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Abstract

The current literature on optimal forest rotation makes the assumption of
constant interest rate. However, the irreversible harvesting decisions of
forest stands are typically subject to relatively long time horizons over which
interest rates do fluctuate considerably. In this paper we apply the
Wicksellian single rotation framework to extend the existing studies to cover
the unexplored case of variable interest rate. Given the technical generality
of the considered valuation problem, we provide a thorough mathematical
characterization of the optimal timing problem and develop new results. We
show that even in the deterministic case if the current interest rate deviates
from its long-run steady state, interest rate variability changes the rotation
age significantly when compared with the constant discounting case. Further,
and importantly, allowing for interest rate uncertainty is shown to increase
the optimal rotation period when the value of the optimal policy is a convex
function of the current interest rate. In line with this finding, we also establish
that increased interest rate volatility has a positive impact on the optimal
rotation period.
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1 Introduction

In forest economics the well-known model by Faustmann 1849 has been the most often
used starting point in studies considering the optimal rotation period of forest stands.
Under the assumption of constant timber prices, constant total cost of clear-cutting
and replanting as well as constant interest rate, perfect capital markets and perfect
foresight the model leads to a constant rotation period for an even aged stand, which
maximizes the present value of forest stand over an infinite time horizon (see e.g. Clark
1976, Johannsson and Löfgren 1985 and Samuelson 1976). The representative rotation
age depends on timber price, total cost of clear-cutting and replanting, nature of forest
growth as well as the interest rate.

The basic assumptions and predictions of the Faustmann model do not seem to lie in
conformity with empirical evidence (see e.g. Kuuluvainen and Tahvonen 1999). This has
led to ongoing research, which has extended the basic Faustmann model under perfect
foresight to allow for amenity valuation of timber (see e.g. Hartman 1976), the potential
interdependence of forest stands as producers of amenity services (see e.g. Swallow and
Wear 1993 and Koskela and Ollikainen, 2000, 2001) as well as imperfect capital markets
(see e.g. Tahvonen and Salo and Kuuluvainen 2001). The resulting rotation age has
been shown to depend on the properties of amenity valuation function, the nature of
stand interdependencies and potential borrowing constraints in the capital markets. In
particular, in the latter case all the basic properties of optimal forest harvesting become
different than the ones in the classical Faustmann model.

Finally, the perfect foresight assumption has been relaxed in studies focusing on the
implications of stochastic timber prices (see e.g. Brazee and Mendelsohn 1988, Thomson
1992 and Plantinga 1998), risk of forest fire (see e.g. Reed 1984) and/or stochastic forest
growth on optimal rotation age (see e.g. Reed 1993, Miller and Voltaire 1983, Morck
and Schwartz and Stangeland 1989, Clarke and Reed 1989, 1990, Willassen 1998 and
Alvarez 2001 b). The effect of uncertainties on the optimal rotation period depends on
the type of uncertainty. In the case of forest fire risk modelled as a Poisson process
the rotation age will become shorter due to the higher effective discount rate (see Reed
1984) while in the presence of timber price and/or forest growth risk usually the reverse
happens; higher risk in price or in age-dependent growth will tend to lengthen the
rotation period by lowering the effective discount rate (see e.g. Clarke and Reed 1989,
Willassen 1998 and Alvarez 2001 b).

This rotation literature has covered several interesting cases and provided useful
insights. There is, however, a very important issue, which has not yet been analyzed.
To our knowledge in all the research associated with optimal rotation periods of forest
stands the assumption of constant interest rate has been sticked to. As we know from
empirical research, interest rates fluctuate a lot over time and the implications of this
empirical finding for the term structure of interest rates, asset pricing etc. have been
one of the major research areas in financial economics (for an up-to-date theoretical
and empirical survey in the field Cochrane 2001; see also Björk 1998 for an extensive
treatment of interest rate modelling). If the investment projects would be very liquid
ones, then interest rate fluctuations would not necessarily matter very much. In the
case of forestry, however, the situation is different. Given the relatively slow growth
rate of forests, investing in replanting is a long-term investment project, over which the
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expected behavior of the interest rate as the opportunity cost will matter a lot. Similarly,
since many real investments are productive over a considerably long time period, we
are tempted to argue that the variability of interest rates should play a key role in the
rational valuation and exercise policies of real irreversible investment opportunities as
well. In an accompanying paper we study this issue (Alvarez and Koskela 2001). In
this paper we study the unexplored issue of what is the impact of variable interest rate
on optimal forest rotation and compare the results with those obtained by using the
standard, though somewhat unrealistic, assumption of constant interest rate. Ingersoll
and Ross 1992 have analyzed the effect of interest rate uncertainty on the timing of
investment but under the assumption of zero-expected change in the interest rate. They
show that the higher is the interest rate uncertainty, the longer the economy is willing to
wait to invest before investing in a given project and, ceteris paribus, the less investment
there will be.

We proceed as follows: In section 2 we present a framework to study the Wicksellian
single rotation problem in the thus far unexplored situation of interest rate variability.
Since the problem is more general than the constant discounting case, we first provide
a thorough mathematical characterization of the optimal rotation policy and its value.
More precisely, we state a set of sufficient conditions under which the considered optimal
rotation problem admits a unique solution and under which the value of the optimal
policy can be obtained from an associated boundary value problem expressed as a first
order linear partial differential equation subject to the standard value matching and
smooth fit (or smooth pasting) conditions. From an economic point of view we show
that interest rate variability will change the rotation age compared with the constant
discounting case in a way, which depends on the relationship between the current and
the long run steady state interest rate. Section 3 provides an extension of the basic
model, where the flow of returns consists not only of the revenues accrued from har-
vesting, but also of the flow of returns accrued from leaving the harvesting opportunity
unexercised (recreational value of a forest a la’ Hartman 1976). In section 4 we illus-
trate our qualitative findings by using numerical computations with logistic functions
in the situations where the current interest rate is below or above the long-run steady
state interest rate. Having considered the deterministic case, we generalize our analysis
in section 5 to study the impact of interest rate uncertainty on optimal forest rota-
tion and establish among others that allowing for interest rate uncertainty will increase
the optimal rotation period under the natural condition when the value of the optimal
policy is convex in terms of the current interest rate in the absence of uncertainty. Fi-
nally, we also establish that under a set of very general assumptions increased interest
rate volatility will increase the value of the optimal policy and move the exercise date
further, i.e. prolongs the rotation period. Section 6 provides some concluding remarks.

2 The Wicksellian Rotation Problem with Vari-

able Interest Rate

In this section we formulate the Wicksellian rotation problem in more general terms
than usually by allowing interest rate variability. We proceed as follows. First we
provide a set of sufficient conditions under which the optimal rotation problem admits
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a unique solution and under which the value of optimal policy can be obtained from an
associated boundary value problem expressed as a first order linear partial differential
equation subject to the standard value matching and smooth fit (or smooth pasting)
conditions. Then we study the relationship between the rotation periods under variable
and constant discounting and finally we provide conditions under which the value of the
optimal rotation policy is a decreasing and convex function of the current interest rate.

The underlying dynamics for the forest value Xt and interest rate rt are described
as

X ′
t = µ(Xt), X0 = x (2.1)

and

r′t = α(rt), r0 = r (2.2)

where the mappings µ : R+ 7→ R and α : R+ 7→ R are assumed to be continuously
differentiable with Lipschitz-continuous derivative on R+. In order to capture the eco-
nomically sensible models of the optimal rotation problem, we assume that there is a
r̂ > 0 such that α(r) T 0, when r S r̂, that limr↓0 α(r) = 0, that limx↓0 µ(x) = 0 and

that there is a x̂ > 0 such that µ(x) T 0, when x S x̂. In other words, we assume that
the origin is an unstable equilibrium point for the two dimensional process (Xt, rt) and
that (Xt, rt) tends towards the asymptotically stable long run steady state (x̂, r̂) for
any possible interior initial state (x, r) ∈ R2

+. It is worth pointing out that although
the interest rate dynamics are now defined on R+ our subsequent results are valid for
interest rate processes defined on the entire R as well (for example, flexible accelerator
dynamics). However, from an economical point of view only the non-negative inter-
est rates are of interest and, therefore, we shall concentrate solely on that case. It is
also worth observing that our analysis includes the purely compensatory case (i.e. dy-
namics subject to a decreasing percentage growth rate) appearing frequently in models
considering the rational management of renewable resources. As usually, we denote as

A = µ(x)
∂

∂x
+ α(r)

∂

∂r
(2.3)

the differential operator associated with the intertemporally time-homogeneous process
(Xt, rt).

Given the underlying dynamics, we plan to consider in this study the Wicksellian
single rotation problem

V (x, r) = sup
t≥0

[

e−
∫ t

0 rsdsg(Xt)
]

, (2.4)

where g : R+ 7→ R is a twice continuously differentiable, non-decreasing, and concave
mapping (i.e. g ∈ C2(R+), g′(x) ≥ 0, and g′′(x) ≤ 0 for all x ∈ R+) denoting the
payoff accrued from exercising the irreversible harvesting opportunity and satisfying the
boundary condition g(x̂) > 0 (implying that g(x) ≥ g(x̂) > 0 for all x > x̂). It is
now a simple exercise in ordinary analysis to demonstrate that given our smoothness
assumptions, the optimal rotation problem (2.4) can be restated as (see, for example,
Øksendal 1998, p. 199 and Protter 1990, p. 71)

V (x, r) = g(x) + sup
t≥0

∫ t

0
e−

∫ s

0 rydy
[

g′(Xs)µ(Xs)− rsg(Xs)
]

ds, (2.5)
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where the integral term

F (x, r) = sup
t≥0

∫ t

0
e−

∫ s

0 rydy
[

g′(Xs)µ(Xs)− rsg(Xs)
]

ds

constitutes the early exercise premium accrued from undertaking optimally the irre-
versible policy prior expiration. Before proceeding in our analysis, we now present the
following auxiliary verification lemma which can be applied for solving either the op-
timal stopping problem (2.4) or its equivalence (2.5) (cf. Øksendal 1998, pp. 214–217
and Øksendal and Reikvam 1998).

Lemma 2.1. Assume that there is a continuously differentiable mapping J : R2
+ 7→ R+

(i.e. J ∈ C1(R2
+)) satisfying the variational inequalities

min{J(x, r)− g(x), rJ(x, r)− (AJ)(x, r)} = 0

for all (x, r) ∈ R2
+. Then, J(x, r) ≥ V (x, r) for all (x, r) ∈ R2

+. Moreover, if there is
a continuously differentiable mapping W : R2

+ 7→ R+ (i.e. W ∈ C1(R2
+)) satisfying for

all (x, r) ∈ R2
+ the variational inequalities

min{W (x, r), rW (x, r)− (AW )(x, r)− (g′(x)µ(x)− rg(x))} = 0,

then W (x, r) ≥ F (x, r) and, therefore, W (x, r) + g(x) ≥ V (x, r) for all (x, r) ∈ R2
+.

Proof. See Appendix A.

Lemma 2.1 states a set of sufficient conditions (in terms of variational inequalities)
which can be applied for deriving a majorant for the value of the optimal rotation
problem (2.4). Lemma 2.1 also establishes a set of sufficient conditions which can be
applied for deriving the explicit form of the early exercise premium F (x, r). As usually
in optimal stopping theory, we denote the continuation region (i.e. the waiting or
do-nothing region) where exercising the harvesting opportunity is suboptimal as C =
{(x, r) ∈ R2

+ : V (x, r) > g(x)} and the stopping region (i.e. the immediate exercise
region, cutting region) as Γ = {(x, r) ∈ R2

+ : V (x, r) = g(x)}. It is clear that the set
g−1(R−) = {x ∈ R+ : g(x) < 0} is a subset of the continuation region C since the
decision maker can always attain at least a non-negative payoff by waiting up to the
first moment when Xt arrives to the set where the payoff g(x) is positive. Assume
now that (x, r) ∈ C̄ = {(x, r) ∈ R2

+ : g′(x)µ(x) > rg(x)} and define the stopping date
τ = inf{t ≥ 0 : (Xt, rt) 6∈ C̄}. Then,

V (x, r) ≥ e−
∫ τ

0 rsdsg(Xτ ) = g(x) +

∫ τ

0
e−

∫ s

0 rydy
[

g′(Xs)µ(Xs)− rsg(Xs)
]

ds > g(x)

implying that C̄ ⊆ C. It is clear from (2.5) that if there is a finite date t∗ ∈ R+

at which the opportunity is exercised, then we necessarily have that g ′(Xt∗)µ(Xt∗) =
rt∗g(Xt∗). On the other hand, t∗ can be a maximum only if also the second order local
sufficiency condition µ(Xt∗)[g

′′(Xt∗)µ(Xt∗) + g′(Xt∗)(µ
′(Xt∗) − rt∗)] < α(rt∗)g(Xt∗) is

met. Consequently, we define the boundary curve of the continuation region (implicitly)

4



as {(x, r) ∈ R2
+ : g′(x)µ(x) = rg(x)}. Implicit differentiation then yields that along the

boundary we have
dx

dr
=

g′′(x)µ(x)− g′(x)(r − µ′(x))

g(x)

provided that g(x) > 0. Therefore, if the payoff g(x) is non-decreasing and concave and
r > µ′(x), then the boundary at which rotation is optimal is a decreasing mapping of
the current rate of interest. Our main result characterizing the optimal rotation policy
and its value for a broad class of problems is now summarized in the following.

Theorem 2.2. Assume that D = (x̂,∞) × (r̂,∞) = {(x, r) ∈ R2
+ : µ(x) < 0, α(r) <

0} ⊂ {(x, r) ∈ R2
+ : g′(x)µ(x) < rg(x)} and that µ(x)[g′′(x)µ(x) − g′(x)(r − µ′(x))] −

α(r)g(x) < 0 for all (x, r) ∈ R2
+\D. Then, the optimal rotation date t∗ = inf{t ≥ 0 :

(Xt, rt) 6∈ C} <∞ is for any (x, r) ∈ C the root of the equation

g′(Xt∗)µ(Xt∗) = rt∗g(Xt∗).

Moreover, the value satisfies the boundary value problem

µ(x)
∂V

∂x
(x, r) + α(r)

∂V

∂r
(x, r)− rV (x, r) = 0, (x, r) ∈ C

V (x, r) = g(x),
∂V

∂x
(x, r) = g′(x),

∂V

∂r
(x, r) = 0, (x, r) ∈ ∂C.

(2.6)

Proof. See Appendix B.

Theorem 2.2 provides a set of sufficient conditions under which the optimal rotation
problem admits a unique solution and under which the value of optimal policy can be
determined from an associated boundary value problem. Figure 1 describes the phase

4 5 6 7 8 9 10
x

0.025

0.05

0.075

0.1

0.125

0.15

0.175

r

Figure 1: The Phase Diagram of the Controlled System

diagram of the controlled system under the assumptions of our Theorem 2.2. As was
required in Theorem 2.2 the equilibrium state (x̂, r̂) of the controlled system has to
be in the set where present value of the forest is decreasing over time, that is, above

5



the boundary of the continuation region C. If that condition is met, then the two-
dimensional system (Xt, rt) will tend towards the stopping region from any initial state
in the do-nothing region C and hit its boundary in finite time.

Given that important characterization we are next interested in the relationship
between the exercise dates (i.e. the rotation periods) with variable and constant dis-
counting under the plausible assumption that there exists the long-run steady state
interest rate. In the deterministic case the answer is summarized in the following

Theorem 2.3. Assume that the conditions of Theorem 2.2 are met. Then, the rotation
period in the presence of variable discounting is shorter (longer) than the rotation period
in the presence of constant discounting if r < r̂ (r > r̂).

Proof. It is clear that in the absence of interest rate variability (i.e. when r′t = 0 for
all t ≥ 0 and r0 = r) the optimal rotation period t̃ satisfies the optimality condition
g′(Xt̃)µ(Xt̃) = rg(Xt̃). Consequently, we find that

f(t̃) = g′(Xt̃)µ(Xt̃)− rt̃g(Xt̃) = (r − rt̃)g(Xt̃) T 0 r T r̂,

since
rt T r ∀t ≥ 0 whenever r S r̂.

Therefore, we find that t̃ T t∗ whenever r S r̂.

According to Theorem 2.3 the rotation period with variable discounting falls short of
the one with constant discounting when the current interest rate is known with certainty
to increase over time. This is natural because in that case the opportunity costs of not
harvesting increases over time. Naturally, the reverse happens in the case of falling
interest rate when the opportunity cost of not harvesting goes down.

Later on in section 5 we analyze the determination of optimal rotation period in the
presence of interest rate uncertainty and volatility. In this context the properties of the
value of the optimal rotation policy in terms of the current interest rate turns out to be
crucial. The next theorem provides a useful characterization from this point of view.

Theorem 2.4. If α(r) is concave then the value V (x, r) of the optimal rotation policy
is decreasing and convex as a function of the current interest rate r.

Proof. As was shown in the proof of Theorem 2.2 (cf. Alvarez 2001)

∂rt
∂r

= e
∫ t

0 α′(rs(r))ds > 0,

proving the intuitively clear result that the interest rate process is an increasing function
of the current state r. Moreover, if r > ρ then α′(rs(r)) < α′(rs(ρ)) for all s ∈ R+

due to the monotonicity and uniqueness of the path rs(r) and the concavity of α(r).
Therefore, we find that rt(r) is concave as a function of the current interest rate r.

This, in turn, implies that the discount factor e−
∫ t

0 rs(r)ds is a decreasing and convex
function of the current interest rate r. Moreover, since the opportunity is exercised only
when g(x) > 0, we may assume without loss of generality that g(x) ≥ 0 and, therefore,

that e−
∫ t

0 rs(r)dsg(Xt) ≥ 0 (cf. Alvarez 2001 a, c). Therefore, since the maximum of
a decreasing and convex mapping is convex and decreasing, we immediately find that
V (x, r) is convex and decreasing as a function of the current interest rate r, thus proving
the alleged claim.
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3 Amenity Valuation and Forest Rotation

In the model considered in the previous section the forest owner was assumed to accrue
revenue only when the irreversible harvesting opportunity was exercised. But it has
been argued (see e.g. Hartman 1976) that forests provide not only harvest revenues,
but also various types of amenity services under the circumstances when the harvesting
opportunity is left unexercised. The purpose of this section is threefold: first, we state
the auxiliary verification lemma, which can be applied for solving the corresponding
optimal stopping problem with amenity valuation. Second, we present a set of sufficient
conditions for the existence and uniqueness of the optimal policy and finally, we compare
the optimal rotation periods with variable and constant discounting.

We consider now the following optimal rotation problem with amenity valuation

V (x, r) = sup
t≥0

[
∫ t

0
e−

∫ s

0 rydyπ(Xs)ds+ e−
∫ t

0 rsdsg(Xt)

]

, (3.1)

where the mapping π : R+ 7→ R measuring the flow of returns accrued from leaving
the harvesting opportunity unexercised is assumed to be non-increasing, continuously
differentiable and to satisfy the condition π(x̂) < 0. It is clear in light of the analysis
of the previous section that the optimal rotation problem (3.1) can be rewritten as

V (x, r) = g(x) + sup
t≥0

∫ t

0
e−

∫ s

0 rydy[π(Xs) + g′(Xs)µ(Xs)− rsg(Xs)]ds, (3.2)

where the integral term

F̃ (x, r) = sup
t≥0

∫ t

0
e−

∫ s

0 rydy[π(Xs) + g′(Xs)µ(Xs)− rsg(Xs)]ds

constitutes the early exercise premium accrued from undertaking optimally the irre-
versible policy prior expiration. In line with the results of our Lemma 2.1, we now can
prove the following verification lemma (cf. Øksendal 1998, pp. 214–217 and Øksendal
and Reikvam 1998).

Lemma 3.1. Assume that there is a continuously differentiable mapping Ĵ : R2
+ 7→ R+

(i.e. Ĵ ∈ C1(R2
+)) satisfying the variational inequalities

min{Ĵ(x, r)− g(x), rĴ(x, r)− (AĴ)(x, r)− π(x)} = 0

for all (x, r) ∈ R2
+. Then, Ĵ(x, r) ≥ V (x, r) for all (x, r) ∈ R2

+. Moreover, if there is

a continuously differentiable mapping Ŵ : R2
+ 7→ R+ (i.e. Ŵ ∈ C1(R2

+)) satisfying for
all (x, r) ∈ R2

+ the variational inequalities

min{Ŵ (x, r), rŴ (x, r)− (AŴ )(x, r)− (π(x) + g′(x)µ(x)− rg(x))} = 0,

then Ŵ (x, r) ≥ F (x, r) and, therefore, Ŵ (x, r) + g(x) ≥ V (x, r) for all (x, r) ∈ R2
+.

Proof. The proof is analogous with the proof of Lemma 2.1.
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In line with our results in the previous section, we are now in a position to state a set
of sufficient conditions under which the value of optimal policy can be determined from
an associated boundary value problem and under which the optimal problem admits
a unique solution in the presence of amenity valuation. More precisely, we can now
establish the following.

Theorem 3.2. Assume that D = (x̂,∞) × (r̂,∞) = {(x, r) ∈ R2
+ : µ(x) < 0, α(r) <

0} ⊂ {(x, r) ∈ R2
+ : π(x) + g′(x)µ(x) < rg(x)} and that µ(x)[π′(x) + g′′(x)µ(x) −

g′(x)(r − µ′(x))] − α(r)g(x) < 0 for all (x, r) ∈ R2
+\D. Then, for any (x, r) ∈ C the

optimal rotation date t∗ = inf{t ≥ 0 : (Xt, rt) 6∈ C} <∞ is the root of the equation

g′(Xt∗)µ(Xt∗) + π(Xt∗) = rt∗g(Xt∗).

Moreover, the value of the policy satisfies the boundary value problem

µ(x)
∂V

∂x
(x, r) + α(r)

∂V

∂r
(x, r)− rV (x, r) + π(x) = 0 (x, r) ∈ C

V (x, r) = g(x),
∂V

∂x
(x, r) = g′(x),

∂V

∂r
(x, r) = 0, (x, r) ∈ ∂C.

Proof. The proof is analogous with the proof of Theorem 2.2.

Theorem 3.2 extends the results of Theorem 2.2 to the Wicksellian single rotation
problem in the presence of amenity valuation. The optimal rotation period is longer
with than without amenity valuation Again, we observe that essentially sufficiency is
guaranteed provided that the steady states of the forest value and the interest rate
process belongs to the set where the present value of the payoff of the rotation strategy
is negative and a growth rate condition is met. As intuitively is clear, we are now in
position to extend the conclusions of our Theorem 2.3 also to the present case as is
demonstrated in the following.

Theorem 3.3. Assume that the conditions of Theorem 3.2 are met. Then, the rotation
period in the presence of variable discounting is shorter (longer) than the rotation period
in the presence of constant discounting if r < r̂ (r > r̂).

Proof. The proof is analogous with the proof of Theorem 2.3.

The economic interpretation of Theorem 3.3. is obvious and similar to the one for
Theorem 2.3. Allowing for variable discounting will shorten the rotation period when
the current interest rate is known to increase over time. This is because the opportunity
cost of not harvesting will become higher and vice versa for the case of falling interest
rate when the opportunity costs of not harvesting decreases over time.

4 A Numerical Illustration in the Case of Logis-

tic Growth

In section 2 we proved Theorem 2.3, according to which the rotation period with variable
interest rate is shorter (longer) that the one in the presence with constant discounting
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when the current interest rate is smaller (higher) than its long run steady state value.
Now we illustrate this finding quantitatively by using a model based on logistic dynamics
of our two dimensional process (Xt, rt). In other words we now assume that

X ′
t = µXt(1− γXt), X0 = x (4.1)

and

r′t = αrt(1− βrt), r0 = r, (4.2)

where µ, γ, α, and β are exogenously determined non-negative constants. It is now a
simple exercise in ordinary analysis to demonstrate that

Xt =
xeµt

1 + γx(eµt − 1)
, rt =

reαt

1 + βr(eαt − 1)
,

and
e−

∫ t

0 rsds =
(

1 + βr(eαt − 1)
)−1/(αβ)

.

Consequently, if g(x) = x− c, then (2.4) reads as

V (x, r) = sup
t≥0

[

(

1 + βr(eαt − 1)
)−1/(αβ)

(

xeµt

1 + γx(eµt − 1)
− c

)]

Therefore if an optimal rotation date t∗ exists, it is implicitly given by the equation

µx(1− γx)eµt
∗

(1 + γx(eµt∗ − 1))2
=

(

xeµt
∗

1 + γx(eµt∗ − 1)
− c

)

reαt
∗

1 + βr(eαt∗ − 1)
.

The optimal exercise date t∗ is illustrated in Figure 2 under the assumptions that
g(x) = x − c, c = 5, µ = 1%, γ = 2%, α = 1%, x = 5, and β = 20 (implying that the
long run steady state can be defined as (x̂, r̂) = (50, 5%)). Figure 2 illustrates the case
when the current interest rate r is below its long-run steady state value r̂. The solid
line describes the optimal exercise date (the optimal rotation period) in the presence
of a variable interest rate while the dotted line the optimal exercise date with constant
discounting. The exercise date with variable discounting falls short of the exercise date
with constant discounting because the interest rate is known with certainty to increase
over time. One can see that the difference between the rotation periods becomes larger
with lower interest rates. This is obvious because in the presence of lower current
interest rate it will increase much more over time with variable discounting. Therefore,
the optimal exercise dates will differ more in that case.

Analogously, Figure 3 illustrates the alternative case where the current interest rate
r is above its long-rung steady sate value r̂. Again, the solid line describes the optimal
exercise date (the optimal rotation period) in the presence of variable interest rate while
the dotted line the optimal exercise date with constant discounting. Now contrary to
the findings in Figure 2, the exercise date with variable discounting exceeds the one
with constant discounting because the interest rate is known to decrease over time.
Compared with Figure 2 now the reverse happens also in the sense that the difference
between the optimal exercise dates becomes larger with higher interest rates. The reason
for that is that in the presence of higher current interest rate it will decrease much more
over time with variable discounting.
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Figure 2: The optimal exercise dates as function of the current interest rate r when r < r̂
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Figure 3: The optimal exercise dates as function of the current interest rate r when r > r̂

5 Interest Rate Uncertainty and Forest Rota-

tion

In the analyzes we have carried out thus far, the underlying dynamics for the forest value
Xt and the interest rate rt has been postulated to be deterministic. The reason for this
was that in order to present a thorough characterization of the optimal rotation problem
we first wanted to consider the impact of variable discounting on the optimal rotation
period in the simpler case without uncertainty. Of course, in light of the length of the
standard forest rotation decisions the assumption of completely deterministic dynamics
is difficult to defend, to say the least. To mention a specific example: do we know the
behavior of the interest rates over the next five decades? Certainly the right answer is:
We do not know, but we still might have a good knowledge about the stochastic process
generating the interest rate fluctuations.

Since we have focused in our paper on the potential role of variable discounting, in
this section we generalize our earlier analysis by exploring the optimal rotation problem
in the presence of interest rate uncertainty, i.e. when the interest rate process fluctuates
stochastically. More precisely, we assume that the interest rate process {rt; t ≥ 0} is
defined on a complete filtered probability space (Ω, P, {Ft}t≥0,F) satisfying the usual
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conditions and that rt is described on R+ by the (Itô-) stochastic differential equation

drt = α(rt)dt+ σ(rt)dWt, r0 = r, (5.1)

where Wt denotes standard Brownian motion and σ : R+ 7→ R+ is a sufficiently smooth
mapping for guaranteeing the existence of a solution for (5.1) (at least continuous; cf.
Borodin and Salminen 1996, pp. 46–47). In order to avoid interior singularities, we also
assume that σ(r) > 0 for all r ∈ (0,∞), that ∞ is an unattainable boundary for the
diffusion rt (non-explosive paths), and that 0 is either unattainable or exit for rt (cf.
Borodin and Salminen 1996, pp. 14–19). It is now clear that given our assumptions on
the underlying dynamics the differential operator associated with the two-dimensional
process (Xt, rt) now reads as

Â =
1

2
σ2(r)

∂2

∂r2
+ µ(x)

∂

∂x
+ α(r)

∂

∂r
.

It is worth observing that if both boundaries are unattainable and
∫ ∞

0
m′(y)dy <∞,

where m′(r) = 2
σ2(r)S′(r)

denotes the density of the speed measure m of the diffusion rt
and

S′(r) = exp

(

−

∫

2α(r)

σ2(r)
dr

)

denotes the density of the scale function of the diffusion rt, then we know that the
diffusion rt will tend in the long run towards a random variable distributed according
to the stationary distribution with density (cf. Borodin and Salminen 1996, pp. 35–36)

p(r) =
m′(r)

∫∞

0 m′(y)dy
.

Given the stochastic interest rate dynamics (5.1) we next consider in this section
the following stochastic rotation problem (an optimal stopping problem)

V̂ (x, r) = sup
τ

E(x,r)

[
∫ τ

0
e−

∫ s

0 rtdtπ(Xs)ds+ e−
∫ τ

0 rsdsg(Xτ )

]

, (5.2)

where τ is an arbitrary Ft-stopping time. As in the deterministic case, we can again
restate (5.2) by decomposing the value of the optimal rotation policy into the immediate
exercise payoff and the early exercise premium as is indicated by the observation

V̂ (x, r) = g(x) + F̂ (x, r),

where

F̂ (x, r) = sup
τ

E(x,r)

∫ τ

0
e−

∫ t

0 rsds
[

µ(Xt)g
′(Xt)− rtg(Xt) + π(Xt)

]

dt (5.3)

denotes the early exercise premium in the presence of interest rate uncertainty. Our
first result characterizing the value of the optimal policy and extending the results of
Lemma 2.1 to the stochastic interest rate case is summarized in the following.
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Lemma 5.1. Assume that there is a mapping J : R2
+ 7→ R+ satisfying the condition

J ∈ C1,2(R2
+) and the variational inequalities

min{J(x, r)− g(x), rJ(x, r)− (ÂJ)(x, r)− π(x)} = 0

for all (x, r) ∈ R2
+. Then, J(x, r) ≥ V̂ (x, r) for all (x, r) ∈ R2

+. Moreover, if there is
a mapping W : R2

+ 7→ R+ satisfying the condition J ∈ C1,2(R2
+) and the variational

inequalities

min{W (x, r), rW (x, r)− (ÂW )(x, r)− (g′(x)µ(x)− rg(x) + π(x))} = 0,

then W (x, r) ≥ F̂ (x, r) and, therefore, W (x, r) + g(x) ≥ V̂ (x, r) for all (x, r) ∈ R2
+.

Proof. See Appendix C.

Lemma 5.1 states a set of variational inequalities from which the value of optimal
policy can be determined in most of the cases provided that a set of regularity and
smoothness conditions are met (cf. Øksendal and Reikvam 1998). It is worth observing
that the results of Lemma 5.1 do not characterize the value or the required exercise
premium of the irreversible rotation opportunity. Hence, these results do not define the
relationship between the values of the optimal policies in the deterministic and stochas-
tic interest rate cases, i.e. they do not characterize the relationship between V (x, r)
and V̂ (x, r). This relationship is summarized without and with amenity valuation,
respectively, in

Theorem 5.2. (A) Assume that the value V (x, r) is convex as a function of the current
interest rate r in the presence of amenity valuation. Then,

V̂ (x, r) ≥ V (x, r) F̂ (x, r) ≥ F (x, r) (x, r) ∈ R2
+.

Especially, C ⊂ {(x, r) ∈ R2
+ : V̂ (x, r) > g(x)}. That is, uncertainty increases both the

required exercise premium and the value of waiting and, therefore, prolongs the optimal
rotation period.
(B) Assume that π(x) ≡ 0 and that α(r) is concave. Then,

V̂ (x, r) ≥ V (x, r) F̂ (x, r) ≥ F (x, r) (x, r) ∈ R2
+.

Especially, C ⊂ {(x, r) ∈ R2
+ : V̂ (x, r) > g(x)}. That is, uncertainty increases both the

required exercise premium and the value of waiting and, therefore, prolongs the optimal
rotation period.

Proof. See Appendix D.

According to Theorem 5.2 under plausible assumptions uncertainty will increase
both the required exercise premium and the value of waiting. Allowing for interest rate
uncertainty means that the opportunity cost of not harvesting becomes more uncertain,
which will move the exercise date further into the future and, therefore, prolongs the
rotation period.

Although this result demonstrates that uncertainty slows down the rational harvest-
ing policy when compared with the certain situation, it does not characterize the impact
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of increased volatility. To this end, we assume that the interest rate process {r̂t; t ≥ 0}
is described on R+ by the (Itô-) stochastic differential equation

dr̂t = α(r̂t)dt+ σ̂(r̂t)dWt, r̂0 = r, (5.4)

where σ̂ : R+ 7→ R+ is a sufficiently smooth mapping satisfying the inequality σ̂(r) ≥
σ(r). That is, r̂t can be interpreted as a diffusion evolving at the same rate as rt but
subject to greater stochastic fluctuations than rt. Given this definition, we define the
value Ṽ : R2

+ 7→ R+ as

Ṽ (x, r) = sup
τ

E(x,r)

[
∫ τ

0
e−

∫ s

0 r̂tdtπ(Xs)ds+ e−
∫ τ

0 r̂sdsg(Xτ )

]

, (5.5)

where τ is an arbitrary Ft-stopping time. Again, we observe that the value can also be
expressed as Ṽ (x, r) = g(x) + F̃ (x, r) where the early exercise premium F̃ (x, r) reads
as

F̃ (x, r) = sup
τ

E(x,r)

∫ τ

0
e−

∫ t

0 r̂sds
[

µ(Xt)g
′(Xt)− r̂tg(Xt) + π(Xt)

]

dt

An interesting result characterizing the relationship between the values V (x, r) and
Ṽ (x, r) is now summarized in the following.

Lemma 5.3. Assume that the value Ṽ (x, r) is convex as function of the current interest
rate r. Then, Ṽ (x, r) ≥ V (x, r) and F̃ (x, r) ≥ F (x, r) for all (x, r) ∈ R2

+. Moreover,

{(x, r) ∈ R2
+ : V̂ (x, r) > g(x)} ⊂ {(x, r) ∈ R2

+ : Ṽ (x, r) > g(x)} That is, if the value

Ṽ (x, r) is convex as function of the current interest rate r, then increased volatility
increases both the value and the early exercise premium of the irreversible policy and,
therefore, prolongs the optimal rotation period.

Proof. See Appendix E.

An economic interpretation of Lemma 5.3 goes as follows. Increased interest rate
volatility means that the opportunity cost of not harvesting (i.e. leaving the harvesting
opportunity unexercised) becomes more uncertain which will move the exercise date
further into the future if the value V̂ (x, r) of the optimal policy is a convex function of
the current interest rate.

Next we have to ask: under what conditions the value V̂ (x, r) of the optimal policy
under interest rate uncertainty is a convex function of the current interest rate. Given
the results of Lemma 5.3 we next provide a set of sufficient conditions under which we
can fix the relationship between the optimal rotation period and interest rate volatility.
Our characterization is presented in

Theorem 5.4. Assume that σ(r) is continuously differentiable with Lipschitz-continuous
derivative, that the standard Novikov-condition

Er

[

e
1
2

∫ t

0 σ′2(rs)ds
]

<∞ (t, r) ∈ R2
+

is satisfied, that π(x) ≡ 0, and that α(r) is concave. Then, Ṽ (x, r) ≥ V (x, r) and
F̃ (x, r) ≥ F (x, r) for all (x, r) ∈ R2

+, and {(x, r) ∈ R2
+ : V̂ (x, r) > g(x)} ⊂ {(x, r) ∈
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R2
+ : Ṽ (x, r) > g(x)}. That is, increased volatility increases both the value and the early

exercise premium of the irreversible policy and, therefore, prolongs the optimal rotation
period.

Proof. We follow the proof of Theorem 2 in Alvarez 2001 d. Denote now as rt(i), t ≥ 0,
the solution of the stochastic differential equation (5.1) subject to the initial condition
r0 = i ∈ R+. Given our smoothness assumptions rt(i) can be expressed in the (Itô-)
form

rt(i) = i+

∫ t

0
µ(rs(i))ds+

∫ t

0
σ(rs(i))dWs. (5.6)

Given our assumptions, rt(i) constitutes a continuously differentiable flow in i (cf. Prot-
ter 1990, Theorem V. 38 and 39). Define now the process {Yt; t ≥ 0} as Yt = ∂rt(i)/∂i.
It is then well-known that (cf. Protter 1990, Theorem V. 39)

Yt = 1 +

∫ t

0
µ′(rs(i))Ysds+

∫ t

0
σ′(rs(i))YsdWs. (5.7)

Applying Itô’s theorem to the mapping y 7→ ln y then implies that the solution of the
stochastic differential equation (5.7) can be expressed as

Yt =
∂rt(i)

∂i
= exp

(
∫ t

0
µ′(rs(i))ds

)

Zt(1), (5.8)

where, given our assumptions, the process {Zt(1); t ≥ 0} defined as

Zt(1) = exp

(
∫ t

0
σ′(rs(i))dWs −

1

2

∫ t

0
σ′

2
(rs(i))ds

)

is a positive martingale starting at date 0 from 1 for any possible i ∈ R+. The strong
uniqueness of a solution for the stochastic differential equation

dZt = σ′(rt(i))ZtdWt Z0 = 1

then, in turn, implies that Zt(1) is not affected by i. The concavity of the drift µ(r)
then implies that µ′(r) is non-increasing in r and, therefore, that µ′(rs(ρ)) ≤ µ′(rs(i))
for all ρ ≥ i and s ∈ [0, t]. Consequently, we find that ∂rt(i)/∂i is non-increasing in
i, proving the alleged concavity of the solution rt(i) as a function of the current short
rate i.

Given the concavity of the solution as a function of the current short rate we observe

as in Theorem 2.4 that the discount factor e−
∫ t

0 rsds is decreasing and convex as function
of the current interest rate. Define now the increasing sequence {Vn(x, r)}n∈N iteratively
as

V0(x, r) = g(x), Vn+1(x, r) = sup
t≥0

E(x,r)

[

e−
∫ t

0 rsdsVn(Xt, rt)
]

.

It is now clear that V1(x, r) is convex as a function of r since the maximum of a convex
function is convex. Consequently, all elements in the sequence {Vn(x, r)}n∈N are convex
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as functions of r. Since Vn(x, r) ↑ V̂ (x, r) as n → ∞ (cf. Øksendal 1998, p. 200) we
find that for all λ ∈ [0, 1] and r, ρ ∈ R+ we have that

λV̂ (x, r) + (1− λ)V̂ (x, ρ) ≥ λVn(x, r) + (1− λ)Vn(x, ρ) ≥ Vn(x, λr + (1− λ)ρ).

Letting n→∞ then implies that λV̂ (x, r)+(1−λ)V̂ (x, ρ) ≥ V̂ (x, λr+(1−λ)ρ) proving
the convexity of V̂ (x, r). The alleged results follow then from Lemma 5.3.

According to Theorem 5.4 under quite plausible assumptions that the diffusion term
is sufficiently smooth as a function of the interest rate and the drift term is a concave
function of the interest rate, increasing interest rate volatility will lengthen the optimal
rotation period in the absence of amenity valuation. Unfortunately, it is very difficult,
if possible at all, to establish simple conditions under which the value of the optimal
harvesting policy in the presence of amenity valuation would be convex as a function
of the current interest rate. More precisely, reconsider the valuation problem (5.2). An
application of the strong Markov property of diffusions then shows that (provided that
the functionals exist)

V̂ (x, r) = (Rπ)(x, r) + sup
τ

E(x,r)

[

e−
∫ τ

0 rsds(g(Xτ )− (Rπ)(Xτ , rτ ))
]

,

where

(Rπ)(x, r) = E(x,r)

∫ ∞

0
e−

∫ s

0 rtdtπ(Xs)ds

denotes the expected cumulative present value of the flow of revenues accrued from the
amenity services. As is clear from this expression, in the presence of amenity valuation
there are three components depending on the current interest rate r, not just one as in
the absence of amenity services. Consequently, it is difficult to present simple conditions
leading to an unambiguously negative relationship between uncertainty and rotation.
However, numerical experimentation seems to indicate that the sign of the relationship
between volatility and harvesting is typically negative in this setting as well.

6 Conclusions

There is currently an extensive literature about the determination of optimal forest
rotation under various circumstances when amenity valuation of forest stands matters,
when capital markets are imperfect so that landowners might be subject to credit ra-
tioning or when there is uncertainty about timber prices and/or forest growth due either
to forest growth uncertainty or to risk of forest fire. Undoubtedly this literature has
provided useful insights about the potential determinants of forest rotation. There is,
however, an important issue, which has not yet been analyzed. To our knowledge all the
literature makes a simplifying but in the forestry case an unrealistic assumption that
the interest rate is constant. Clearly the irreversible harvesting decision of forest stands
is a decision subject to a relatively long time horizon. Hence, given the relatively slow
growth rate of forests, thinking about harvesting and investing in replanting is a long-
term investment project over which the behavior of interest rates as the opportunity
cost should matter a lot.
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In this paper we have used the Wicksellian single rotation framework to extend
the existing studies to cover the unexplored case of variable interest rate. Since the
problem is more general than the constant discounting case, we first had to provide a
new mathematical characterization of the optimal rotation policy. More precisely, we
provided a set of sufficient conditions under which the optimal rotation problem admits
a unique solution and under which the value of optimal policy can be obtained from an
associated boundary value problem expressed as a first order linear partial differential
equation subject to the standard value matching and smooth fit (or smooth pasting)
conditions.

From an economic point of view we have established several new findings. First,
the variability of interest rate will change the rotation age compared with the constant
discounting in a way which depends on the relationship between the current and long run
steady state interest rate. More specifically, if the current interest rate is lower than the
asymptotically stable one, then the variable interest rate rotation age is lower than the
one with constant discounting. The reverse happens in the case when current interest
rate is above the long-run steady state interest rate. We illustrated this qualitative
finding also quantitatively by using numerical computations in section 4 with logistic
functions. Second, we have demonstrated that allowing for interest rate uncertainty
will increase the optimal rotation period under the natural condition that the value
of the optimal policy is convex in terms of interest rate in the absence of uncertainty.
Finally, and importantly, under the plausible assumptions that the diffusion term in
the (Itô-) stochastic differential equation for the interest rate is sufficiently smooth as a
function of the interest rate and the drift term is concave function of the interest rate,
higher interest rate volatility will increase the value of waiting and prolong the optimal
rotation period in the absence of amenity valuation.

Whether our conclusions remain valid in the Faustmann’s ongoing rotation problem
is an open question beyond the scope of the present study. However, given the close
connection of impulse control problems and optimal stopping theory (impulse control
problems can be viewed as sequential stopping problems; cf. Alvarez 2001 b), we are
tempted to conjecture that most probably our conclusions would remain valid with only
minor modifications in the ongoing rotation case as well. Of course, the verification of
this claim is still an open and challenging problem left for future research.
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A Proof of Lemma 2.1

Proof. Given the assumptions of our lemma, we know that

e−
∫ tn
0 rsdsg(Xtn) ≤ e−

∫ tn
0 rsdsJ(Xtn , rtn)

= J(x, r) +

∫ tn

0
e−

∫ s

0 rydy[(AJ)(Xs, rs)− rsJ(Xs, rs)]ds ≤ J(x, r),

where tn = t∧n∧ inf{t ≥ 0 :
√

X2
t + r2

t > n} is a truncation date. Since limn→∞ tn = t,
we find that

J(x, r) ≥ e−
∫ t

0 rsdsg(Xt)

for all (x, r) ∈ R2
+ and t ≥ 0. Since this inequality is valid for any date t, it must be

valid for the optimal date as well and, therefore, J(x, r) ≥ V (x, r) for all (x, r) ∈ R2
+.

To prove the second claim of our lemma, we first observe that given our conditions

0 ≤ e−
∫ tn
0 rsdsW (Xtn , rtn) = W (x, r) +

∫ tn

0
e−

∫ s

0 rydy[(AW )(Xs, rs)− rsW (Xs, rs)]ds

≤ W (x, r)−

∫ tn

0
e−

∫ s

0 rydy
[

g′(Xs)µ(Xs)− rsg(Xs)
]

ds.

Letting the n→∞ and invoking the same principle as above then shows that W (x, r) ≥
F (x, r) for all (x, r) ∈ R2

+. However, since V (x, r) = g(x) + F (x, r) we find that
V (x, r) ≤ g(x)+W (x, r) for all (x, r) ∈ R2

+, thus completing the proof of our claim.

B Proof of Theorem 2.2

Proof. Standard differentiation yields that

d

dt

[

e−
∫ t

0 rsdsg(Xt)
]

= e−
∫ t

0 rsds
[

g′(Xt)µ(Xt)− rtg(Xt)
]

.

Define the mapping f : R+ 7→ R as

f(t) = g′(Xt)µ(Xt)− rtg(Xt).

Assume now that (x, r) ∈ D. Since D ⊂ {(x, r) ∈ R2
+ : g′(x)µ(x) < rg(x)}, we find that

f(t) < 0 for all t ≥ 0 implying that D ⊂ Γ and, therefore, that t∗ = 0. Assume now
that (x, r) ∈ R2

+\D. If (x, r) ∈ (R2
+\D) ∩ {(x, r) ∈ R2

+ : g′(x)µ(x) > rg(x)}, then it
is clear that our assumptions imply that f(0) = g′(x)µ(x) − rg(x) > 0, limt→∞ f(t) =
−r̂g(x̂) < 0, and

f ′(t) = µ(Xt)[g
′′(Xt)µ(Xt)− (rt − µ′(Xt))g(Xt)]− α(rt)g(Xt) < 0. (B.1)

Consequently, the continuity and monotonicity of the mapping f(x) imply that for any
(x, r) ∈ (R2

+\D) ∩ {(x, r) ∈ R2
+ : g′(x)µ(x) > rg(x)} there is a unique t∗(x, r) < 0

satisfying the condition

f(t) = g′(Xt)µ(Xt)− rtg(Xt) T 0, t S t∗(x, r)
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and, therefore, maximizing the present value e−
∫ t

0 rsdsg(Xt). The same observation
implies that if (x, r) ∈ (R2

+\D) ∩ {(x, r) ∈ R2
+ : g′(x)µ(x) ≤ rg(x)}, then f(t) ≤ 0 for

all t ≥ 0 so that t∗(x, r) = 0.

It remains to prove that the value function V (x, r) satisfies the boundary value
problem (2.6). In order to accomplish this, we first observe that since

Xt = x+

∫ t

0
µ(Xs)ds and rt = r +

∫ t

0
α(rs)ds

we find by ordinary differentiation that (cf. Protter 1990, pp. 245–255)

∂Xt

∂x
= 1 +

∫ t

0
µ′(Xs)

∂Xs

∂x
ds and

∂rt
∂r

= 1 +

∫ t

0
α′(rs)

∂rs
∂r

ds

implying that

∂Xt

∂x
= e

∫ t

0 µ′(Xs)ds and
∂rt
∂r

= e
∫ t

0 α′(rs)ds.

However, since

V (x, r) = e−
∫ t∗(x,r)
0 rsdsg(Xt∗(x,r)),

we obtain by ordinary differentiation that

∂V

∂x
(x, r) = e−

∫ t∗(x,r)
0 (rs−µ′(Xs))dsg′(Xt∗(x,r))

and that

∂V

∂r
(x, r) = −e−

∫ t∗(x,r)
0 rsdsg(Xt∗(x,r))

∫ t∗(x,r)

0
e
∫ s

0 α′(rt)dtds.

Since t∗(x, r) = 0 whenever (x, r) ∈ ∂C, we find that the value function satisfies the
alleged boundary conditions at ∂C. Moreover, we also find that

(AV )(x, r)− rV (x, r) = e−
∫ t∗(x,r)
0 rsdsµ(x)e

∫ t∗(x,r)
0 µ′(Xs)dsg′(Xt∗(x,r))

− e−
∫ t∗(x,r)
0 rsds

(

r +

∫ t∗(x,r)

0
α(r)e

∫ s

0 α′(rt)dtds

)

g(Xt∗(x,r)).

Finally, since

µ(Xt) = µ(x)e
∫ t

0 µ′(Xs)ds and α(rt) = α(r)e
∫ t

0 α′(rs)ds

we find that

(AV )(x, r)− rV (x, r) = e−
∫ t∗(x,r)
0 rsds

[

µ(Xt∗(x,r))g
′(Xt∗(x,r))− rt∗(x,r)g(Xt∗(x,r))

]

= 0

thus completing the proof of our theorem.
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C Proof of Lemma 5.1

Proof. As in Øksendal and Reikvam 1998 and in the proof of Lemma 2.1 we find by
invoking Dynkin’s theorem that

E(x,r)

[

e−
∫ τn
0 rsdsg(Xτn)

]

≤ E(x,r)

[

e−
∫ τn
0 rsdsJ(Xτn , rτn)

]

= J(x, r) + E(x,r)

∫ τn

0
e−

∫ s

0 rydy[(ÂJ)(Xs, rs)− rsJ(Xs, rs)]ds

≤ J(x, r)− E(x,r)

∫ τn

0
e−

∫ s

0 rydyπ(Xs)ds,

where τn = τ ∧ n ∧ inf{t ≥ 0 :
√

X2
t + r2

t > n} is an almost surely finite stopping time
converging to the stopping time τ as n → ∞. Reordering terms and invoking Fatou’s
theorem then yields that

J(x, r) ≥ E(x,r)

[

e−
∫ τ

0 rsdsg(Xτ ) +

∫ τ

0
e−

∫ s

0 rydyπ(Xs)ds

]

.

Since this inequality is valid for any stopping time τ , it must be valid for the optimal
stopping time as well and, therefore, J(x, r) ≥ V̂ (x, r) for all (x, r) ∈ R2

+. The second

claim of our lemma follows the directly from the first after noticing that V̂ (x, r) =
g(x) + F̂ (x, r).

D Proof of Theorem 5.2

Proof. (A) If the value V (x, r) is convex as function of r, then for all (x, c) ∈ C we have

E(x,r)

[

e−
∫ τn
0 rsdsV (Xτn , rτn)

]

= V (x, r)+E(x,r)

∫ τn

0
e−

∫ t

0 rsds
[

(ÂV )(Xt, rt)− rtV (Xt, rt)
]

dt,

where τn is a sequence of almost surely finite stopping times converging towards τ ∗ =
inf{t ≥ 0 : (Xt, rt) 6∈ C}. Since

(ÂV )(x, r)− rV (x, r) =
1

2
σ2(r)

∂2V

∂r2
(x, r) ≥ 0

whenever (x, c) ∈ C, we find that

V (x, r) ≤ E(x,r)

[

e−
∫ τn
0 rsdsV (Xτn , rτn)

]

.

Letting n → ∞ and invoking continuity of the value across the boundary then yields
that

V (x, r) ≤ E(x,r)

[

e−
∫ τ∗

0 rsdsg(Xτ∗)

]

≤ V̂ (x, r),

proving that V (x, r) ≤ V̂ (x, r) on the continuation region C. However, since V (x, r) =
g(x) on R2

+\C and V̂ (x, r) ≥ g(x) for all (x, r) ∈ R2
+, we find that V̂ (x, r) ≥ V (x, r) and

F̂ (x, r) ≥ F (x, r) for all (x, r) ∈ R2
+. Moreover, if (x, r) ∈ C, then V̂ (x, r) ≥ V (x, r) >

g(x) proving that (x, r) ∈ {(x, r) ∈ R2
+ : V̂ (x, r) > g(x)} as well. Proving part (B) is

analogous after using the results of Theorem 2.4.
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E Proof of Lemma 5.3

Proof. Given our assumptions, we find that for all (x, r) ∈ R2
+ we have that

(ÂṼ )(x, r)− rṼ (x, r) + π(x) ≤
1

2
(σ2(r)− σ̂2(r))

∂2Ṽ

∂r2
(x, r) ≤ 0

since

1

2
σ̂2(r)

∂2Ṽ

∂r2
(x, r) + µ(x)

∂Ṽ

∂x
(x, r) + α(r)

∂Ṽ

∂r
(x, r)− rṼ (x, r) + π(x) ≤ 0

for all (x, r) ∈ R2
+ by the r-excessivity of Ṽ (x, r). Consequently, we observe that

E(x,r)

[

e−
∫ τn
0 rsdsṼ (Xτn , rτn)

]

≤ Ṽ (x, r)− E(x,r)

∫ τn

0
e−

∫ t

0 rsdsπ(Xt)dt

where τn = τ∧n∧inf{t ≥ 0 :
√

X2
t + r2

t > n}. Reordering terms, invoking the condition
V (x, r) ≥ g(x), letting n→∞, and applying Fatou’s theorem then yields that

Ṽ (x, r) ≥ E(x,r)

[

e−
∫ τ

0 rsdsg(Xτ ) +

∫ τ

0
e−

∫ t

0 rsdsπ(Xt)dt

]

proving that Ṽ (x, r) ≥ V̂ (x, r) for all (x, r) ∈ R2
+. The inequality F̃ (x, r) ≥ F (x, r) then

follows from the definition of the early exercise premiums. Finally, if (x, r) ∈ {(x, r) ∈
R2

+ : V̂ (x, r) > g(x)}, then (x, r) ∈ {(x, r) ∈ R2
+ : Ṽ (x, r) > g(x)} as well, since then

Ṽ (x, r) ≥ V̂ (x, r) > g(x).
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