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1 Introduction

There exists a growing literature on econometric methods for representing and measuring cross section

dependence in panel data regression models. Conditioning on variables speci�c to the cross section

units alone typically does not deliver cross section error independence and it is well known that

neglecting cross section dependence can lead to biased estimates and spurious inference.

How to account for contemporaneous error correlations depends on the number of cross section

units, N , relative to the time series dimension, T , and in most cases on the nature and the degree

of cross section dependencies observed. When N is small relative to T , the nature of cross section

dependence is unimportant as long as the errors are not correlated with the regressors, in which

case the Seemingly Unrelated Regression Equations (SURE) approach can be used (Zellner, 1962).

But when N is large relative to T , the SURE procedure is not applicable and the nature of cross

section dependence needs to be taken into account. In such cases there are two main approaches to

modelling cross section dependence in panels : (i) spatial processes pioneered by Whittle (1954) and

developed further by Anselin (1988), Kelejian and Prucha (1999), and Lee (2004); and (ii) factor

models introduced by Hotelling (1933) and �rst applied in economics by Stone (1947). Factor models

have been used extensively in �nance (Chamberlain and Rothschild 1983, Connor and Korajczyk, 1993;

Stock and Watson, 1998; Kapetanios and Pesaran, 2007), and in macroeconomics (Forni and Reichlin,

1998; Stock and Watson, 2002). While in principle, as we shall see, cross sectionally dependent

processes, including spatial and network processes, can be set up as an unobserved factor structure

with possibly in�nite number of factors, the original idea for using latent factors is to characterize

co-movements of individual cross section units by a small number of latent factors plus a white noise,

in order to overcome the curse of dimensionality.

The aim of this paper is to characterize the correlation pattern over the cross sectional dimension

for a general class of processes, regardless of whether they are represented by factor or spatial models

or any other process featuring cross section dimension proposed in the literature. Unlike in the case

of time series, data along the cross sectional dimension do not typically have a natural ordering. One

way to characterize the correlation structure of double index processes has been proposed in the factor

literature. The idiosyncratic (or weak dependence) property, advanced by Forni and Lippi (2001),

applies to both dimensions and requires that the weighted average of a stationary process, computed

both over time and across sections, converges to zero in quadratic mean for all sets of weights satisfying

a certain condition. This notion is used by the authors to characterize dynamic factor models. Their

framework is a generalization of the static model for asset markets by Chamberlain (1983) and Cham-

berlain and Rothschild (1983), and extends some of the results presented by Forni and Reichlin (1998).

Forni and Lippi (2001) show that a necessary and su¢ cient condition for a process to be idiosyncratic

(or weakly dependent over time and across the units) is the boundedness of the largest eigenvalue of

its spectral density matrix at all frequencies. Using this result, Anderson et al. (2009, De�nition 4)

formally de�ne a double index stochastic process as weakly dependent if the largest eigenvalues of its

spectral density is bounded in N (at all frequencies), as opposed to a strongly dependent process, for
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which a �nite, nonzero number of eigenvalues diverge to in�nity as N goes to in�nity. We remark

that these assumptions on the asymptotic behaviour of eigenvalues of the spectral density are needed

for identi�cation of common factors and their loadings, and their estimation by principal components

analysis. Further, to ensure the existence of the spectral density, this literature assumes that the

underlying time series processes are stationary with absolutely summable autocovariances.

This paper proposes a new characterization of cross section dependence into weak and strong, which

are more widely applicable than the de�nitions introduced by Anderson et al. (2009). We consider

the asymptotic behaviour of weighted averages at each point in time, which does not require any

stationarity assumptions to be imposed on the underlying time series processes. We de�ne a process

to be cross sectionally weakly dependent at a given point in time if its weighted average at that time

converges to its expectation in quadratic mean, as the cross section dimension is increased without

bounds for all weights that satisfy certain �granularity�conditions. If this requirement does not hold,

then the process is said to be cross sectionally strongly dependent. Convergence properties of weighted

averages is of great importance for the asymptotic theory of various estimators and tests commonly

used in panel data econometrics, as well as for arbitrage pricing theory and portfolio optimization

with a large number of assets. It is clear that the underlying time series processes in either of the two

literature need not be stationary, and concepts of weak and strong dependence that are more generally

applicable are needed.

In this paper we focus on the econometric literature and consider the problem of estimating the

slope coe¢ cients of large panels, where cross section units are subject to a number of unobserved

common factors that may rise with N . It is established that Common Correlated E¤ects (CCE)

estimator introduced by Pesaran (2006) remains asymptotically normal under certain conditions on the

loadings of the in�nite factor structure, including cases where methods relying on principal components

fail. A Monte Carlo study documents these theoretical �ndings by investigating the small sample

performance of estimators based on principal components and the CCE estimators under alternative

assumptions on the nature of unobserved common e¤ects. In particular, we examine and compare the

performance of these estimator when the errors are subject to a �nite number of unobserved strong

factors and an in�nite number of weak and/or semi-weak unobserved common factors.

The plan of the remainder of the paper is as follows. Section 2 introduces the concepts of strong

and weak cross section dependence, and explores the relationship between the dependence structure

of processes. Section 3 focuses on cross section dependence in dynamic panels. Section 4 presents

common factor models and discusses the notions of weak, semi-strong and strong factors. Section 5

introduces the CCE estimators in the context of panels with an in�nite number of common factors.

Section 6 describes the Monte Carlo design and discusses the results. Finally, Section 7 provides some

concluding remarks.

Notation: j�1(A)j � j�2(A)j � ::: � j�n(A)j are the eigenvalues of a matrix A 2 Mn�n, where

Mn�n is the space of n�n complex valued matrices. A� denotes a generalized inverse of A. The spec-
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tral radius of A 2 Mn�n is �(A) = max
1�j�n

[j�i(A)j], and its column norm is kAk1 = max
1�j�n

Pn
i=1 jaij j.

The row norm of A is kAk1 = max
1�i�n

Pn
j=1 jaij j. The spectral norm of A is kAk = [�(AA0)]1=2, and

kAk2 = [Tr (AA0)]
1=2. K is used for a �xed positive constant that does not depend on N .

2 Cross section dependence in large panels

In this section, we study the structure of correlation of the double index process fzit; i 2 N; t 2 Zg where
zit are random variables de�ned on a probability space (
;F ; P ); the index t refers to an ordered set,
the time, while the index i indicates the units of an unordered population. Our primary focus is

on characterizing the correlation structure of the double index process fzitg over the cross sectional
dimension. We start by reviewing de�nitions provided in the existing literature to characterize the

correlation pattern of fzitg; and next we introduce our general notions of weakly and strongly cross
sectionally dependent processes.

2.1 Weak and strong dependence

Forni and Lippi (2001) introduce the notion of idiosyncratic process to characterize a weak form of

dependence that involves both time series and cross sectional dimensions under the following assump-

tion:

Assumption 1 (Forni and Lippi, 2001, Assumption 1) For each N 2 N, the process zNt =
(z1t; :::; zNt)

0 is covariance stationary and the spectral measure of zNt is absolutely continuous.

Notice that Assumption 1 guarantees the spectral density for the vector zNt to exist. Consider any

sequence of weights vectors wN = (w1; w2; :::; wN )0 such that

lim
N!1

kwNk = 0. (1)

Let FzN (!) denote the spectral density matrix for zNt and de�ne the norm kwNkFzN as

kwNkFzN =
1

2�

�Z
��

w0NFzN (�)wNd�:

Forni and Lippi de�ne the process fzitg as idiosyncratic if, for all weights wN satisfying condition (1),
we have

lim
N!1

kwNkFzN = 0.

The idiosyncratic property implies that the variance of the weighted average of fzitg, computed both
over time and across sections, vanishes to zero as N tends to in�nity. The authors show that the

sequence fzitg is idiosyncratic if and only if the largest eigenvalue of FzN (!), �zN;1 (!), is bounded
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in ! and N . Further, a process fzitg for which the (m + 1)th eigenvalue of FzN (!) is bounded in

! and N , and the mth eigenvalue diverges in N for all frequencies !, can be represented by the

so-called generalized factor structure, namely a linear combination of m dynamic factors, plus an

idiosyncratic process (see their Theorems 1 and 2). This is an extension to the dynamic case of the

static factor model used in arbitrage pricing theory as advanced by Ross (1976) and further developed

by Chamberlain (1983), Chamberlain and Rothschild (1983), and Ingersoll (1984).

Based on the above results, Anderson et al. (2009) de�ne the concepts of weak and strong de-

pendence for processes fzitg satisfying Assumption 1, on the basis of the asymptotic behaviour of the
eigenvalues of FzN (!).

De�nition 1 (Weak and strong dependence) The double index processes fzit; i 2 N; t 2 Zg is weakly
dependent if �zN;1 (!) is uniformly bounded in ! and N . The process fzitg is strongly dependent if
the �rst m � 1 (m < K) eigenvalues (�zN;1 (!) ; :::; �

z
N;m (!)) diverge to in�nity as N ! 1, for all

frequencies.

For further details on the above de�nitions we refer to Forni and Lippi (2001, Assumption 1,

De�nitions 1, 6 and 9; Theorems 1 and 2), and Anderson et al. (2009, Assumptions 4 and 5).

We note that the stationarity of the time series processes in zNt set in Assumption 1 is needed for

estimation by (dynamic) principal components analysis of common factors and their loadings in the

generalized factor structure. However, this assumption is likely to be quite restrictive and is unlikely to

hold in many applications, especially in �nance where time series often exhibit time-varying volatility.

2.2 Weak and strong cross section dependence

We now present our de�nitions of weak and strong cross section dependence at a given point in time.

For ease of exposition, in the following we omit the subscript N where not necessary. We make the

following assumptions:

Assumption 2 Let wNt = (w1t; :::; wNt)
0, for t 2 T and N 2 N, be a vector of non-stochastic

weights. For any t 2 T , the sequence of weights vectors fwNtg of growing dimension (N ! 1)
satis�es the following �granularity�conditions:

kwNtk = O
�
N� 1

2

�
; (2)

and
wjt
kwNtk

= O
�
N� 1

2

�
for any j 2 N: (3)

Assumption 3 Let It be the information set available at time t. For each t 2 T , zNt = (z1t; :::; zNt)0

has conditional mean and variance

E (zNt jIt�1 ) = 0; (4)

V ar (zNt jIt�1 ) = �Nt; (5)
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where �Nt is a N �N symmetric, nonnegative de�nite matrix, with generic (i; j)th element �ij;t, and

such that 0 < �ii;t � K, for i = 1; :::; N , where K is a �nite constant independent of N .

Assumption 2, known in �nance as the granularity condition, ensures that the weights fwitg are
not dominated by a few of the cross section units. Although we have assumed the weights to be non-

stochastic, this is done for expositional convenience and can be relaxed by requiring that conditional

on the information set the weights, wNt, are distributed independently of zNt. In Assumption 3

we impose some regularity conditions on the time series properties of fzitg. Assumption 3 is also
standard in �nance and speci�es that zNt has conditional means and variances. The �rst part, (4),

can be relaxed to E (zNt jIt�1 ) = �N;t�1, with �N;t�1 being a pre-determined function of the elements
of It�1. But to keep the exposition simple and without loss of generality we have set �N;t�1 = 0.

To simplify the notations we suppress the explicit dependence of zNt, wNt and other vectors and

matrices on N , unless this is needed to avoid possible confusions.

Consider now the weighted averages, �zwt =
PN
i=1witzit = w

0
tzt, for t 2 T , where zt and wt satisfy

Assumptions 2 and 3. We are interested in the limiting behavior of �zwt at a given point in time t 2 T
as N !1.

De�nition 2 (Weak and strong cross section dependence) The process fzitg is said to be cross sec-
tionally weakly dependent (CWD) at a given point in time t 2 T conditional on information set It�1,
if for any sequence of weight vectors fwtg satisfying the granularity conditions (2)-(3) we have

lim
N!1

V ar(w0tzt jIt�1 ) = 0: (6)

fzitg is said to be cross sectionally strongly dependent (CSD) at a given point in time t 2 T conditional
on information set It�1, if there exists a sequence of weights vectors fwtg satisfying (2)-(3) and a
constant K independent of N such that for any N su¢ ciently large

V ar(w0tzt jIt�1 ) � K > 0: (7)

The concepts of weak and strong cross section dependence proposed here are de�ned conditional

on an information set, namely the set It�1 in the de�nition above. In this way we are able to consider
cross section dependence properties of fzitg without having to limit the time series features of the
process. Various information sets could be considered in practise, depending on applications. One

example is the set containing lagged realizations of the process fzitg, that is It�1 = fzt�1; zt�2; ::::g.
In the context of dynamic models, it is useful to condition on the initialization of the dynamic process

(i.e. starting values) only. In stationary panels, unconditional variances of cross section averages could

be considered. In the remainder of the paper, if not stated explicitly, the concepts of CWD and CSD

are always de�ned on the information set It�1.

Remark 1 In contrast to the notions of weak and strong dependence advanced by Forni and Lippi
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(2001) and Anderson et al. (2009), our concepts of CWD and CSD do no require the underlying

processes to be covariance stationary and have spectral density at all frequencies.

Remark 2 A particular form of a CWD process arises when pairwise correlations take non-zero values
only across �nite subsets of units that do not spread widely as sample size increases. A similar case

occurs in spatial processes, where for example local dependency exists only among adjacent observations.

However, we observe that the notion of weak dependence does not necessarily involve an ordering of

the observations or the speci�cation of a distance metric.

2.3 Properties of weakly and strongly cross sectionally dependent processes

The following proposition establishes the relationship between weak cross section dependence and the

asymptotic behaviour of the spectral radius of �t (namely, �1 (�t)).

Proposition 1 The following statements hold:

(i) The process fzitg is CWD at a point in time t 2 T if �1 (�t) is bounded in N .

(ii) The process fzitg is CSD at a point in time t 2 T if and only if limN!1 1
N �1 (�t) = K > 0.

Proof. First, suppose �1 (�t) is bounded in N . We have

V ar(w0tzt jIt�1 ) = w0t�twt �
�
w0twt

�
�1 (�t) ; (8)

and under the granularity conditions (2)-(3) it follows that

lim
N!1

V ar(w0tzt jIt�1 ) = 0;

namely that fzitg is CWD, which proves (i). Now suppose that fzitg is CSD at time t. Then, from

(8), it follows that �1 (�t) tends to in�nity at least at the rate N . Noting that �1 (�t) �
NX
i=1

�ii;t

where, under Assumption 3, �ii;t are �nite, �1 (�t) cannot diverge to in�nity at a rate larger than N ,

and hence it follows that under CSD limN!1 1
N �1 (�t) = K > 0. To prove the reverse relation, �rst

note that, from the Rayleigh-Ritz theorem1,

�1 (�t) = max
v0tvt=1

v0t�tvt = v
�0
t �tv

�
t : (9)

Let w�t =
1p
N
v�t and notice that w

�
t satis�es (2)-(3). Hence, we can rewrite �1 (�t) as

�1 (�t) = N � V ar(w�0t zt jIt�1 ): (10)

1See Horn and Johnson (1985, p.176).
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It follows that if limN!1 1
N �1 (�t) = K > 0, then limN!1 V ar(w�0t zt jIt�1 ) > 0, i.e. the process is

CSD, which proves (ii).

Since 2

�1 (�t) � k�tk1 ;

it follows from (8) that if limN!1 1
N �1 (�t) > 0 then also limN!1 1

N k�tk1 > 0. Hence, both the

spectral radius and the column norm of the covariance matrix of a CSD process are unbounded in N .

This result for a CSD process is similar to the condition of not absolutely summable autocorrelations

that characterizes time series processes with strong temporal dependence (Robinson, 2003).

A number of remarks concerning the above concepts of CWD and CSD are in order.

Remark 3 The de�nition of idiosyncratic process by Forni and Lippi (2001) and our de�nition
of CWD di¤er in the way weights used to build weighted averages are de�ned. While Forni and

Lippi assume limN!1 kwk = 0, our granularity conditions (2)-(3) imply that, for any t 2 T ,
limN!1N

1
2
�� kwtk = 0 for any � > 0. This di¤erence in the de�nition of weights has some im-

plications on the properties of our processes. In particular, under (1), it is possible to show that the

idiosyncratic process (and hence also the de�nition of weak dependence à la Anderson et al.) im-

ply bounded eigenvalues of the spectral density matrix. Conversely, under (2)-(3), it is clear that if

�1 (�t) = O(N
1��) for any � > 0, then, using (8),

lim
N!1

�
w0twt

�
�1 (�t) = 0;

and the underlying process will be CWD. Hence, the bounded eigenvalue condition is su¢ cient but

not necessary for CWD. According to our de�nition a process could be CWD even if its maximum

eigenvalue is rising with N , so long as its rate of increase is bounded appropriately. In Section 3,

we investigate the relation between bounded eigenvalues of the spectral density matrix, and bounded

eigenvalues of the covariance matrix, �t, in the case of dynamic panels.

One rationale for characterizing processes with increasing largest eigenvalues at the slower pace

than N as weakly dependent is that bounded eigenvalues is not a necessary condition for consistent

estimation in general, although in some cases, such as the method of principal components, this con-

dition is necessary. More on this below in Section 5, where we consider estimation of slope coe¢ cients

in panels with an in�nite factor structure.

We conclude this section with two results concerning the relationship between strongly and weakly

cross sectionally correlated variables. Following De�nition 2, we say that two processes fzit;ag and
fzit;bg are weakly correlated at time t if lim

N!1
E(�zwt;a�zwt;b jIt�1 ) = 0, for all sets of weights that satisfy

the granularity conditions. The next proposition considers correlation of two processes with di¤erent

cross dependence structures. We then investigate the correlation structure of linear combinations of

strongly correlated and weakly correlated variables.
2See Horn and Johnson (1985, pp. 297-298).
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Proposition 2 Suppose that fzit;ag and fzit;bg are CSD and CWD processes, respectively. Then for

all sets of weights fwaitg and
�
wbit
	
satisfying conditions (2)-(3), we have

lim
N!1

E(�zwt;a�zwt;b jIt�1 ) = 0:

Proof. Let
n
wai;t�1

o
and

n
wbi;t�1

o
be two sets of weights satisfying conditions (2)-(3). For t 2 T , we

have

[E(�zwt;a�zwt;b jIt�1 )]2 � E(�z2wt;a jIt�1 )E(�z2wt;b jIt�1 ):

Further, under Assumption 3 the process zit;a satis�es

E(�z2wt;a jIt�1 ) < K;

where K is a �nite constant. Also from (6), and considering that zit;b is a CWD process we have

lim
N!1

E(�z2wt;b jIt�1 ) = 0:

Therefore, for all sets of weights satisfying (2)-(3), we obtain

lim
N!1

E(�zwt;a�zwt;b jIt�1 ) = 0:

Proposition 3 Consider two independent processes fzit;ag and fzit;bg ; and their linear combinations
de�ned by

zit;c = �azit;a + �bzit;b; (11)

where �a and �b are non-zero �xed coe¢ cients. Then the following statements hold:

(i) Suppose fzit;ag and fzit;bg are CSD, then fzit;cg is CSD,

(ii) Suppose fzit;ag and fzit;bg are CWD, then fzit;cg is CWD,

(iii) Suppose fzit;ag is CSD and fzit;bg is CWD, then fzit;cg is CSD.

Proof. Let�t;a and�t;b be the covariance matrices of zt;a = (z1t;a; :::; zNt;a)0 and zt;b = (z1t;b; :::; zNt;b)0,
and �t;c the covariance of their linear combination that is, given the assumption of independence be-

tween zt;a and zt;b
�t;c = �

2
a�t;a + �

2
b�t;b:

The variance of the weighted average w0tzt;c satis�es

V ar(w0tzt;c jIt�1 ) � �2jV ar(w0tzt;j jIt�1 ); j = a; b;
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which implies that, if there exists a weights vector wt satisfying the granularity conditions such

that either V ar(w0tzt;a jIt�1 ) or V ar(w0tzt;b jIt�1 ) or both are bounded away from zero, then also

V ar(w0tzt;c jIt�1 ) is bounded away from zero and fzit;cg is cross sectionally strongly dependent (this
proves (i) and (iii)). Also, we know that

V ar(w0tzt;c jIt�1 ) = V ar(w0tzt;a jIt�1 ) + V ar(w0tzt;b jIt�1 ):

Noting that V ar(w0tzt;a jIt�1 ) and V ar(w0tzt;b jIt�1 ) satisfy (6), then limN!1 V ar(w0tzt;c jIt�1 ) = 0,
and hence fzit;cg is cross sectionally weakly correlated (this proves (ii)).

The above result can be generalized to linear functions of more than two processes. In general,

linear combinations of independent processes that are strongly (weakly) correlated is strongly (weakly)

dependent, while linear combinations of a �nite number of weakly and strongly correlated processes

is strongly correlated, since on aggregation only terms involving the strong component will be of any

relevance. This result will be employed in Section 4.

3 Dynamic panels

Suppose that for each N 2 N, cross section units collected into the vector zt = (z1t; z2t; :::; zNt)
0 are

generated from the following VAR model,

zt = �tzt�1 + ut, (12)

where �t is a N � N dimensional matrix of unknown coe¢ cients, which could be time-varying, the

vector ut of reduced-form errors has mean and variance

E (ut) = 0, E
�
utu

0
t

�
= �t; (13)

where �t, t = 1; :::; T , are N � N symmetric, nonnegative de�nite matrix, and ut is independently

distributed of ut0 for any t 6= t0. The initialization of the dynamic process could be from a �nite

past, t 2 T � f�M + 1; ::; 0; ::g � Z, M being a �xed positive integer; or we can let M ! 1, as in
Chudik and Pesaran (2009). The in�nite-dimensional spatio-temporal model (12) can also be viewed

more generally as a �dynamic network�, with �t and �t capturing the static and dynamic forms of

inter-connections that might exist in the network. All linear dynamic panel data models existing in

the literature could be written as special cases of (12). Sequence of models (12) of growing dimension

(N ! 1) is non-nested since the dependence between unit i and j could change with the inclusion
of new unit(s). For this reason, the process fzit; N 2 N; i 2 f1; ::; Ng ; t 2 T g given by (12) is a triple
index process, but we continue to omit subscript N (were not necessary) to simplify the exposition.

Object of this section is to investigate the correlation pattern of fzitg across the cross sectional
units in the dynamic setting given by (12). In our analysis, we set It to contain only the starting
values, z�M , i.e. It = I = fz�Mg. Consider the following assumptions on the coe¢ cient matrices,
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�t, and the error vector, ut:

Assumption 4 There exist a constant K <1 and an arbitrarily small positive constant � > 0 such

that for any �xed t 2 T and any N 2 N, we have

k�tk < K, (14)

and

k�tk < K �N1��. (15)

Remark 4 Equation (15) of Assumption 4 implies that fuitg is CWD. The initialization of a dy-
namic process could be from a non-stochastic point or could have been from a stochastic point, possibly

generated from a process di¤erent from the DGP of fuitg.

Proposition 4 Consider model (12) and suppose Assumption 4 holds. Then for any sequence of

weight vectors fwtg satisfying condition (2), and for a �xed M and a �xed t 2 T ,

lim
N!1

V ar
�
w0tzt j z�M

�
= 0. (16)

Proof. The vector di¤erence equation (12) can be solved backwards, taking z�M as given:

zt =

 
t+M�1Y
s=0

�t�s

!
z�M +

t+M�1X
`=0

 
`�1Y
s=0

�t�s

!
ut�`:

The variance of zt (conditional on initial values) is


t;�M = V ar (zt j z�M ) =
t+M�1X
`=0

 
`�1Y
s=0

�t�s

!
�t�`

 
`�1Y
s=0

�t�s

!0
:

For any t 2 T , k
t;�Mk is under Assumption 4 bounded by

k
t;�Mk �
t+M�1X
`=0

 
`�1Y
s=0

k�t�sk2
!
k�t�`k = O

�
N1��� :

It follows that for any arbitrary vector of weights satisfying (2),

V ar
�
w0tzt j z�M

�
= w0t
t;�Mwt � � (
t;�M )

�
w0twt

�
= o (1) ; (17)

where � (
t;�M ) � k
t;�Mk = O
�
N1���, and w0twt = kwtk2 = O �N�1�.

Hence, the dynamic process fzitg given by (12) under Assumption 4 is CWD at any point in

time t 2 T , conditional on starting values z�M . The result of the above proposition can be readily
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extended to situations where M and/or t!1. In such cases we need the stronger requirement that
k�tk < 1��, for all t 2 T . It is then easily seen that the VAR(1) model, (12), yields a cross sectionally
weakly dependent process if for all t and N , k�tk < K �N1��, and k�tk < 1 � �, irrespective of the
values of t and M .3 There are several interesting implications of this �nding. Consider the following

additional assumption on the coe¢ cients matrix �t, which states that for some units the o¤-diagonal

elements of the matrix �t are small.

Assumption 5 Let K � N be a non-empty index set. De�ne vector
�t;�i =

�
�ti1; :::; �t;i;i�1; 0; �t;i;i+1; :::; �t;iN

�0 where �tij for i; j 2 f1; 2; :::; Ng is the (i; j) element of
matrix �t. For any i 2 K and any t 2 T , vector �t;�i satis�es



�t;�i

 =
0@ NX
j=1;j 6=i

�2tij

1A1=2 = O �N� 1
2

�
. (18)

Remark 5 Assumption 5 implies that for i 2 K,
PN
i=1;i6=j �tij �



�t;�i

1 = O (1).4 Therefore, it is
possible for the dependence of each individual unit on the rest of the units in the system to be large.

However, as we shall see below, in the case where fzitg is a CWD process, the model for the ith cross
section unit de-couples from the rest of the system as N !1.

Corollary 1 Consider model (12) and suppose Assumptions 4 and 5 hold. Then, a �xed M , a �xed
t 2 T , and any i 2 K,

lim
N!1

V ar (zit � �tiizi;t�1 � uit j z�M ) = 0. (19)

If, in addition to Assumptions 4 and 5, k�tk < 1� � and M !1, we have

lim
N!1

V ar (zit � �tiizi;t�1 � uit) = 0 for any i 2 K and any t 2 T . (20)

Proof. Assumption 5 implies that for i 2 K, vector �t;�i satis�es condition (2). It follows from
Proposition 4 that

lim
N!1

V ar
�
�0t;�izt j z�M

�
= 0 for any i 2 K and any t 2 T : (21)

3Under these assumptions the unconditional variance of zt is bounded by

kV ar (zt)k = k
tk �
1X
`=0

 
`�1Y
s=0

k�t�sk2
!
k�t�`k

< sup
t2T

k�tk �
1X
`=0

(1� �)2` = O
�
N1��� .

4Note that


�t;�i

1 � p

N


�t;�i

. See Horn and Johnson (1985, p. 314). An example of vector �t;�i for which

limN!1
PN

i=1;i6=j �tij 6= 0 is when �tij = k=N for i 6= j and any �xed non-zero constant k.

11



Similarly, under the assumption k�tk < 1 � � and M ! 1, we have kV ar (zt)k = O
�
N1��� (see

Footnote 3), which implies

lim
N!1

V ar
�
�0t;�izt

�
= 0 for any i 2 K and any t 2 T : (22)

System (12) implies

zit � �tiizi;t�1 � uit = �0t;�izt; for any i 2 f1; ::; Ng and any t 2 T : (23)

Taking conditional variance of (23) and using (21)-(22) now yields (19)-(20).

Strong dependence in in�nite-dimensional VAR models could arise as a result of CSD errors fuitg,
or could be due to dominant patterns in the coe¢ cients of �t, or both. An example of the former is

the residual common factor model where the weighted averages of factor loadings do not converge to

zero. Further examples of CSD IVAR models, featuring also dominant unit, are provided in Chudik

and Pesaran (2009).

The following proposition presents su¢ cient conditions for the VAR(1) process to be weakly de-

pendent in the sense of Anderson et al. (2009). Since the concept of weak dependence by Anderson

et al. (2009) is de�ned only for stationary processes, we have to assume that �t and �t are time

invariant.

Proposition 5 Consider model (12) with time invariant coe¢ cient matrix �t = �, and suppose that
for each t 2 T , ut satis�es E (ut) = 0, E (utu0t) = �;where � is a time invariant N �N symmetric,

nonnegative de�nite matrix, ut is independently distributed of ut0 for any t 6= t0, and � (�) < 1, so

that zt is a covariance stationary process. Then zt is weakly dependent, in the sense of Anderson et

al. (2009), if � (�) � K <1 and k�k < 1� �.

Proof. The spectral density of zt is given by (i =
p
�1)

Fz(!) =
1

2�

�
IN � e�i!�

��1
�
�
IN � ei!�0

��1
:

For each N 2 N, we have
� [Fz(!)] = kFz(!)k ;

and

kFz(!)k �
1

2�




�IN � e�i!���1


 k�k


�IN � ei!�0��1


 :
Under the assumption that �(�) < 1,

�
IN � e�i!�

��1
= IN + e

�i!�+e�2i!�2 + ::::

12



Now we assume k�k < 1, and since
��e�ij!�� = 1, it follows


�IN � e�i!���1


 � 1 + k�k+ k�k2 + :::::

=
1

1� k�k :

Similarly 


�IN � ei!�0��1


 � 1

1� k�0k =
1

1� k�k ;

If, in addition, � (�) � K <1 we have

� [Fz(!)] � 1

2�




�IN � e�i!���1


 k�k


�IN � ei!�0��1



=

1

2�
� (�)




�IN � e�i!���1





�IN � ei!�0��1



� 1

2�
� (�)

�
1

1� k�k

�2
= O (1) ;

which is bounded in N since both � (�) and 1
1�k�k are bounded. This completes the proof.

Remark 6 Notice that under the assumption that k�k < 1� � and if, for at least one frequency !0,
the matrix (IN�e�i!0�)�1(IN�ei!0�0)�1 is non-singular, it is possible to show that weak dependence
in the sense of Anderson et al. (2009) implies �(�) � K <1. To prove this, �rst notice that if A;B
are two n� n complex valued matrices then5

kABk � kAk�min
�
BB0

�1=2
; (24)

kABk � kBk�min
�
AA0

�1=2
: (25)

Applying (24)-(25) to � [Fz(!0)], we obtain

� [Fz(!0)] = kFz(!0)k =
1

2�




(IN � e�i!0�)�1�(IN � ei!0�0)�1



� 1

2�




(IN � e�i!0�)�1�


�min h(IN � ei!0�0)�1(IN � e�i!0�)�1i1=2
� 1

2�
k�k�min

h
(IN � e�i!0�)�1(IN � ei!0�0)�1

i1=2
�min

h
(IN � ei!0�0)�1(IN � e�i!0�)�1

i1=2
=

1

2�
� (�)�min

h
(IN � e�i!0�)�1(IN � ei!0�0)�1

i
> 0:

Given that � [Fz(!)] � K <1 at all frequencies !, it must follow that � (�) � K <1.
5See Bernstein (2005, page 362).

13



4 Common factor models

Consider the following in�nite factor model for fzitg:

zit = 
i1f1t + 
i2f2t + :::+ 
iNfNt + "it; i = 1; :::; N; (26)

where the common factors, f`t, and the idiosyncratic errors, "it, satisfy the following assumptions:

Assumption 6 The N � 1 vector ft is a covariance stationary process, with absolute summable
autocovariances, distributed independently of "it0 for all i; t; t0, and such that E(f2`t jIt�1 ) = 1 and

E(f`tfpt jIt�1 ) = 0; for ` 6= p = 1; 2; :::; N:

Assumption 7 V ar ("it jIt�1 ) = �2i � K < 1, and "it, "jt are independently distributed for all
i 6= j and for all t.

The process zit in (26) has conditional variance

V ar(zit jIt�1 ) = V ar (uit jIt�1 ) + V ar ("it jIt�1 ) =
NX
`=1


2i` + �
2
i :

Finiteness of the conditional variance of zit as stated in Assumption 3 implies that

NX
`=1


2i` � K <1; for i = 1; :::; N: (27)

This could arise if, for example,


i` = O(1), for ` = 1; :::;m; i = 1; :::; N; (28)


i` = O

�
1p
N

�
, for ` = m+ 1; :::; N ; i = 1; :::; N; (29)

where 0 � m <1 does not depend on N .

We now introduce the de�nition of weak and strong factors.

De�nition 3 (Weak and strong factors) The factor f`t is said to be strong if

lim
N!1

1

N

NX
i=1

E j
i`j = K > 0: (30)

The factor f`t is said to be weak if

lim
N!1

NX
i=1

E j
i`j = K <1: (31)
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In the case where the loadings attached to f`t do not satisfy either of the above conditions (30)-

(31), we refer to the corresponding common factor f`t as semi-weak (or semi-strong). For example, a

factor is semi-weak when the the absolute sum of its loadings,
PN
i=1E j
i`j, increases at a rate slower

than N .

There exists a relationship between the notions of CSD and CWD and the de�nitions of weak and

strong factors. This is provided in the following theorem.

Theorem 1 Consider the factor model (26), and suppose that Assumptions 3-7 hold and factor load-
ings are non-stochastic. Then under the condition that limN!1

PN
`=1 j
i`j = K <1 (for any i 2 N),

the following statements hold:

(i) The process fzitg is cross sectionally weakly dependent at a given point in time t 2 T if f`t is

weak for ` = 1; :::; N .

(ii) The process fzitg is cross sectionally strongly dependent at a given point in time t 2 T if and

only if there exists at least one strong factor.

Proof. In matrix form, the covariance of zt = (z1t; :::; zNt)
0 is

�t = ��
0 +�":

where �" is a diagonal matrix with elements �2i . If f`t is weak for ` = 1; :::; N then k�k1 is bounded
in N , and

�1 (�t) �


��0 +�"

1 � k�k1 

�0

1 + �2max � K; (32)

and, from Proposition 1, fzitg is CWD, which proves point (i). Now suppose that fzitg is CSD. Then

0 < lim
N!1

1

N
�1 (�t) � lim

N!1

1

N
k�k1



�0


1
+ lim
N!1

1

N
�2max

Given that, by assumption, k�0k1 is bounded in N , it follows that limN!1 1
N k�k1 = K > 0, and

there exists at least one strong factor in (26). To prove the reverse relation, assume that there exists

at least one strong factor in (26) (i.e., limN!1 1
N k�k1 = K > 0). Noting that6

�
1=2
1 (�t) � �1=21

�
��0

�
� k�k1p

N
: (33)

it follows that limN!1 1
N �1 (�t) = K > 0 and the process is CSD, which proves point (ii).

Under (30)-(31), zit can rewritten as

zit = uit + eit; (34)

6See Bernstein (2005, p.368, eq. xiv).
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where

uit =

mX
`=1


i`f`t; eit =

NX
`=m+1


i`f`t + "it; (35)

and 
i` satisfy conditions (30) for ` = 1; :::;m, and (31) for ` = m+ 1; :::; N . In the light of Theorem

1, it follows that uit is CSD and eit is CWD. Also, notice that when m = 0, we have a model with an

in�nite number of weak factors.

Remark 7 Consider the following general spatial process

zt = Rvt; (36)

where R is an N �N matrix and vt is an N � 1 vector of independently distributed random variables.

Pesaran and Tosetti (2009) have shown that spatial processes commonly used in the empirical literature,

such as the Spatial Autoregressive (SAR) process, or the Spatial Moving Average (SMA), can be written

as special cases of (36). Speci�cally, for a SMA process R = IN + �S, where � is a scalar parameter

(j�j < K) and S is N �N nonnegative matrix that expresses the ordering or network linkages among

errors, while in the case of an invertible SAR process, we have R = (IN � �S)�1. Standard spatial
literature assumes that R has bounded column and row norms. It is easy to see that under these

conditions the above process can be represented by a factor process with in�nite weak factors (i.e., with

m = 0), and no idiosyncratic error (i.e., "it = 0). For example by setting

zit =
NX
`=1


i`f`t;

where 
i` = ri`, and f`t = v`t for i; ` = 1; :::; N . Clearly, under the bounded column and row norms of

R, the loadings of the above factor structure satisfy (31) and hence carry weak cross section dependence.

Remark 8 Consistent estimation of factor models with weak or semi-weak factors may be problematic.
To see this, consider the following single factor model where suppose that loadings are known

zit = 
ift + "it; "it � IID
�
0; �2

�
:

The least squares estimator of ft, which is the best linear unbiased estimator, is given by

f̂t =

PN
i=1 
izitPN
i=1 


2
i

; V ar
�
f̂t

�
=

�2PN
i=1 


2
i

:

If for example
PN
i=1 


2
i is bounded, as in the case of weak factors, then V ar

�
f̂t

�
does not vanish as

N !1; for each t.

In the literature on factor models, it is quite common to impose conditions on the loadings or on

the eigenvalues of the conditional covariance matrix, �ut, of ut = (u1t; :::; uNt)
0 that constrain the
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form of cross section dependence carried by the factor structure. For example, Bai (2006) imposes

that factor loadings satisfy limN!1 1
N

PN
i=1 


2
i` > 0, for ` = 1; :::;m. Onatsky (2006) and Paul (2007)

consider the case where the idyosyncratic errors are independent with a homogeneous variance, �2,

and consider the `th factor as strong if
PN
i=1 


2
i` >

p
c�2, and weak if

PN
i=1 


2
i` �

p
c�2; where c is

such that N
T � c = o

�
N�1=2�. In the literature on asset pricing models, one common assumption

is that �m (�ut) is bounded away from zero at rate N (Chamberlain, 1983; Forni and Lippi, 2001).

Consider now factor model (34)-(35). Since rank (�ut) = m, and �i (�ut) > 0, for i = 1; 2; ::;m, and

�i (�ut) = 0, for i = m+ 1;m+ 2; :::; N , we have

�m (�t) � �m (�ut) ;

and

�m+1 (�t) � �m+1 (�ut) + �1 (�et) = �1 (�et) :

Under the assumption that �m (�ut) is bounded away from zero at rate N , and noting that, under

(31), �1 (�et) = O(1), it follows that �1 (�t) ; :::; �m (�t) increase without bound as N ! 1, while
�m+1 (�t) ; :::; �N (�t) satisfy the bounded eigenvalue condition. Most factor structures yield eigen-

values that increase at rate N . But as shown by Kapetanios and Marcellino (2008), it is possible to

devise factor models that generate eigenvalues that rise at rate Nd, for 0 < d < 1.

Remark 9 Our concepts of weak and strong cross section dependence are related to the notion of
diversi�ability provided by the asset pricing theory (Chamberlain, 1983). In this context, �t represents

the covariance matrix of a vector of random returns on N di¤erent assets, and wit; for i = 1; 2; :::; N ,

denotes the proportion of investor�s wealth allocated to the ith asset. From De�nition 2 it follows that

the part of asset returns that is weakly (or semi-weakly) dependent will be fully diversi�ed by portfolios

constructed using wt as the portfolio weights, and as N ! 1. Suppose that the asset returns fritg
have the factor structure

rit = �i;t�1 + 

0
ift + eit; i = 1; 2; :::; N;

where �i;t�1 is the conditional mean returns, ft is an m � 1 vector of unobserved factors, 
i is the
associated m� 1 vector of factor loadings, and feitg is a CWD process distributed independently of ft
and 
i. It is assumed that for each i; eit is distributed independently of 
i, whilst ft follows a general

time series process with the conditional m �m covariance matrix, 
t, also distributed independently

of eit. The return on a portfolio constructed with the granular weights wit is given by

�t =
PN
i=1witrit = w

0
t�t�1 +w

0
t�f t +w

0
tet;

where �t�1 = (�1;t�1; �2;t�1; :::; �N;t�1)
0, et = (e1t; e2t; :::; eNt)0, and � = (
1;
2; :::;
N )

0. It is easily

seen that

V ar (�t jIt�1 ) = w0t�
t�0wt + V ar
�
w0tet jIt�1

�
;
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and since by assumption feitg is a CWD process, then

lim
N!1

V ar (�t jIt�1 ) = lim
N!1

�
w0t�
t�

0wt
�
:

First consider the case where the factors are weak or semi-weak, and note that

w0t�
t�
0wt �

�
w0twt

�
�1
�
�
t�

0� � �w0twt� k�k1 k
tk1 

�0

1 :
Since m is �nite then k
tk1 k�0k1 � K, and the portfolio is fully diversi�ed for all granular weights if�

w0twt
�
k�k1 ! 0.

This condition holds if k�k1 = O(N1�") for some positive �xed ", namely if the factors are weak or

semi-weak. In general, however, the portfolio is not fully diversi�able if there is at least one strong

factor (see Theorem 1). In the presence of strong factors full diversi�cation is only possible with

portfolio weights that are dependent on the factor loadings. One such portfolio weights is given by

w� = N�1
h
IN �M��(�

0M��)
�1�0

i
�N ;

where M� = IN � �N (� 0N�N )�1� 0N , and �N = (1; 1; :::; 1)0. It is easily seen that the weights w� add
up to unity and are granular in the sense that7

w�0w� =
1

N

"
1 +

�
� 0N�

N

��
�0M��

N

��1��0�N
N

�#
! 0, as N !1:

It is also easily seen that �0w� = 0. Hence, limN!1 V ar (w�0rt jIt�1 ) = 0, as required.

5 CCE estimation of panel data models with in�nite factors

In this section we focus on consistent estimation of a regression model where the error term has a

factor structure with in�nite factors.

Let yit be the observation on the ith cross section unit at time t, for i = 1; 2; :::; N; and t = 1; 2; :::; T ,

and suppose that it is generated as

yit = �
0
idt + �

0
ixit + uit; (37)

where dt = (d1t; d2t; :::; dnt)
0 is a n � 1 vector of observed common e¤ects, and xit is a k � 1 vector

of observed individual speci�c regressors. The parameter of interest is the mean of individual slope

coe¢ cients, � = E(�i).
8

7When the factors are strong N�1�0�N and N�1�0M�� are O(1). If some of the factors are weak the columns of �
associated with the weak factors can be removed when constructing the weights, w�.

8We assume that individual slope coe¢ cients are drawn from common distribution with mean �. In the case
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The error term, uit, is given by the following general factor structure,

uit =

m1X
`=1


i`f`t +

m2X
`=1

�i`g`t + eit, (38)

where we distinguish between two types of unobserved common factors, ft = (f1t; :::; fm1t)
0 and gt =

(g1t; :::; gm2t)
0. The former are factors that are possibly correlated with regressors xit, while the

latter are not correlated with the regressors. De�ne for future reference the vectors of factor loadings


i =
�

i1; :::; 
im1

�0 and �i = (�i1; :::; �im2)
0.

To model the correlation between the individual speci�c regressors, xit, and the innovations uit,

we suppose that xit can be correlated with any of the factors in ft,

xit = A
0
idt + �

0
ift + vit; (39)

where A0i and �
0
i are n� k and m1 � k factor loading matrices with �xed components, and vit is the

individual component of xit; assumed to be distributed independently of the innovations uit, and of

the common factors.

Equations (37) and (39) can be written more compactly as

zit =

 
yit

xit

!
= B0idt +C

0
ift + �it; (40)

where

Bi =
�
�i Ai

�
Di, Ci =

�

i �i

�
Di,

Di =

 
1 0

�i Ik

!
, �it =

 
�0igt + eit + �

0
ivit

vit

!
:

Similar panel data models have been analyzed by Pesaran (2006), Kapetanios, Pesaran, and Yagamata

(2009), and Pesaran and Tosetti (2009). Pesaran (2006) introduced CCE estimators in a panel model

where m1 is �xed and m2 = 0, and 
 0ift represents a strong factor structure. Contrary to what Bai

(2006, page 2) suggests, CCE estimators are valid even in the rank de�cient case where m1 could be

larger than k + 1. Kapetanios, Pesaran, and Yagamata (2009) extended the results of Pesaran (2006)

by allowing unobserved common factors to follow unit root processes. In both papers, innovations

feitg are assumed to be cross sectionally independent although possibly serially correlated. This

assumption is relaxed by Pesaran and Tosetti (2009) who assume that feitg is a weakly dependent
process, which includes spatial MA or AR processes considered in the literature as special cases. In this

paper, we focus explicitly on cross-correlations modelled by general factor structures - weak, strong, or

where �0is are assumed to be non-stochastic, the object of interest would be cross section mean of �i, de�ned by

� = limN!1

�
N�1PN

i=1 �i

�
.
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somewhere in between. Our model is thus an extension of Pesaran (2006) to in�nite factor structures.

The special case where both m1 and m2 are �xed has already been analyzed in the above cited

papers. The case where f1t; :::; fm1t are strong factors and m1 = m1 (N)!1 as N !1, is not that
meaningful as the variances of uit rise with N . However, it would be possible to let m2, the number

of the weak factors, to rise with N , whilst keeping m1 �xed. We show below that the CCE estimators

continue to be consistent and asymptotically normal under this type of in�nite-factor error structures.

We make the following assumptions on the common factors and their loadings:

Assumption 8 (Common factors) The (n+m1)�1 vector (d0t; f 0t)0 is a covariance stationary processes,
with absolute summable autocovariances, distributed independently of git0, eit0 and vit0 for all i; t and

t0.9 For each i, common factor git follows a linear stationary process with absolute summable autoco-

variances, zero mean, unit variance, and �nite fourth moments. Individual factors collected in vector

gt are distributed independently of each other and of eit0 and vit0 for all i; t and t0.

Assumption 9 (Factor loadings) Factor loadings 
i, �i, and �i are non-stochastic. In addition, we
assume that the following conditions hold.

(a) The unobserved factor loadings, 
i and �i are bounded, i.e. k
ik2 < K and k�ik2 < K, for all
i.

(b) The unobserved factor loadings �i satisfy the following absolute summability condition for each

individual unit,

lim
N!1

m2X
`=1

j�i`j < K <1, (41)

where m2 = m2 (N) is a nondecreasing function of N and the constant K does not depend on i

nor on N .

Remark 10 Factor structure 
 0ift could be strong, weak or neither strong nor weak. Note that the
number of strong factors cannot increase with N for variance of uit to exists as N !1. We do not
impose that

PN
`=1 �i`g`t is a weak factor structure.

Remark 11 Condition (41) is required for V ar
�
�0igt

�
to exist as N ! 1. Note that the matrix of

factor loadings � = (�1;�2; :::;�N )
0 is not required to have bounded column norm as N !1.

Remark 12 It is straightforward to extend the analysis to stochastic factor loadings distributed in-
dependently of the errors eit, vit and the individual coe¢ cients �i. In case where factor loadings are

non-stochastic, the following rank condition

rank
�
C
�
= m1 for all N , (42)

9This assumption can be relaxed to allow for unit roots in the common factors, along the lines shown in Kapetanios,
Pesaran and Yagamata (2009).
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where C = N�1PN
i=1Ci, would have to hold for the consistent inference about �. Regardless of

whether the rank condition (42) holds or not, it is straightforward to show, along the same lines as in

Pesaran (2006), that the CCE estimators continues to be valid in the case when the factor loadings


i, for i = 1; ::; N , are stochastic and distributed independently from the common factors with mean


. Also see Kapetanios, Pesaran and Yamagata (2009).

The remaining assumptions are similar to Pesaran (2006):

Assumption 10 (Errors) The individual-speci�c errors eit and vjt0 are distributed independently for
all i; j; t and t0, and for each i; vit follows a linear stationary process with absolute summable auto-

covariances given by

vit =

1X
`=0

�i`�i;t�`;

where for each i, �it is a k � 1 vector of serially uncorrelated random variables with mean zero, the

variance matrix Ik; and �nite fourth-order cumulants. For each i, the coe¢ cient matrices �i` satisfy

the condition

V ar(vit) =
1X
`=0

�i`�
0
i` = �vi ;

where �vi is a positive de�nite matrix, such that supi k�vik2 < K: Errors eit; for i = 1; ::; N , follow
a linear stationary process with absolute summable autocovariances,

"it =
1X
`=0

ais�i;t�`,

where �is � IID (0; 1) with �nite fourth moments.

Assumption 11 (Random coe¢ cients) The slope coe¢ cients follow the random coe¢ cient model

�i = � + �i, �i � IID (0;
�) , for i = 1; ::; N ,

where k�k2 < K, k
�k2 < K, 
� is symmetric non-negative de�nite matrix, and the random devia-

tions �i are distributed independently of xjt, dt and ujt for all i; j and t.

Assumption 12 Consider the cross section averages of the individual speci�c variables zit = (yit;xit)
0,

de�ned by zt = 1
N

PN
i=1 zit and let M = IT �H

�
H
0
H
��
H, H =

�
D;Z

�
, where D and Z are, respec-

tively, the matrices of observations on dt and zt. Then the following conditions hold:

(a) The matrix limN!1 1
N

PN
i=1�vi is �nite and nonsingular.

(b) There exists T0 and N0 such that for all T � T0 and N � N0, the k � k matrices
�
XiMXi

T

��1
and

�
XiMgXi

T

��1
exist for all i, where Mg = IT � G (G0G)�G, with G = (D;F), F and
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Xi are matrices of observations on ft and xit. Furthermore, supi kE (evitev0it)k < K < 1 and

supi kE (witw0it)k < K < 1, where ev0it and w0it are t-th rows of the matrices eVi = MgViand

Wi =MgVi

�
V0
iMgVi

T

��1
, respectively, and Vi = (vi1;vi2; :::;viT )

0.

Remark 13 For ease of exposition in this section we consider augmentation by arithmetic cross sec-
tion averages. However, it is straightforward to relax this assumption along the lines of Pesaran

(2006) and consider cross section averages that are constructed using more general weights satisfying

granularity conditions (2)-(3).

The idea underlying the CCE approach is that as far as estimation of the slope coe¢ cients are

concerned the unobservable common factors can be well approximated by the cross section averages

of the dependent variable and individual speci�c regressors. The common correlated mean group

estimator (CCEMG) is given by

b�CCEMG =
1

N

NX
i=1

b�CCE;i (43)

where the estimates of the individual slopes are

b�CCE;i = �X0iMXi��1X0iMyi.
The common correlated pooled (CCEP) estimator is de�ned by

b�CCEP =
 

NX
i=1

X0iMXi

!�1 NX
i=1

X0iMyi. (44)

Theorem 2 (CCE estimation) Consider the panel data model (37) and (39) and suppose that As-
sumptions 8-12 hold, m1 does not vary with N , and the rank condition (42) holds. Then for the

common correlated mean group estimator b�CCEMG given by (43), as m2; N; T
j! 1, such that

N
Pm2
`=1 �`�i < K <1, we have

p
N
�b�CCEMG � �

�
! N (0;�CCEMG) , (45)

where �CCEMG = 
�. If in addition, k
�k2 > 0, then for the common correlated pooled estimatorb�CCEP given by (44) we have
p
N
�b�CCEP � ��! N (0;�CCEP ) , (46)

where

�CCEP = 	
��1R�	��1,
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with

	� = lim
N!1

1

N

NX
i=1

�vi,

R� = lim
N!1

1

N

NX
i=1

�vi
��vi.

Proof. Proof is relegated to Appendix.
Consistent estimators for the variances of b�CCEMG and b�CCEP are given equation (58) and (69)

of Pesaran (2006), respectively. In case of homogenous slopes, namely 
� = 0, b�CCEP continues to
be consistent, but in this case b�CCEP � � should be multiplied by pNT instead of pN , to obtain a
non-degenerate asymptotic distribution. See Pesaran (2006) for more details.

Remark 14 Besides the absolute summability condition in Assumption 9.b, additional restriction on
factor loadings f�i`g in Theorem 2 is that for each i,

N

m2X
`=0

�`�i` < K <1, as m2; N; T
j!1, (47)

where m2 = m2 (N) and the constant K does not depend on i and /or N . These conditions rule

out strong factor structures, but allow for (possibly) an in�nite number of weak of semi-weak factors

in�uencing yit. In particular, we do not necessarily require bounded column norm of the factor loading

matrix �.10 For example, �` = O
�
N�1�, m2 =

p
N and �i` = O

�
N�1=2� satisfy condition (47) and

Assumption 9.b. In Monte Carlo experiments below, we also investigate performance of CCE esti-

mators in case of in�nite semi-strong (weak) factor structures where condition (47) is not necessarily

satis�ed.

Remark 15 As mentioned in Remark 12, rank condition (42) can be relaxed, along the lines of
Pesaran (2006) or Kapetanios, Pesaran, and Yagamata (2009), at the expense of requiring the factor

loadings, 
i, to be random and distributed independently of the common factors and the individual

speci�c errors. Hence CCE estimators are valid for any �nite (�xed) number of possibly strong common

factors, which are correlated with regressors, and, in addition, innovations could follow a general

in�nite weak factor structure, or a certain semi-strong (semi-weak) in�nite factor structure, or, as

shown in Pesaran and Tosetti (2009), could simply follow a spatial model.

6 Monte Carlo experiments

We consider the following data generating process

yit = �id1t + �i1xi1t + �i2xi2t + uit; (48)
10The bounded row and column norms of � are su¢ cient (but not necessary) for condition (47) and Assumption 9.b

to hold.
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for i = 1; 2; :::; N and t = 1; 2; :::; T . We assume heterogeneous slopes, and set �ij = �j + �ij , with

�ij � IIDN (1; 0:04) ;for i = 1; 2; :::; N and j = 1; 2, varying across replications.

The errors, uit, are generated as

uit =
P3
`=1 
i`f`t +

Pm2
`=1 �i`g`t + "it;

where "it � N(0; �2i ); �2i � IIDU (0:5; 1:5) ; for i = 1; 2; :::; N (the MC results will be robust to serial

correlation in "it), and unobserved common factors are generated as an independent AR(1) processes

with unit variance.

f`t = 0:5f`t�1 + vf`t , ` = 1; ::; 3; t = �49; :::; 0; 1; ::; T;

vf`t � IIDN(0; 1� 0:52); f`;�50 = 0;

g`t = 0:5g`t�1 + vg`t , ` = 1; ::;m2; t = �49; :::; 0; 1; ::; T;

vg`t � IIDN(0; 1� 0:52); g`;�50 = 0:

The �rst three factors will be assumed to be strong in the sense that their loadings are unbounded in

N and are generated as


i` � IIDU(0; 1); for i = 1; :::; N; ` = 1; 2; 3:

The following two cases are considered for the remaining m2 factors g`t:

Experiment A fg`tg are weak, with their loadings given by

�i` =
�i`

2
PN
i=1 �i`

; �i` � IIDU(0; 1), for ` = 1; :::;m2, and i = 1; 2; :::; N:

It is easily seen that for each `;
PN
i=1 j�i`j = O(1) and for each i,

Pm2
`=1 �

2
i` = O(m=N

2). There-

fore, asymptotically as N !1, the R2i are only a¤ected by the strong factors, even if m2 !1.

Experiment B As an intermediate case we shall also consider semi-strong (weak) factors where the

loadings are generated by

�i` =
�i`q

3
PN
i=1 �

2
i`

; for ` = 1; :::;m2, and i = 1; 2; :::; N:

In this case, for each `,
PN
i=1 j�i`j = O(N1=2), and for each i,

Pm2
`=1 �

2
i` = O(m2=N); and the

signal-to-noise ratio of the regressions deteriorate as m2 is increased for any given N . In Section

6.1, we will investigate this issue further, to check if the e¤ect of m2 on R2i for a given N impacts

on the performance of our estimators.

The remaining variables in the panel data model are set out as follows: regressors xijt are assumed

24



to be correlated with strong unobserved common factors and generated as follows:

xijt = aij1d1t + aij2d2t +
P3
`=1 
ij`f`t + vijt; j = 1; 2;

where


ij` � IIDU(0; 1); for i = 1; :::; N; ` = 1; 2; 3; j = 1; 2:

vijt = ��ijvijt�1 + #ijt, i = 1; 2; :::; N ; t = �49; :::; 0; 1; ::; T;

#ijt � IIDN(0; 1� �2#ij ); vij;�50 = 0;

�#ij � IIDU(0:05; 0:95) for j = 1; 2.

The observed common e¤ects are generated as

d1t = 1; d2t = 0:5d2t�1 + vdt, t = �49; :::; 0; 1; ::; T;

vdt � IIDN(0; 1� 0:52); d2;�50 = 0;

When generating vijt and the common factors f`t; g`t and d2t the �rst 50 observations have been

discarded to reduce the e¤ect on estimates of initial values. The factor loadings of the observed

common e¤ects do not change across replications and are generated as

�i � IIDN(1; 1); i = 1; 2; :::; N;

(ai11; ai21; ai12; ai22) � IIDN(0:5� 4; 0:5I4);

where � 4 = (1; 1; 1; 1)0 and I4 is a 4� 4 identity matrix.

Each experiment was replicated 2; 000 times for all pairs of N and T = 20; 30; 50; 100; 200. For each

N we shall consider m = 0; N=5; 3N=5; N . For example, for N = 100, we consider m = 0; 20; 60; 100.

We report bias, RMSE, size and power for six estimators: the FE estimator with standard variance, the

CCEMG and CCEP estimators given by (43) and (44), respectively, the MGPC and PPC estimators

proposed by Kapetanios and Pesaran (2007), and the PC estimator proposed by Bai (2006). The

MGPC and PPC estimators are similar to (43) and (44) except that zt = (yt;x
0
t)
0 is replaced by F̂

computed as the T � (m+ n) matrix of observations on f̂t, the vector of (m+ n) principal components
extracted from zit = (yit;x

0
it)
0. In the PC iterative estimator by Bai (2006),

�
b̂PC ; F̂

�
is the solution

to the following set of non-linear equations:

b̂PC =

 
NX
i=1

XiMF̂Xi

!�1 NX
i=1

XiMF̂yi;

1

NT

NX
i=1

�
yi �Xib̂PC

��
yi �Xib̂PC

�0
F̂ = F̂V̂;
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where MF̂ = IT � F̂
�
F̂F̂

0��1
F̂0, and V̂ is a diagonal matrix with the m largest eigenvalues of the

matrix 1
NT

PN
i=1

�
yi �Xib̂PC

��
yi �Xib̂PC

�0
arranged in decreasing order. The demeaning operator

is applied to all variables before entering in the iterative procedure, to get rid of the �xed e¤ects. The

variance estimator of b̂PC is dV ar �b̂PC� = 1

NT
D�1
0 DZD

�1
0 ;

where

D0 =
1

NT

NX
i=1

ZiZ
0
i;

DZ =
1

N

NX
i=1

 
�̂2i
1

T

TX
t=1

zitz
0
it

!
;

with �̂2i =
1
T

PT
t=1 "̂

2
it, Zi =MF̂Xi�

1
N

PN
k=1

�

̂ 0i

�
L̂L̂

0
=N
��1


̂ 0k

�
MF̂Xk, and L̂ = (
̂1; :::; 
̂N )

0 is the

matrix of estimated factor loadings. When T=N ! � > 0, b̂PC is biased and, following Bai (2006),

we estimate the bias as

bias = � 1
N
D�1
0

1

N

NX
i=1

�
Xi � V̂i

�0
F̂

T

 
L̂L̂

0

N

!�1

̂i�̂

2
i ;

where V̂i = 1
N

PN
j=1 
̂

0
i

�
L̂L̂

0
=N
��1


̂ 0jXj .

6.1 Results

Results on the estimation of the slope parameters for the Experiments A and B are summarized in

Tables 1-11. In what follows, we focus on the estimation of �1; results for �2 are very similar and are

not reported. Notice that the power of the various tests is computed under the alternative H1 : �1
= 0:95.

Results reported in Tables 1 and 2 show that, as expected, the �xed e¤ects estimator performs

very poorly, is substantially biased, and is subject to large size distortions for all pairs of N and T ,

and for all values of m2. Tables 3-6 show the results for the CCE estimators. The bias and RMSE of

CCEP and the CCEMG estimators fall steadily with the sample size and tests of the null hypothesis

based on them are correctly sized, regardless of whether the factors, fg`t,` = 1; 2; :::;m2g, are weak
or semi-weak, and the choice of m2. Further, we notice that the power of the tests based on CCE

estimators is not a¤ected by m2, the number of weak (or semi-weak) factors: This is also con�rmed

by Figure 1, which shows that the power curves of tests based on the CCEP estimator do not change

much with m2.11 The Monte Carlo results clearly show that augmenting the regression with cross

11Similar curves were obtained for CCEMG estimatos, which are not reported due to space considerations.
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section averages seems to work well not only in the case of a few strong common factors, but also in

the presence of an arbitrary, possibly in�nite, number of (semi-) weak factors.

Tables 7-10 report the �ndings for the MGPC and PPC. First notice that these estimators, since

they estimate the unobserved common factors by principal components analysis, only work in the case

where the factors, fg`tg ; represent a set of weak factors, or when m2 = 0 (i.e., in Experiment A). In

fact, in the case of a semi-weak factor structure the covariance matrix of the idiosyncratic error would

not have bounded column norm, a condition required by principal components analysis for consistent

estimation of the factors and their loadings. However, as shown in Tables 7-8, even for Experiment

A, these estimators show some distortions for small values of N (i.e., when N = 20; 30). One possible

reason for this result is that the principal components approach requires estimating the number of

(strong) factors via a selection criterion, which in turn introduces an additional source of uncertainty

into the analysis. Therefore, not surprisingly tests based on MGPC and PPC estimators are severely

oversized when a semi-weak (semi-strong) factor structure is considered.

Finally, Table 11 gives the results for the Bai (2006) PC iterative estimator. The bias and RMSE

of the Bai estimates are comparable to CCE type estimators, but tests based on them are grossly

over-sized, even when m2 = 0. The problem seems to lie with the variance of the Bai estimators, an

issue that clearly needs further investigation. In his Monte Carlo experiments, Bai does not provide

size and power estimates of tests based on his estimator.

7 Concluding remarks

Cross section dependence is a rapidly growing �eld of study in panel data analysis. In this paper we

have introduced the notions of weak and strong cross section dependence, and have shown that these

are more general and more widely applicable than other characterizations of cross section dependence

provided in the existing econometric literature. We have also investigated how our notions of CWD

and CSD relate to the properties of common factor models that are widely used for modelling of

contemporaneous correlation in regression models. Finally, we have provided further extensions of

the CCE procedure advanced in Pesaran (2006) that allow for a large number of weak or semi-weak

factors. Under this framework, we have shown that the CCE method still yields consistent estimates

of the slope coe¢ cients and the asymptotic normal theory continues to be applicable.
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Figure 1: Power curves for the CCEP t-tests in experiments with N = 100; T = 100; 3 strong factors, and a
varying number m2 of weak factors (left chart) and semi-weak factors (right chart).

Table 11: MC results for Bai estimator.12

Experiment A and B: : m1 = 3 strong factors and m2 weak or semi-weak factors.

Bias (x100) RMSE (x100) Size (x100) Power (x100)

m2 N/T 20 100 20 100 20 100 20 100

Weak factor structure f�0igtg

0 20 0.47 -0.30 9.78 5.72 37.90 48.00 45.60 61.40

0 100 -0.01 0.02 3.57 2.50 21.50 47.20 58.70 91.10

4 20 0.62 -0.15 9.80 5.83 40.10 50.50 48.30 63.20

20 100 0.07 -0.09 3.48 2.47 21.40 44.90 56.20 91.50

20 20 0.30 0.09 9.91 6.07 37.90 52.40 46.50 64.20

100 100 0.10 0.03 3.47 2.42 21.10 45.30 59.80 91.90

Semi-weak factor structure f�0igtg

4 20 0.45 -0.23 9.40 6.08 35.50 52.10 42.70 65.10

20 100 -0.09 -0.17 3.70 2.60 23.60 46.80 58.30 88.70

20 20 1.28 -0.28 10.47 6.27 41.70 52.40 49.40 60.50

100 100 0.02 0.03 3.50 2.46 20.90 44.50 56.20 90.20

12Based on R = 1000 replications.
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Appendix
Let Q = GP; with

P =

 
In B

0 C

!
;

and note that H = Q +U
�
, U

�
=
�
0;U

�
, and Xi = G�i +Vi.For any random variable x, kxkL1 = E jxj denotes L1

norm of x. For any k � 1 vector of random variables xk = (x1; :::; xk)
0, kxkkL1 =

Pk
i=1 E jxij. We use

L1! to denote

convergence in L1 norm. We now provide some lemmas useful for proving Theorem 2.

Lemma 1 Consider the panel data model (37) and (39) and suppose that Assumptions 8-12 hold, and m1 does not vary

with N . Then as m2; T;N
j!1, such that N

Pm2
` �

2
` < K <1, we have:

p
N
�0Vi

T

L1! 0; (49)

p
N
�0ei
T

L1! 0; (50)

p
N
�0Q

T

L1! 0; (51)

p
N
�0iV

T

L1! 0; (52)

p
N
�0ie

T

L1! 0; (53)

N
�0V

T

L1! 0; (54)

N
�0e

T

L1! 0; (55)

and

N
�0�

T
�N

m2X
`=1

�
2
`
L1! 0. (56)

If in addition N
Pm2

`=1 �`�i` < K <1,

N
�0�i
T

�N
m2X
`=1

�`�i`
L1! 0. (57)

Proof. Let TN = T (N) andm2;N = m2 (N) be any non-decreasing integer-valued functions ofN such that limN!1 TN =

1, and N
Pm2

` �
2
` < K <1.

(a) Consider now the following two-dimensional vector array
�
f�Nt;Ftg1t=�1

	1
N=1

, de�ned by

�Nt =

p
N

T
�tvit =

p
N

TN

m2;NX
`=1

�`g`tvit

where �` = 1
N

PN
j=1 �j` and fFtg denotes an increasing sequence of �-�elds (Ft�1 � Ft) such that Ft includes all

information available at time t and �Nt is measurable with respect to Ft for any N 2 N. Set cNt = 1
TN

for all

t 2 Z and N 2 N. We have

E

�
�Nt�

0
Nt

c2Nt

�
= N ��i

m2;NX
`=1

�
2
` ,

where E (vitv0it) = �i and E
�
g2`t
�
= 1. It follows that





E ��Nt�0Ntc2Nt

�



 � k�ikN
m2;NX
`=1

�
2
` < K <1. (58)
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Consider now 



E�E ��NtcNt
j Ft�s

�
E

�
�Nt
cNt

j Ft�s
�0�



 � &s.

Equation (58) implies that &0 < K <1 and by covariance stationarity of vit and g`t, we have &s ! 0 as s!1.
By Liapunov�s inequality, E jE (�Nt j Ft�n)j �

q
E
�
[E (�Nt j Ft�n)]2

	
(Davidson, 1994, Theorem 9.23) and

the two-dimensional vector array
�
f�Nt;Ftg1t=�1

	1
N=1

is L1-mixingale with respect to the constant array fcNtg.
Equation (58) established that f�Nt=cNtg is uniformly bounded in L2 norm, which implies uniform integrability.13

Finally, note that the constant array fcNtg satisfy the following conditions

lim
N!1

TNX
t=1

cNt = lim
N!1

TNX
t=1

1

TN
= 1 <1,

and

lim
N!1

TNX
t=1

c2Nt = lim
N!1

TNX
t=1

1

T 2N
= 0.

It follows that array
�
f�Nt;Ftg1t=�1

	1
N=1

satis�es conditions of a mixingale weak law (Davidson, 1994, Theorem

19.11)., which implies
PTN

t=1 �Nt
L1! 0, that is

p
N
�0vi
T

L1! 0;

as m2; T;N
j!1, such that N

Pm2
` �

2
` < K <1. This completes the proof of result (49). Results (50)-(51) can

be proved in the same way.14 Remaining results are proved below using the similar logical arguments.

(b) Next we establish result (52). Let

�Nt =

p
N

TN
�itvt, (59)

and as before consider the two-dimensional vector array
�
f�Nt;Ftg1t=�1

	1
N=1

de�ned by (59) and the same

constant array cNt, namely cNt = 1
TN

for all t 2 Z and N 2 N. We have





E ��Nt�0Ntc2Nt

�



 � N
 m2;NX

`=1

�2i`

!
� 1
N2

NX
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k�ik < K <1.

Using similar arguments as before,
�
f�Nt;Ftg1t=�1

	1
N=1

is L1-mixingale with respect to constant array fcNtg,
and a mixingale weak law (Davidson, 1994, Theorem 19.11) imply

PTN
t=1 �Nt

L1! 0, that is

p
N
�0iv

T

L1! 0,

as m2; T;N
j! 1, such that N

Pm2
` �

2
` < K < 1, which concludes the proof of result (52). Proof of result (53)

is identical to the proof of result (52), but this time we set �Nt =
p
N

TN
�itet.

(c) Next we establish results (54) and (55) in a similar way. De�ne

�Nt =
N

TN
�tvt.

As before, set cNt = 1
TN

for all t 2 Z and N 2 N. Examining variance of �Nt�0Nt=c2Nt yields
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!
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k�ik < K <1.

13Su¢ cient condition for uniform integrability is L1+" uniform boundedness for any " > 0.
14De�ne �Nt =

p
N
T
�teit to prove result (50) and �Nt =

p
N
T
�tft to prove result (51)
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Using the same arguments as before,
�
f�Nt;Ftg1t=�1

	1
N=1

is L1-mixingale with respect to constant array fcNtg,
and a mixingale weak law (Davidson, 1994, Theorem 19.11) establishes result (54). Result (55) easily follows by

noting that V ar (et) and kV ar (vt)k are both of order O
�
N�1�.

(d) Next we prove equation (56). Set

�Nt =
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TN
N�2t �

1

TN
E
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,

and cNt = 1
TN

for all t 2 Z and N 2 N. Note that
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Using the same arguments as before,
�
f�Nt;Ftg1t=�1

	1
N=1

is L1-mixingale with respect to constant array fcNtg,
and a mixingale weak law (Davidson, 1994, Theorem 19.11) imply
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T
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as m2; T;N
j!1, such that N

Pm2
` �

2
` < K <1. This completes the proof of result (56).

(e) To establish result (57), de�ne

�Nt =
1

TN
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TN
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and set again cNt = 1
TN
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Using the same arguments as before,
�
f�Nt;Ftg1t=�1

	1
N=1

is L1-mixingale with respect to constant array fcNtg,
and a mixingale weak law (Davidson, 1994, Theorem 19.11) imply result (57).

The following lemma collects several results presented in Pesaran (2006), Kapetanios Pesaran and Yamagata (2009),

and Pesaran and Tosetti (2009).

Lemma 2 Consider the panel data model (37) and (39) and suppose that Assumptions 8-12 hold, and m1 does not vary

with N . Then as T;N
j!1 (at any rate) we have:

p
N
Q0Vi

T

L1! 0;
p
N
Q0ei
T

L1! 0; (60)

p
N
Q0e

T

L1! 0;
p
N
Q0V

T

L1! 0; (61)
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p
N
V0
iV

T

L1! 0,
p
N
V0
ie

T

L1! 0, (62)

p
N
e0e

T

L1! 0,
p
N
V
0
V

T

L1! 0,
p
N
e0V

T

L1! 0, (63)

and
p
N
e0ie

T

L1! 0,
p
N
e0iV

T

L1! 0. (64)

Proof. Lemma 2 follows directly from Pesaran (2006), Kapetanios Pesaran and Yamagata (2009), and Pesaran and

Tosetti (2009). These results can also be established in the same way as Lemma 1 by using a mixingale weak law.

Lemma 3 Consider the panel data model (37) and (39) and suppose that Assumptions 8-12 hold, and m1 does not vary

with N . Then as m2; T;N
j!1, such that N

Pm2
` �`�i < K <1, we have:
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N
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iM�i
T

�
p
N
X0
iMg�i
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L1! 0 (65)

p
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L1! 0 (66)
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T
�
p
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T

L1! 0 (67)

p
N
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T

�
p
N
X0
iMgei
T

L1! 0. (68)

Proof. Throughout this proof we consider asymptotics m2; T;N
j! 1, such that N

Pm2
` �`�i < K < 1. We start by

establishing result (65). Consider
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H
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 . (69)

We examine each of the three terms below. We have
p
NX0

i

�
H�Q

�
T

=

p
N (G�i +Vi)

0U
�

T
.

Equation (49) of Lemma 1 and equation (62) of Lemma 2 establish

p
N
V0
iU

T

L1! 0: (70)

In addition, equation (51) of Lemma 1 and equation (61) of Lemma 2 establish

p
N
G0U

T

L1! 0: (71)

Equations (70) and (71) imply p
NX0

i

�
H�Q

�
T

L1! 0, (72)

44



and noting that
�
H
0
H
T

��1
= Op (1), and

H
0
�i
T

= Op (1), establish
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Now we focus on the second term of (69). Equations (52),(53) and (57) of Lemma 1 imply

p
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0
�i

T

L1! 0.

It follows that
p
N(Q0�H0)�i

T

L1! 0 and since X0
iQ

T
= Op (1) and
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��1
= Op (1), we have
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In order to establish the last term of (69), we write

p
N
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H
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�
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,

where (note that H = Q+U
�
)
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�
QQ�H0

H
�

T
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�

T
�
p
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T
�
p
NU

�0
Q

T
.

Equations (54),(55) and (56) of Lemma 1 and equation (63) of Lemma 2 imply

p
NU

�0
U
�

T

L1! 0.

Similarly, equation (51) of Lemma 1 and equation (61) of Lemma 2 imply

p
NQ0U

�

T

L1! 0, as well as

p
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�0
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L1! 0. (73)

Noting that X0
iQ

T
= Op (1),

H
0
�i
T

= Op (1),
�
H
0
H
T

��1
= Op (1) and

�
Q0Q
T

��1
= Op (1), it follows that

p
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��1� L1! 0, (74)

and therefore 
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L1

! 0:

This completes the proof of result (65).

In order to establish result (66), note that MgF = 0 and therefore (66) is equivalent with the following statement,

p
N
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iMF

T
�
p
N
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iMgF

T

L1! 0.
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Using similar steps as in deriving equation (69), we have:
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. (75)

Since H
0
F

T
= Op (1), convergence of the �rst and the last term of (75) to zero directly follows from earlier results, in

particular equations (72) and (74). Furthermore, equation (73) implies

p
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T
=

p
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F

T

L1! 0,

and it follows that also the second term of (75) converges to zero. This establishes that
p
N
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L1
! 0,

which completes the proof of result (66).

Result (67) is established next in a similar fashion. Consider
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. (76)

Using equations (72) and (74), and noting that the remaining elements are bounded, we have
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! 0,

which completes the proof of result (67).

Finally, consider
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Equation (50) of Lemma 1 and equation (64) of Lemma 2 imply
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! 0. (78)
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Equations (72), (74) and (78) imply
p
N
T



X0
iMei �X0

iMgei



L1
! 0, which completes the proof of result (68).

Proof of Theorem 2. We prove Theorem 2 in two parts. First, we establish result (46) for the CCE pooled estimation

and in the second part we establish result (45) for the CCE mean group estimation.

Let �it =
Pm2

`=1 �i`g`t and consider

p
N
�b�CCEP � �� =
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NX
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!�1 NX
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1p
N

X0
iM (Xi�i + F
i + �i + ei)

T
; (79)

We focus �rst on the new term
PN

i=1
1

T
p
N
X0
iM�i, which is introduced by possibly in�nite factor structure fg`tg

m2
`=1 and

which is not present in previous studies by Pesaran and Tosetti (2009), Kapetanios Pesaran and Yamagata (2009), and

Pesaran (2006). Equation (65) of Lemma 3 implies
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L1! 0, (80)

as m2; T;N
j! 1, such that N

Pm2
` �`�i < K < 1. Let eVi =MgVi and denote t-th row of matrix eVi as ev0it. Using

this notation we write,
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!
:

Let TN = T (N) and m2;N = m2 (N) be any non-decreasing integer-valued functions of N such that limN!1 TN = 1
and such that Assumption 9.b holds, namely limN!1

Pm2;N

`=1 �2i` < K. Consider now the following two-dimensional

vector array
�
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	1
N=1

, de�ned by
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and fFtg denotes an increasing sequence of �-�elds (Ft�1 � Ft) such that Ft includes all information available at time
t and �Nt is measurable with respect to Ft for any N 2 N. Let

�
fcNtg1t=�1

	1
N=1

be two-dimensional array of constants

and set cNt = 1
TN

for all t 2 Z and N 2 N. Note that
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E
�evitev0it�E ��2it� ,

where the second equality follow from independence of vit and vjt for any i 6= j. E (evitev0it) = �i and by Assumption

10 there exists a constant K1 < 1, which does not depend on i nor on N and such that k�ik < K1. Further, using

independence of factors g`t and g`0t for any ` 6= `0 and noting that E
�
g2`t
�
= 1, we have

E
�
�2it
�
=

m2;NX
`=1

�2i` < K2 <1,

where the existence of uniform upper bound K2, which does not depend on i;N is assumed in Assumption 9. It follows

that 



E ��Nt�0Ntc2Nt

�



 < K <1, (82)
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where the constant K = K1K2 and it does not depend on N . Consider now



E�E ��NtcNt
j Ft�s

�
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�
�Nt
cNt

j Ft�s
�0�



 = &s.

Equation (82) implies that &0 < K < 1 and by stationarity of vit and g`t, we have &s ! 0 as s ! 1. By Liapunov�s
inequality, E jE (�Nt j Ft�n)j �

q
E
�
[E (�Nt j Ft�n)]2

	
(Davidson, 1994, Theorem 9.23) and the two-dimensional array�

f�Nt;Ftg1t=�1
	1
N=1

is L1-mixingale with respect to the constant array fcNtg. Equation (82) established that f�Nt=cNtg
is uniformly bounded in L2 norm, which implies uniform integrability.15 Finally, note that the constant array fcNtg
satis�es the following conditions
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It follows that array
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N=1

satis�es conditions of a mixingale weak law (Davidson, 1994, Theorem 19.11).,

which establish
PTN
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L1! 0, that is:
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evit�it L1! 0, (83)

as m2; N; T
j!1 (at any rate) or m2 is �xed and N;T

j!1. Equations (80) and (83) imply
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N

NX
i=1

X0
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L1! 0,

as m2; T;N
j! 1, such that N

Pm2
` �`�i < K < 1. Convergence results for the remaining terms on the right side of

equation (79) can be established in the same way as in Pesaran and Tosetti (2009) or Pesaran (2006). In particular,

results (66)-(68) of Lemma 3 imply 
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as m2; T;N
j!1, such that N
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` �`�i < K <1. It follows that
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as m2; T;N
j!1, such that N
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` �`�i < K <1. This completes the proof of result (46).

Next we establish result (45) for the CCE mean group estimation. Let again �it =
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`=1 �i`g`t and consider
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15Su¢ cient condition for uniform integrability is L1+" uniform boundedness for any " > 0.
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where b	iT = T�1X0
iMXi. Compared to Pesaran (2006), and Pesaran and Tosetti (2009), equation (84) has the extra

term 1p
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, not encountered pepreviously. We focus on this new term �rst. Lemma 3 implies
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as m2; T;N
j! 1, such that N
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Using the same method as in the �rst part of the proof, we de�ne two-dimensional vector array
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which is identical to (81) except that wit is used instead of evit. Following the same steps as in the �rst part of this
proof, we have that
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is L1-mixingale with respect to constant array fcNtg, and a mixingale weak
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as m2; T;N
j!1, such that N
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` �`�i < K <1. It follows from equations (85) and (87) that
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j! 1, such that N
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` �`�i < K < 1. Convergence results for remaining terms on the right side of

equation (84) can be established in the same way as in Pesaran and Tosetti (2009) or Pesaran (2006). In particular, we
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` �`�i < K <1. This completes the proof of result (45).
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