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Abstract 
 
This paper links the two nascent economic literatures on social networks and cultural 
assimilation by investigating the evolution of population attributes in a simple model where 
agents are influenced by their acquaintances. The main conclusion of the analysis is that 
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social network exhibits a sufficient degree of interconnectedness. When the model is extended 
to allow an expanding acquaintance set, convergence is guaranteed provided a weaker 
interconnectedness condition is satisfied, and convergence is rapid. If the intensity of 
interactions with acquaintances becomes endogenous, convergence (when it occurs) is slowed 
when agents prefer to interact with people like themselves and hastened when interaction with 
dissimilar agents is preferred. 
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Workings of the Melting Pot: Social Networks and the Evolution
of Population Attributes

by

Jan K. Brueckner and Oleg Smirnov*

1. Introduction

After early pioneering work in sociology, research on social networks has been a growing

focus of economists. Following the important papers of Jackson and Wolinsky (1996) and

Bala and Goyal (2000), one branch of the literature analyzes the endogenous formation of

network linkages. The goal is to determine the network structure that emerges in equilibrium,

while also appraising its efficiency (see Jackson (2004) for a survey). A second branch of the

literature, which views the network as exogenously fixed, analyzes the connection between

network structure and interactive behavior such as information exchange and learning. The

relevant research is surveyed by Goyal (2003).1

Another nascent literature, which is tangentially connected to the research on learning in

networks, focuses on cultural assimilation in heterogeneous societies. The goal is to investigate

the evolution of population attributes in models where parents must invest resources in order

to transmit a cultural identity to their children, overcoming external socialization influences.

Using such an approach, Bisin and Verdier (2001) derive conditions under which population

heterogeneity is a long-run equilibrium, with assimilation not occurring. By contrast, Kónya

(2002) shows in a related model that a minority group will be assimilated (remain distinct)

when its initial population share is small (large).2

Borrowing elements from both these literatures, the goal of the present paper is to analyze

the effect of social networks on the evolution of population attributes, which occurs as agents

interact via the network. As in the second branch of the network literature, the pattern of

network linkages is exogenously specified, with individuals who are directly linked called “ac-

quaintances.” Exogeneity of the network is matched by an equally simple assumption regarding

the law of motion of population attributes, which does not involve in any economic decisions
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by individual agents. In particular, agent i’s attributes, which are summarized by a scalar vari-

able θi, are influenced by the attributes of his acquaintances, as follows: i’s attributes at time

t + 1 equal the average attributes among his acquaintances at time t. Under one assumption,

this averaging includes the agent himself, but alternatively, the agent’s attributes at time t+1

may not depend on their previous value. This law of motion embodies the natural view that

the social, political and cultural traits of individual agents tend to evolve toward the traits of

the people they know.

The goal of the analysis is to investigate the long-run evolution of population attributes

under this simple law of motion and to show how it depends on the structure of the social

network. The analysis demonstrates that, if the social network is sufficiently interconnected,

in several senses to be made precise below, then population attributes converge to a “melting-

pot” equilibrium. In such an equilibrium, the attributes of all agents are identical and equal to

the mean of the population’s initial attribute values. When the interconnection requirement is

not satisfied (a result of simultaneous violation of two sufficient conditions), then a melting-pot

equilibrium may not be reached. Instead, population attributes may vary across agents, while

cycling over time. These results, which are derived by drawing on the theory of irreducible

matrices, demonstrate the workings of the melting pot in the simplest possible framework.

Although the basic model assumes that an agent’s set of acquaintances remains constant,

the first extension of the model allows the acquaintance set to grow over time. In particular,

an individual’s acquaintance set at time t+1 is assumed to consist of his time-t acquaintances

along with the acquaintances of these acquaintances at time t. Thus, in each period, the

acquaintances of i’s last-period acquaintances are added to his acquaintance set. The analysis

shows that, when acquaintance sets expand according to this rule, convergence to a melting-

pot equilibrium occurs as long as the social network satisfies a minimal interconnectedness

condition. In addition, a numerical example shows that convergence is rapid compared to the

basic model.

While the basic model is devoid of any economic behavior, with the network and the

law of motion lacking any endogenous elements, such elements are introduced in the second

extension of the model. In that extension, the intensity of interaction is a choice variable
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whose determination depends on agents’ attitudes toward dissimilar individuals. One possible

assumption is that people interact more intensively with agents like themselves.3 Alternatively,

diversity could be valued, with the strength of interaction rising with the dissimilarity of

acquaintances. The law of motion is then modified so that an agent’s attributes at time t+ 1

are an interaction-intensity weighted average of the attributes of his acquaintances at time t.

Although general results are not available for this modified model, numerical examples show

that, when melting-pot convergence occurs, it happens more slowly than in the basic model

under the first interaction assumption and faster under the second.

It is important to note that the analysis in the paper does not focus on any of the economic

consequences of melting-pot convergence, which might be considered in a more comprehensive

model. The nature of such consequences could be inferred from the survey paper of Alesina and

La Ferrara (2004), which reviews the economic literature on the effects of racial diversity. The

empirical part of that literature shows that one impact of racial diversity is to reduce economic

growth, both at the country and subnational levels. If such an effect also applies to a more

general set of population attributes like that considered in this paper, then, by homogenizing

the population, melting-pot convergence produces economic benefits. Such benefits could be

captured in a more extensive model.

The plan of the paper is as follows. Section 2 analyzes the basic model, while section 3

develops the extensions. Section 4 offers conclusions.

2. Basic Analysis

2.1. The acquaintance matrix

The population consists of m agents, and the attributes of each individual are summarized

by a scalar variable, as explained above. The characteristics of agent i at time t are denoted

θt
i, i = 1, . . . , m.

Each agent is acquainted with other agents in the population, and the pattern of acquain-

tances is captured by the variables nij , for i �= j. If agent i is acquainted with agent j, then

nij = 1, while if the agents are unacquainted, then nij = 0. Given the symmetry of acquain-

tances, it follows that nij = nji. The variables nii have a different status since they refer
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to an agent’s relationship to himself. Accordingly, the cases where nii = 1 and nii = 0 are

both considered, with the interpretation of the latter case provided below. The number of

acquaintances for agent i equals qi =
∑m

j=1 nij , where i himself is counted as an acquaintance

if nii = 1. It is assumed that qi > 0 for all i. Finally, the acquaintance pattern is summarized

by the symmetric matrix N , which has representative element nij . In the following discussion,

N will be referred to as the raw acquaintance matrix.

A key assumption in the analysis is that the matrix N is irreducible. This assumption

means that any two agents are linked indirectly by a sequence of acquaintances through other

people, even though the agents may not be acquainted themselves. Formally, irreducibility

means that, for all (i, j), N
(k)
ij > 0 holds for some k > 0, where this expression refers to

element (i, j) of the kth power of the matrix N (the resulting matrix is Nk). As seen from

discussion below, N
(k)
ij equals the number of paths of length k connecting agents i and j

via other agents. Therefore, the irreducibility requirement means that each pair of agents is

connected by a path of some length.

To see the relationship between connecting paths and the powers of N , consider the fol-

lowing matrix N and its square:

N =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 , N2 =


2 0 1 1 0
0 2 0 1 1
1 0 2 0 1
1 1 0 2 0
0 1 1 0 2

 (1)

The acquaintance pattern in N would be generated if the agents were arrayed on circle, being

acquainted with their immediate neighbors (note that agents 1 and 5 are adjacent and that all

the nii’s are set to zero for illustrative purposes). Since all agents are connected by some path

around the circle, the given N is irreducible.

Looking at N2, the fact that element (1,3) equals 1 indicates that there is a single path of

length 2 between agents 1 and 3. This path is of the form 1− 2− 3, with agent 1 connected to
3 via his acquaintance with 2 and 2’s acquaintance with 3. Similarly, the single path 1− 5− 4
exists between agents 1 and 4, and the two paths 1 − 2 − 1 and 1 − 5 − 1 exist between

agent 1 and himself. However, the remaining zeros in the first row of N2 indicate that there
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are no paths of length 2 between agents 1 and 2 or between agents 1 and 5. Raising N to an

additional power, yieldingN3, would eliminate these zeros, indicating the existence of length-3

paths between these pairs of agents. In this fashion, the irreducibility assumption says that

element (i, j) of Nk cannot be zero for all possible values of k.4

As an example of a raw acquaintance matrix that is not irreducible (i.e., reducible), consider

the case where N is a block diagonal matrix. In this case, the population is divided into

separate groups (indicated by the blocks), between which linkages are absent. The zero off-

diagonal blocks remain zero as the matrix is raised to higher powers, indicating failure of the

requirement of irreducibility.

2.2. The law of motion for population attributes

As explained in the introduction, the evolution of population attributes is determined by

a simple rule in the basic model. In particular, agent i’s attributes at time t + 1 equal the

average attributes at time t among his acquaintances (which may include himself). The law

of motion for attributes can thus be written

θt+1
i =

m∑
j=1

(
nij

qi

)
θt
j . (2)

Note that when nii = 1, this rule says that agent i’s attributes at time t + 1 are a blend of

his own attributes and those of his other acquaintances at time t. By contrast, when nii = 0,

agent i’s time-t attributes play no role in determining his attributes at time t+1, which depend

only on the attributes of his (other) acquaintances. In the ensuing discussion, an agent will be

called “self-referential” if nii = 1, indicating that his future attributes depend on their current

value.

To rewrite the law of motion from (2) in more compact form, let A denote the row-

normalized acquaintance matrix (shortened to “acquaintance matrix” in the ensuing discus-

sion). This matrix is generated from the raw acquaintance matrix by dividing each element of

the ith row of N by the row sum, which equals qi, for i = 1, . . . , m. A representative element

of A is then nij/qi ≡ aij . Thus, if the first row of N contains four 1’s and m − 4 zeros, then

first row of A has a 1/4 in each of the spots where N has a 1, and zeros elsewhere. It is easy
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to see that if the raw acquaintance matrix is irreducible, as assumed, the same property holds

for the matrix A.

Recognizing that (2) can be written as θt+1
i =

∑m
j=1 aijθ

t
j , the law of motion can be

rewritten in matrix form as

θt+1 = Aθt, (3)

where θt+1 is the column vector (θt+1
1 θt+1

2 · · · θt+1
m )′ and θt is defined analogously.

Suppose that the evolutionary process for attributes starts at time zero. Then with suc-

cessive substitutions, (3) becomes

θt = Atθ0, (4)

where θ0 = (θ0
1 θ0

2 · · · θ0
m)

′ is the population attribute vector at time zero and At is the tth

power of the acquaintance matrix. If the evolutionary process converges to a limit, the limiting

attribute vector is given by

limt→∞ θt = θ∗ ≡ A∗θ0, (5)

where

A∗ = limt→∞ At, (6)

which must exist for the process to converge.

2.3. Analysis of convergence

To analyze convergence, it is useful to initially focus on the case where each individual has

the same number of acquaintances, with qi equal to a constant q for all i. In this case, the

symmetry of N is preserved under normalization, with A equal to N divided by q. Then, to

investigate the limit of At, it is useful to write the acquaintance matrix in diagonalized form.

To do so, let λi, i = 1, . . . , m, denote the eigenvalues of A, which are assumed to be distinct

(given symmetry of N , these eigenvalues are real). Then, in standard fashion, A can be written

as SDS−1, where S is a matrix whose columns are the eigenvectors of A, and where D is a

matrix whose diagonal elements equal λi, i = 1, . . . , m, and whose off-diagonal elements equal
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zero. With this representation of the acquaintance matrix, At can be written as5

At = (SDS−1)(SDS−1)(SDS−1) · · · (SDS−1) = SDtS−1. (7)

Symmetry of A means that, S−1, the inverse of the matrix of eigenvectors of A, is simply

equal to the transpose of that matrix, S′. As a result, (7) can be written

At = SDtS′ = (λt
1S1 λt

2S2 · · · λt
mSm )


S′

1
S′

2
·
·
·

S′
m

 , (8)

where Si is the ith eigenvector (the ith column of S).6

To make use of (8), key facts about irreducible matrices can be invoked. First, the Perron-

Frobenius Theorem and its corollaries state that the largest eigenvalue of an irreducible matrix

lies between the maximum and minimum row sums of the matrix. Since row-normalization

makes the row sums of A all equal to unity, it follows that A’s largest eigenvalue equals 1.

Second, no eigenvalue of A exceeds 1 in absolute value. Third, A may have a second eigenvalue

equal to −1, but all other eigenvalues are less than one in absolute value (see Seneta (1973),
ch. 1). When A has an eigenvalue equal to −1 , it is known as a cyclic matrix, for reasons that
will become clear below. When a −1 eigenvalue does not exist, A is a noncyclic matrix.

Consider the case where A is noncyclic, and let the unitary eigenvalue correspond to λ1.

Then, since the remaining eigenvalues are all less than one in absolute value, λt
i converges to

zero for i = 2, . . . , m. As a result, the last m− 1 columns of the first matrix in (8) themselves
converge to zero, so that the matrix converges to (S1 0 0 · · · 0). The matrix product in (8)
then converges to S1S

′
1, an m × m matrix.

To evaluate this matrix, the eigenvector corresponding to the unitary eigenvalue must be

found. This is a simple matter, however, since it is easily seen that the equation Ax = 1x is

satisfied by the unit vector x = (1 1 · · · 1)′, given that A is row normalized. Dividing this
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vector by
√

m to give it unitary length, S1 can be written (
1√
m

1√
m
· · · 1√

m
)′. As a result,

A∗ = limt→∞ At = S1S
′
1 =

 1/m 1/m · · · 1/m
1/m 1/m · · · 1/m
· · ·

1/m 1/m · · · 1/m

 (9)

Using (5), it follows then that

θ∗ = A∗θ0 =


θ
0

θ
0

·
·
·
θ
0

 , (10)

where

θ
0
=

1

m

m∑
i=1

θ0
i , (11)

the mean attributes of the population at time zero.

Thus, when A is noncyclic, the evolutionary process for population attributes converges to

a “melting-pot” equilibrium. In this equilibrium, attributes are uniform across the population,

with each agent having attributes equal to the average initial value.

To understand how this convergence occurs, consider three agents, i, j and k, and suppose

that i and k are unacquainted but that i − j and j − k acquaintance links exist. Since j’s

attributes therefore depend on k’s while at the same time influencing i’s attributes, it follows

that i partly adopts k’s attributes as the population evolves, even though the two agents are

not acquainted. When A is noncyclic, this process leads to a melting-pot equilibrium.

To analyze the cyclic case, let λ2 denote A’s −1 eigenvalue. Because λt
i still converges to

zero for i ≥ 3, repetition of the previous argument shows that θt approaches
θ
0

θ
0

·
·
·
θ
0

 + (−1)tS2S
′
2θ

0 (12)
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as t becomes large, where S2 is the eigenvector corresponding to λ2. Thus, attributes for

any given agent will oscillate around the value θ
0
, with the vector S2S

′
2θ

0 successively added

and subtracted from the vector (θ
0

θ
0 · · · θ0

) as time progresses. Since it can be shown that

the mean attribute level remains constant at θ
0
during the evolutionary process when A is

symmetric, the elements of S2S
′
2θ

0 must differ in sign.7 As a result, the oscillation will be

unsynchronized for different individuals, with attribute values stepping up for some agents as

they step down for the others.

Thus, rather than converging to the stable, uniform value of the melting-pot equilibrium,

population attributes in this cyclic case never settle down, cycling over time while showing

nonuniformity across agents. Summarizing yields

Proposition 1. Suppose that each agent has the same number of acquaintances and
that the acquaintance matrix A is irreducible. If A is noncyclic, then population at-
tributes converge to a melting-pot equilibrium, where attributes for each agent are equal
to the mean initial value in the population. If A is instead cyclic, a melting-pot equilib-
rium is not achieved, with population characteristics cycling over time and exhibiting
nonuniformity across agents.

Now consider the case where the number of acquaintances differs across agents. In this

case A, does not share the symmetry of N , which means that the simplification that leads

from (7) to (8) is unavailable. A conclusion similar to Proposition 1 can be established,

however, by appealing to the general result of Seneta (1973). His Theorem 1.2 shows that,

when A is noncyclic, θt converges to S1rS
′
1lθ

0, where S1r and S1l are right and left eigenvectors

corresponding to the unitary eigenvalue. S1r is the same as the eigenvector (
1√
m

1√
m
· · · 1√

m
)′

from above, while the left eigenvalue satisfies S′
1lA = S′

1l. Note that while the positive elements

in a row of A are the same (equal to 1/qi for row i), nonuniformity of the qi’s means that the

positive elements in a given column of A will differ. As a result, the left and right eigenvectors

need not be equal. Observe, however, that in the previous case where A is symmetric, S1r =

S1l ≡ S1 holds and Seneta’s Theorem 1.2 can be used directly to reach (9) and (10).
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Substituting for S1r, the expression S1rS
′
1lθ

0 can be written as


1/
√

m
1/
√

m
·
·
·

1/
√

m

S′
1lθ

0 =

S1l,1/
√

m S1l,2/
√

m · · · S1l,m/
√

m
S1l,1/

√
m S1l,2/

√
m · · · S1l,m/

√
m

· · ·
S1l,1/

√
m S1l,2/

√
m · · · S1l,m/

√
m

 θ0 =


θ̂0

θ̂0

·
·
·
θ̂0

 , (13)

where S1l,i is the ith element of S1l. In (13), θ̂0 is some weighted sum of the θ0
i values, which

does not necessarily equal the mean value. Summarizing yields

Proposition 2. When the number of acquaintances differs across agents and A is
irreducible and noncyclic, then population attributes again converge to a melting-pot
equilibrium, with attributes uniform across the population but not necessarily equal to
the initial mean. When A is cyclic, the melting-pot equilibrium is not achieved.

Note that in the latter case, the time path of attributes is not given explicitly (as in (12)), but

it is clear from (7) that attributes will cycle over time and not necessarily exhibit uniformity

across the population.

2.4. The social network and convergence

Whether or not a melting-pot equilibrium is achieved depends on the eigenvalues of A, and

their magnitudes in turn depend on the characteristics of the social network. Insight into this

connection can be gained through the notion of the period of an irreducible matrix, denoted d.

If the acquaintance matrix A is noncyclic, then it has d = 1. A cyclic matrix has d > 1, but

for an irreducible, row-normalized matrix like A, d equals 2.8

A’s period depends on the periods of its indices, i = 1, 2, . . . , m. The period of index i,

denoted di, is the greatest common divisor of those k values for which A
(k)
ii > 0. Recall that

A
(k)
ii denotes the ith diagonal element of the kth power of matrix A. For example, if A

(k)
ii > 0

holds for all even k’s starting with 6 (k = 6, 8, 10, . . .), then di = 2. Similarly, if A
(k)
ii > 0 holds

for all k ≥ 2, then di = 1. A key property of any irreducible matrix is that all its indices have

the same period, which then gives the period d of the matrix.

It can be difficult to determine the period of a particular acquaintance matrix without

actually computing its powers. However, in some general cases, it is easy to verify that a
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matrix has d = 1, establishing noncyclicality. Two such cases, where a melting-pot equilibrium

is guaranteed to emerge, are considered in the following discussion. The next section then

presents numerical examples illustrating these cases as well as a cyclical case.

To explore the first noncyclical example, suppose that some agent j is self-referential.

Recall that this property means that njj = 1, so that, under the law of motion in (2), agent

j’s time-(t+ 1) attributes depend partly on his attributes at time t. Since njj = 1, it follows

that ajj, the corresponding diagonal element of A, is positive. As result, the inner product of

the jth row of A and the (identical) jth column, which gives A
(2)
jj , contains the term a2

jj > 0.

Since the nonnegativity of all the elements of A means that any remaining terms in this inner

product are nonnegative, it follows that A
(2)
jj > 0. But with this diagonal element positive,

the inner product of the jth row of A and the jth column of A2 again produces a positive

value, which equals A
(3)
jj > 0. Continuing this progression, it is clear A

(k)
jj > 0 holds for all

positive k, implying that dj = 1. This conclusion in turn implies that d = 1 and hence that A

is noncyclic, yielding

Proposition 3. If at least one agent is self-referential, then A is noncyclic and the
evolution of population attributes leads to a melting-pot equilibrium.

This conclusion is intuitively sensible given that pure mimicking behavior, where agents

just look to others as attributes evolve, would appear to raise the possibility of an unstable

evolutionary process. Remarkably, though, it takes just one agent to be self-referential, and

thus “grounded” by his own attributes, to get convergence to a melting-pot equililbrium. In

the next section, a numerical example shows that universal mimickry, where no agent is self-

referential, can generate the cyclical case.

To develop the second noncyclical example, suppose that no agent is self-referential, so

that A has zero diagonal elements. But suppose that two agents, say 1 and 2, are aquainted

with each other and that both are acquainted with a common third person, agent 3. Then A
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has the following form: 
0 1/q1 1/q1 · · ·
1/q2 0 1/q2 · · ·
1/q3 1/q3 0 · · ·
· · ·
· · ·
· · ·

 (14)

(note that no assumptions are made about the structure of A outside of its upper corner).

Using (14), the first column of A2 is equal to



1
q1q2

+ 1
q1q3

+ e
1

q2q3
+ f

1
q2
2
+ g
·
·
·

 , (15)

where e, f and g are nonnegative values. Since the first three elements of (15) are positive,

while the first three rows of A each have two of their first three elements positive, it follows

that the first column of A3 has the form of (15), with the first three elements again positive.

Continuing this progression, it follows that the first three elements of Ak’s first column are

always positive for k ≥ 2. As a result, the diagonal element A
(k)
11 is positive for k ≥ 2, which

implies d1 = 1 and hence d = 1. Since agents 1, 2 and 3 were chosen arbitrarily, this argument

yields

Proposition 4. If any two agents are acquainted with a third common agent, then A is
noncyclic and the evolution of population attributes leads to a melting-pot equilibrium.

The existence of common acquaintances clearly makes the population more integrated,

facilitating the blending of attributes across agents. As in the case of Proposition 3, however,

only one case of such integration is needed to ensure convergence to a melting-pot equilibrium.

The implication of Propositions 3 and 4 is that convergence to a melting-pot equilibrium

in the model can be expected under a wide variety of social-network structures. The network

needs just one self-referential agent or two individuals with a common acquaintance to rule out
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the nonconvergence outcome. The weakness of these requirements suggests that convergence

is the natural outcome under the model.

2.5. Numerical examples

This section presents numerical examples to illustrate some of the points developed above.

Consider a setting with 10 agents, each of whom is self-referential and has two additional

acquaintances. Let the raw acquaintance matrix for this case be given by

N =



1 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 1 1


(16)

Recall that this acquaintance pattern would be generated if the agents were arrayed on circle,

being acquainted with their immediate neighbors. Finally, suppose that an agent’s initial

attribute value is equal to his index, so that θ0 =(1 2 3 4 5 6 7 8 9 10)′.

The evolutionary process for this base case is shown in Table 1. Since each agent has 3

acquaintances, while the existence of self-referential agents ensures converge to the melting-pot

equilibrium, Proposition 1 applies. As can be seen, attributes converge to 5.50, the mean of

the initial values, by period 100.9

Table 2 shows the effect of making each agent non-self-referential, which means that all

the diagonal elements of N in (16) are set equal to zero. Convergence is not guaranteed in this

case, and as can be seen from the table, convergence indeed does not occur. Once t reachs 64,

the attributes of each agent cycle back and forth between 5.00 and 6.00 as t increases further.

At each point in time, attributes are non-uniform across the population, indicating the absence

of a melting-pot outcome.10

To illustrate Proposition 3, Table 3 shows the effect of making agent 1 self-referential, which

means setting N ’s first diagonal element to 1 while leaving the others at zero. Consistent with

13



the predictions of the Proposition 3, Table 3 shows convergence to a melting-pot equilibrium

by t = 125.11 However, since the number of acquaintances is now non-uniform (with agent 1

having 3 and the other agents having 2 acquaintances), convergence is to an attribute value of

5.28, which less than the mean value of 5.50.

Finally, Table 4 illustrates Proposition 4 by setting all N ’s diagonal elements to zero but

assuming that agent 1 is acquainted with agent 3 as well as agents 2 and 10, so that both

agents 1 and 2 have 3 as a common acquaintance. This change means setting the (1,3) and

(3,1) elements of N to 1, as in the case illustrated in (14) (recall, however, that (14) shows A,

not N). As predicted by Proposition 4, Table 4 shows convergence to a melting-pot equilibrium

by t = 100, but given non-uniform aquaintance numbers, convergence is again to an attribute

value less than the initial mean.12

2.6. Attribute evolution when N is reducible

It is instructive to briefly consider case where N is block diagonal and thus reducible.

Recall that in this case, linkages between the groups corresponding to the blocks are absent,

so that N
(k)
ij = 0 for all k when (i, j) represents an entry in one of the zero off-diagonal blocks.

In this case, it is easy to see that, as long as the submatrices corresponding to the individual

diagonal blocks are themselves irreducible and noncyclic, convergence to a “localized” melting-

pot equilibrium occurs within each block. In other words, for each agent within a given block,

attributes converge to the initial block average. For example, keeping the structure of the

numerical examples above, suppose that N has two blocks corresponding to i = 1, 2, 3, 4 and

i = 5, 6, 7, 8, 9, 10. Then attributes for agents in the first and second blocks converge to θ = 2.5

and θ = 7.5 respectively, provided that the corresponding block submatrices are irreducible

and noncyclic.

It is interesting to note, however, that creation of just one link between the groups repre-

sented by the diagonal blocks makes N irreducible, leading to global melting-pot convergence.

For example, if agents 4 and 5 are acquainted, which converts the (4,5) and (5,4) elements of

the two zero blocks from 0’s to 1’s, then convergence to a melting-pot equilbrium occurs.13
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Table 1

Attribute Evolution in the Base Case

t θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

3 4.70 3.48 3.37 4.00 5.00 6.00 7.00 7.62 7.51 6.29

10 5.24 4.82 4.67 4.83 5.24 5.75 6.16 6.32 6.17 5.75

30 5.48 5.45 5.44 5.45 5.48 5.51 5.54 5.55 5.54 5.51

64 5.49 5.49 5.49 5.49 5.49 5.50 5.50 5.50 5.50 5.50

65 5.49 5.49 5.49 5.49 5.49 5.50 5.50 5.50 5.50 5.50

100 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

125 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

Table 2

Attribute Evolution When No Agents are Self-Referential

t θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

3 6.00 3.25 4.25 4.00 5.00 6.00 7.00 6.75 7.75 5.00

10 4.75 5.75 4.61 5.61 5.00 6.00 5.38 6.38 5.24 6.24

30 4.99 5.99 4.99 5.99 5.00 6.00 5.00 6.00 5.00 6.00

64 5.00 6.00 5.00 6.00 5.00 6.00 5.00 6.00 5.00 6.00

65 6.00 5.00 6.00 5.00 6.00 5.00 6.00 5.00 6.00 5.00

100 5.00 6.00 5.00 6.00 5.00 6.00 5.00 6.00 5.00 6.00

125 6.00 5.00 6.00 5.00 6.00 5.00 6.00 5.00 6.00 5.00
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Table 3

Attribute Evolution When Only Agent 1 Is Self-Referential

t θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

3 4.70 3.38 3.83 4.00 5.00 6.00 7.00 6.75 7.33 5.13

10 5.00 5.02 4.74 5.17 5.06 5.69 5.44 5.94 5.37 5.50

30 5.25 5.33 5.20 5.37 5.17 5.40 5.18 5.39 5.20 5.34

64 5.27 5.30 5.26 5.31 5.25 5.32 5.25 5.31 5.26 5.30

65 5.29 5.26 5.30 5.25 5.31 5.25 5.31 5.25 5.30 5.26

100 5.28 5.28 5.29 5.27 5.29 5.27 5.29 5.27 5.29 5.28

125 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28

Table 4

Attribute Evolution When Agents 1 and 2 Are Both Acquainted
with Agent 3

t θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

3 4.77 3.38 3.48 4.33 4.83 6.00 7.00 6.75 7.50 4.80

10 4.75 4.82 4.86 4.96 5.19 5.60 5.44 5.91 5.19 5.42

30 5.16 5.18 5.16 5.20 5.14 5.24 5.13 5.25 5.13 5.21

64 5.18 5.18 5.18 5.18 5.17 5.18 5.17 5.18 5.17 5.18

65 5.18 5.18 5.18 5.17 5.18 5.17 5.18 5.17 5.18 5.17

100 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18

125 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18
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3. Extensions

This section considers two extensions of the model. Under, the first extension, an agent’s

set of acquaintances grows over time rather than being fixed. Indirect linkages produce new

acquaintances in each period, with agents becoming acquainted with the acquaintances of their

acquaintances. The second extension allows individuals to choose the intensity of interaction

with their acquaintances. The law of motion in (2) is then amended so that an agent’s attributes

at time t+1 are equal to an intensity-weighted average of his acquaintances’ attributes at time

t.

3.1. The effect of an expanding acquaintance set

Suppose that an agent’s set of acquaintances expands over time through indirect linkages.

To formalize this expansion, let the set of agent i’s acquaintances at t = 0 be denoted by

Ω0
i , with Ω

0
i = {j | nij = 1} (note that this definition potentially includes i himself). Then,

suppose that agent i’s acquaintance set at t = 1 consists of the individuals in Ω0
i plus the

time-zero acquaintances of the agents in Ω0
i . Thus,

Ω1
i = {j | j ∈ Ω0

i or j ∈ Ω0
s for s ∈ Ω0

i }. (17)

Thus, agent i’s acquaintance set at t = 1 includes the acquaintances of his acquaintances at

t = 0. The acquaintance set expands in each period according to this rule, so that the agent

i’s set at time t+ 1 is defined recursively by Ωt+1
i = {j |j ∈ Ωt

i or j ∈ Ωt
s for s ∈ Ωt

i}.
To represent the evolving acquaintance set in terms of the raw acquaintance matrix, recall

the initial discussion of irreducibility in section 2.1. That discussion showed that element

(i, j) of the matrix N2 equals the number of paths of length 2 between agents i and j via i’s

aquaintances. Thus, all individuals j who are acquaintances of i’s time-0 acquaintances are

identified by positive values in the ith row of N2. As a result, if N2 is added to N itself,

the ith row of the resulting N + N2 matrix has positive elements for agents who are time-0

acquaintances of i or acquaintances of i’s time-0 acquaintances.14

Let the matrix N + N2, which applies to t = 1, be denoted P1, and consider the matrix

P2 ≡ P1 + P 2
1 . By the above reasoning, the ith row of this matrix has positive elements
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for agents who are time-1 acquaintances of i or acquaintances of i’s time-1 acquaintances.

Substituting for P1 yields P2 = N + 2N2 + 2N3 +N4. Generally, by using the recursion rule

Pt+1 = Pt + P 2
t , it is easy to see that Pt follows the pattern of P2, being equal to a weighted

sum of all the powers of N up to the power 2t. As a result, element (i, j) of Pt is equal to

a weighted sum of the (i, j) elements of Nk for k = 1, 2, · · · 2t. But since irreducibility of N

means that N
(k)
ij > 0 holds for some value of k, it follows that this sum must be positive for a

sufficiently large value of t. This fact in turn implies that all the elements of Pt are positive

when t is sufficiently large.

Positivity of Pt implies a particular form for the row-normalized acquaintance matrix at

time t. This matrix is denoted Bt, and it is derived from Pt by setting all the positive elements

equal to 1 and then row normalizing the resulting matrix. Since all elements of Pt are positive

when t is large, it follows that, for large t, Bt is a matrix with each element equal to 1/m.

To use this fact to make a statement about convergence, let t̂ denote the critical value of

t beyond which Pt is positive (̂t is the smallest t′ such that Pt > 0 for t ≥ t′). It is easily

seen that t̂ ≤ m, the dimension of N .15 Next, note that the previous law of motion from

(3) is rewritten as θt+1 = Btθ
t, with Bt taking the place of the constant acquaintance matrix

A. Then observe that, based on this law and the form of Bt̂, θt̂+1 = (θ
t̂
, θ

t̂
, . . . , θ

t̂
)′, where

θ
t̂
=
∑m

i=1 θ t̂
i /m, the mean attribute value at t = t̂. But since θt̂+1 has identical elements,

it follows that θt̂+2 = θt̂+1 = (θ
t̂
, θ

t̂
, . . . , θ

t̂
)′ and that θt remains constant at this value for

all subsequent t’s. Thus, convergence occurs no later than t̂ (and thus no later than t = m),

yielding

Proposition 5. With an expanding acquaintance set, convergence to a melting-pot
equilibrium occurs for any social network where N is irreducible.

The intuition underlying this result is that, when the acquaintance set expands, every agent

must eventually become acquainted with everyone else, provided that the initial raw acquain-

tance matrix N is irreducible. Once this state is reached, the law of motion equates all

attributes to a particular mean value, which is then propagated forward.

Numerical examples can illustrate Proposition 5 along with some other features of the
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evolutionary process under an expanding acquaintance set. Accordingly, suppose that the

four different N matrices from the examples of section 2.4 are again relevant, but that the

acquaintance set expands using the above rules.

The first key feature of the numerical examples is that, under all four cases considered

above, convergence to a melting-pot equilibrium occurs. Since the second case considered in

section 2.4 was nonconvergent, this difference illustrates Proposition 5, showing that conver-

gence occurs with an expanding acquaintance set even when A is cyclic.

The second notable feature of the examples is that in the third and fourth cases (where

one agent was self-referential or two agents had a common acquaintance), convergence is to

a different value of θ than in section 2.4. Attributes converge to melting-pot values of 5.33

and 5.30 in the third and fourth cases, respectively, values that are slightly larger than those

reached in the previous examples. However, since attributes in the base case converge to 5.50

in both the basic and expanding-acquaintance models, these limits under the two models may

sometimes be same.16

Table 5

Attribute Evolution With an Expanding Acquaintance Set

t θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

1 4.33 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 6.66

2 5.00 4.00 3.66 4.00 5.00 6.00 7.00 7.33 7.00 6.00

3 5.44 5.33 5.29 5.33 5.44 5.55 5.66 5.70 5.66 5.55

4 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

Consistent with the above discussion, the examples show finally that expansion of the

acquaintance set leads to much more rapid convergence to a melting-pot equilibrium. While

convergence required 100 periods in the base case of section 2.4, convergence to the melting-

pot equilibrium now occurs by t = 4, as illustrated in Table 5. This rapid convergence, which
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illustrates the fact that a melting-pot equilibrium is reached no later than t = m = 10, also

characterizes the three other cases, all of which converge in four periods.

3.2. Endogenous linkage intensity

Suppose that acquaintance sets are again fixed but that each agent is endowed with a fixed

total amount of expendable effort that can be used to interact with acquaintances. Let ht
ij

denote the effort spent by agent i interacting with j at time t, with
∑m

j=1 ht
ij = 1, indicating

that available effort is normalized to unity. Note that ht
ii can be interpreted as the effort agent

i spends in solitary activities.

Suppose that the benefit from an acquaintance depends on the attributes of the other

agent as well as the effort devoted to the linkage. Let the time-t benefit that agent i derives

from an acquaintance with agent j be written f(ht
ij)gi(θ

t
j), where f is increasing and concave

(indicating decreasing returns to effort) and gi is a function whose form may depend on the

identity of the agent. Agent i allocates his effort to maximize
∑m

j=1 nijf(h
t
ij)gi(θ

t
j) subject to∑m

j=1 ht
ij = 1. Note that the presence of nij in the objective function restricts attention to

those agents j who are i’s acquaintances.

To consider a simple case, suppose that f(ht
ij) = ln(ht

ij), and let gi(θ
t
j) = θt

j .
17 The

latter assumption says that interaction with higher-θ agents is more desirable, regardless of

the identity of agent i. In this case, it is easily seen that the first-order conditions for the

maximization problem yield ht
ij = nijθ

t
j/(
∑m

l=1 nilθ
t
l). This equation says that ht

ij equals the

share of θt
j in the aggregate θ value among i’s acquaintances.

Finally, let the law of motion in (2) be amended so that the influence of acquaintances’

attributes depends on the fraction of effort devoted to them:

θt+1
i =

m∑
j=1

ht
ijθ

t
j =

m∑
j=1

(
nijθ

t
j∑m

l=1 nilθ
t
l

)
θt
j. (18)

Note that if all attributes are identical, then (17) reduces to (2).

The terms in parthenses in (18) multiplying the θt
j’s are not constants, as in (2), but instead

depend on the current attribute values in the population. As a result, under this extension of

the model, it is not possible to write a simple matrix representation of the law of motion, as
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in (3). Consequently, the theory of irreducible matrices cannot be used to analyze converge,

preventing the derivation of any general results.

Numerical examples can be generated, however, and they yield natural conclusions. Us-

ing the base-case assumptions from the previous example, it can be shown that population

attributes again converge to a melting-pot equilibrium, but the equilibrium attribute value

now equals 7.04, which is higher than the previous initial-mean value of 5.50. This increase in

equilibrium attributes makes sense given that interaction with higher-θ agents is more intense

under the modified model. The qualitative properties of the other cases considered above are

unchanged, with cycling occurring in the second case and melting-pot convergence occurring

in the third and fourth cases.

Instead of assuming that agents like interacting with high-θ individuals, suppose instead

that agent i’s time-t benefit from interacting with j is decreasing in the absolute difference

between θt
i and θt

j . Thus, agents prefer to interact with individuals who are like themselves,

getting the most benefit in the self-referential case from spending time alone. To operationalize

this assumption, let gi(θ
t
j) = 1/[(θ

t
j − θt

i)
2+1]. After making the appropriate modifications to

(18), calculations show that convergence to the previous melting-pot value of 5.50 occurs in the

base case, a consequence of gi’s symmetry around θt
i. However, because the individuals in this

case (who are self-referential) now spend more effort in solitary activities than in interacting

with their acquaintances, the convergence process is slowed. Convergence is now achieved at

t = 122 rather than at t = 100.

Suppose instead that agents are happiest interacting with individuals most different from

themselves. To capture this alternative, let gi(θ
t
j) be written as [(θ

t
j−θt

i)
2+1]. Since agents now

interact more intensively with dissimilar individuals, the convergence of population attributes

is speeded up, with the melting-pot value of 5.50 achieved at t = 76.

4. Conclusion

This paper has linked the two nascent economic literatures on social networks and cultural

assimilation by investigating the evolution of population attributes in a simple model where

agents are influenced by their acquaintances. The main conclusion of the analysis is that
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attributes converge to a melting-pot equilibrium, where everyone is identical, provided the

social network exhibits a sufficient degree of interconnectedness. In one case where convergence

does not occur, the evolution of attributes is governed by pure mimickry, with the next-period

value of each agent’s attributes independent of the current value, being influenced only by the

current attributes of acquaintances. In this setting, each agent is, in effect, “not connected to

himself,” violating one of the sufficient conditions on network interconnectedness.

When the model is extended to allow an expanding acquaintance set, convergence is guaran-

teed provided a weak interconnectedness condition is satisfied (irreducibility), and convergence

is rapid. If the intensity of interactions with acquaintances becomes endogenous, convergence

(when it occurs) is slowed when agents prefer to interact with people like themselves and

hastened when interaction with dissimilar agents is preferred.

The model analyzed in the paper is exceedingly simple, and except for the second extension,

it does not permit agents to make any economic decisions. Future work could attempt enrich

the framework by incorporating such decisions. One natural modification would allow the

social network to be endogenous by including linkage decisions on the part of agents. Given

the intense current interest in social networks among economists, the payoff to future work on

models like the present one is likely to be high.
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Footnotes

∗We thank Kangoh Lee for helpful comments. Any shortcomings in the paper, however, are
our responsibility.

1For examples of the sociological research on social networks, see Granovetter (1973) and
Wasserman and Faust (1994).

2In a related paper, Bisin and Verdier (2000) study the effect of marriage choices on cultural
assimilation.

3This behavior is known “homophily” in the sociology literature (see McPherson, Smith-Lovin
and Cook (2001)).

4More generally, suppose that both agents i and j are acquainted with agent s. Then, the
ith and jth rows of N have a 1 in the sth spot, and as a result, the inner product of the
ith row and the jth column of N (which equals the jth row) contains at least one unitary
term, which counts the length-2 path between i and j via s. If i and j are both acquainted
with a second individual k (but have no additional common acquaintances), then the given
inner product has two unitary terms, indicating the existence of 2 length-2 paths between i
and j. The result is a value of 2 for element (i, j) of N2. Continuing the argument, if agent
j is acquainted with another agent l, then there exist at least two length-3 paths between i
and l (via s and j and via k and j). This fact is reflected in the inner product of the ith row
of N2 and the lth column of N , which has a 1 in its jth spot. This inner product, which
equals element (i, l) of N3, is at least 2, indicating the existence of at least 2 paths of length
3 between i and l.

5This discussion follows Strang (1976, ch. 5).

6The equality S−1 = S′ follows from the fact that the eigenvectors of a symmetric matrix are
orthogonal, which in turn yields S′S = I , where I is the identity matrix (the eigenvectors
are normalized to have unit length). To establish orthogonality, premultiply both sides of
the equation ASi = λiSi by S′

j to yield S′
jASi = λiS

′
jSi. Then transpose both sides of

the equation ASj = λjSj and postmultiply by Si to yield S′
jA

′Si = λjS
′
jSi. When A is

symmetric, the LHS terms of the second and fourth equations are equal, implying equality
of the RHS terms. But since eigenvalues are non-zero and λi �= λj , this equality requires
S′

iSj = 0.

7The constancy of the mean attribute level can be demonstrated by recalling that eigenvectors
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associated with A’s unit eigenvalue are proportional to the unit vector. Thus, consider the
vector S̃1 = ( 1

m , 1
m · · · 1

m)
′, which satisfies AS̃1 = S̃1 and hence S̃′

1A = S̃′
1. As a result,

S̃′
1Aθt = S̃′

1θ
t = θ

t
, where θ

t
is the mean attribute value at time t. But, using the law

of motion θt+1 = Aθt, it then follows that θ
t+1

= S̃′
1θ

t+1 = S̃′
1Aθt = θ

t
. Thus, the mean

attribute level is constant over time and equal to θ
0
for all t.

8See Seneta (1973, ch. 1) for a discussion of the period concept and related results.

9At t = 100, equality of attributes holds to the 5 significant digits generated by the computer
program leading to Table 1.

10The absence of self-referential agents does not always lead to cyclic behavior. For example,

it can be shown that if the number of agents is odd rather than even, convergence to θ
0

occurs.

11Convergence at the 5-significant digit level, however, does not occur until t passes 300.

12Convergence at the 5-significant digit level does not occur until t passes 190.

13In another interesting case, the social network contains a “key player,” who is acquainted
with many other agents, as in Ballester, Calvó-Armengol and Zenou (2004) (Brueckner
(2004) considers a similar case). To investigate the key-player case, let the N matrix in (16)
be modified by assuming that one individual k is acquainted with all the other agents, while
the other agents only have individual k as an acquaintance. With all agents assumed to be
self-referential, the kth row and column of N are then vectors of 1’s, with the remaining
diagonal elements also equal to 1. Numerical examples using such a matrix expose two
regularities. First, convergence to a melting-pot equilibrium is rapid, occurring in about 20
periods. Second, the melting-pot attribute value lies between the mean initial attribute level
and the key player’s attribute value. Note that fast convergence means that the non-unitary
eigenvalues of N in the key-player case are small in absolute value.

14Note that some agents may belong to both groups.

15The reason is that any non-repetitive path between two agents (or between an agent and
himself) can never be longer than m, which implies that all agents must be connected once
m periods have elapsed.

16Although attributes converge to the mean initial value in the basic model when the number of
initial acquaintances is the same across agents, this outcome may not be a general property
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of the expanding-acquaintance model despite the evidence of the numerical example. If it
were possible to establish that Bt is symmetric for all t, then the argument of footnote 7
could be used to show that the mean attributes are constant over time. This conclusion in
turn would imply that the common attribute value reached in the expanding-acquaintance
melting-pot equilibrium equals the initial mean value. However, even though it is possible
to establish that Pt for t ≥ 1 is symmetric and has a constant row sum, it does not appear
possible to establish the constancy of the row sum of the (symmetric) incidence matrix of Pt

(thus, the number of acquaintances may differ across agents for t ≥ 1). As a result, each row
of this incidence matrix need not be divided by the same number in generating Bt, which
means that the latter matrix may not be symmetric.

17Note that since ht
ij < 1, the objective function is negative given use of natural log function.

This is a scaling issue, however, that can be ignored.
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