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Abstract. Exchange of risks is considered here as a transferable-utility
cooperative game. When the concerned agents are risk averse, there is a core
imputation given by means of shadow prices on state-dependent claims. Like in
…nance, a risk can hardly be evaluated merely by its inherent statistical prop-
erties (in isolation from other risks). Rather, evaluation depends on the pooled
risk and the convolution of individual preferences. Explored below are rela-
tions to …nance with some emphasis on incompleteness. Included is a process
of bilateral trade which converges to a price-supported core allocation.

1. Introduction
Borch (1962) considered risks as commodities and explored whether each such object
could be priced merely in terms of its own (marginal) distribution or moments. His
…ndings were essentially negative: There can hardly exist a linear pricing regime of
that sort. Moreover, even if existence were granted, price-taking exchange of risks
- say, within a reinsurance market - would not in general produce Pareto e¢cient
allocations. And, absent such e¢ciency, there can be no competitive equilibrium. In
conclusion Borch (op. cit.) suggested that risk exchange had better be analyzed as a
cooperative game.

This paper picks up that suggestion. By reconsidering Borch’s approach I am
led to analyze a transferable-utility cooperative game, featuring agents who …nd it
worthwhile to pool their risks. Given some degree of independence among various
risks, their pooling smoothens nature’s vagaries: Lucky agents can help unlucky ones;
ups somewhere can mitigate downs elsewhere. Given also risk aversion on each part,
the advantages (individual and social) of pooling su¢ce, as shown here, to render the
core non-empty.

Last but not least important, a core solution can then be computed and im-
plemented by means of a linear price regime. That regime depends on the entire
preference pro…le and the aggregate risk - and only on those items. As in competitive
equilibrium, individual preferences can be aggregated into those of a single representa-
tive …gure, here called the convoluted agent. As in …nance, the premium (the trading
price) of any insurance treaty is largely a¤ected by how its indemnity co-varies with
the aggregate risk.

¤University of Bergen and Norwegian School of Economics and Business Adminstration; e-mail:
sjur.‡aam@econ.uib.no. Thanks for support are due CES, Ruhrgas, Røwdes fond and Meltzers
høyskolefond. This paper was written during a visit to CES in Munich.
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The main novelties of this paper come with risk exchange being viewed not as
a competitive economy but rather - and more conveniently - as a cooperative game
with side payments. Not surprisingly, the game in question assumes the form of a
mutual insurance company. Formally, it …ts inside the frames of concave optimization
with attending advantages for computation and interpretation. Further, the set-
up proposed here invites modelling of trade as repeated, direct exchanges between
two new parties each time. These bilateral transactions could proceed by means of
predesigned contracts, such instruments here being called insurance treaties. Finally,
but more on a technical note, there is tolerance for non-smooth payo¤s and room for
restrictions on exchange.

2. Cooperative Risk Sharing
Ex ante, in face of uncertainty, all concerned parties agree that one and only one state
s 2 S can come about next period. Thus S is an exhaustive list of mutually exclusive
and economically relevant states. For analytical simplicity take S to be …nite.1 For
generality, however, it seems prudent to avoid hypotheses about common or subjective
beliefs the likelihood of various outcomes. Thus probabilities and expected values will
not be mentioned before next section.

Accommodated henceforth is a …xed and …nite set I of individual parties. Agent
i 2 I owns a risk ¹yi = (¹yis); the component ¹yis being his claim (indemnity or dividend)
in state s. One may naturally posit that ¹yis be a real number, referring to money or
units of account. Nothing prevents us though, from specifying this item as a vector
in some …xed Euclidean space E.2 The advantage of this option is that ¹y is can be
construed as a fully speci…ed bundle of various commodities to be delivered in state
s. So, whether one sees E as the real Euclidean line or as a higher dimensional
space, it is - in either case - natural to call s 7! ¹yis 2 E a pro…le and write simply
¹yi 2 Y := ES: For reasons that will become clear later, ¹yi generally must belong to a
prescribed, linear subspace Y of Y:3

The preferences of agent i over consumption pro…les in Y are represented by a util-
ity or payo¤ function ¼i(¢): Thus he can ”secure” himself payo¤ ¼i(¹yi): Assumptions
about separability of preferences are made only in the next section. It sometimes
simpli…es notation to deal also with the disutility f i := ¡¼i of agent i; and then I
shall do so.

An important hypothesis is now in order: Speaking of payo¤ (instead of utility)
it presumably is cardinal and transferable among agents. Consequently, any coalition
C of agents - that is, any nonempty community C µ I - could pool their claims and

1The subsequent arguments can accommodate an in…nite measure space S together with a Hilbert
space Y of square-integrable pro…les y 2 ES : Of particular theoretical interest are non-atomic mea-
sure spaces; see [1], [11].

2 In fact, any topological vector space E would do provided it be locally convex and Hausdor¤.
One can construe ¹yi as a consumption pro…le to which agent i is entitled. This viewpoint …ts to
…nance, and it opens up for a dynamic perspective.

3The particular instance Y = Y is later referred to as complete.
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undertake transfers among themselves. Motivation for such an enterprise stems from
the fact that C may, at least in principle, ensure itself an aggregate payo¤

¼C(¹yC) := sup

(X

i2C
¼i(y i)

¯̄
¯̄
¯

X

i2C
yi =

X

i2C
¹yi =: ¹yC; all yi 2 Y

)
(1)

¸ P
i2C ¼

i(¹y i): Clearly, (1) models pooling and friction-free redistribution of perfectly
divisible risks, ¹yC being the total claim held by coalition C: To induce participation
of everybody in a large, common pool - that is, to stimulate formation of the grand
coalition C = I - one need a viable scheme for payo¤ sharing. For its acceptance a
proposed scheme had better be e¢cient, incentive compatible, and ”equitable”. Any
core imputation …lls that bill. This solution concept, most popular in cooperative
game theory, amounts here to specify a compensation schedule c = (ci) 2 RI which
supports

Pareto e¢ciency:
P

i2I c
i = ¼I(¹yI ) and ensures

no blocking:
P

i2C c
i ¸ ¼C(¹yC) for all C ½ I:

¾
(2)

Is such a scheme c of side payments available? Can a core solution c be exhibited,
computed and interpreted? Yes, if agents are risk averse, indeed it can!

The argument goes in terms of ”price regimes” and standard Lagrangians. To
introduce and conveniently handle these objects, equip the space Y with a …xed inner
product denoted simply by juxtaposition y0y of the two vectors. Modulo that product
Y permits a decomposition Y ©N into the direct sum of two orthogonal spaces; N
being the normal complement to the given subspace Y:

Correspondingly, let the dual space Y¤; which comprises all continuous linear
functionals on Y (and no more), be decomposed orthogonally as a corresponding
direct sumN?©Y ? =: Y ¤©N¤: This means that any element in Y¤ comes a unique
sum y¤ + n¤ such that (y¤ + n¤)(y+ n) = y¤y+ n¤n: Note that each n¤ 2 N ¤ := Y ?;
when considered as a price, renders all bundles in Y freely available. In geometrical
terms, n¤ 2 N¤ i¤ it stands ”orthogonally” (normally) onto Y , this meaning that
n¤y = 0, 8y 2 Y:

Given various functions f : Y ! R[f§1g it is expedient to consider their
customary convex conjugates:

y¤ + n¤ 2 Y¤ 7! f ¤(y¤ + n¤) := supfy¤y + n¤n¡ f (y+ n) j y 2 Y; n 2 N g : (3)

After these preparations associate to problem (1) the Lagrangian

LC = LC(y;n; y¤;n¤) :=
X

i2C

©
¼i(yi + ni) + y¤(yi ¡ ¹y i) + ni¤ni

ª
:

Here y = (yi) 2 Y I; n = (ni) 2 NI and n¤ = (ni¤) 2 N I¤:4 It follows from (3) that

sup
y;n
LC(y;n; y¤;n¤) =

X

i2C

©
f i¤(y¤+ ni¤)¡ y¤¹yi

ª
:

4 In omitting arguments and writing only LC it is tacitly understood that yi 2 Y; ni 2 N are
so-called primal variables whereas y¤ 2 Y ¤; ni¤ 2 N¤ are corresponding dual ones.
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Declare now the pair (y¤;n¤) 2 Y ¤ £NI¤ a shadow price regime i¤

¼I(¹yI) ¸
X

i2I

©
f i¤(y¤ + ni¤) ¡ y¤¹yi

ª
: (4)

Theorem 1. (Shadow prices on risks generate core solutions) For any shadow price
regime (y¤;n¤) the payment scheme

ci := f i¤(y¤ + ni) ¡ y¤¹y i (5)

belongs to the core. That is, it satis…es (2).

Proof. For each coalition C and any dual pair (y¤;n¤) one has
X

i2C

©
f i(y¤ + ni¤) ¡ y¤¹yi

ª
¸ inf

y¤;n¤
sup
y;n
LC ¸ sup

y;n
inf
y¤;n¤

LC = ¼C(¹yC): (6)

Thus, invoking de…nition (5), the ”no blocking constraints” in (2) are all easily sat-
is…ed. But Pareto e¢ciency follows straightforwardly as well because

¼I (¹yI) ¸
X

i2I

©
f i(y¤ + ni¤)¡ y¤¹yi

ª
=

X

i2I
ci ¸ ¼I (¹yI):

The left inequality was assumed in (4), and the right one derives for the instance
C = I from (6). 2

The competitive nature - and the decentralizing impact - of a shadow price regime
is speaking: If o¤ered additional payment y¤(yi ¡ ¹yi) + ni¤ni for replacing ¹y i + 0 by
yi + ni; agent i would make a choice that perfectly …ts problem (1) when C = I:

Theorem 1 says that (y¤;n¤) is a shadow price regime i¤ it realizes the saddle
value min supLI = sup inf LI : Put di¤erently: what comes into play is a lop-sided
min-max result. But existence of saddle points/values cannot generally be guaranteed
unless some versions of compactness, continuity, and convexity are in vigor. Ignoring
compactness for a while, we are - as usual in microeconomics - left with concerns
about continuity and convexity of preferences. To get away from these, simply as-
sume that all payo¤s ¼i(¢) are upper semi-continuous, concave functions, from Y into
R[f¡1g :5 So, in particular, each agent is risk averse.

To appreciate the concavity assumption - and to understand the nature of shadow
price regimes - consider a representative agent, here called the convoluted agent, who
enjoys payo¤

¼I(yI;n) := sup

(X

i2I
¼i(yi + ni)

¯̄
¯̄
¯

X

i2I
yi = yI ; yi 2 Y

)
:

5The extreme value ¡1 serves to account for restrictions and spare explicit mention of these.
Quasi-concavity of each ¼i would su¢ce for many arguments here.
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The two arguments which a¤ect that synthetic or …ctive fellow are …rst, an aggregate
risk yI 2 Y; and second, a pro…le n = (ni) of vectors normal to Y . Clearly, ¼I (yI;n)
equals the payo¤ that would accrue to the grand coalition I if allowed to replace ¹yI by
yI and, at the same time, o¤er each member i a normal component ni: The bivariate
function ¼I(¢; ¢) thus de…ned inherits concavity from the terms ¼i: Consequently, the
convoluted agent is risk averse as well. Note, after having accepted apologies for
slight abuse of notation, that ¼I(¹yI; 0) = ¼I(¹yI) where the latter (right hand) value
already was de…ned in (2).

Compactness was brie‡y mentioned here above to ensure existence of a shadow
price regime. It turns out that if

¼I (¢; ¢) is …nite-valued in a neighborhood of (¹yI ; 0); (7)

then that concern is taken care of. In fact, quali…cation (7) yields a ”neo-classical”,
marginalistic interpretation of shadow prices. For the statement recall that g 2 Y¤
if called a supergradient of a proper function f : Y ! R[ f¡1g at the point y i¤
f (y0) � f(y) + g(y0 ¡ y) for all y 0 2 Y. On such occasions one writes g 2 @f (y): The
following result derives now directly from convex analysis [7], [9]:

Proposition 1. (Existence and characterization of shadow price regimes)
² Under quali…cation (7) there exists a super-gradient (y¤;n¤) 2 @¼I(¹yI ; 0); and each
such item constitutes a shadow price regime.
² Conversely, any shadow price regime (y¤;n¤) must be a supergradient for the con-
voluted agent ¼I (¢; ¢) at (¹yI ; 0):
² In sum, a shadow price regime (y¤;n¤) - and a corresponding core solution (5) can
be de…ned - i¤ ¼I (¢; ¢) is superdi¤erentiable at (¹yI ; 0):
² If (y¤;n¤) is a shadow price regime, and (yi) solves problem (2) for the grand
coalition, it holds for each i that

y¤ + ni¤ 2 @¼i(yi): 2 (8)

Inclusions (8) tell that all agents use the same y¤ 2 Y ¤ to price choices within the
feasible space Y:6 That is, up to idiosyncratic normal components ni¤; i 2 I; they
agree on one price in Y . This re‡ects that in the ”market game” [10], restricted
to Y; all desirable exchanges have been made. An infeasible exchange, one whose
normal component n does not vanish, may very well yield valuations ni¤n which vary
across agents. If however, potential exchanges constitute a complete space, that is,
if Y = Y; then clearly, n¤ = 0; and things become simpler. In that instance y¤ is
brie‡y named a shadow price.

Corollary 1. (Shadow prices under completeness) Suppose Y = Y: Then:
² If the function ¼I (¢) de…ned in (2) is …nite-valued in a neighborhood of ¹yI, it is

6Smooth versions of (8) are prominent in models of incomplete …nancial markets; see [8].
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super-di¤erentiable at ¹yI ; and any super-gradient y¤ 2 @¼I(¹yI ) constitutes a shadow
price (with n¤ = 0).
² Conversely, any shadow price y¤ must be a supergradient for the convoluted agent
¼I(¢) at ¹yI :
² In sum, a shadow price y¤ - and a corresponding core solution (5) can be de…ned
with n¤ = 0 - i¤ ¼I (¢) is superdi¤erentiable at ¹yI:
² If y¤ is a shadow price, and (yi) solves problem (2) for the grand coalition, it holds
for each i that

y¤ 2 @¼i(yi): 2
It is often natural to assume ¼i monotone in each variable. So, typically y¤ is a
positive price regime. For illustration of Theorem 1 suppose individual payo¤ is a
marginal function

¼i(yi) := sup
©
¼̂i(xi; yi)

¯̄
xi 2 Xi

ª
; (9)

stemming from a bivariate proper, concave objective ¼̂i(¢; ¢) de…ned over a Euclidean
vector space Xi£Y. Coalition C µ I could then achieve

¼C(¹yC) := sup

(X

i2C
¼̂i(xi; yi)

¯̄
¯̄
¯

X

i2C
y i = ¹yC ; xi 2 Xi; yi 2 Y

)
:

Let here LC(x;y;n; y¤;n¤) :=
P
i2C

£
¼̂i(xi; yi + ni) + y¤(yi ¡ ¹yi) + ni¤ni

¤
and f̂ i :=

¡¼̂i: Note that supx;y;nL
C =

P
i2C

n
f̂ i¤(0; y¤ + ni¤) ¡ y¤¹yi

o
: Verbatim imitation of

the proof of Theorem 1 yields:

Proposition 2. (Core solutions in terms of non-reduced payo¤ functions) Given

reduced payo¤ functions like (9), suppose ¼I(¹yI ) ¸ P
i2I

n
f̂ i¤(0; y¤ + ni¤) ¡ y¤¹yi

o

for some price regime (y¤;n¤). Then, by o¤ering agent i compensation ci :=
f̂ i¤(0; y¤ + ni¤)¡ y¤¹yi; we get a core solution. 2

3. Common Predictions and Separable Preferences
Assume in addition here that everybody holds the same opinion about the likelihood
of various outcomes s 2 S . Formally, there is a common probability distribution
p = (ps) over S; the numbers ps being strictly positive with sum 1. Each linear
functional on Y= ES can now be represented in terms of the statistically motivated,
probabilistic inner product y0y :=

P
s2S psy

0
sys. Such representation is particularly

useful for the important instance where preferences are of von Neumann- Morgenstern
separable type. Then ex ante payo¤

¼i(yi) := E¼i¢(y
i
²) =

X

s2S
ps¼

i
s(y

i
s) (10)

equals the expected value of its ex post state-dependent counterpart, and (8) amounts
to have y¤s+ni¤s 2 @¼is(yis) for each s: Given such separable format (10), if coalition C
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undertook pooling ex post, after s has been unveiled, it would there obtain over-all
payo¤

¼Cs (¹y
C
s ) := sup

(
X

i2C
¼is(y

i
s)

¯̄
¯̄
¯

X

i2C
yis =

X

i2C
¹yis =: ¹y

C
s

)
: (11)

Thus one may speak about contingent, state-dependent cooperation, implemented
after the fact. Like above, a compensation scheme cs = (cis) 2 RI belongs to the core
of the state-s cooperative game i¤

Pareto e¢ciency prevails:
P

i2I c
i
s = ¼

I
s(¹y

I
s) and

there is no blocking:
P

i2C c
i
s ¸ ¼Cs (¹yCs ) for all C ½ I:

Also like before, if y¤s is a Lagrange multiplier - that is, if y¤s satis…es the Kuhn-Tucker
conditions - of problem (11) for C = I; then by writing f is := ¡¼is and providing
compensation

cis := f
i¤
s (y

¤
s) ¡ y¤s ¹yis

to agent i; one obtains a state-s ex post core solution.
Opportunistic behavior of this sort - where agents prefer to wait and see - will,

when feasible, not generally …t with (2). The simple reason is, of course, that in
passing from (2) to (11) all constraints yi 2 Y were dropped or ignored. When re-
lieved of his constraint, agent i receives compensation ¹ci :=

P
s2S psc

i
s in the mean.

Comparing with (5) it holds that
P

i2I ¹c
i ¸ P

i2I c
i: If Y is a strict subspace of Y,

the last inequality tends to be strict. Equality holds however, under completeness:

Theorem 2. (Completeness of the market and time consistency of cooperation)
Suppose claims can be traded in a complete space; that is, suppose Y = Y: Then any
shadow price y¤ = (y¤s) supports an over-all ex ante core solution ci := f i¤(y¤)¡ y¤¹yi
as well as an ex post core solution cis := f i¤s (y¤s) ¡ y¤s ¹yis in each state s: It holds that
ci =

P
s2S psc

i
s: And it does not matter whether these cooperative treaties were written

before or after the state has been unveiled. 2

4. Bilateral Exchange of Risks
Construction (1) invites some pressing questions. Namely, when C = I; who under-
takes the optimization - and how? Further, since e¢cient solution requires revelation
of true preferences, can the solution procedure - or at least the outcome - be imple-
mented? May either fall victim to strategic communication?

I shall divorce these issues and address …rst how a center or a consultant, who
holds all necessary information, might take up the computational task. Suppose
henceforth that problem (1) has at least one optimal solution for C = I: Denote by
PY the orthogonal projection of vectors in Y onto the subspace Y: Let f°kg be a
numerical sequence of so-called step sizes, selected a priori subject to

°k ¸ 0;
1X

k=0

°k = +1; and
1X

k=0

°2k < +1:
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The computing center, or the said consultant, could proceed by gradient projection
described as follows:
² Start at stage k := 0 with step size ° := °0 and choices yi 2 Y; i 2 I; determined
by history, guesswork or accident. It should hold though that

P
i2I y

i = ¹yI:
² Select for each agent i a marginal payo¤ vector mi 2 @¼i(yi) and project it onto the
subspace Y ; that is, let m̂i = PYmi: Let thereafter ¹m :=

P
i2I m̂

i= jIj be the uniform
average of those projections.
² Update for each i his choice by the rule

yi Ã yi + °(m̂i ¡ ¹m): (12)

² Move to next stage k Ã k + 1 with new step size ° Ã °k:
² Continue to Select until convergence. 2

Proposition 3 The described procedure of iterated gradient projection converges to
an optimal of problem (1) for the grand coalition.

Proof. Given yi 2 Y for all i 2 I ; and also
P

i2I y
i = ¹yI; the projection of the

large vector [yi + °mi]i2I 2 YI onto the a¢ne subspace
©
(yi) 2 Y I

¯̄ P
i2I y

i = ¹yI
ª

equals [yi + °(m̂i ¡ ¹m)]i2I : Thus (12) is the method of (super) gradient projection
applied to the separable objective

P
i2I ¼(y

i): Convergence now follows from received
theory; see [5]. 2

After convergence to an optimal pro…le (yi), pick a common y¤ 2 \i2IPY [@¼i(y i)] ;
and for each agent i; a normal ni¤ 2 @¼i(y i) ¡ y¤ which satis…es (8). In particu-
lar, if each payo¤ ¼i(¢) is di¤erentiable at yi; it holds that y¤ = PY [@¼i(yi)] and
ni¤ = @¼i(yi)¡ y¤.

For greater realism the centralized projection algorithm, just described, had better
be replaced by an iterative, non-coordinated procedure driven by the agents them-
selves. Next I outline one possible avenue along which they could travel. It involves
repeated bilateral exchanges of risk and goes as follows:

² Start at stage k := 0 with step size ° := °0 and choices yi 2 Y; i 2 I; deter-
mined by history, guesswork or accident. It should hold that

P
i2I y

i = ¹yI :
² Choose two agents i; i0 according to the uniform distribution (i.e. in equi-probable
manner).
² Select marginal payo¤s mi 2 @¼i(yi), mi0 2 @¼i0(yi0) and project these objects onto
the subspace Y ; that is, let m̂i = PYmi and m̂i0 = PYmi0 :
² Update the choices by bilateral exchange

yi Ã yi + °(m̂i ¡ m̂i0 ) and yi
0 Ã yi

0 ¡ °(m̂i ¡ m̂i0) (13)

² Move to next stage k Ã k + 1 with new step size ° Ã °k:
² Continue to Choose two agents until convergence. 2
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Theorem 3. Repeated bilateral exchanges of risks lead to an optimal solution of
problem (1) for the grand coalition.

Proof. Let the set ­ consist of all unordered pairs fi; i0g of distinct agents i; i0 2 I:
The event ! = fi; i0g means that agents i; i0 are o¤ered the opportunity to trade
between themselves. Quite naturally, such o¤ers should be egalitarian. So, endow ­
with the uniform probability measure; that is, each unordered pair is selected with
equal probability Pr := 2= [jIj (jIj ¡ 1)] where jIj is the number of agents.

For every ! = fi; i0g 2 ­ and bundle y = (yi) de…ne ¼(!;y) := ¼i(yi) + ¼i0 (yi0):
Let E stand for expectation taken with respect to !; using the uniform probability
Pr : Note that E¼(!;y) = 2Pr

P
i2I ¼

i(yi): Thus, in problem (1), for the case C = I
one may equally well maximize the objective E¼(!;y); and so will be done here.

The modi…ed but equivalent objective E¼(!;y) invites use of stochastic gradient
techniques [5]. To see precisely how, it is convenient for any mi 2 Y to let mi

denote the vector in YI which has mi in component i and zero elsewhere. With this
notation observe that @¼(!;y) is composed of vectors mi+mi0 with mi 2 @¼i(y i) for
i; and similarly for i0. So, when projecting @¼(!;y) onto Y I one gets sums m̂i + m̂i0

with m̂i 2 PY @¼i(yi) for i; and similarly for i0: Finally, projecting once again, this
time onto the a¢ne subspace A :=

©
(yi) 2 Y I

¯̄ P
i2I y

i = ¹yI
ª

generates m̂i¡ m̂i0

in component i; the opposite vector m̂i0¡ m̂i in component i0, and zero elsewhere.
After so much bookkeeping it follows that the standard stochastic projected gradient
procedure, namely

y Ã PA [y+ °m] ; m 2 @¼(!;y)
is nothing else than (13). Convergence now follows from an appeal to known results;
see [5]. 2

5. Trade of Insurance Treaties
It is time to justify why only risks residing in a subspace Y ½ Y are traded. Clearly,
if any exchange in Y were possible, we would be in the standard setting of a barter
economy.

For a modi…ed and more realistic setting, one which better …ts and justi…es the
existence of insurance (as well as …nance), suppose exchange is mediated only via
a …nite set J of so-called instruments, brie‡y named insurance treaties. By such a
treaty j 2 J is here understood a contract that promises to pay its holder a speci…ed
indemnity (coverage or dividend) dsj if state s 2 S comes about. Suppose treaties are
perfectly divisible, traded with no quantity restrictions and victims to no transaction
costs.

As customary, for the sake of simple exposition, only two time periods are con-
sidered, namely: now and next period. In other words: all treaties expire after one
appropriately de…ned time step.
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By a portfolio (of treaties) is meant a vector x = (xj) 2 X := RJ; saying precisely
how much is held of various contracts. Note that portfolio x yields indemnity ys =P

j2J dsjxj in state s: So, letting D = [dsj] denote the S £ J indemnity matrix,
portfolio x entitles its holder to payo¤ pro…le y =Dx:

Correspondingly, let Y := ImD := DX :=
©
Dx

¯̄
x 2 X := RJ

ª
denote the

image space under the indemnity matrix D: Clearly, Y consists of feasible indemnity
schedules and is a subspace of Y = ES; possibly a strict one. Note that schedules in
YÂY cannot be synthesized - whence are not tradable - via the given instruments.
A pro…le y 2 Y will be realized by any portfolio x 2 X which solves Dx = y: At least
one such x exists by the de…nition of Y . Uniqueness of x follows i¤ D : X ! Y is
one-to-one. Then necessarily jJ j = rank(D) = dim Y . In particular, when Y = ES;
there must be as many treaties as there are states.

Suppose now that agent i already holds portfolio ¹xi; generating risk ¹yi := D¹xi:
Coalition C can achieve

¼C(¹yC) = sup

(X

i2C
¼i(yi)

¯̄
¯̄
¯

X

i2C
yi = ¹yC; yi =Dxi; xi 2 X

)

= sup

(X

i2C
¼i(Dxi)

¯̄
¯̄
¯

X

i2C
Dxi = D¹xC ; xi 2 X

)
:

(This case …ts the frames of Proposition 2.) Let D¤ denote the transpose matrix.
Prices y¤ on risks are transported back to prices x¤ =D¤y¤ on portfolios by the rule
x¤j =

P
s2S dsjy

¤
s; and we get

Proposition 4. (Shadow prices on treaties generate core solutions) For any shadow
price regime (y¤;n¤) the payment scheme

ci := f i¤(D¤y¤ + ni)¡ y¤(D¹xi) = f i¤(D¤y¤ + ni) ¡ (D¤y¤)¹xi (14)

belongs to the core. That is, it satis…es (2).

Clearly, i could have access to a particular set J i of treaties, de…ned by an S£J i ma-
trix Di: If so, (14) would remain a core solution with Di instead of D: Agent i might
also have handy a technology by which his e¤ort ei produces a pro…le E i(ei) 2 Y:
Then, if i has non-reduced, concave payo¤ ¼̂i(ei; yi), coalition C gets reduced payo¤

¼C(¹yC) = sup

(X

i2C
¼̂i(ei; Dixi + E i(ei))

¯̄
¯̄
¯

X

i2C

£
Dixi + E i(ei)

¤
= ¹yC

)
:

When however, only agent i knows ei or E i(¢), there are problems (with hidden actions
or types), these making the prospects for e¢cient cooperation appear less good.7

7 [3] and [4] deal with core solutions under asymmetric information.
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I end this section by considering repeated bilateral exchanges of portfolios.
It could go as follows:

² Start at stage k := 0 with step size ° := °0 and choices xi 2 X; i 2 I; deter-
mined by history, guesswork or accident.
² Choose two agents i; i0 according to the uniform distribution (i.e. in equi-probable
manner).
² Select marginal payo¤s mi 2 @¼i(Dxi), mi0 2 @¼i0(Dxi0) and let xi¤ = D¤mi and
xi

0¤ = D¤mi
0¤:

² Update the choices by bilateral exchange

xi Ã xi + °(xi¤ ¡ xi
0¤) and xi

0 Ã xi
0 ¡ °(xi¤ ¡xi

0¤)

² Move to next stage k Ã k + 1 with new step size ° Ã °k:
² Continue to Choose two agents until convergence. 2

Theorem 4. Repeated bilateral exchanges of portfolios lead to an optimal solution of
problem (1) for the grand coalition.

6. Concluding Remarks
Given wide-spread risk aversion, or at least risk neutrality, the cooperative incentives
become so strong and well distributed that the grand coalition can safely form. Its
formation means that all risks are pooled and that bene…ts be shared in ways not
blocked by any subgroup. However, when preferences are not convex, the price-based
compensation scheme (5) is likely to reside out-of-core; see [6].
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