  Instead, our approach avoids these problems by 
exploiting panel data in an original way and estimating directly the first-order 
condition for capital.  
 
 We find that the elasticity can be consistently and precisely estimated by 
OLS, and is approximately 0.40.  Relative to a comparable investment study 
(Chirinko, Fazzari, and Meyer, 1999), the results here suggest that investment 
models impart a discernible bias toward zero in estimates of the elasticity.  To the 
central question of whether the Cobb-Douglas assumption is valid, our results offer 
a strikingly negative answer.  This robust finding raises questions about the 
frequent use of the Cobb-Douglas production function in theoretical and empirical 
models and about the cost-effectiveness of various tax proposals for stimulating 
capital  formation.   
 
 Apart from our immediate objective, the method developed here may prove 
useful in estimating other structural parameters from long-panel datasets.  Our 
approach, which uses interval averages to estimate long-run desired values of 
regression variables, could be applied to other problems where short-run dynamics 
may obscure long-run structural relations.  There are likely to be a number of 
applications in, for example, labor and industrial organization, where the 
availability of long-panels and interest in structural parameters may make this 
method feasible and informative. 
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Appendix A:  Trending Variables 
 This appendix considers the effects of trending variables on the specification 
of the model.  We begin with the following decomposition for variable Wf,τ,t into 
non-growth (ng) and growth (g) components, where W corresponds to any of the 
model variables, K, Y, or C  (note that, unlike in the text, we explicitly include an 
index for the τ interval even when it is redundant), 
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(A-1)  Wf,τ,t  ≡  Wng
f,τ,t  +   Wg

f,τ,t , 
 
(A-2)  Wng

f,τ,t  ≡ µng
f,τ + νng

f,τ,t, 
                                              Tτ 
   µng

f,τ   =  Σ  Wng
 f,τ,t / Tτ,   

                                              t=1 

 
                               Tτ 
    Σ  νng

f,τ,t / Tτ  =  0, 
                               t=1 
 
(A-3)  Wg

f,τ,t  ≡  µng
f,τ [(1+gf)t – 1].  

 
In (A-2), the non-growth component equals the mean over the τ interval (µng

f,τ) and 
a deviation from the mean value (νng

f,τ,t) that averages to zero.  These summations 
are over all Tτ time periods that are in the τ interval.  In (A-3), the growth 
component is proportional to the mean, and increases at a firm–specific rate of gf. 
 
 As in Section II, we measure the long-run value of W (W*f,t) as a time-
average over a τ interval (Wf,τ),  
 
(A-4)  W*f,t  =   Wf,τ 
                         Tτ 
  =  Σ  Wf,τ,t / Tτ , 
                         t=1 
 
                         Tτ                            Tτ 
  =  Σ  Wng

f,τ,t / Tτ   +    Σ  Wg
f,τ,t / Tτ,   

                         t=1                          t=1 
 
                                       Tτ                           Tτ 
  =  µng

f,τ  +   Σ  νng
f,τ,t / Tτ   +    Σ  µng

f,τ [(1+gf)t – 1] / Tτ,   
                                       t=1                         t=1 
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                                                         Tτ 
  =  µng

f,τ  +  0  +   µ
ng

f,τ  Σ   [(1+gf)t – 1] / Tτ,   
                                                         t=1 

 
                  =  µng

f,τ  *  H[gf], 
                                                         Tτ 
        H[gf]  ≡  1  +  Σ  [(1+gf)t – 1] / Tτ,   
                                                         t=1 

 
 Our estimator (7) uses the difference between the τ=2 and τ=1 intervals in 
the logarithms of Wf,τ, 
 
(A-5)  Ln{Wf,τ=2} - Ln{Wf,τ=1}  =  Ln{µng

f,τ=2}  +  Ln{H[gf]}   
                                                           − Ln{µng

f,τ=1}  -  Ln{H[gf]}, 
 
                                                     =  Ln{µng

f,τ=2 / µ
ng

f,τ=1}, 
 
which is the percentage change in the non-growth component of Wf,τ.  Thus, the 
variables entering the regression are not distorted by firm-specific growth.  

 
 

Appendix B:  The Replacement Value of Capital 
The capital stock is a key variable in this study, and this appendix provides 

details about how we overcome several significant problems in measuring the 
capital stock from accounting data.  The obvious proxies for the capital stock in the 
Compustat data, book values of gross or net property, plant, and equipment, are not 
acceptable measures of the economic value of the capital stock for two reasons.  
First, they value assets at the historical cost prevailing when the assets were 
acquired and therefore contain a mix of historical price levels that cannot be easily 
adjusted for inflation.  Second, accounting depreciation rules likely do not capture 
economic depreciation correctly.  The iterative "perpetual inventory" algorithm 
described here addresses these problems.  

 
 The first step in our procedure is to choose a seed value for the iteration.  We 
use the nominal book value of net property, plant, and equipment for firm f from 
its first observation in the data set (NPLANTf,0).  To convert this value to real 
terms we employ data on the share of different kinds of capital assets (indexed by 
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j) in the firm's two-digit SIC industry i.  Denote this share as αi,j.  The amount of 
capital (αi,j NPLANTf,0) should be deflated by the asset-specific price index pj,0. 
Then the real seed value of the capital stock (Kf,0) is defined as: 
 

(B-1) ∑=
j j

fji
f p

NPLANT
K

0,

0,,
0,

α
. 

 
 Starting from this seed value, the remainder of the capital stock for firm k is 
constructed iteratively from: 
 

(B-2) ∑
−

∑ +−=+
j tj

jji

j
tfjjitftf p

KCHGKK
,

,
,,,1,

)1(
)1(

δα
δα . 

 
The first term in equation (B-2) is the depreciated value of the period t capital 
stock that remains in period t+1.  The depreciation rate δj for each asset j is 
determined by DRI from the “double declining balance” formula: 
 
(B-3) jLIFE

j e /21 −−=δ , 
 
where LIFEj represents the estimated average service life for capital asset j.  The 
second term in equation (B-2) represents the addition (or deletion) to the period t+1 
capital stock accounted for by new investment, acquisitions, or divestitures in 
period t.  The variable KCHGf,t (discussed in detail below) represents the nominal 
addition (or subtraction) of new capital goods for firm f in period t prices.  The 
deflation method for KCHGf,t is the same as for the seed value in equation (B1).  
We assume that new capital is acquired at the beginning of period t and depreciates 
one full year before entering the period t+1 capital stock.  (We also constructed 
capital stock series using a half year’s depreciation for KCHG and found that it had 
only a trivial impact on the results.)  If a firm adds to its capital stock in period t 
only through conventional capital spending, the KCHGf,t variable in equation (B-2) 
would equal the firm’s investment (If,t), that we obtain from Compustat’s capital 
expenditure data in the sources and uses of funds statement.  In practice, 
acquisitions and divestitures can augment and deplete the capital stock independent 
of reported investment.  Many panel studies delete firms with substantial 
acquisitions or divestitures.  However, there are a large number of observations 
with acquisitions and divestitures in the Compustat data.  Deleting these 
observations reduces the sample size and could induce a selection bias.  We 
therefore develop a method to account for acquisitions and divestitures when 
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constructing the capital stock data.  (To the extent that acquisitions or divestitures 
create outliers in the data, these should be captured by our outlier detection 
algorithm described in Section III.) 

 
The capital change variable (KCHGf,t) in equation (B-2) is defined in a way 

that accounts for large acquisitions and divestitures.  We appeal to the following 
accounting identities to derive a formula for KCHGf,t: 

 
(B-4) tftftftf RETIREACQUISIGPLANT ,,,, −+=∆  
(B-5) tftftftf DEPRACQUISINPLANT ,,,, −+=∆  

tfGPLANT ,∆  = the change in gross plant and equipment from  
the end of year t-1 to the end of year t; 

tfNPLANT ,∆  =  the change in net plant and equipment from 
          the end of year t-1 to the end of year t; 

 tfACQUIS ,  =  acquisitions in year t; 
 tfRETIRE ,  =  retirements in year t,27 and 
 tfDEPR ,   =  accounting depreciation in year t. 
 
In the event of an acquisition, KCHGf,t equals If,t + ACQUISf,t.  Because 
Compustat does not have reliable figures for ACQUISf,t, we rearrange equation (B-
4) to obtain: 
 
(B-6) tftftftf RETIREGPLANTACQUISI ,,,, +∆=+  or 
 tftftf RETIREGPLANTKCHG ,,, +∆=  
 
In the event of a divestiture, we want to decrease the capital stock by the 
depreciated value of the capital sold.  In this case: 
 

(B-7) tftf NPLANTKCHG ,, ∆=  
 
If there is no major acquisition or divestiture, then we retain the basic formula: 
 
                                           
27 Compustat defines retirements as “a deduction from a company’s property, plant, and 
equipment account resulting from the retirement of obsolete or damaged goods and/or physical 
structures.”  
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(B-8) tftf IKCHG ,, =  
 
 We now need an empirical test to determine whether a firm has undergone 
an acquisition or divestiture in a given year.  There are two rules of thumb that aid 
us in this search.  First, ∆GPLANTf,t is normally less than If,t because of 
retirements.  Therefore, if ∆GPLANTf,t > If,t by a substantial amount, it signals an  
acquisition with a high probability.  Second, ∆GPLANTf,t is normally greater than 
RETIREf,t because retirements are the only way to reduce gross plant and 
equipment in the absence of a divestiture.  Therefore, if ∆GPLANTf,t < RETIREf,t 
by a substantial amount it signals a divestiture. 
 
 We define a "substantial" amount as a discrepancy of ten percent or more.  
The point of imposing the ten percent limit is to make acquisition and divestiture 
adjustments conservative.  That is, we only deviate from the standard formula 
when there is clear evidence that this formula is misleading.  In this case, if 
 

(B-9) ,1.0
1,

,, >
−∆

−tf

tftf
GPLANT

IGPLANT
 

 
then we assume an acquisition and define KCHGf,t from equation (B-6).  In 
contrast, if 
 

(B-10) ,1.0
1,

,, −<
+∆

−tf

tftf
GPLANT

RETIREGPLANT
 

 
then we assume a divestiture and define KCHGf,t from equation (B-7).  If neither 
rule holds, we simply define KCHGf,t as investment spending, as in equation (B-8). 
 

 
Appendix C:  Short-Run Frictions and Measurement Error 

 This appendix relaxes the assumption that the long-run values of capital and 
output appearing in the model of Section II can be measured without error as time-
averages over a τ interval -- Σt Κf,τ,t/Tτ ≡ Kf,τ = K*f,t and Σt Yf,τ,t/Tτ ≡ Yf,τ = Y*f,t for 
t=1,Tτ.  (Note that, unlike in the text but as in Appendix A, we explicitly include an 
index for the τ interval even when it is redundant.)  In particular, these equalities 
might be disrupted if short-run frictions affect long-run values.  For example, a 
firm facing irreversibility constraints will exhibit a reluctance to invest that lowers 
its optimal capital stock.  In this case, a negative, firm-specific measurement error 
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drives a wedge between Kf,τ and K*f,t and, through the production function, a 
wedge between Yf,τ and Y*f,t.  However, the same set of constraints create a 
“hangover effect,” as a firm occasionally finds itself with capital that it would like 
to dispose of but can not due to irreversibility constraints.  Thus, the long-run 
capital stock for a firm facing irreversibility frictions can be greater than or less 
than the long-run capital stock for a frictionless firm (Abel and Eberly, 1999).  An 
additional friction is introduced by asymmetric adjustment costs implying that the 
average values of capital and output will differ in general from their long-run 
values.   
 
 These considerations introduce measurement error (MEKf,τ) that drives a 
wedge between Kf,τ and K*f,t (a similar analysis applies to Yf,τ and Y*f,t),  
 
(C-1)  Kf,τ  =  K*f,t  +  ΜΕΚf,τ .    
 
We assume that the measurement error between Kf,τ and K*f,t increases with the 
size of the “true” long-run capital stock and that MEKf,τ = Μf,τ K*f,t.  Furthermore, 
Μf,τ consists of two components, mf and mf,τ, representing measurement error that 
varies by firm and by firm and interval, respectively.  Combined with (C-1), these 
assumptions generate the following model of measurement error,  
 
(C-2a) Kf,τ  =  K*f,t  Μf,τ ,    
 
(C-2b) Μf,τ  =   1 + mf + mf,τ,   
 
  To understand the impact of measurement error on our estimating equation, 
we analyze (C-2) in conjunction with the trending variables analyzed in Appendix 
A.  We begin with K*f,t = Kf,τ / Μf,τ, and thus divide the right-side of (A-4) by Μf,τ.  
Since Μf,τ is indexed by τ, it passes through the summation sign, and the version of 
(A-4) accounting for measurement error and trending variables is as follows,  
 
(C-3)    K*f,t  =  µng

f,τ  *  H[gf]  / Μf,τ , 

 
where µng

f,τ  is the mean of the non-growth component of Κf,τ,t and H[gf] is a 
function of the firm-specific growth rate.  See Appendix A for details.   
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 Our estimator replaces the logarithm of K*f,t in (4) with the logarithm of the 
expression in (C-3), and differences the resulting equation between the τ=2 and 
τ=1 intervals, 
 
(C-4)  Ln{Kf,τ=2 / Μf,τ=2}  -  Ln{Kf,τ=1 / Μf,τ=1} 
 
                    =  Ln{µng

f,τ=2}  +  Ln{H[gf]}  -  Ln{µng
f,τ=1}  -  Ln{H[gf]} 

             + (mf + mf,τ=2)  -  (mf + mf,τ=1), 
 
                    =  Ln{µng

f,τ=2 / µ
ng

f,τ=1}  -  ∆mf,τ, 
 
which is identical to (A-5) in Appendix A with the addition of -∆mf,τ.  Note the 
firm-specific component of the measurement error (mf) cancels in the first 
difference.   
 
 The additional term, -∆mf,τ, can be incorporated straightforwardly into the 
econometric model.  The error term in (7) is composed of a productivity shock,  
-∆wf,τ, that is firm-specific and interval-specific and, to reflect the effects of 
measurement error, it can be replaced by the composite error, -(∆wf,τ + ∆mf,τ).  
Note that the two components both vary by firm and interval.  We expect the 
impact of ∆mf,τ to be relatively small because firm and industry effects have 
already been  removed.   
 
 In the event that there is some correlation between ∆mf,τ and the regressors 
induced by measurement error, the estimated σ will be attenuated, that is, closer to 
zero than the “true” σ.  Since the measurement error considered in this Appendix 
does not affect the user cost variable directly, the effect on σ is indirect, and equals 
the product of the attenuation of the coefficient on output and a coefficient 
representing the correlation between “true” sales growth and “true” user cost 
growth (Garber and Klepper, 1980, equation (2.6)).  The quantitative impact of this 
type of measurement error is assessed in Section IV.C (the Rao test).  Furthermore, 
since this type of measurement error applies only to capital and output, it will not 
impact the estimate of σ in the regression in the third column of Table 2 (η = 1)  
with the growth rate of the capital-output ratio as the dependent variable.  This 
estimate of σ and the Rao test both suggest that the type of measurement error 
considered in this Appendix is quantitatively unimportant.   
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