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1. Introduction

Structural instability seems to characterize many forecasting models fitted to eco-
nomic and financial data. In the most systematic study to date of a very large set
of macroeconomic time series, Stock and Watson (1996) find evidence of structural
instability in the majority of the series they consider. Many other studies have con-
firmed the presence of breaks in economic and financial time series; see, inter alia,
Alogoskoufis and Smith (1991), Garcia and Perron (1996), Bai and Perron (199 ),
Clements and Hendry (1998), Pesaran and Timmermann (2001) and Timmermann
(2001).

Breaks or jumps in the parameters of forecasting models could arise from factors
such as major changes in market sentiments, burst or creation of speculative bub-
bles, changes in monetary and debt management (for example, from money supply
targeting to inflation targeting or from short-term to long-term debt instruments).
The end of a national or global recession is another example that would be well
suited to be modeled as a discrete shift in the parameters of the underlying data
generating process.

Some models are even built around recurring shifts in the parameters of the
underlying data generating process. For example, Hamilton (1989) studies Markov
switching models that are driven by a latent variable process subject to discrete
changes. Regime switches seem to characterize a host of financial time series includ-
ing interest rates (Ang and Bekaert (2002), Driffill and Sola (1994) Gray (1996))
and stock market returns (Ang and Bekaert (2001), David and Veronesi (2001),
Perez-Quiros and Timmermann (2000)). The parameters may be drawn either
from a finite number of recurring states or from an expanding set of states as in
the Bayesian change-point setup considered by Chib (1998).

In this paper we consider the problem of forecasting under breaks in the data
generating process and characterize the factors that determine the loss in direc-
tional forecasting accuracy from ignoring information about breaks. Unconditional
methods for estimation of a forecasting model such as a rolling or an expanding
window let the window size vary as a deterministic function of time. These methods
will produce biased and inconsistent forecasts in the presence of breaks. A condi-
tional approach that determines the window size on the basis of the estimated point
of the most recent break can be expected to do better. We show this point more

formally and quantify the factors that determine the gains from using a conditional



approach.

Structural instability in the data generating process could well have a signif-
icant impact on the performance of existing forecasting methods. Unfortunately,
the implications for forecasting of such breaks have not been extensively explored
although it is known that most econometric forecasting models perform very poorly
around cyclical turning points. Turning points are of obvious interests to econo-
mists so it is important to gain a better understanding of how best to design and
estimate forecasting models in the presence of parameter instability. In the pres-
ence of breaks, it is not clear, for example, that using the full data set to estimate
a forecasting model leads to better predictions than if a carefully selected subset
of recent data is used.

Instability in prediction models is particularly important for identifying turn-
ing points or the ‘direction’ of the market. Since the seminal work by Henriksson
and Merton (1981) on market timing and predictability of the signs of security
returns, there has been extensive interest in this problem in both economics and
finance. Leitch and Tanner (1991) find that the correlation between a sign test and
the profits made from following investment advice dominates the correlation be-
tween profits and standard statistical measures of predictive accuracy such as mean
squared forecast error. Despite its importance, the problem of sign predictability
when the underlying return generating process may have undergone a structural
change has not yet been addressed in the forecasting literature. We consider this
issue in the context of a simple linear regression model and compare both uncondi-
tional and conditional approaches to determination of the window size used in the
estimation of a forecasting model.

Testing and estimation in the context of models that are subject to structural
instability has been the subject of considerable research. Chow (1960) proposed an
F-test for a single structural break in a linear regression model. This test assumes
that the date of the break is known. Brown, Durbin and Evans (1975) developed
Cusum and Cusum Squared tests to deal with the case where the time of the break
is unknown. Recent work has extended these earlier tests in several directions to
allow for multiple breaks, unit root dynamics and heteroskedasticity. Ploberger,
Kramer and Kontrus (1989), Hansen (1992), Andrews (1993), Inclan and Tiao
(1994), Andrews and Ploberger (1996), Chu, Stinchcombe and White (1996) and
Bai and Perron (1998, 2002) develop tests for the consistent estimation of the size



and timing of breaks. Elliott and Mueller (2002) consider optimal tests for models
with either many or relatively few breaks.

The plan of the paper is as follows. Section 2 introduces the break point model
and derives analytical results for the mean and variance-covariance matrix of the
joint distribution of the forecast and realization. Section 3 demonstrates how to
quantify the market timing information in forecasting models that account for
breaks relative to models that ignore these. Section 4 provides numerical examples
that illustrate the analytical results. Section 5 concludes and discusses the empirical

relevance of our findings. Mathematical proofs are provided in an Appendix.

2. A Simple Break Model

To keep the analysis tractable, we consider a linear regression model subject to a

single structural break occurring at some date, 7}

vy = X, 101+ uy, u; ~ 11D(0,0%), t=1,2,..T

1
X;_ 189 + w, uy ~ I1D(0,03), t=T1+1,...,T+1. (1)

y; is the variable that is being predicted, x; 1 is the p x 1 vector of pre-determined

variables, 3, (i = 1,2) are p x 1 vectors of regression coefficients, and u; is a

serially uncorrelated error term that is independently distributed of x; for all ¢ and
s, possibly with a shift in its variance from o2 to o2 at the time of the break point.
Suppose we are interested in predicting y7,, conditional on period 7" informa-
tion, Q7 = (yr, X1, Y11, X711, -..), and the knowledge of the break at point t = 77,
but not the size of the break. The question is whether we should use only post break
observations or is it optimal to use some pre-break observations as well? Denote
the pre- and post-break observations by v; < T} and v, = T'— T}, respectively, and
denote the Ordinary Least Squares (OLS) estimate of the regression coefficients
estimated over the sample v = vy + vy by Bm. Then the point forecast of yr.; is
given by!
Yry1 = X/TEW

!An alternative predictor of the sign of y741 is developed by Skouras 1999) who considers

estimating 3 by maximizing
T

Z I [ye (xi-18)]

t=T)—v1+1

where I [A] is an indicator function that takes the value of unity if A > 0 and zero otherwise.



where

R T -1/
B, - (zxt_lxg_l> (zxt_lyt) ,
t=m t=m
andm=T,—v,+1>1.

In general it is complicated to derive analytical expressions for measures of

predictive accuracy. However, in the very simple case where

2 2 2
p = 1,0 =0;=0"

u, ~ TIN(0,0%), z; ~ IIN(p,,w?)

we can derive tractable results for how the correlation between yr1 and ypiq
depends on the size of the post-break window (vs) relative to the size of the pre-
break window (vy).

In this simple case

yry1 = BoTr + urya, (2)
~ Zim Ti_1Ut
yri1 = Borr + (By — Bo)mrr + 2 | ZF—— |, (3)
Zt:m x%—l
where
T :172
O = O (T1, T) = S0
Zt:m Ti 1

The appendix proves the following result:

Proposition 1
Suppose that the forecast error u; and the state variable x; are serially uncor-

related and normally distributed,

()= () (02))

Then the mean and variance-covariance matriz of ( yri1,Yre1) are given by

E(yT+1) =y = Bopty, (4)
U1

Eyri1) = py = Bopy, + (;) (B1 = Ba) by (5)

2 2, 2
Var ?iTH =3= 2+ 92 ; (6)
Yria g h

4



where

B = V(ira) = 0%+ Biw? + 0 ()(8, - B2)*0
1

+26,(8; — By)w*(—). (7)

14

and
9= Cov(yrar, Girer) = Bi” + (S1)B,(By — Br)u” ®)

The results in Proposition 1 are exact. The parameters ¢ and @ are compli-
cated functions of the window size parameters and the means and variances of the
underlying series. They are defined by (20) and (19) in the Appendix.

The proposition shows how the correlation between yr,; and yr,1 depends on
the size of the pre-break (v1) and post-break (vy) window and some intuition can
already be gathered from these expressions. Suppose that a window of v; > 1 pre-
break observations has been used to estimate the regression coefficient of x. Then
the estimated mean of yr.1, namely p, = Byp, + (2) (81 — Ba)p,, will be biased,
although the forecast error variance will also be smaller than if only post-break
observations were used (v; = 0). Likewise, the larger is the break size, |3, — 3],
and the smaller the post-break relative to pre-break observations (v9/v;) the weaker
is the correlation between predicted and realized values and thus the lower the sign

test, statistic.?

3. Sign Prediction under Breaks

In this section we explore analytically the effects of structural breaks on the direc-
tional forecasting accuracy of procedures that either ignore a break or account for
it. We focus on directional forecasting accuracy since this is now an increasingly
popular metric for forecasting performance. In contexts such as market timing this
measure is closely related to the economic value of forecasts used in asset allocation
decisions.

The probability of correctly predicting the sign of y;1 is given by Pr(yr 19741 >
0). We measure sign predictability by means of the nonparametric market timing
test statistic of Pesaran and Timmermann (1992) which is asymptotically equiva-

lent to the test developed originally by Henriksson and Merton (1981) but is more

2Note that vy /v = 1/(1 + ve/v1).



convenient to work with. Granger and Pesaran (2000) show that this market timing
statistic can also be written as

pT:M

(fr(lffr) ) 127
w(1l—m)

where n is the number of observations in the forecasting sample, H is the “hit rate”

(9)

and F' is the “false alarm rate”, which are defined as

Pr(yri1 >0, yri1 > 0)
Pr(yry1 > 0)

p ~

Pr(yrs1 < 0)

Finally 7 = Pr(yr41 > 0), and @ = Pr(yr41 > 0) are the probabilities that the

H —

Y

realization and predicted values of returns are positive, respectively. The hit minus
false alarm rate has a very intuitive interpretation as the probability of correctly
predicting the sign of a positive return over the probability of wrongly predicting
the sign of a negative return. It is equal to zero for all forecasts that do not have any
information about the sign of returns so a necessary condition for market timing
information is a strictly positive value of this statistic.

The unconditional distribution of gy, is a mixture normal and can be derived

in the following manner. Conditional on X7 = (Zpm_1, Tm, -..., T1) We have

Yri1 ’ X ~ N (s O-gnT)a

where

tmr = Bazr + (81 — B2)0mr,

2
2 g

2
xTTi.
Zt:m :L‘tzfl
Denote the joint distribution of X7 by f(X,,r). Then the unconditional distrib-

ution of yr,; is given by

fae = [ (w) F (X)X,

OmT

where

~ AN 2
Yr+1 — Mpyr 2 —1/2 —1 Yr+1 — B
v ( OmT ) ( ﬂ-O-mT) exp [ 2 ( OmT ) ]

6



The probability Pr (y711 > 0) can now be computed using f(471):

Pr (yr41 > 0) / / <M> J(Xpr)dXprdy.
Y 0 mT O-mT

In the case where z; ~ IIN(u,,w?*) we have

T

X,r) = [To (“252).

t=m

Computation of Pr(yr;; > 0) in general involves high dimensional multiple inte-
grals. But under z; ~ ITN(p,,w?) the integral for f(yr,1) can be written in terms
of xp , St 27 /w? and 3, .., 27 /w? which are independently distributed
with known distributions, namely ITN (u,,w?), x2 (A1) and x2 (A2), respectively,
where x2 (A;) denotes a non-central chi-squared distribution with the non-centrally

parameter, \; = v; (u,/ w)z. In the appendix we show the following result:

Proposition 2
Under the assumptions of Proposition 1, the probabilitities underlying the sign

prediction problem are given as follows:

Pr (Jrpq >0) = /yo/ OO/ /X (%)

¢ (z )f(le()‘l))f XUQ(AQ))dZ dx;, dx,dy.

Pr(yry1 > 0)=¢ <\/%>
2

Pr(yryr > 0,9r41 > 0) :/ f(y,y)dydy.
y=0.J§=0
where

-~ > R yr+1 — Baw 2+ py
fr,yrp) = / / / ¥ ( ~ 2 )>
z=—00 %1=0 %2=0 o

o (P ) PO, O, D) i

OmT

This proposition characterizes the market timing value of the forecast as a

function of the parameters of the underlying data generating process and the design



parameters of the estimation window. The significance of the proposition lies in
its reduction of a high-dimensional problem to a far more tractable problem of a
much lower dimension. In general, computation of the sign probabilities require
integration over an (7" — m + 1) dimensional space which, by the proposition, can
be reduced to integration over a much smaller three or four dimensional space.

In practice the computations of the sign probabilities is best be carried out by
stochastic simulations. To compute Pr (yr,1 > 0) numerically, generate XmT, U(z)
as draws from the assumed distributions of z; and u;, where U, = (U, U1y -y U1 1)
and as before X,,r = (Zm_1,%m, ..., 7). Then use these draws to compute @#)H

and finally approximate Pr (g1 > 0) by

Pr g (yri1 > 0) - ZI( T+1)

where I(a) takes the value of unity if @ > 0 and 0 otherwise. To compute the joint

probabilities, for given draws XSBT, U;?T, compute @\(Tzrl and y(Ti)+1 as

0 _

Y1 52517%) + “gz)ﬂa (11)

Z 1, Z ST L0 0
Hia = Bal) + (B — B0l +af) | T |
Zt:m (mt—l)

. 2
. 2"
Z?:m (xgi)l)

(yT+1) (ygrz)ﬂ) 5

Prg(yr+1 < 0,yr1 > 0) ZI (yT+1) ( ygrzzrl)

(12)

where

L) —

Then

Prr(yri1 > 0,yr1 > 0) =

IIM:;

These probabilities can easily be computed under a break in error variances (o, #
09) or when the regressors are serially correlated, or the errors are t-distributed
and subject to conditional volatility.

The next section provides some numerical illustrations of how parameter breaks
affect market timing under three common types of estimation window, namely an

expanding, a rolling and a post-break window.
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4. Numerical Results

The propositions in the previous sections allow us to determine the exact value of
the correlation between the forecast and the realization as well as the value of the
market timing statistic as a function of the window of data used to estimate the
forecasting model and the size and timing of a break in the linear regression model.
In this section we compare the predictive accuracy of three different methods for
window size determination, namely a post-break method that only uses obser-
vations after the break, a fixed-length rolling window method and an expanding
window method.

The results presented in this section assume that 5, =1, p, = 0.5, 0 = 6 and
w = 1.5. 100 pre-break observations are assumed to be available. In the context of
a return forecasting model these parameters correspond to volatility of six percent
and a population R%—value of 0.06. This matches empirical evidence on monthly
US stock returns. The break in the regression coefficient ranges from 0 to 3 which
is realistic in view of the substantial parameter variation found empirically for
this type of data. The rolling window follows standard practice in economics and
finance and uses v = 60 observations, while the expanding window uses the full set

of v; = 100 pre-break observations in addition to the post-break data points (vs).

4.1. Correlations between Forecasts and Realizations

Figures 1-3 use Proposition 1 to plot the correlation between yr,; and yr.; as
a function of the value of 3, which tracks the break size |3, — 3,]. Since 3, is
kept constant and the break size is varied by changing the value of the pre-break
parameter, 3,, the correlation is independent of break size for the post-break win-
dow method. In contrast, the expanding and rolling window methods mix the
post- and pre-break data samples so the correlations arising from these approaches
deteriorate as the difference between 3, and (3, increases.

First consider the case with 10 post-break observations (Figure 1). In the ab-
sence of a break, the expanding window method is most efficient and thus produces
the highest correlations for zero or very small breaks. For these situations the cor-
relation between yr1 and g1 exceeds 0.2. As the break size grows larger than
one, the post-break method starts to dominate since it is not affected by the result-

ing bias due to using pre-break data points. The rolling window method also does
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better than the expanding window since it is less biased as it relies on relatively
fewer pre-break data points.

As the distance to the most recent break grows to 25 observations (Figure 2) or
100 observations (Figure 3), the post-break method increasingly starts to dominate
the other approaches and it is only for very small breaks that there is a gain from
using an expanding window. Even when a gain is possible from using a rolling or an
expandind window, the gain tends to be very marginal. Notice that the post-break
window method always dominates the rolling window in Figure 3 since the latter

is inefficient as it does not use all post-break data.

4.2. Market Timing Values

Figures 4-6 use proposition 2 to show how the market timing information in the
predicted variable depends on whether an expanding or rolling window or a condi-
tional break point method is used. The figures plot the hit minus false alarm rate
(H — F) as a function of the break size. We compute the values of this market
timing statistic using the stochastic simulation methods described in the previ-
ous section, setting the number of replications, R, equal to one million. This is
sufficiently large to make the results quite precise.

Figure 4 again assumes a small post break window of 10 observations, namely
vy = 10. Again [3, is kept constant and the break size is varied by changing the value
of the pre-break parameter, 3;. This means that the hit minus false alarm rate is
independent of break size for the post-break window method while it deteriorates
for the expanding and rolling window methods that mix the post- and pre-break
data samples.

In the absence of a break (3, = [3,), as to be expected the expanding and
rolling windows produce better sign predictions than the post-break window which
wrongly ignores pre-break data. However, as the break size increases, the post-
break method begins to dominate. In the presence of a break, both the expanding
and rolling windows produce biased forecasts since they include pre-break data to
estimate the forecasting model. In fact these methods generate a negative sign
statistic for break sizes above one.

Figure 5 considers a longer post-break window and sets vy = 25. If only post-
break information is used, H — F' is constant around 12 percent irrespective of

break size. This is approximately 4% higher than in Figure 1 where less data was
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Figure 5:
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available for parameter estimation (v = 10). The expanding window generates
negative values of the market timing statistic for a break size above 1.2. The
rolling window only does marginally better. As the break size |3; — (5| increases,
the hit minus false alarm rate continues to decline for the expanding and rolling
windows, suggesting that a forecasting model that fails to account for a break can
lead to a severe deterioration in market timing performance.

Figure 6 assumes that v; = vo = 100, implying that a break occurred 100
observations prior to the forecasting point. Since more post-break information
is now available, the hit minus false alarm rate rises to 14 percent for the post-
break method. Although the rolling window does not use any pre-break data,? it
still underperforms slightly relative to the post-break method since it does not use
all 100 post-break data points and hence is inefficient. However, for break sizes
up to around 1, the three methods produce similar results. When the break size
increases beyond this point, the performance of the expanding window that relies
on all pre-break data points quickly deteriorates as the bias effect takes over.

So far, our results have assumed that there is no break in the variance. In some
situations, we would expect that 03 # 2. As noted earlier, allowing for a break in
the variance is feasible provided that we resort to numerical methods for evaluating
the variance of the forecast, 7r,1.% To study the effect of a simultaneous break in
the mean and variance of the forecasting model, we consider two scenarios. In
both cases, the pre-break volatility, oy, is kept fixed at 6. Under the first scenario,
we lower the volatility of the forecast error, o, from 6 to 3, thus increasing the
predictive R? and bringing down the noise in the forecasting equation. Under the
second scenario, we increase o5 to 9, thus bringing down the predictive R

In figures 7-9 we assume o; = 6,05 = 3. First consider Figure 7. Despite
having only 10 post-break data points, the post-break window method generates
a hit minus false alarm rate of 24%. This is higher than the market timing values
produced by the rolling and expanding window methods provided that the break
size is greater than 0.6. For breaks of this size or larger, the forecasts associated
with the unconditional window determination methods are heavily biased. With
25 or 100 post-break data points (Figures 8-9), H — F rises to a level around 30%

and the post-break method now dominates for all but the very smallest break sizes.

3The window size (60) is less than the time since the break (100).
4See the last Section of the Appendix.
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Figures 10-12 assume that o1 = 6,05 = 9 so the R? value of the prediction
equation is very low. Consequently, H — F' is only about 4% for the post-break
method based on 10 observations, although this rises to 6% and 9% when 25 and
100 post-break data points are available, respectively. For break sizes up to around
0.8, it is better to use the expanding window. The intuition for this finding is
that it is difficult to precisely estimate the parameters of the forecasting model
in the presence of very high levels of noise as under this scenario. The bias in
the forecasts due to using pre-break data is therefore more than made up for by
reduced parameter estimation uncertainty provided that the break size (and thus
the bias) is not too large.

We conclude from these results that it is important to account for parameter
instability in directional forecasting models. If the size of the discrete changes in
the underlying parameters is small, it may not be detectable and forecasters may
be best served by simply using an expanding window. As the break size grows
larger, however, precision in directional forecasting requires a real time breakpoint
monitoring procedure that attempts to identify the most recent break without too
much delay and drops data prior to the break. The comparative performance of
such a procedure relative to that of the popular rolling window approach will of
course depend on the length of the rolling window, the size and frequency of breaks

and on how easily and quickly breaks can be detected.

5. Conclusion

Many economic and financial time series undergo sudden, large breaks reflecting
institutional changes, regime switches or breakdowns in market mechanisms. It is
perhaps not surprising that many forecasting models appear to be unstable and
there may be good theoretical reasons for these empirical findings. Timmermann
and Granger (2002) argue that certain forms of predictability in financial returns
are likely to self-destruct as a consequence of the efficient market hypothesis once
the predictable patterns are publicized and sufficient capital is allocated towards
exploiting them.

Forecasting series subject to structural breaks poses a difficult problem, par-
ticularly if one is interested in the sign of the variables as is frequently the case.
In this paper we characterized analytically the factors that determine the forecast-

ing performance of standard approaches to window selection when the true data
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generating process undergoes breaks.

We considered both the case with a pure break in the mean as well as cases
with a simultaneous break in the mean and variance of the forecasting model.
While the latter case is more complicated, it is intuitively clear how a break in
the variance affects our results. If the post-break variance is lower than the pre-
break variance, the new data after the break is less noisy than the pre-break data
and the predictive R? higher. This will lead to better performance of the post-
break estimation window compared to rolling and expanding window methods.
Conversely, if the post-break variance is higher than the pre-break variance, it will
generally be more worthwhile to accept some bias in the parameter estimates of
the forecasting model in exchange for lower parameter estimation uncertainty. This
will benefit expanding and rolling window approaches that typically use pre-break
data over a pure post-break estimation approach.

Our results demonstrate the importance to directional forecasting of correctly
selecting the window used to estimate the forecasting model. On the downside, a
forecasting approach that conditions on a false breakpoint risks being inefficient
as it does not use the full set of available data. On the upside, an approach that
succeeds in correctly identifying a break can reduce the bias inherent in the rolling
window and expanding window forecasts. When breaks are reasonably large and
the distance to the most recent break is not too great, our results suggest that such
gains can be very significant.

These findings are highly relevant to empirical forecasting. In Pesaran and
Timmermann (2001) we find significant market timing gains from conditioning on
the estimated time of the most recent break point in an out-of-sample forecasting
model of US stock returns. When a reversed ordered cusum squared method is
used to determine the time of the most recent break, the percentage of correctly
predicted signs of a monthly return forecasting model rises from 61.6% (based on an
expanding window) to 65.7%. The results presented in this paper help to interpret

such empirical findings.
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Appendix

Proof of proposition 1
The moments of #,, are key to the distribution of yr,; under different window

sizes. To derive these, first note that

T 2

t=m xt—l
Om = T 2 T 2
tem T 1t D1 T

Y

and under x;/w ~ IIN (p,/w,1) we have

0. 4 Xil ()\1) 7
X2, (A1) + x2,(A2)

where x2 ();) is distributed as a non-central chi-squared with v; degrees of freedom

and the non-centrality parameter \; = v;(p, /w)?. Recall that v; =T; —m+ 1 and
vy =T —Ti. Hence 6, has a doubly non-central beta distribution with parameters
v1/2 and v5/2 and the non-centrality parameters A\; and \.> Approximating each

of the non-central x? variables in 6,, and using Patnaik’s approximation (Patnaik

(1949)), we have
appr (B + 2\ 24\
Hm %p ( 2 + 1) ( 2 A ) Beta(fl,fg),

T+ N 2+ 2N

where )
RSy

B ) v

But noting that \; = v;(p,/w)? it is readily seen that f; = v;k where

[+ 2(p,/w)Y
b SR "

S0\ (BN
2 ) \2 12X

5See, for example, Johnson and Kotz (1970) pages 197-198.

and
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Hence 0,, ‘%" Beta(f, f>) and E (6,,) and E (62,) can be directly obtained from

the moments of the (central) beta distribution:

~ fi N 14! _n
E(em) fl—f-fg_yl‘i‘yz_y’
2\ o filfi+1)
Eln) ~ GrpGimiD

k’l/l(]_ + k’Vl)
k’(Vl + 1/2) [k’(Vl + 1/2) + ]_]’

Under the assumptions stated in Proposition 1, the conditional distribution of ¥4

giVGH XT = (ZL'T, rr—1, ) is

E (yr1|Xr) = Boxr + (81 — Bo)0mar, (14)

or, unconditionally,

E (Yry1) = Bapt, + (B — Bo) E (Omzr) -

Also since #,, depends on x1,..,x7r_1, and the x;’s are IIN, then 0,, and z are

independently distributed
B Onarr) = (=) b

v
and

1751

B (1) = Botta + (1) (8 = B
Now consider the second moments of (yry1,yr+1). It is easily seen that
V(yT+1) = ﬁ%uﬂ + 0'2.
To derive V(yr41) we note that

V(yri1) = B[V (yra | Xe)] + V [E (yralXr)] - (15)

Under 0% = 03 = o2, the conditional variance of g, is given by

2,.2

=7 5
Zt:m xtzf 1

V(yr|Xr) =
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Therefore, using the expression for E (yr.1|Xy) given by (14) we have

2
h? =V (jr) = 0’E (T‘”—T2> +V [Boxr + (81 = B2)0mazr] . (16)

t=m xt—l

But

141

V [Byzr + (B — Bo)Omzr] = w4 (8) — o)’ El(Omar — ij)Q] (17)

141

+205(81 = Bo) El(r — 1) (Omar — ij)h

and after some algebra yields

VBsar + (B = Bo)bmar] = B+ (21)(8, - Bo)w™
+2(22)8(8) — B)o” (18)
where (14 k) ( ) (1o )?
+ kvy) + (22) (pg/w
v= 1+ kv ' (19)

To evaluate F (xQT /S xfﬁl), first note that

vih (g
Yem T em(@e1 /W)y
and since x;/w ~ I[IN (p,/w, 1), then

2

— 5 ~ [ (6N,
Zfzm x%—l

where t, (6, A) is distributed as a double non-central ¢-distribution with v degrees

of freedom and the non-centrality parameters § = 1, /w and X = v (u, /w)?. Using

results in Johnson and Kotz (1970, p. 214, eq. 25) we now have

¢ = LK (ﬁ) = (%) eXp(—%A)(1+52) X

= () TR0 -2+
4! T(3v+7)

=0
Substituting (20) and (18) in (16) we have
~ v
B = V(fra) =00+ Fw® + 0 (S)(8) — Bo)*

Vi

+26,(81 — 52)“}2(7)-
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Similarly

g = COU(?JT+17 @\T-&-l)

T
= F {[QQ(xT — fiz) + Ur4] [52($T = pe) + (B = B2) Oy — szl) + T Dt T

v Z?:m xthl
= ng + B5(By — 52)0‘)2(”1/’/)-

Collecting the above results we now have

gT+1 ~F Bty =\
Yri1 Batty + (V_,,l) (B1 = Ba) e

o ﬂng-i-O'Q g
g h )

Break in Error Variances

where

In the case where 07 # o3, the above distributional results hold, except that
the unconditional variance of yry1 can no longer be derived analytically. In this

case we have

2 11 2 2 7' 2
01D i T 1T 03D i1 Ty

(Zfzm mt2—1)2

and since zp is distributed independently of z7 1, x7_2,...we have

V(yrs1 ’XT) = $2T

o ZT—T 1%2 1
E[V(@ralXe)] = (1 +w) o1B s | (i W) 03B t; By
(Zt:m x?—l)

(ZtT:m x?—l) 2
1)

The remaing terms, namely V [E (yri1|Xr)], Cov(yri1,Yri1), and V(yriq1) are
derived as before with o2 in the expression for these terms replaced by o3.

The expectations in (21) can be computed by stochastic simulation, noting that
by assumption z; ~ ITN(p,,w?). Let x@l be the (¢t — 1)th observation in the rth
draw and let r go from 1 to R, the number of replications. We then have the

following approximation

T 2

E t=m Lt—1 ~ 1 -
SR

(ZtT:m :L‘?l)Q R —1 ( r (w§ﬂ1)2>2

}



Similarly

2
T (r)
T 2 R "
Zt:TH—l Ti1 | 1 Z t:T1+1( tfl)

(Staata) |5 | (s (o))

Proof of proposition 2
To compute the probabilities that yry; > 0, yry1 > 0 as well as their joint
probabilities, note that

Xa, (A1) ) ’

e = s+ 1) (B2 (B = )

0.2

Xz, (A1) + X3, (A2)

Consider now Pr (yr41 > 0). We know from direct evaluation that

flyrs1) = ¢ M .

The same result can also be obtained using the mixture normal approach, namely

° — Box T —
f(yT+1) = / '3 (%) 2 (TTMJ') dxr,

and noting that

/oo o (yT+1 — 52$T> o (fUT — /%) dop = o Y141 — Bally
r=-oo 4 w Vi +at )

as required.

O-fn,T = (wz + /‘LI)Q , B N(O> 1)

The remaining probabilities in the PT statistic can be similarly computed using
the conditional joint probability distributions of (yri1,yr41). Using (2) and (3)
it is easily seen that conditional on X,,7, yry1 and yp,; are independently and

normally distributed, and

~ — Boz Grn — 1
f(yT+1,yT+1\XmT):<p<yT+1—2T 0 Yr+1 7 Hmr )

g OmT
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Hence, unconditionally

N o o o yr1 — Po(w 2 + py)
frs1,yr) = / / / @ ( = : )
Z=—00 Xg)l: X%QZ g

o (PEL=E ) o) PO, (WO, () i

OmT

and o oo
Pr(yry1 > 0,9r41 > 0) = / [y, y)dydy.
y=0 Jy=0
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