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Abstract 
 
Usually, groups increase their productivity by the specialization of their group members. In 
these cases, group output is no longer simply a sum of individual outputs. We analyze 
contests with group-specific public goods that allow for different degrees of complementarity 
between group members’ efforts. More specifically, we use a Tullock contest success function 
and a CES-impact function. We show that in equilibrium the degree of complementarity is 
irrelevant if groups do not differ in size and group members have an identical valuation of the 
public good. The equilibrium is discontinuous as the CES function converges to the Cobb-
Douglas case. Except for the effects at the discontinuity, higher complementarity tends to 
favor larger groups. In groups with diverse valuations, higher complementarity also leads to 
higher similarity in group members’ efforts, which however is not necessarily an advantage 
for a more diverse group. 
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1 Introduction

With only a few exceptions, the literature on group contests1 has focused attention

on impact functions2 that are additively separable in the effort levels of its mem-

bers. Additive separability of individual efforts is an important starting point for

the analysis of group contests. However, it is clear that efforts of different group

members are incomplete substitutes in a number of examples. In R&D races, where

teams of researchers develop new technologies, the whole project is often divided

into different, more or less complementary sub-projects that are carried out by dif-

ferent researchers. In military conflicts the armed forces are highly specialized and

often divided into complementary units. The same is true for the standard lobbying

case if representatives of different firms or organizations lobbying for the same policy

differ in qualifications and specialize accordingly. In sports contests, team members

are usually specialized with respect to qualifications that complement each other in

a non-additive way. This list of examples could be arbitrarily extended because the

mere idea of specialization implies that there is a certain degree of complementarity

in team or group production. Individuals differ in talents, qualifications, and affec-

tions such that we can expect that individuals in a group or team will specialize

to increase overall productivity. We can expect a certain degree of complementar-

ity between the efforts of the group members. Alchian and Demsetz (1972) see the

non-additivity as constitutive for group or team production (pp. 777): “Resource

owners increase productivity through cooperative specialization. [...] With team pro-

duction it is difficult, solely by observing total output, to either define or determine

each individual’s contribution to this output of the cooperating inputs. The output

is yielded by a team, by definition, and it is not a sum of separable outputs of each

of its members. [...] Usual explanations of the gains from cooperative behavior rely

on exchange and production in accord with the comparative advantage specialization

principle with separable additive production. However [...] there is a source of gain

from cooperative activity involving working as a team, wherein individual cooperating

inputs do not yield identifiable, separate products which can be summed to measure

the total output.”

1The literature on contests between groups has recently been surveyed by Corchón, 2007, Section

4.2, Garfinkel & Skaperdas, 2007, Section 7, and Konrad, 2009, Chapters 5.5 and 7.

2The term is defined and discussed in Münster (2009).

1



If non-additive effort is the rule rather than the exception, it is important to

understand how the degree of substitution between individual efforts influences be-

havior in and the outcome of the contest. In this paper we analyze a situation where

efforts of group members can be imperfect substitutes. In order to capture this idea,

we assume that individual efforts xk
i are mapped onto group output (which itself

is the input in the contest success function) by means of a CES-impact function,

(
∑

(xk
i )

γ)1/γ , with variable elasticity of substitution 1/(1− γ), ranging from perfect

complements (γ → −∞) to perfect substitutes (γ → 1). The contest is of the Tullock

type, and the rent is a group-specific public good (i.e. nonrival in consumption).3

If groups instead of individuals compete in a contest, the well-known free-rider

problem among group members exists. Every individual bears the full costs of its

investments, whereas the benefits partly spill over to the rest of the group (Katz,

Nitzan, & Rosenberg, 1990; Esteban & Ray, 2001; Epstein & Mealem, 2009; Nitzan

& Ueda, 2009). Depending on the sharing rule applied, this problem may also exist

for a private good (Nitzan, 1991a, 1991b; Esteban & Ray, 2001; Nitzan & Ueda,

2009). In the recent literature, Baik (2008), Epstein and Mealem (2009), and Lee

(2008) have presented contest models with group-specific public goods. A major

result in Baik (2008) is that in a model with linear effort costs and additively linear

impact functions only those group members with the highest valuation of the rent

make positive investments in the contest. In his model, efforts of group members are

perfect substitutes and therefore the optimality conditions given by the first-order

conditions cannot hold for different valuations. With several group members having

the maximal valuation among the group, there exist multiple equilibria, since the

first order condition only defines the total effort spent by the group. Epstein and

Mealem (2009) stick to the assumption of additive separability of individual effort

in the group-production functions but introduce decreasing returns to investment.

Using a technology that fulfills standard Inada conditions they show that every

individual makes positive investments. Their model is isomorphic to a model with

linear impact functions and in which individuals face strictly convex costs. In this

sense, effort levels are no longer perfect substitutes, but the impact function is still

additively separable. Lee (2008) focuses attention on weakest-link impact functions.

The perfect complementarity of efforts creates a coordination problem between group

members which gives rise to multiple equilibria, and the equilibrium with highest

3Münster (2009) provides an axiomatic foundation for the Tullock function for group contests.
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efforts is determined by the valuation of the player with minimum valuation within

each group. Hence, the models of Baik (2008) and Lee (2008) represent the “polar”

cases with respect to the elasticity of substitution between group members.4

Our model generalizes these results. It turns out that the equilibrium of our

model is unique for all values of γ ∈ {(−∞, 0), (0, 1)} (γ = 0 can only be covered by

a limit result). If there is no within-group heterogeneity with respect to valuations

of the prize and all groups have the same size, the equilibrium is independent of

the elasticity of substitution. This result is a useful starting point because it shows

that the elasticity of substitution per se has no impact on behavior in the contest:

contrary to the cursory idea that increasing the degree of complementarity between

group-members’ efforts helps to internalize the existing free-rider problem.5 At the

same time, this result shows that the standard results on group contests are robust

with respect to variations in the elasticity of substitution under these assumptions.

An immediate implication of this irrelevance result is the conjecture that the

elasticity of substitution becomes relevant if there is heterogeneity between group

members with respect to the valuations of the rent and/or heterogeneity between

groups with respect to group size, if at all.

A first important result of this general case is the characterization of active

and inactive groups. We know from Hillman and Riley (1987) and Stein (2002)

(for contests between individuals) that players may prefer not to participate in a

contest if valuations are sufficiently heterogenous. This result carries over to the

case of group contests. However, if a group is active, every member of this group

exerts positive effort. In addition, the equilibrium strategies are continuous (but not

necessarily continuously differentiable) in the elasticity of substitution everywhere

except at γ = 0, because groups that become inactive or active do this in a “smooth”

way.

The limit behavior of our model is of particular interest. First, the results for the

two limiting cases γ → 1 and γ → −∞ have been analyzed by Baik (1993, 2008) and

Lee (2008). In the former case, equilibrium effort is determined by the players with

4One might argue that the best-shot technology where only the maximum effort counts is even

more extreme, but it is relatively obvious that as for the case of perfect substitutes the equilibrium

with maximum effort is also determined by the players with maximum valuations.

5Hirshleifer (1983) argues for the special case of perfect complements (“weakest-link” technol-

ogy) that the complementarity between group members’ efforts helps solving the free-rider problem.
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the maximum valuations, and in the latter case by the players with the minimum

valuation in each group, which implies that group size does not matter. However,

there are multiple equilibria in both cases. We can show that our model is consistent

with both results in the sense that the equilibrium converges to one of the equilibria

of the boundary cases. As a consequence, the uniqueness of the equilibrium for all

values of γ except 1 and −∞ shows that the multiplicity problems are not robust

with respect to small changes in the elasticity of substitution.

For all other values of γ, relative group size is important for the resulting equi-

librium. This observation allows it to build a bridge to the discussion about the

so-called “group-size paradox” (Olson, 1965; Esteban & Ray, 2001; Nitzan & Ueda,

2009) that “larger groups may be less successful than smaller groups in furthering

their interests” (Esteban & Ray, 2001, p.663). We can show that the possible rever-

sal of the group-size paradox occurs also in our model if γ ∈ (0, 1). In the limiting

case γ = 1, group size is irrelevant, and a reduction in the elasticity of substitution

helps the relatively large groups at the expense of the relatively small ones. In the

limit case γ → 0+ only the largest groups stay active, and if there is a single largest

group, it wins almost for sure, irrespective of its relative valuation of the rent. This

finding shows that the reversal of the group-size paradox is not restricted to suffi-

ciently convex cost functions (Esteban & Ray, 2001). A decrease in the elasticity of

substitution has the same effect.

The fact that we have covered all possible elasticities of substitution allows it to

incorporate the discussion about the relative advantage of large or small groups into

a larger picture. For higher degrees of complementarity (γ < 0), we can show that the

advantage of larger groups is reversed as soon as γ turns negative. As γ approaches

0 from below, large groups become inactive, and in the limiting case we end up with

an arbitrarily large advantage of the smallest group. This discontinuity of the model

at γ = 0 is a consequence of the CES-impact function that increasingly leverages

differences in group size as γ approaches 0. However, smaller values of γ tend to help

larger groups also if γ < 0. Hence, if deviations from the perfect-substitutes case

are the rule rather than the exception for most empirical applications, there is no

immediate answer to the question of whether large or small groups have an advantage

in the contest. It depends on the strength of the complementarities. Coming back to

the discussion about free-riding and the degree of complementarity, the results on

relative group size show that in fact more complementary impact functions ceteris
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paribus help larger groups at the expense of smaller ones, and in this sense it helps

alleviating the free-rider problem that is more severe the larger the relative size of

the group.

The paper is organized as follows. We introduce the model in Section 2 and

start with introductory examples in Section 3. We characterize the simultaneous

Nash equilibrium of the general model in Section 4. In subsection 4.1 we will state

convergence results for γ approaching 1, 0, and −∞, and in subsection 4.2 the

comparative-static results are summarized. Section 5 concludes.

2 The model

Assume that n groups compete for a given rent R. mi is the number of individuals

in group i and k is the index of a generic member of this group. The rent is a

group-specific public good that has a value vki > 0 to individual k of group i, and

we assume the following ordering: vmax
i ≥ ... ≥ vmin

i . pi represents the probability

of group i = 1, ..., n to win the contest. It is a function of some vector of aggregate

group output q1, ..., qn. We focus on Tullock-form contest success functions where

the winning probability of a group i is defined as:

Assumption 1: pi(q1, ..., qn) =
qi

∑n
j=1 qj

, i = 1, ...n.

The aggregate group output depends on individual effort xk
i , Qi = qi(x

1
i , ..., x

mi
i ),

i = 1, ..., n. Following the literature we will call qi(.) impact functions in the following

and make the assumption that they are of the constant elasticity of substitution

(CES) type.

Assumption 2: qi(x
1
i , ..., x

mi
i ) =

(
∑mi

l=1(x
l
i)
γ
)1/γ

, γ ∈ (−∞, 1], i =

1, ...n.

Note that we obtain a closed-form solution only if γ 6= 0. The Cobb-Douglas case

γ → 0 will be covered by a limit result.

Assumption 3: Individuals are risk neutral, face linear costs, and max-

imize their net rent.
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It follows from Assumptions 1, 2, and 3 that the individual utility functions are as

follows:

πk
i (x

1
1, ..., x

mn
n ) := πk

i (x
k
i , x/xk

i
) = vki

(
∑

l(x
l
i)
γ)1/γ

∑

j (
∑

l(x
l
j)

γ)1/γ
− xk

i , (1)

where x/xk
i
refers to the vector x1

1, ..., x
mn
n without xk

i . We are looking for a Nash

equilibrium of this game where individuals choose their effort xk
i simultaneously to

maximize their expected utility,

xk∗
i ∈ argmax

xk
i

πk
i (x

k
i , x

∗
−xk

i
) ∀i, k. (2)

where “∗” refers to equilibrium values.

3 Introductory examples

The explanatory variable that is new compared to the existing literature is the

elasticity of substitution. In this section we analyze three simple examples that

provide intuition for the relevance of this variable in contests. We will come back to

these examples throughout the main part of the paper to provide intuition for the

general results. As we will see, the elasticity is only relevant if the valuations between

members of the same group differ or if groups differ in size. All three examples restrict

attention to a contest between two groups, 1 and 2, with m1 and m2 members. The

valuation of the group members are either vmax
i or vmin

i , vmax
i ≥ vmin

i , i = 1, 2. The

examples are chosen to highlight the central mechanisms of this model, we therefore

delegate all technical details about the existence of interior solutions, active and

inactive groups and group members, etc. to the next section.

The first-order condition that characterizes an interior solution to the individual

optimization problems of a member k of group i is given by

∂πk
i (x1, ..., xn, γ)

∂xk
i

= vki
q(xj, γ)

(
∑2

i=1 q(xi, γ)
)2

∂q(xi, γ)

∂xk
i

− 1 = 0; k = L,H ; i = 1, 2, (3)

which is a simple “marginal revenues equal marginal costs” condition.

Example 1: In this example we restrict attention to groups of equal size m1 =

m2 = m with only a single valuation of the members of a given group, vmin
i =

vmax
i = vi, i = 1, 2. We assume that all members of a given group behave identically.
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Using this fact, it follows that ∂q(xi,γ)

∂xk
i

= q(xi, γ)/(mixi), and (3) can be simplified

to yield

vi
q(xj, γ)

(q(xi, γ) + q(xj , γ))2
q(xi, γ)

mxi
− 1 = 0, i = 1, 2, j 6= i. (4)

It follows that x1v2 = v1x2 in an interior equilibrium, and finally

x1(v1, v2) =
v21v2

m(v1 + v2)2
, x2(v1, v2) =

v1v
2
2

m(v1 + v2)2
,

investments in the contest are independent of γ. This example shows that the elas-

ticity of substitution does not play a role if there is no within-group heterogeneity

and groups are of equal size. The reason for this result is the combination of a

constant-return to scale impact function with a contest success function that is ho-

mogenous of degree zero. Conversely, it must be either within-group heterogeneity

and/or differences in group size that may cause behavioral changes due to changes

in γ. The next two examples show that this may in fact be the case.

Example 2: Second, we assume that v1 = v2 but allow for differences in group size.

In this case, (3) implies

x1(m1, m2, γ, v) =
vm

1−2γ
γ

1 m
1−γ
γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 , x2(m1, m2, γ, v) =
vm

1−γ
γ

1 m
1−2γ

γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 , (5)

if all members of the same group behave identically. In this case, individual efforts

depend on the size of the groups. As we will discuss in greater detail in Section 4.2,

this finding allows to perceive the discussion about the group-size paradox in a more

general and comprehensive way.

Example 3: In the last example we assume that m1 = m2 but vmin
1 = vmin

2 =

vmin ≤ vmax = vmax
1 = vmax

2 . The population is divided into mmin = mmax = m/2

for both groups. Again, (3) can be used to get the following symmetric equilibrium:

xmax(vmin, vmax, m, γ) =
vmax

2m
(

(

vmin

vmax

)

γ
1−γ + 1

) ,

xmin(vmin, vmin, m, γ) =
vmin

2m
(

(

vmax

vmin

)
γ

1−γ + 1
) . (6)

As in the second example, γ may influence the outcome of the game if differences

among the valuations of the rent among the group members exist.
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4 The general case

We now turn to the analysis of the general case. In order to have a lean notation,

let yki = (xk
i )

γ and Yi = (
∑

l y
l
i). Further, Q =

∑

j Qj =
∑

j Y
1
γ

j = Y
1
γ

i +
∑

j 6=i Y
1
γ

j =

Qi + Q/i in the following. While deriving the equilibrium strategies, we will omit

the parameters of these functions for better readability (e.g yki instead of yki (γ, x
k
i )).

Hillman and Riley (1987) and Stein (2002) have shown that groups/individuals may

prefer to stay inactive if the size of all groups is equal to 1. Baik (2008) has shown

that only group members with maximum valuation participate in a contest. Hence,

it is possible that some individuals and/or groups will stay inactive in our setup.

We therefore start with an analysis of active individuals and groups.

Definition 1: An individual k of group i is said to participate if xk
i > 0. A group

i is said to participate if there exists some k such that xk
i > 0. A group is said to

fully participate if ∀k : xk
i > 0.

Lemma 1: In a Nash equilibrium of a contest fulfilling Assumptions 1, 2, and 3 if

a group participates, it fully participates.

The proof of this as well as the next Lemma can be found in the appendix.

Lemma 1 implies that in order to determine whether an individual participates, it is

sufficient to determine whether its group participates. Let Vi(γ) ≡
(

∑

l v
l
i

γ
1−γ

)
1−γ
γ
.

Without loss of generality, suppose the groups are ordered such that Vi(γ) ≥ Vi+1(γ)

for a given γ. Q∗
i (γ) and Q∗(γ) shall denote Qi and Q in equilibrium. The following

Lemma determines the groups that participate in equilibrium.

Lemma 2: a) There exist best response strategies of the members of a group, if and

only if the following group best response function is fulfilled:

Q̂i(γ,Q/i) = max
(

0,
√

Q/iVi(γ)−Q/i

)

. (7)

b) Groups 1 . . . n∗(γ) participate, where n∗(γ) ≡ argmaxi i such that Vi(γ) > Q∗(γ).

c) If the Nash equilibrium is unique, Q∗
i (γ) and Q∗(γ) are continuous functions for

γ 6= 0.

Lemma 2.c is useful for the comparative-static analysis. Given that the number

and identity of active groups depends on γ, it is a priori not clear that aggregate

effort and indirect utilities are continuous in γ. The Lemma reveals that continuity

is in fact guaranteed except at γ = 0. The economic intuition is as follows: Assume
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that γ̂ is a point where a formerly active group becomes inactive or a formerly

inactive group becomes active. The aggregate group effort of the active group is

continuously reduced to zero as γ approaches γ̂, and the formerly inactive group

continuously increases its effort from 0 as γ increases from γ̂. Hence, there is a

“smooth” fade out or fade in of groups at those points.

The following proposition characterizes the unique Nash equilibrium of the game.

For readability, the strategies xk
i are defined as functions of Q∗(γ) and Vi(γ).

Proposition 1. The unique Nash equilibrium of the game characterized by Assump-

tions 1,2, and 3 is given by strategies xk
i
∗
(γ) that fulfill

xk
i

∗
(γ) =











Q∗(γ)
(

1− Q∗(γ)
Vi(γ)

)

(vki )
1

1−γ

Vi(γ)
1

1−γ
, Vi(γ) > Q∗(γ)

0, Vi(γ) ≤ 0

, (8)

where Q∗(γ) = n∗(γ)−1
∑n∗(γ)

i=1 Vi(γ)−1
and n∗(γ) is defined in Lemma 2.a and groups are

ordered such that Vi(γ) ≥ Vi+1(γ).

Proof. To obtain Q∗(γ) we sum (7) over all i ≤ n∗(γ):

Q∗(γ) =
n∗(γ)− 1

∑n∗(γ)
i=1 Vi(γ)−1

(9)

With an explicit solution for Q∗(γ), we can now determine individual expenditures

xk
i
∗
(γ) by solving equation (7) using (9). The participation condition of a group is

given by Lemma 2, while Lemma 1 ensures that there does not exist an incentive for

any group member to deviate to xk
i = 0. It was further shown that the first-order

conditions return local maxima. Since the system of equations given by the first-

order conditions of the participating groups has a unique solution this is indeed the

unique Nash equilibrium.

A focal special case has equal group size mi = m∀i and no intra-group hetero-

geneity vki = vi∀k∀i. The following corollary of Proposition 1 can then be established.

Corollary 1: If mi = m∀i and vki = vi∀k∀i the equilibrium efforts are independent

of γ.

Proof. Inserting mi = m∀i and vki = vi∀k∀i in (9) it can be shown that vixi =

(vi −m
∑

xj)(
∑

xj)∀i, which is independent of γ.
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The corollary shows that the elasticity of substitution is only relevant if there is

either heterogeneity with respect to valuations within groups and/or heterogeneity

with respect to group size. In all other cases equilibrium behavior does not depend on

γ. This finding implies that an increase in complementarity between group members’

effort per se has no effect on the within-group free-rider problem, as could have been

conjectured from Hirshleifer (1983). A further implication of the result is that the

results on group contests that have been derived in the literature for the case of

perfect substitutes or perfect complements carry over to arbitrary elasticities of

substitution if groups differ only in their valuations of the rent.

4.1 Convergence Results

Before we move on to the core convergence results with respect to γ and the com-

parative statics of the model, let us first note that the winning probability of group

i takes the form:
Qi

∗(γ)

Q∗(γ)
=

(

1−
Q∗(γ)

Vi

)

(10)

which can be derived from (7). We will now state convergence results where γ ap-

proaches 1, 0, and −∞.

Proposition 2. For γ → 1, we get
xk
i
∗

X∗

i
= 0 if ∃vli > vki and 1

♯{vli:v
l
i=vki }

otherwise.

Proof. It is straightforward to derive the following equation from (8):

xk
i
∗
(γ)

X∗
i (γ)

=
(vki )

1
1−γ

∑

l (v
l
i)

1
1−γ

(11)

For the limit it then holds:

lim
γ→1

(vki )
1

1−γ

∑

l (v
l
i)

1
1−γ

= lim
γ→1

(

∑

l

(

vli
vki

)

1
1−γ

)−1

=







0, ∃vli > vki
1

♯{vli:v
l
i=vki }

, else
(12)

Proposition 2 shows that for γ increasing towards one, the group members with

lower valuations will decrease their efforts towards zero, and only the group members

with the highest valuations contribute. If there is more than one individual with the
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highest valuation, we converge to an equilibrium where those individuals contribute

equally.6

Next we will analyze the other boundary case when γ approaches −∞. In order

to have a lean notation we denote limγ→−∞ f(γ) by f(−∞) for all functions f(.):

Proposition 3. For γ → −∞, we obtain:

a) limγ→−∞ xk
i
∗
=







0, Vi(−∞) ≤ Q∗(−∞)

1
mi

n∗(−∞)−1
∑

j

∑

l 1/v
l
j
(1−

(n∗(−∞)−1)
∑

l 1/v
l
i

∑

j

∑

l 1/v
l
j

), Vi(−∞) > Q∗(−∞)

b) limγ→−∞
xk
i
∗

(γ)

X∗

i (γ)
= 1

mi

c) limγ→−∞Q∗ = n∗(−∞)
∑

j

∑

l 1/v
l
j

d) limγ→−∞
Q∗

1

Q∗
= 1−

(1−n∗(−∞))
∑

l 1/v
l
i

∑

j

∑

l 1/v
l
j

where n∗(−∞) is the maximal ζ such that ζ − 1 ≤
∑p

j=1

∑

l 1/v
l
j

∑

l 1/v
l
i

.

The results follow directly from the determination of the limit of (8).

Proposition 3 b) shows that (as expected given the results by Lee (2008)) all

group members participate with equal amounts. In this sense, for γ near −∞, we

obtain similar results as for a min(. . . ) impact function. However, this function

creates multiple equilibria with an associated equilibrium-selection problem. Given

the uniqueness of equilibria for all finite γ, our limit result can be interpreted as

an equilibrium-selection mechanism where individual contributions depend on the

harmonic mean of the valuations.

Next we look at the limit behavior for γ → 0. It turns out that we have to consider

γ → 0+ and γ → 0− separately because the problem may not be continuous at this

point.

Proposition 4. Suppose ∀i : mi ≥ mi+1. For γ → 0+, we obtain:

a) If n∗ is either defined by m1 = · · · = mn∗ > mn∗+1 with n∗ ≥ 2, or by

m1 > m2 = · · · = mn∗ > mn∗+1 with n∗ ≥ 2, then limγ→0+ n∗(γ) = n∗

b) limγ→0+ xk
i
∗
(γ) =



















(n∗−1)vki
n∗2mi

, m1 = m2 = mi = · · · = mn∗

0, m1 > m2 = mi = · · · = mn∗

0, mi > m2 ≥ . . .

6In this latter case we get multiple equilibria if γ = 1 with the property that the sum of con-

tributions is always identical (Baik, 2008). In this sense, our convergence result can be interpreted

as an equilibrium-selection mechanism by focussing on the equal-contribution equilibrium.

11



c) limγ→0+
xk
i
∗

(γ)

X∗

i (γ)
=

(vki )
∑

l (v
l
i)

d) limγ→0+ Q∗(γ) =



























∞, ∀j : mj > 1

n∗(γ)−1
∑n∗

j=1
1

v1
j

, m1 = · · · = mn∗ = 1

n∗(γ)−1
∑n∗

j=2
1

v1
j

, m1 > m2 = · · · = mn∗ = 1

e) limγ→0+
Q∗

i (γ)

Q∗(γ)
=



















= 0, m1 > mi

= 1/n∗, m1 = mi = · · · = mn∗

= 1, mi > m2 ≥ . . .

.

Proposition 5. Suppose ∀i : mi ≤ mi+1. For γ → 0−, we obtain:

a) If n∗ is either defined by m1 = · · · = mn∗ < mn∗+1 with n∗ ≥ 2, or by

m1 < m2 = · · · = mn∗ < mn∗+1 with n∗ ≥ 2, then limγ→0+ n∗(γ) = n∗

b) limγ→0− xk
i
∗
(γ) =



















(n∗−1)vki
n∗2mi

, m1 = m2 = mi = · · · = mn∗

0, m1 < m2 = mi = · · · = mn∗

0, mi < m2 ≥ . . .

c) limγ→0−
xk
i
∗

(γ)

X∗

i (γ)
=

(vki )
∑

l (v
l
i)

d) limγ→0− Q∗ =











0, m2 > 1

n∗(γ)−1
∑n∗

j=1
1

v1
j

, m1 = · · · = mn∗ = 1

e) limγ→0−
Q∗

1

Q∗
=



















= 0, m1 > mi

= 1/n∗, m1 = mi = · · · = mn∗

= 1, mi < m2 ≥ . . .

.

The proofs to these two propositions can be found in the appendix. In part a) of

each proposition the participating groups are defined. For γ → 0+, only the largest,

while for γ → 0−, only the smallest groups participate in the contest (in both cases

there always remain at least two groups). Unless there exist groups with equal sizes

(which are maximal for the convergence from above, and minimal for the convergence

from below), individual efforts always approach zero. Further, e) shows the winning

probabilities of the groups: the largest (respectively smallest for convergence from

below) groups have equal probabilities of winning, while any group smaller (larger)

has zero probability of winning in equilibrium, d) tells us that andQ∗(γ) converges to

infinity if γ converges from above and there is no group of size 1 which participates

12



in the contest. These results show that the behavior around γ = 0 is crucially

determined by the relative size of the groups. This property has a resemblance to

the results on the so-called “group-size paradox”, i.e. the apparent disadvantage of

larger groups compared to smaller ones (Esteban & Ray, 2001; Olson, 1965). To

obtain a proper intuition for this resemblance it is helpful to return to Example 2.

Example 2 continued: Coming back to Example 2 from Section 3, (5) can be used

to determine that the values of the impact functions are

q1(m1, m2, γ, v) = v
m

1−γ
γ

1 m
1−γ
γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 , q2(m1, m2, γ, v) = v
m

1−γ
γ

1 m
1−γ
γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 ,

which in turn can be used to determine the equilibrium winning probabilities:

p1(m1, m2, γ) =
m

γ−1
γ

2

m
γ−1
γ

1 +m
γ−1
γ

2

, p2(m1, m2, γ) =
m

γ−1
γ

1

m
γ−1
γ

1 +m
γ−1
γ

2

. (13)

It follows from Proposition 3 that the limit behavior of these probabilities is

lim
γ→0−

p1(m1, m2, γ) =

{

1, m1 < m2

0, m1 > m2

,

lim
γ→0+

p1(m1, m2, γ) =

{

0, m1 < m2

1, m1 > m2

,

and analogously for p2(m1, m2, γ). Figure 1 shows p1(m1, m2, γ) (dashed line) and

p2(m1, m2, γ) (solid line) for the case m1 > m2. We will focus on p1(m1, m2, γ) in

the following. The graph starts at 0.5 at γ = 1. This is the well-known case where

group size has no impact on the winning probability (Baik, 2008). p1(m1, m2, γ)

steadily rises to 1 as γ converges to 0. At this point it jumps to 0 and increases

to 0.5 again as γ converges to −∞. In this case, group-size again does not matter

because only the minimum contribution counts (Lee, 2008). In order to understand

the economic intuition for this result, it makes sense to highlight the similarity of

our problem to the problem analyzed by Esteban and Ray (2001). They found that

the group-size paradox need not hold in a contest-environment and may be reversed

to yield an advantage for large groups if the costs of effort are sufficiently convex.

This result has a counterpart in our model if γ ∈ (0, 1). Reducing γ in this interval

increasingly improves the position of the larger group. In the limit, the larger group

can win the contest with probability close to one as γ approaches zero. A reduction

13
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Figure 1: Equilibrium probabilities for different values of γ (m1 = 11, m2 = 10).
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Figure 2: Effort levels (left) and impacts (right) for different values of γ.

in the elasticity of substitution has a similar effect as an increase in the convexity

of the costs-of effort function. Interestingly, if γ < 0, the smaller group starts with

an advantage as γ → 0−, but reducing γ again has the same effect. In this case,

the group-size paradox does not only exist but is intensified by the technological

properties of the impact function. Hence, a steady change in γ at 0 has a dramatic

influence on the outcome of the game if the impact functions are of the CES form.

To better understand this property it makes sense to have a closer look at (5).

The left panel of Figure 2 shows x1(m1, m2, γ, v) and x2(m1, m2, γ, v) as functions

of γ for m1 > m2. The dashed graph is x1(m1, m2, γ, v) and the solid graph is

x2(m1, m2, γ, v). As could have been expected, individuals of the smaller group invest

14



more. However, this does not translate into group impact, as can be seen from the

right panel of Figure 2. In this figure, the dashed graph is q1(m1, m2, γ, v) and the

solid graph is q2(m1, m2, γ, v). First of all, the impact technology translates group

1’s efforts into an increasing advantage with respect to impact as γ → 0+. That

is, even though individual efforts of group 1 are below those of group 2, q1 > q2

As soon as γ is turning negative, the impact-advantage passes over to group 2.

It follows also from Figure 2 that effort converges to zero as γ approaches zero.

This follows from a specific property of the CES-impact function: If all members of

the same group exert identical effort, qi(xi) = m
1/γ
i xi holds

7. The equation shows

that in case that γ → 0+ the impact of the group increases even if group size and

effort remains constant. Hence, effort goes to zero because the groups are becoming

infinitely productive. The opposite is true for γ → 0−: the impact of the group

decreases even if group size and effort remains constant. Effort goes to zero because

the groups are becoming infinitely unproductive. End of Example 2.

If we follow Alchian and Demsetz (1972) and see a certain degree of comple-

mentarity in effort as constitutive for a group problem, Proposition 3 and the above

discussion have important implications for our perception of the relevance of rela-

tive group size. The discussion about the existence of a “small-group advantage”

or a “large-group advantage” crucially depends on the degree of complementarity

between group-members efforts. Hence, we do not have any a priori reason to believe

in the existence of such an advantage.

4.2 Comparative statics

We now turn to the comparative-static analysis of the influence of the elasticity of

substitution on the behavior in the contest using the approach developed by Cornes

and Hartley (2005). Most interestingly, individual valuations in relation to the val-

uations of the other group members define the individuals’ share of the amount of

effort spent by the group, xk
i
∗
/X∗

i . The valuation of other groups have no effect on

these shares. As was to be expected, a larger elasticity of substitution γ increases

ceteris paribus the dispersion of these shares, since the exponent discriminates more

7To eliminate this property, one could normalize the impact function such that qi(. . . ) =

(
∑

(xk
i )

γ)1/γ ·m
(γ−1)/γ
i . This however leads to a function that no longer converges to the min(. . . )

function if γ → −∞, which we desire here. Such a normalized impact function may however be of

interest elsewhere.
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strongly between differences in valuations. The next proposition states the effect of

γ on the individual shares.

Proposition 6.

∂
xk
i

Xi

∂γ
R 0 ⇔ vki R

∏

l

vli





vli

1
1−γ

∑
s vs

i

1
1−γ





.

at a point where the participating groups remain the same.

Proof. Taking the derivative of (11) with respect to γ yields

∂
xk
i

Xi

∂γ
=

vki
1

1−γ

∑

l v
l
i

1
1−γ

1

(1− γ)2

(

ln vki −

∑

l v
l
i

1
1−γ ln vli

∑

l v
l
i

1
1−γ

)

(14)

The RHS of the above equation is positive whenever the term in brackets is positive.

Setting ln vki ≥
∑

l v
l
i

1
1−γ ln vli/

∑

l v
l
i

1
1−γ and rearranging yields the above condition.

The proposition implies that for all group members with a valuation above the

weighted geometric mean, the share of total group effort increases with γ. The result

shows that the dispersion of valuations plays a crucial role for the comparative-static

effects of γ. To get a better intuition for this result we return to Example 3.

Example 3 continued: If the game is symmetric between groups but group mem-

bers differ in their valuation of the rent, we have seen in (6) that γ may influence the

behavior in the contest. Figure 3 shows how a change in the within-group disper-

sion of valuations vmax − vminL influences behavior, and we have assumed that this

change is a mean-preserving spread of the form dvmax = −dvmin, where dvmax, dvmin

are changes in the valuation of the rent such that the average income of the group

remains unchanged. The dashed lines correspond to vmax whereas the solid lines cor-

respond to vmin. Lines A and D correspond to a large spread vmax − vmin and lines

B and C correspond to a small spread vmax−vmin. First of all, the figure shows that

as γ converges to 1 the equilibrium converges to the Baik (2008) case where only the

high-valuation types contribute. In addition, a reduction in the spread vmax − vmin

reduces the maximum, which implies that B converges to a smaller value than A. At

the opposite side, if γ converges to −∞, we approximate the result by Lee (2008):

Both, xmin and xmax converge to the same value that is determined by the har-

monic mean of the valuations in the group. A reduction in the spread of valuations
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Figure 3: Effort levels for different values of γ for a high and a low spread of valua-

tions.

vmax−vmin increases the harmonic mean, which implies that B and C converge to a

higher level than A and D. For the intermediate values of γ we get a steady increase

in xmax and a steady decrease in xmin as γ increases. In the limit case vmax = vmin

this line would be straight. End of Example 3.

It has been impossible to derive general results for the effect of γ on winning

probabilities Q∗
i (γ)/Q

∗(γ) and the total impact Q∗(γ). However, it is possible to

generate further insight in the important case where all individuals in the same

group have the same evaluation (vki = vi). This separates the effect of the dispersion

of the valuations the group members have from the effect of the group size and the

total valuation the group has. The results are summarized in the next proposition.

Proposition 7. Let γ 6= 0. a) Assume that vki = vi ∀i, k and ∃i s.t. mi > 1, then

Q∗(γ) is strictly decreasing in γ.

b) Assume that vki = v ∀i, k, then

∂
Q∗

i (γ)

Q∗(γ)

∂γ
R 0 ⇔ mi ⋚

∏

j

m







m

γ−1
γ

j

∑
k m

γ−1
γ

k







j .
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c) Assume that vki = vi ∀i, k, then

∂
Q∗

i (γ)

Q∗(γ)

∂γ
R 0 ⇔ mi ⋚

∏

j

m







m

γ−1
γ

j
v−1
j

∑
k m

γ−1
γ

k
v−1
k







j .

Proof. Taking the derivative of (9) with respect to γ where the participating groups

remain the same yields:

∂Q∗(γ)

∂γ
= −

n− 1
(

γ
∑

j m
γ−1
γ

j v−1
j

)2

∑

j

m
γ−1
γ

j v−1
j lnmj . (15)

Therefore, for a given set of participating groups, total effort is decreasing in γ unless

mi = 1 ∀i. From Lemma 2 we know that total effort is a continuous function in γ

if γ 6= 0, that a group that is becoming inactive for some γ fades out smoothly.

Total effort can thus be expressed as a continuous, piecewise strictly decreasing

function, which is a strictly decreasing function as well. Note again that Q∗(γ) may

be discontinuous at γ = 0 and thus the results only hold below and above this

discontinuity. This establishes part a) of the proposition.

Similarly, if all individuals within one group are identical (vki = vi) it follows for

a given n∗:

∂
Q∗

i (γ)

Q∗(γ)

∂γ
= −(n− 1)

m
γ−1
γ

i v−1
i

(

γ
∑

j m
γ−1
γ

j v−1
j

)2

(

∑

j

m
γ−1
γ

j v−1
j ln

mi

mj

)

, (16)

from which part c) of the proposition can be obtained by the fact that the last term

in brackets determines the sign of the total derivative because we again know from

Lemma 2 that total effort is a continuous function in γ if γ 6= 0. Setting vi = v ∀i

then yields part b).

Part a) of the proposition states that under the assumption that all individuals

within each group are identical, the total impact of all groups into the contest success

function is decreasing in γ. For the intuition underlying part b), suppose we make

the further simplifying assumption that there are only two groups i and j. It follows

that ∂(Q∗
i (γ)/Q

∗(γ))/∂γ is negative if and only if mi > mj : The free-rider problem

is intensified by larger values of γ for larger groups. If investments within a group

become less complementary, the larger group suffers more from weaker incentives.
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Hence, its relative share of impact and thereby winning probability goes down. This

property can be nicely seen in Figure 1 where the winning probability of the larger

group is decreasing for all values of γ 6= 0. The figure and the above analysis also

show that this result has to be interpreted with caution because of the potential

discontinuity of pi at γ = 0. The same logic carries over to the case of more than

two groups. However, the relative standing of group i then depends on the weighted

geometric mean of all group sizes, as established in part c) of the proposition.

This intuition is further confirmed by the fact that
∂

Q∗

i (γ)

Q∗(γ)

∂γ
= 0 if mi = m even for

differing valuations for all i, which follows immediately from c). This corresponds to

Corollary 1 and Example 1. In general, c) captures the effect of γ if the valuations

differ between, but not within groups. The effort share of a homogenous group de-

creases in γ whenever the number of group members is above the valuation-weighted

geometric average of group members across all groups.

5 Concluding Remarks

This paper has started from the observation that group effort can in general not be

additively decomposed into some sum (of functions) of individual efforts. The use of

a CES-impact function has allowed to identify the main channels of influence of the

elasticity of substitution on the behavior in and the outcome of contests. If groups

are of equal size and homogenous (i.e. all group members have the same valuation

within the group), the elasticity of substitution does not matter. For heterogenous

groups, the higher the complementarity of efforts, the lower the divergence of efforts

among group members. As we have seen in Example 3, this does not necessarily

lead to an advantage of the group with more diverse valuations. If all groups are

homogenous but differ in size and valuations, we were able to state the effect of

the elasticity of substitution on the winning probabilities of a group. Except for

the discontinuity at the Cobb-Douglas case (γ = 0), higher complementarity tends

to favor large groups. Near the discontinuity, small groups are at an advantage for

γ < 0, while for γ > 0, large groups are at an advantage. In both cases, if there is a

single largest (smallest) group, their advantage will become infinitely large leading

to effort levels converging to zero. Near the cases of perfect complements and perfect

substitutes, the equilibrium converges to special cases of the equilibria in Baik (2008)

and Lee (2008), respectively.
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The results give a coherent picture about the role of heterogeneity of groups sizes

and valuations between group members. However, it is clear that the the assumption

of a linear homogenous impact function combined with the assumption of a contest

success function that is homogenous of degree zero has greatly simplified the analysis.

We are nevertheless confident that our analysis provides some general insights into

the relevance of the degree of complementarity of group members’ efforts for their

behavior in contests.

Appendix A: Proof of Lemma 1

Proof. We first check that the interior solution is a local maximum. The first-order

condition of the maximization problem (2) can be written as

Q/i

Q2
Y

1
γ
−1

i =
(yki )

1
γ
−1

vki
. (A.1)

The second-order condition is satisfied if

vki Q/iY
1
γ
−2

i

γQ2

(

1− 2Qi

Q

γ
− 1

)

−

1
γ
− 1

γ
(yki )

1
γ
−2

< 0. (A.2)

Solving the first-order condition for vki and inserting the expression into the second-

order condition we obtain, upon rearranging:

1− 1
γ

γ

(

1−
yki
Yi

)

− 2
1

γ2

Qiy
k
i

QYi
< 0, (A.3)

which holds for all γ ∈ (−∞, 1). Therefore, all solutions of the first-order condition

are local maxima taking the other players’ strategies as given. The best responses are

either given by the solution to the first-order condition, or by a corner solution. From

equation (1) it is clear that the only possible corner solutions are non-participation

with xk
i = 0. We thus need to verify that whenever the best response of one member

of the group is given by the solution to the first-order condition, it is not possible

for any member of the group to have the best response xk
i = 0. First, we will show

that whenever there exists a solution of the first-order condition for one individ-

ual of a group, it exists for all individuals: From the first-order conditions of two

representative group members l, k we obtain the within-group equilibrium condition:

∀l, k < mi :
(yki )

1
γ
−1

vki
=

(yli)
1
γ
−1

vli
(A.4)
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for all members k, l of group i. Both, the left-hand side (LHS) and right-hand side

(RHS) of (A.4) are strictly increasing in yki , y
l
i if γ ∈ (0, 1). For γ ∈ (−∞, 0) both

LHS and RHS of (A.4) are strictly decreasing in yki , y
l
i. Thus, for each yki there

exists a yli such that the within-group equilibrium condition holds. Since for all

group members the LHS of (A.1) is equal, there exists a positive solution to the

first-order condition (FOC) for either all group members or none.

Second, we need to show that xk
i = 0 is not a best response if it is a best response

for another individual l in the group to play xl
i > 0. We do so by contradiction:

Obviously, for a corner solution with xk
i = 0 and xl

i > 0 the following condition

needs to hold:

∂πk
i

∂xk
i

=
Q/i

Q2
Y

1
γ
−1

i (xk
i )

γ−1
vki − 1

∣

∣

∣

xk
i = 0, xl

i > 0
≤ 0. (A.5)

From the fact that there is an individual l in the group, which participates with

strictly positive effort, we know that

∂πl
i

∂xl
i

=
Q/i

Q2
Y

1
γ
−1

i (xl
i)
γ−1

vli − 1
∣

∣

∣

xk
i = 0, xl

i > 0
= 0. (A.6)

Inserting (A.6) into (A.5) yields:

(xl
i)

1−γ

vli
−

(xk
i )

1−γ

vki

∣

∣

∣

xk
i = 0, xl

i > 0
≤ 0 (A.7)

from which we obtain by inserting xk
i = 0:

(xl
i)

1−γ
∣

∣

∣

xl
i > 0

≤ 0 (A.8)

which is a contradiction for all γ < 1. Thus there does not exist an equilibrium

in which for one player in the group a corner solution at zero effort investments is

obtained while for another an interior solution holds.
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Appendix B: Proof of Lemma 2

Proof. If there exists a solution to the FOC, it is characterized by the following

equation, obtained by solving (A.4) for yli and summing over all l,

Yi = yki
∑

l

(
vli
vki

)
γ

1−γ . (B.1)

We can now solve equation (A.1) for Yi explicitly:

Yi =
(
√

Q/iVi(γ)−Q/i

)γ

. (B.2)

Thus, the condition for a strictly interior solution is (
∑

l v
l
i

γ
1−γ )

1−γ
γ > Q/i. Note that

this condition is the same for all members of a group. In all other cases, we get

yki = 0 for γ ∈ (0, 1) and yki = ∞ for γ ∈ (−∞, 0) as was to be expected and which

corresponds to xk
i = 0. In these cases we have ∀l : yki = yli by equation (A.4) and

by the definition of Qi, we have: Qi = Y
1
γ

i = 0. We can write a group best-response

function as

Q̂i(γ,Q/i) = max
(

0,
√

Q/iVi(γ)−Q/i

)

. (B.3)

establishing part a), since by Lemma 1 either for all group members we obtain an

interior solution or for none. Since the best-response function is continuous in γ 6= 0

and in the strategies of the other groups Q/i, if a unique Nash equilibrium exists,

the equilibrium strategies must also be continuous in γ. This establishes part c) of

Lemma 2. What remains to be shown is which groups participate in equilibrium.

Suppose a group ζ participates in equilibrium with strictly positive effort, while a

group ζ + 1 does not participate. Let Q∗
i (γ) be Qi in equilibrium (we ignore here

that these are best responses and should thus be functions of Q∗
/i) and let the other

variables introduced above be defined correspondingly in equilibrium. Then by the

above condition in equilibrium we have for any given γ:

Vζ(γ) > Q∗
/ζ(γ)

Vζ+1(γ) ≤ Q∗
/ζ+1(γ) (B.4)

Since by assumption Q∗
ζ+1(γ) = 0, we have Q∗

/ζ+1(γ) = Q∗(γ). Solving (7) for Q/i

tells us that in an equilibrium where group ζ participates, the following needs to be

true:

Q∗
/ζ(γ) =

Q∗(γ)2

Vζ(γ)
. (B.5)
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We now insert (B.5) into the first equation of (B.4) and the condition Q̂/ζ+1 = Q̂

into the second equation. Thus the condition (B.4) becomes

Vp(γ) > Q∗(γ)

Vζ+1(γ) ≤ Q∗(γ) (B.6)

in equilibrium. It follows that Vζ(γ) > Vζ+1(γ). We can thus order the groups such

that Vi(γ) ≥ Vi+1(γ) and define n∗(γ) as the group with the highest index number

that still participates with strictly positive effort. By (B.6), all groups i ≤ n∗(γ)

participate. This establishes part b) of Lemma 2.

Appendix C: Proof of Proposition 5

Proof. We will make use of the following results:

lim
γ→0+

V
γ

1−γ

i = lim
γ→0+

∑

l

(vli)
1

(1/γ)−1 = mi (C.1)

lim
γ→0+

Vi(γ) = lim
γ→0+

(

∑

l

(vli)
1

(1/γ)−1

)(1/γ)−1

=







∞, mi > 1

vki mi = 1
(C.2)

Further,

lim
γ→0+

Q∗
i (γ)

Q∗γ
= lim

γ→0+
1−

n∗(γ)− 1

1 +
∑

j 6=i
Vi

Vj

(C.3)

= lim
γ→0+

1−
n∗(γ)− 1

1 +
∑

j 6=i(
mi

mj
)
1−γ
γ

(C.4)































< 0, mi = minj(mj), mi < m2

= 0, m1 > mi ≥ mj, ∀j

= 1/n∗, m1 = mi = · · · = mn∗

= 1, mi > m2 ≥ . . .

(C.5)

Note that by the first case all groups who do not have at least a group size

equal to the second largest group will not participate for a sufficiently small γ. This

is because for γ decreasing towards 0, iteratively all groups with minimal size will

drop out of the contest. Thus, we have part a) of the proposition. For the case that
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there are n∗ − 1 participating groups of equal size strictly smaller than the largest

group, their winning probability converges to zero (and thus for the largest group

to one). For the case of n∗ equal groups with maximal size it approaches 1/n∗. This

establishes part e).

Suppose now we are at a γ small enough, such that only the groups with size

mi ≥ m2 participate in the contest. Then if m1 = m2 = mi = · · · = mn∗ , we have:

lim
γ→0+

Q∗(γ)

V
1

1−γ

i

=
n∗ − 1

n∗
(

(mi)1/(1−γ)

mi

)
1−γ
γ

=
n∗ − 1

n∗ ·mi

. (C.6)

If m1 > m2 = mi = · · · = mn∗ , we have:

lim
γ→0+

Q∗(γ)

V
1

1−γ

i

=
n∗ − 1

( (mi)1/(1−γ)

m1
)1/γ−1 + (n∗ − 1) · ( (mi)1/(1−γ)

mi
)1/γ−1

=
n∗ − 1

0 + (n∗ − 1)mi

=
1

mi

.

(C.7)

Finally, for the largest group, if mi > m2 ≥ . . . , we have:

lim
γ→0+

Q∗(γ)

V
1

1−γ

i

=
n∗ − 1

mi + (n∗ − 1) · ∞
= 0. (C.8)

Further, limγ→0+(v
k
i )

1
1−γ = vki . Putting the results together, we have:

lim
γ→0+

xk
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
















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· 1/n∗ · vki , m1 = m2 = mi = · · · = mn∗

1
mi

· 0 · vki , m1 > m2 = mi = · · · = mn∗

0 · 1 · vki , mi > m2 ≥ . . .

, (C.9)

=
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






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

(n∗−1)vki
n∗2mi

, m1 = m2 = mi = · · · = mn∗

0, m1 > m2 = mi = · · · = mn∗

0, mi > m2 ≥ . . .

, (C.10)

which establishes part b).

Given this result, it directly follows from (C.2) and (C.9):

lim
γ→0+

Q∗ = lim
γ→0+

n∗(γ)− 1
∑

j
1

Vj(γ)

=



























∞, ∀j : mj > 1

n∗(γ)−1
∑n∗

j=1
1

v1
j

, m1 = · · · = mn∗ = 1

n∗(γ)−1
∑n∗

j=2
1

v1
j

, m1 > m2 = · · · = mn∗ = 1

, (C.11)

which establishes part d) of the proposition.
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Appendix D: Proof of Proposition 6

Proof. The proof is in its structure almost identical to the one for Proposition 4 and

will thus not be stated here.8 Note that

lim
γ→0+

Vi = lim
γ→0+

(
∑

l

(vli)
1

(1/γ)−1 )
1
γ
−1 (D.1)

=











(

1
mi

)
1
0
−1

mi > 1,

v1i , mi = 1
(D.2)

=







0, mi > 1

v1i , mi = 1
(D.3)

which explains intuitively, why the results are reversed such that groups with small

group sizes participate only and limγ→0− Q∗(γ) = 0.

8A complete proof can, of course, be obtained from the authors upon request.
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