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1 Introduction

Did John Nash anticipate evolutionary game theory in his 1950 dissertation?

Young [7] suggests he did, based on the following passage, which can be seen

as introducing the random-matching population games that are the basis of

Maynard Smith’s (Maynard Smith and Price [4]; Maynard Smith [3]) evolution-

ary approach:

We shall now take up the “mass-action” interpretation of equi-

librium points. In this interpretation solutions have no great signif-

icance. It is unnecessary to assume that the participants have full

knowledge of the total structure of the game, or the ability and in-

clination to go through any complex reasoning processes. But the

participants are supposed to accumulate empirical information on

the relative advantages of the various pure strategies at their dis-

posal.

To be more detailed, we assume that there is a population (in

the sense of statistics) of participants for each position of the game.

Let us also assume that the “average playing” of the game involves

n participants selected at random from the n populations, and that

there is a stable average frequency with which each pure strategy is

employed by the “average member” of the appropriate population

[. . . ] Thus the assumptions we made in this “mass-action” interpre-

tation lead to the conclusion that the mixed strategies representing

the average behavior in each of the populations form an equilib-

rium point [. . . ] Actually, of course, we can only expect some sort of

approximate equilibrium, since the information, its utilization, and

the stability of the average frequencies will be imperfect. (Nash [5].)

Nash here says nothing very explicit about any evolutionary selection dy-

namics leading to equilibrium play. Young, along with, e.g., Leonard [2] and

Hofbauer [1], interprets the passage to be about a best-response dynamics,

where players respond myopically to the current population distribution. But
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Player 2

s1 s2

Player 1 s1 1, 1 0, 0

s2 0, 0 1, 1

Table 1: A coordination game.

even without this latter reading, as we shall see, there is a sense in which a no-

tion of evolutionary stability is implicit in the discussion.

Taking the “mass-action” story literally it seems natural to study finite popu-

lations. But then some equilibria of the underlying game cannot be supported

as “mass-action” equilibria. Consider a non-trivial symmetric mixed-strategy

equilibrium of a symmetric normal-form game. Suppose we try to implement

this equilibrium in a setting where a finite population of individuals, who are

only allowed to play pure strategies, are randomly matched to play our underly-

ing game. As Nash notes, “the stability of the average frequencies will be imper-

fect,” since it cannot be the case that each individual faces the average strategy,

as the individual’s own strategy choice affects the average.

Nash’s “mass-action” idea therefore carries within it its own refinement or

stability notion. The fact that an individual’s strategy choice in the finite popu-

lation game holds information itself affecting that choice acts as a perturbation

of the strategy distribution at the equilibrium. In the following we shall see that

requiring stability in the face of such perturbations is, indeed, closely related

to Maynard Smith’s [3] concept of evolutionary stability. Specifically, we define

a non-artifactuality criterion for equilibria of symmetric 2-player games and

show that it is equivalent to neutral stability for completely mixed strategies in

2×2 games.
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2 Finite Population Games: Examples

Consider the game in Table 1. It has three equilibria, one where both players

play s1, one where both players play s2, and a mixed-strategy equilibrium in

which the players play each of their pure strategies with probability .5.

Now consider the same game played by many pairs of players, randomly

matched from an uncountably infinite population. Such a game has one equi-

librium where all players play s1, one where all players play s2, and one in which

half of the players play s1 and the other half play s2.

The latter equilibrium, which implements in the population game version

the mixed-strategy equilibrium of the original game, has nothing that corre-

sponds to it in a game played by a finite population. To see this, suppose the

number of players is n ≥ 2, with n even. Suppose half of the players play s1, the

other half s2. Then an s1-player will be matched with another s1-player with

probability (n − 2)/2(n − 1), and with an s2-player with probability n/2(n − 1),

which implies that his expected payoff is

n −2

2(n −1)
·1+

n

2(n −1)
·0.

If instead he played s2, his expected payoff would be

n −2

2(n −1)
·0+

n

2(n −1)
·1,

which is strictly greater. A similar disincentive holds for any s2-player. Hence

for no finite n is there an equilibrium in which half of the players play s1 and the

other half play s2. That there is such an equilibrium in the infinite-population

case is an artifact of that special setting.

In the Battle-of-the-Sexes game of Table 2, on the other hand, there is a

unique symmetric equilibrium in which each player plays s1 with probability

2/3. This equilibrium does have “mass-action” equivalents. Suppose 2/3 of the

n players in the population game play s1, the rest s2. Each s1-player is then

playing a best reply, since his expected payoff is

2n −3

3(n −1)
·0+

n

3(n −1)
·2,
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Player 2

s1 s2

Player 1 s1 0, 0 2, 1

s2 1, 2 0, 0

Table 2: The Battle of the Sexes.

which is strictly greater than

2n −3

3(n −1)
·1+

n

3(n −1)
·0,

his expected payoff if instead he played s2. Similarly, s2-players are also playing

best replies.

It also so happens that the equilibrium mixed strategy of the second ex-

ample is an evolutionarily stable strategy in the sense of Maynard Smith [3],

whereas that of the first example is not. Maynard Smith’s idea was that in or-

der to survive evolutionary selection, a strategy when employed by all players

of a large population who are randomly matched in pairs to play symmetric 2-

player games should be stable against a small invasion of players doing some-

thing different. As we have seen, in finite populations the fact that no single

player can face the population distribution, or average strategy, without distor-

tion, in effect introduces small “mutations” around the equilibrium. We now

go on to study this relationship in more detail.

3 Non-Artifactuality

Let G be a symmetric, 2-player, finite, normal form game with common pure

strategy set S. Let Σ be the set of mixed strategies of G , where, if σ ∈ Σ, σ(s )

is the probability assigned by σ to the pure strategy s . The payoff function

u :S×S→ R is extended in the standard fashion to mixed strategies. Symmetry

means that if one player is playing s and the other s ′, then the s -player’s payoff

is u (s , s ′) and the other’s is u (s ′, s ).
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We now want to capture the idea from the previous section of equilibria

of G that have something corresponding to them in a finite population game

with random matching. The following definition seems to do this, while at the

same time abstracting from problems that have to do with the fact that in finite

populations, an average strategy can only involve probabilities that are rational

numbers.

Definition 1 A symmetric strategy profile (σ,σ) of G is non-artifactual if there

is δ > 0 such that for all ε ∈ (0,δ), all s ∈ S such that σ(s ) > 0, and all s ′ ∈ S, it

holds that

(σ(s )− ε)u (s , s )+
∑

s ′′ 6=s

σ(s ′′)u (s , s ′′)≥ (σ(s )− ε)u (s ′, s )+
∑

s ′′ 6=s

σ(s ′′)u (s ′, s ′′).

Observation 1 If (σ,σ) is non-artifactual, then (σ,σ) is an equilibrium.

Proof. Suppose (σ,σ) is not an equilibrium. Then there must be some pure

strategy s in the support of σ that is not a best reply to σ. That is, there exist

s ∈ S with σ(s )> 0 and s ′ ∈ S such that u (s ,σ)< u (s ′,σ). The inequality in the

definition of non-artifactuality is equivalent to

u (s ,σ)−u (s ′,σ)≥ ε
�

u (s , s )−u (s ′, s )
�

.

Since the left-hand side is strictly negative, this inequality is violated for all ε > 0

sufficiently small. �
We shall therefore in the following refer to non-artifactual strategy profiles

and non-artifactual equilibria interchangeably.

The following lemma provides a convenient alternative characterization of

non-artifactuality.

Lemma 1 Let (σ,σ) be an equilibrium of G . Then (σ,σ) is non-artifactual if

and only if u (s ′, s ) ≥ u (s , s ) for all s ′ ∈ S with u (s ′,σ) = u (σ,σ) and all s ∈ S

withσ(s )> 0.
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Proof. The idea here is that if u (s ′,σ) = u (σ,σ), then s ′ and s are both best

replies toσ. If also u (s , s )> u (s ′, s ), then s ′must be doing better than s against

the other strategies s ′′ 6= s in the support of σ. Then it is profitable for an s -

player to deviate to s ′ since he faces more of the other strategies and less of s .

Conversely, if ε is small enough, then it is only profitable to deviate to a strategy

s ′ that is a best reply toσ and such that u (s ′, s )< u (s , s ).

To see this formally, suppose that u (s ′, s )≥ u (s , s ) for all s ′ ∈S with u (s ′,σ) =

u (σ,σ) and all s ∈ S with σ(s ) > 0. Let µ > 0 be such that µ ≥ u (s , s )−u (s ′, s )

for all s ′, s ∈S. Let δ> 0 be such that

u (σ,σ)−u (s ′,σ)>δµ (1)

for all s ′ ∈ S with u (s ′,σ) < u (σ,σ). As shown below, this δ has the desired

property.

Let s ∈ S be such that σ(s ) > 0 and let s ′ ∈ S be arbitrary. We have to show

that, for all ε ∈ (0,δ),

(σ(s )− ε)u (s , s )+
∑

s ′′ 6=s ′

σ(s ′′)u (s , s ′′)≥ (σ(s )− ε)u (s ′, s )+
∑

s ′′ 6=s

σ(s ′′)u (s ′, s ′′). (2)

After rearranging, (2) may be written

∑

s ′′∈S

σ(s ′′)u (s , s ′′)−
∑

s ′′∈S

σ(s ′′)u (s ′, s ′′)≥ ε
�

u (s , s )−u (s ′, s )
�

,

from which follows that

u (s ,σ)−u (s ′,σ)≥ ε
�

u (s , s )−u (s ′, s )
�

,

or, equivalently,

u (σ,σ)−u (s ′,σ)≥ ε
�

u (s , s )−u (s ′, s )
�

.

The last equivalence uses that u (s ,σ) = u (σ,σ) since (σ,σ) is an equilibrium

andσ(s )> 0. We thus have to show that, for all ε ∈ (0,δ), it holds that

u (σ,σ)−u (s ′,σ)≥ ε
�

u (s , s )−u (s ′, s )
�

. (3)
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Since (σ,σ) is an equilibrium there are two possibilities. Either we have u (s ′,σ) =

u (σ,σ), or u (s ′,σ) < u (σ,σ). If we have u (s ′,σ) < u (σ,σ), then (1) holds and

this implies that (3) holds for all ε ∈ (0,δ). If we have u (s ′,σ) = u (σ,σ), then,

by assumption, u (s ′, s ) ≥ u (s , s ), and (3) holds trivially since the left hand side

is 0 and the right hand side is non-positive. This completes the “if” part of the

proof.

To prove the converse implication, suppose that there exists s ′, s ∈ S, such

that u (s ′,σ) = u (σ,σ), σ(s ) > 0, and u (s ′, s ) < u (s , s ). For these s ′, s , the in-

equality (3) does not hold for any ε > 0 since the left hand side is 0 and the right

hand side is positive, so (σ,σ) is not non-artifactual. �

Corollary 1 Supposeσ is a completely mixed strategy such that (σ,σ) is an equi-

librium of G . Then (σ,σ) is non-artifactual if and only if each s ∈ S is a worst

reply to itself.

Proof. The strategy profile (σ,σ) is such thatσ(s )> 0 for all s ∈S and u (s ′,σ) =

u (σ,σ) for all s ′ ∈ S. Hence Lemma 1 implies that (σ,σ) is non-artifactual if

and only if u (s ′, s )≥ u (s , s ) for all s , s ′ ∈S. �

Corollary 2 Supposeσ is a completely mixed strategy such that (σ,σ) is an equi-

librium of the 2× 2 game G . Then (σ,σ) is non-artifactual if and only if s1 is a

best reply to s2 and s2 is a best reply to s1.

Proof. This follows from Corollary 1. �

Proposition 1 If G is a 2×2 game, then it has a non-artifactual equilibrium.

Proof. If s1 is a best reply to s1, then (s1, s1) is a non-artifactual equilibrium. If

s2 is a best reply to s2, then (s2, s2) is a non-artifactual equilibrium. Suppose

that s1 is not a best reply to s1 and that s2 is not a best reply to s2. Then, since

a symmetric equilibrium must exist, there is a competely mixed strategyσ that

is a best reply to itself. Since s2 is a best reply to s1 and s1 is a best reply to s2

Corollary 2 implies that (σ,σ) is non-artifactual. �
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Player 2

s1 s2

Player 1 s1 1, 1 1, 1

s2 1, 1 1, 1

Table 3: No ESS.

4 Evolutionary Stability

We next relate non-artifactuality to evolutionary stability. Maynard Smith (e.g.,

Maynard Smith [3]) defined an evolutionarily stable strategy as follows.

Definition 2 A strategyσ of G is an evolutionarily stable strategy (ESS) if for all

σ′ ∈Σ,σ′ 6=σ, there is δ> 0 such that for all ε ∈ (0,δ) it holds that

(1− ε)u (σ,σ)+ εu (σ,σ′)> (1− ε)u (σ′,σ)+ εu (σ′,σ′).

The ESS notion involves the idea that a strategy is stable if when it is played

by the entire population, any small group of invading mutants playing some

other strategy would do strictly worse in the perturbed population. Although

Maynard Smith originally did not propose any explicit dynamics to support

ESS, it has been shown to correspond to asymptotically stable states of the

replicator dynamics, a model of asexual reproduction (Taylor and Jonker [6]).

Not every game has an ESS, however. In the 2×2 game of Table 3 every sym-

metric pair of strategies is non-artifactual, but the game has no ESS. Maynard

Smith also proposed the following weakening of the ESS criterion, which only

requires that a strategy should do at least as well as that played by any small

invading group of mutants.

Definition 3 A strategyσ of G is a neutrally stable strategy (NSS) if for allσ′ ∈Σ
there is δ> 0 such that for all ε ∈ (0,δ) it holds that

(1− ε)u (σ,σ)+ εu (σ,σ′)≥ (1− ε)u (σ′,σ)+ εu (σ′,σ′).
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Player 2

s1 s2

Player 1 s1 1, 1 1, 1

s2 1, 1 2, 2

Table 4: A counterexample.

Proposition 2 Suppose σ is an NSS of the 2× 2 game G . Then (σ,σ) is non-

artifactual.

Proof. If σ(s1) = 1 or σ(s2) = 1, then the implication holds trivially since all

symmetric pure strategy equilibria are non-artifactual. Assume by way of con-

tradiction that there exists a completely mixed strategyσ such thatσ is an NSS

but (σ,σ) is not non-artifactual. By Corollary 2, we then either have that s1 is

not a best reply to s2 or that s2 is not a best reply to s1. Assume, without loss of

generality since the strategies can be relabelled, that s1 is not a best reply to s2,

i.e., that we have that

u (s1, s2)< u (s2, s2). (4)

Since (σ,σ) is a completely mixed equilibrium, all strategiesσ′ are best replies

toσ. Sinceσ is an NSS, it follows that

u (σ′,σ′)≤ u (σ,σ′)

for allσ′. In particular, it holds forσ′ = s2 that

u (s2, s2)≤ u (σ, s2) =σ(s1)u (s1, s2)+σ(s2)u (s2, s2). (5)

Using (4) in (5) yields

u (s2, s2)<σ(s1)u (s2, s2)+σ(s2)u (s2, s2) = u (s2, s2).

Since the inequality u (s2, s2)< u (s2, s2) cannot hold, we conclude that no such

σ can exist. �
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It is not the case that every non-artifactual equilibrium of a 2× 2 game in-

volves a neutrally stable strategy. In the game of Table 4, (s1, s1) is non-artifactual,

but s1 is not an NSS since it can be invaded by s2.

As the following result shows, however, if we consider only completely mixed

strategies the notions of non-artifactuality and neutral stability coincide in 2×2

games.

Proposition 3 Supposeσ is a completely mixed strategy such that (σ,σ) is non-

artifactual in the 2×2 game G . Thenσ is an NSS.

Proof. From Corollary 2, we have that s1 is a best reply to s2 and that s2 is a best

reply to s1. To prove the proposition it is sufficient to show that this implies that

u (σ′,σ′)≤ u (σ,σ′) (6)

for allσ′.

To see that this holds, letσ′ be an arbitrary mixed strategy, and define

x :=σ′(s1)−σ(s1) =σ(s2)−σ′(s2).

The inequality (6) can be written as

σ′(s1)u (s1,σ′)+σ′(s2)u (s2,σ′)≤σ(s1)u (s1,σ′)+σ(s2)u (s2,σ′),

or, equivalently,

x u (s1,σ′)−x u (s2,σ′)≤ 0.

Expanding the expressions u (s1,σ′) and u (s2,σ′) yields

xσ′(s1)u (s1, s1)+xσ′(s2)u (s1, s2)−xσ′(s1)u (s2, s1)−xσ′(s2)u (s2, s2)≤ 0.

After replacingσ′(s1)with x+σ(s1) andσ′(s2)withσ(s2)−x , the inequality may

be written

x (x +σ(s1)) (u (s1, s1)−u (s2, s1))+x (σ(s2)−x ) (u (s1, s2)−u (s2, s2))≤ 0.
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Player 2

s1 s2 s3

Player 1 s1 1, 1 2, 0 0, 2

s2 0, 2 1, 1 2, 0

s3 2, 0 0, 2 1, 1

Table 5: A 3×3 counterexample.

Collecting the x 2 and x terms and writing this as a polynomial in x yields

x 2 (u (s1, s1)−u (s2, s1)+u (s2, s2)−u (s1, s2))

+x (σ(s1) (u (s1, s1)−u (s2, s1))+σ(s2) (u (s1, s2)−u (s2, s2)))≤ 0.

The coefficient of the x term is

σ(s1)u (s1, s1)+σ(s2)u (s1, s2)−σ(s1)u (s2, s1)−σ(s2)u (s2, s2)

which is equal to u (s1,σ)− u (s2,σ). Since both s1 and s2 are best replies to

σ, this number is 0 and the x term disappears. We can conclude that to com-

plete the proof it is sufficient to show that the coefficient of the x 2 term is non-

positive. That is, it is sufficient to show that

u (s1, s1)−u (s2, s1)+u (s2, s2)−u (s1, s2)≤ 0.

This inequality does indeed hold, since s2 is a best reply to s1 and s1 is a best

reply to s2. �
As we go beyond the family of 2 × 2 games, it is no longer the case that

neutral stability of a completely mixed strategy implies non-artifactuality. The

Rock-Scissors-Paper game of Table 5 has a unique NSS such that each of the

three pure strategies are played with equal probability, but a pair of such strate-

gies is not a non-artifactual equilibrium. For instance, in the finite population

game an s1-player meets another s1-player with probability less than 1/3, but

each of s2 and s3 with probability greater than 1/3, so s2 is a better reply.
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Player 2

s1 s2 s3

Player 1 s1 0, 0 6, 6 0, 2

s2 6, 6 0, 0 0, 2

s3 2, 0 2, 0 2, 2

Table 6: Another 3×3 counterexample.

Nor is it the case that completely mixed non-artifactual equilibria necessar-

ily involve neutrally stable strategies in the 3×3 case. Consider the game of Ta-

ble 6. All equilibria of this game are non-artifactual since each pure strategy is

a worst reply to itself. In particular, the equilibrium (σ,σ) with σ(s1) =σ(s2) =

σ(s3) = 1/3 is non-artifactual. Let σ′ be the strategy with σ′(s1) = σ′(s2) = 1/2.

Then u (σ′,σ′) = (6/4)+ (6/4) = 3. We also have that

u (σ,σ′) =
1

3
u (s1,σ′)+

1

3
u (s2,σ′)+

1

3
u (s3,σ′) =

1

3
·3+

1

3
·3+

1

3
·2< 3.

That is, we have u (σ,σ′) < u (σ′,σ′). Since we also have u (σ′,σ) = u (σ,σ), σ

cannot be an NSS.
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